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Abstract

We show that for solid—solid phase transitions one-dimensional stress problems do not exist. The lack of uniqueness of
solutions in modeling dynamical phase tritioss was an unsolved issue. For a slendecular cylinder composed of an in-
compressible phase-transforming material we establish the proper model equation. From our model equation we establish thre
relations for three unknowns across theg#houndary, which provide the uniquenessditions for solutions. Our results seem
to resolve the long outstanding issue of nonuniqueness of solutions in modeling dynamical problems of phase-transforming ma-
terials.To citethisarticle: H.-H. Dai, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
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Résumé

Inexistence des problémes de contrainte a une dimension dans les transitions de phase solide-solide et conditions
d’unicité pour les matériaux incompressibles a transition de phase. Nous montrons que pour les changements de phases
solide—solide, il n’existe pas de modeles de contraintes uni-dimensionnel. La non-unicité des solutions des modéles dynamique
de changement de phases était un probleme non résolu. Namoobtla bonne équation qui modélise un cylindre circulaire
mince constitué d’'un matériau incomprémssia changement de phases. A partir de noweéle, nous établisss trois relations
pour trois inconnues le long de la frontiere de phase, qui permettent d’obtenir I'unicité de la solution. Nos résultats semblent
résoudre une question restée ouverte pendant longtemjppaspie la non-unicité des solutions des modeles dynamiques de
matériaux a changement de phaRaur citer cet article: H.-H. Dai, C. R. Acad. Sci. Paris, Ser. | 338 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In a recent article [1], an elegent review was givendabsn the papers by Abeyaratne and Knowles [2—4]. They
considered the impact-induced phase transition problem in a semi-infinite slab composed of a phase-transforming
material with a given velocity-V at the end. The governing equations (in a Lagrangian description) used by them
were pure, one-dimensional dynamical equations
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Fig. 1. Impact-induced tensile wave with a similarity foto(x/7), y (x/1)).
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wherex andr are respectively the spatial and temporal variables,w, is the axial strain and = wy, is the veloc-

ity (w is the axial displacementy, is the stress angd is the density. For a phase-transforming material, when the

given velocityV is within a certain interval, the phase boundary is induced. Abeyaratne et al. [1] gave the solution

in the (x, r) plane, which has the structures of one shock wave and a phase boundary. More recently, Knowles [9]

considered the case wher&y) > 0 buto (y) has an inflection point. He showed that when the phase boundary

is induced, there is also a rarefaction wave; see Fighg.dppearence of the rarefaction wave seems to be natural

(and probably should also be present in the case whége changes signs). Across the phase boundary, there are

the usual two jump conditions (see [9]):

yt=y)s+ 0T +V)=0, 2
oyH—o(y ) +pit+V)=0, (3)

wheres is the speed of the phase boundary. In the above two equatiorsn be related tp+ through the stress
functiono (y), but they only provide two relations for three unknowrs, y~ ands. Thus, the solution is not
unique and actually there is a one-parameter family of solutions. Abeyaratne and Knowles [2—4] introduced the
concept of the driving forcg(¢) and the kinetic relatiog(z) = ¢ (s). Once¢(s) is known, then there is an extra
relation to determine the solution uniquely. However, as far as the author knows, such a function has never beer
provided in the literature, except that autharsficially used some specific forms to just single out the solutions.

One purpose of this Note is testablish the uniqueness conditiotgough an physical insight into these
materials and a formal mathematical derivation.

2. Non-existence of one-dimensional stress problems

Consider the axial equilibrium equation in an axially-symmetrical static problem

9S;z  0S;r  S:r

3z R TR T 0 @
whereS,z and S, g are the components of the first Piolar—Kirchhoff stress tensor(a#ddz) and(R, ©, Z) are

the current and reference cylindrical coordinates, respectively. For a thin bar, one might think that the last two
terms in (4) (representing the influga of the radial deformation in the iak direction) are very small and can

be neglected. For standard elastic materials, indeed such an approximation is valid (for a neo-Hookean material
they are exponentially small; see [6]). However, for a phase-transforming material, the stress-strain curve typi-

cally has a peak-valley combination. In the loading process, as the external stress approaches the pgak value

E’f—ZZ = aas_;zyz (v is the strain) is exactly equal to zero. Then, the ter@ﬁ% andeTgR, no matter how small they
are, are dominant terms and cannot be neglected! This implies there must be a radial deformation in the proces
of phase transformation. Thus, to model phase transitions, the influence of the radial deformation should be taker

into account. This reveals thfar solid—solid phase transitions, onéatensional stress problems do not exist.
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3. Model equation and uniqueness conditions

Based on the results given in Section 2, it can be seeriddhmbdel phase transition problems, it is essential to
take into account the influence of the radial deformatidere, we shall establish the proper model equation for
a slender circular cylinder composed of an incompressible phase-transforming material. The idea, similar to that
used in [10] for waves in fluids, is to consider which terms should be present and then combine them together.
First, when the phase transformation has not begun, the model equation should be able to yield the correct resul
for a static uniform state for which the equation has the fegm= 0. Thus, the ternaz should be present.
Secondly, the axial inertial terpw,, should be present for dynamical problems.
As discussed in Section 2, to model phase transitiong,should take into account the radial deformation. For
linear waves, when the lateral mawent is present, they are dispersive. Linear dispersive termsgfgz, wzz:;
andwy,;. Then, combining these terms together, we have the form of the model equation

pWi — 0z +Apwzzzz + Bpwzz + Cﬂ_lpzwmt =0 (5)

with three undertermined constams B andC, whereu is the shear modulus.

To determine these constants, the idea is to match the dispersion relation of this model equation to the exac
dispersion relation based on the three-dimensional field equations up to a certain asymptotic order (cf. [10]). The
exact dispersion relation for linear waves in a circulglinder is the so-called Pochhammer frequency equation
(see [5]). For small radius and the first mode, we expand thedhhammer frequency equation t@d®) and then
match it to the dispersion relation of the linearized version of Eq. (5), and as a result we obtain

3 2 3> 1,

A—4a, B= 4a, C—8a. (6)
Thus, the proper model equation for phase transitions innaslecircular cylinder composed of an incompressible
phase-transforming material is

wi — p Yoz + gaZC%wzzzz - gazwzz” + %azc;zwmz =0, @)
wherecy is the shear-wave speed. Eq. (7) can also be derived from the three-dimensional field equations togethe
with the traction free boundary conditions in the latesaiface by a consistent asymptotic approach as we have
carried out in [7] and [8] for nonlinear waves in slender circular cylinders composed of standard elastic materials.
The results based on such an approach for bothpressibleandincompressibl@hase-transforming materials will
be reported elsewhere.

For smalla, (7) represents a singular perturbation problem and there should be outer and inner regions. Only in
the outer regions, at the leading orden{%) one has Eqgs. (1). Thus, the solutions which were constructed based
on the pure one-dimensional model in the literature are only valid to within the leading order in the outer regions.
In the inner region, the higher-order derivatives come into play, and the full equation should be used.

The solution shown in Fig. 1 is valid in the outer regions. Roughly speaking, one outer region (den&gd by
is a region, with the rarefaction wave and the undisturbed region included, some distance away from the phase
boundary to the right, and another outer region (denoteft)yis some distance away from the phase boundary
to the left. The inner region (denoted By, containing the phase boundary, is betw&rand R». As in the over-
lapping region ofR1 and/ (denoted byD1) and that ofR> and (denoted byD>) the strain is in a traveling wave
state with propagating speédthe strain in the whole domain éfshould also be in a traveling wave state with the
same propagating speed. Thus, we seek the traveling wave solution of (7) and let

y(=wz)=f(), &§=Z-st. (8)

Integrating the above equation with respecZteonce and then matching to the velocities and strains in the over-
lapping regionsdD1 and D2, we obtain
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=y )+t +Vv)=0. 9)

Note that Eq. (9) is precisely the jump condition (2)!

For traveling waves, it is possible to integrate (7) twice, and as a result two integration constantbc
come out. By matching to the velocity and strain values in the overlapping régioone expression far, can be
obtained, and by matching thosefii» another expression fax can be obtained. The two expressions should be
equal, which leads to

oyt —o(y ) +si@r+V)=0. (10)

This is just the second jump condition (3)! Similarly, by matching to the velocity and strain valugsand Do,
respectively, two expressions fof can be obtained, and setting the two expressions being equal yields that
-
_ 2/ 2 2
[omdr =y a7~y - 53207y 7). (11
y+

Egs. (9), (10) and (11) provide three equations for three unkngwns — ands across the phase boundary, and
these are theniqueness conditiorfsr the solution. We point out that these three conditions are derived without
using any notion of the kinetic relation.

In the literature, it is stated that the kinetic relation (i.e., the specific form of the driving force in tedhbad
to be determined from the lattice model and extra experiments, independently from the usual constitutive relation
between the stress and strain. Here, we have actdetlyedthe uniqueness conditions based on the given stress
functiono (y) alone. Thus, it is not necessary to conduct extra experiments to detef@inar assume artificially
any particular forms of (s) (as adopted by many people in the literature). Our results seem to resolve the long
outstanding issue of nonuniqueness of solutions in moddimgmical problems of phase-transforming materials.
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