Differential Geometry/Algebraic Geometry

Gromov-Witten invariants of noncompact symplectic manifolds

Guangcun Lu ${ }^{1}$
Department of Mathematics, Beijing Normal University, Beijing 100875, PR China
Received 5 November 2003; accepted after revision 6 March 2004
Available online 17 April 2004
Presented by Mikhaël Gromov

Abstract

This is a short survey about our Gromov-Witten invariant theory for noncompact geometrically bounded symplectic manifolds. To cite this article: G. Lu, C. R. Acad. Sci. Paris, Ser. I 338 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Invariants de Gromov-Witten des variétés symplectiques non compactes. Nous présentons dans cette Note la théorie des invariants des variétés symplectiques non compactes, géométriquement bornées. Pour citer cet article: G. Lu, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

It has been expected that the Gromov-Witten invariants should also be defined for noncompact symplectic manifolds (see, e.g., the remark on the page 337 of [3] by Kontsevich). We here develop the virtual moduli cycle techniques introduced in [4-7] to generalize work of [8] to arbitrary noncompact geometrically bounded symplectic manifolds. A Riemannian metric μ on a manifold M is said to be geometrically bounded if its sectional curvature is bounded above and injectivity radius $i(M, \mu)>0$. Denote by $\mathcal{G} \mathcal{R}(M)$ the set of all such Riemannian metrics on M. Let $\mathcal{J}(M, \omega)$ be the space of all ω-compatible almost complex structures on a symplectic manifold (M, ω). A symplectic manifold (M, ω) without boundary is said to be geometrically bounded if there exists $J \in \mathcal{J}(M, \omega)$, $\mu \in \mathcal{G} \mathcal{R}(M)$ and positive constants α_{0} and β_{0} such that $\omega(X, J X) \geqslant \alpha_{0}\|X\|_{\mu}^{2}$ and $|\omega(X, Y)| \leqslant \beta_{0}\|X\|_{\mu}\|Y\|_{\mu}$ for all $X, Y \in T M$ (cf. [1,2,10]). We shall also say that such a J is (ω, μ)-geometrically bounded. Denote by $\mathcal{J}(M, \omega, \mu)$ the set of all (ω, μ)-geometrically bounded almost complex structures in $\mathcal{J}(M, \omega)$. It is a pathconnected subset in $\mathcal{J}(M, \omega)$. Denote by $\operatorname{Symp}_{0}^{S}(M, \omega)$ the connected component containing id_{M} of $\operatorname{Symp}_{0}(M, \omega)$ with respect to the C^{∞}-strong topology. For $\mathbb{K}=\mathbb{C}, \mathbb{R}$ and \mathbb{Q} we shall consider the \mathbb{K}-coefficient deRham

[^0]cohomology $H^{*}(M, \mathbb{K})$ and deRham cohomology $H_{c}^{*}(M, \mathbb{K})$ with compact support; $H^{*}(M, \mathbb{Q})\left(\right.$ resp. $\left.H_{c}^{*}(M, \mathbb{Q})\right)$ consists of all deRham cohomology classes in $H^{*}(M, \mathbb{R})\left(\right.$ resp. $\left.H_{c}^{*}(M, \mathbb{R})\right)$ which take rational values over all integral cycles.

2. Gromov-Witten invariants

Let (M, ω, J, μ) be a geometrically bounded symplectic manifold of dimension $2 n, A \in H_{2}(M, \mathbb{Z})$ and integers $g \geqslant 0, m>0$ with $2 g+m \geqslant 3$. Let $\overline{\mathcal{M}}_{g, m}$ be the set of all isomorphism classes of stable curves with m marked points and of genus of $g, \kappa \in H_{*}\left(\overline{\mathcal{M}}_{g, m}, \mathbb{Q}\right)$ and $\left\{\alpha_{i}\right\}_{1 \leqslant i \leqslant m} \subset H^{*}(M, \mathbb{Q}) \cup H_{c}^{*}(M, \mathbb{Q})$ satisfy

$$
\begin{equation*}
\sum_{i=1}^{m} \operatorname{deg} \alpha_{i}+\operatorname{codim}(\kappa)=2 c_{1}(M)(A)+2(3-n)(g-1)+2 m . \tag{1}
\end{equation*}
$$

Let $\overline{\mathcal{M}}_{g, m}(M, J, A)$ denote the set of equivalence classes of all m-pointed stable J-maps of genus g and of class $A \in H_{2}(M, \mathbb{Z})$ in M. It was observed by Gromov in his celebrated paper [2] that the 'size' of the closed J holomorphic curve can be controlled in this class of symplectic manifolds. So for any compact subset $K \subset M$ the images of all maps in $\overline{\mathcal{M}}_{g, m}(M, J, A ; K):=\left\{[\mathbf{f}] \in \overline{\mathcal{M}}_{g, m}(M, J, A) \mid f(\Sigma) \cap K \neq \emptyset\right\}$ may be contained in $c\left(\alpha_{0}, \beta_{0}, \mu\right) \omega(A)$-neighborhood of K in M for some constant $c\left(\alpha_{0}, \beta_{0}, \mu\right)>0$. It follows that $\overline{\mathcal{M}}_{g, m}(M, J, A ; K)$ is compact.

Suppose that $\left\{\alpha_{i}\right\}_{1 \leqslant i \leqslant m} \subset H_{c}^{*}(M, \mathbb{Q}) \cup H^{*}(M, \mathbb{Q})$ has at least one element, say α_{1}, belonging to $H_{c}^{*}(M, \mathbb{Q})$. We may choose their closed representative forms $\alpha_{i}^{*}, i=1, \ldots, m$, and a compact subset K_{0} in M such that $\operatorname{supp}\left(\bigwedge_{i=1}^{m} \alpha_{i}^{*}\right) \subset K_{0}$. From $\overline{\mathcal{M}}_{g, m}\left(M, J, A ; K_{0}\right)$ we can use the methods developed in [5-7] to construct a family of cobordant virtual moduli cycles

$$
\mathcal{C}^{\mathbf{t}}\left(K_{0}\right):=\sum_{I \in \mathcal{N}} \frac{1}{\left|\Gamma_{I}\right|}\left\{\hat{\pi}_{I}: \mathcal{M}_{I}^{\mathbf{t}}\left(K_{0}\right) \rightarrow \mathcal{W}\right\} \quad \forall \mathbf{t} \in \mathbf{B}_{\varepsilon}^{\mathrm{res}}\left(\mathbb{R}^{m_{n_{3}}}\right)
$$

Let $\mathrm{ev}_{i}([f, \Sigma, \overline{\mathbf{z}}])=f\left(z_{i}\right), i=1, \ldots, m$, and $\Pi_{g, m}([f, \Sigma, \overline{\mathbf{z}}])=\left[\Sigma^{\prime}, \overline{\mathbf{z}}^{\prime}\right]$ be obtained by collapsing components of $(\Sigma, \overline{\mathbf{z}})$ with genus 0 and at most two special points. Using the map $\mathrm{EV}_{g, m}:=\Pi_{g, m} \times\left(\prod_{i=1}^{m} \mathrm{ev}_{i}\right): \mathcal{B}_{A, g, m}^{M} \rightarrow$ $\overline{\mathcal{M}}_{g, m} \times M^{m}$, we define the GW-invariants as

$$
\begin{align*}
\mathcal{G} \mathcal{W}_{A, g, m}^{(\omega, \mu, J)}\left(\kappa ; \alpha_{1}, \ldots, \alpha_{m}\right) & :=\int_{\operatorname{EV}_{g, m} \mathcal{C}^{\mathrm{t}}\left(K_{0}\right)} \kappa^{*} \oplus \bigwedge_{i=1}^{m} \alpha_{i}^{*} \\
& =\sum_{I \in \mathcal{N}} \frac{1}{\left|\Gamma_{I}\right|} \int_{\mathcal{M}_{I}^{\mathrm{t}}\left(K_{0}\right)}\left(\mathrm{EV}_{g, m} \circ \hat{\pi}_{I}\right)^{*}\left(\kappa^{*} \oplus \bigwedge_{i=1}^{m} \alpha_{i}^{*}\right), \tag{2}
\end{align*}
$$

if (1) is satisfied, and $\mathcal{G} \mathcal{W}_{A, g, m}^{(\omega, \mu, J)}\left(\kappa ; \alpha_{1}, \ldots, \alpha_{m}\right)=0$ otherwise. They are well-defined. That is, the left of (2) does not depend on all related choices (see $\S 4.2-\$ 4.6$ of [9]). As expected they are multilinear and supersymmetric on $\alpha_{1}, \ldots, \alpha_{m}$, and also independent of choices of $J \in \mathcal{J}(M, \omega, \mu)$. Moreover, they only depend on the connected component of μ in $\mathcal{G} \mathcal{R}(M)$ with respect to the C^{∞} strong topology. (In fact it was proved in [9] that they are invariant under the weak deformation of (M, ω, J, μ)) For any $\psi \in \operatorname{Symp}_{0}^{S}(M, \omega)$ the following holds

$$
\begin{equation*}
\mathcal{G} \mathcal{W}_{A, g, m}^{\left(\omega, \psi^{*} \mu, \psi^{*} J\right)}\left(\kappa ; \alpha_{1}, \ldots, \alpha_{m}\right)=\mathcal{G} W_{A, g, m}^{(\omega, \mu, J)}\left(\kappa ; \alpha_{1}, \ldots, \alpha_{m}\right) . \tag{3}
\end{equation*}
$$

Let $\mathcal{F}_{m}: \overline{\mathcal{M}}_{g, m} \rightarrow \overline{\mathcal{M}}_{g, m-1}$ be a map, forgetting the last marked point. It is a Lefschetz fibration and the integration along the fibre induces a map $\left(\mathcal{F}_{m}\right)_{\sharp}$ from $\Omega^{*}\left(\overline{\mathcal{M}}_{g, m}\right)$ to $\Omega^{*-2}\left(\overline{\mathcal{M}}_{g, m-1}\right)$. It also induces a 'shriek' $\operatorname{map}\left(\mathcal{F}_{m}\right)!$ from $H_{*}\left(\overline{\mathcal{M}}_{g, m-1} ; \mathbb{Q}\right)$ to $H_{*+2}\left(\overline{\mathcal{M}}_{g, m} ; \mathbb{Q}\right)$.

Theorem 2.1 (Reduction formulas). If $(g, m) \neq(0,3),(1,1)$, then for any $\kappa \in H_{*}\left(\overline{\mathcal{M}}_{g, m-1} ; \mathbb{Q}\right), \alpha_{1} \in H_{c}^{*}(M ; \mathbb{Q})$, $\alpha_{2}, \ldots, \alpha_{m} \in H^{*}(M ; \mathbb{Q})$ with $\operatorname{deg} \alpha_{m}=2$ one has

$$
\begin{aligned}
& \mathcal{G} \mathcal{W}_{A, g, m}^{(\omega, \mu, J)}\left(\left(\mathcal{F}_{m}\right)!(\kappa) ; \alpha_{1}, \ldots, \alpha_{m}\right)=\alpha_{m}(A) \cdot \mathcal{G} \mathcal{W}_{A, g, m-1}^{(\omega, \mu, J)}\left(\kappa ; \alpha_{1}, \ldots, \alpha_{m-1}\right), \\
& \mathcal{G} \mathcal{W}_{A, g, m}^{(\omega, \mu, J)}\left(\kappa ; \alpha_{1}, \ldots, \alpha_{m-1}, \mathbf{1}\right)=\mathcal{G} \mathcal{W}_{A, g, m}^{(\omega, \mu, J)}\left(\left(\mathcal{F}_{m}\right)_{*}(\kappa) ; \alpha_{1}, \ldots, \alpha_{m-1}\right) .
\end{aligned}
$$

Here $\mathbf{1} \in H^{0}(M, \mathbb{Q})$ denotes the unit element $H^{*}(M, \mathbb{Q})$, which is Poincaré dual to the fundamental class $[M]$ in the second singular homology $H_{2 n}^{\mathrm{II}}(M, \mathbb{Q})$.

Let integers $g_{i} \geqslant 0$ and $m_{i}>0$ satisfy: $2 g_{i}+m_{i} \geqslant 3, i=1,2$. Set $g=g_{1}+g_{2}$ and $m=m_{1}+m_{2}$ and fix a decomposition $Q=Q_{1} \cup Q_{2}$ of $\{1, \ldots, m\}$ with $\left|Q_{i}\right|=m_{i}$. Then one gets a canonical embedding $\varphi_{Q}: \overline{\mathcal{M}}_{g_{1}, m_{1}+1} \times \overline{\mathcal{M}}_{g_{2}, m_{2}+1} \rightarrow \overline{\mathcal{M}}_{g, m}$. Let $\psi: \overline{\mathcal{M}}_{g-1, m+2} \rightarrow \overline{\mathcal{M}}_{g, m}$ be the natural embedding obtained by gluing together the last two marked points. In the case $\operatorname{dim} H^{*}(M)<\infty$ we take a basis $\left\{\beta_{i}\right\}$ of $H^{*}(M)$ and a dual basis $\left\{\omega_{i}\right\}$ of them in $H_{c}^{*}(M)$, i.e., $\left\langle\omega_{j}, \beta_{i}\right\rangle=\int_{M} \beta_{i} \wedge \omega_{j}=\delta_{i j}$. Let $\eta^{i j}=\int_{M} \omega_{i} \wedge \omega_{j}$ and $c_{i j}=(-1)^{\operatorname{deg} \omega_{i} \cdot \operatorname{deg} \omega_{j}} \eta^{i j}$.

Theorem 2.2 (Composition laws). Assume that $\operatorname{dim} H^{*}(M)<\infty$. Let $\kappa \in H_{*}\left(\overline{\mathcal{M}}_{g-1, m+2}, \mathbb{Q}\right)$, and $\alpha_{i} \in$ $H^{*}(M, \mathbb{Q}), i=1, \ldots, m$. Suppose that some $\alpha_{t} \in H_{c}^{*}(M, \mathbb{Q})$. Then

$$
\mathcal{G} \mathcal{W}_{A, g, m}^{(\omega, \mu, J)}\left(\psi_{*}(\kappa) ; \alpha_{1}, \ldots, \alpha_{m}\right)=\sum_{i, j} c_{i j} \cdot \mathcal{G} \mathcal{W}_{A, g-1, m+2}^{(\omega, \mu, J)}\left(\kappa ; \alpha_{1}, \ldots, \alpha_{m}, \beta_{i}, \beta_{j}\right) .
$$

Moreover, let $\kappa_{i} \in H_{*}\left(\overline{\mathcal{M}}_{g_{i}, m_{i}}, \mathbb{Q}\right), i=1,2$, and $\alpha_{s}, \alpha_{t} \in H_{c}^{*}(M, \mathbb{Q})$ for some $s \in Q_{1}$ and $t \in Q_{2}$. Then

$$
\begin{aligned}
& \mathcal{G} \mathcal{W}_{A, g, m}^{(\omega, \mu, J)}\left(\varphi_{Q *}\left(\kappa_{1} \times \kappa_{2}\right) ; \alpha_{1}, \ldots, \alpha_{m}\right)=\epsilon(Q)(-1)^{\operatorname{deg} \kappa_{2} \sum_{i \in Q_{1}} \operatorname{deg} \alpha_{i}} \\
& \quad \times \sum_{A=A_{1}+A_{2}} \sum_{k, l} \eta^{k l} \cdot \mathcal{G W}_{A_{1}, g_{1}, m_{1}+1}^{(\omega, \mu, J)}\left(\kappa_{1} ;\left\{\alpha_{i}\right\}_{i \in Q_{1}}, \beta_{k}\right) \cdot \mathcal{G} \mathcal{W}_{A_{2}, g_{2}, m_{2}+1}^{(\omega, \mu, J)}\left(\kappa_{2} ; \beta_{l},\left\{\alpha_{i}\right\}_{i \in Q_{2}}\right) .
\end{aligned}
$$

Here $\epsilon(Q)$ is the sign of the permutation $Q=Q_{1} \cup Q_{2}$ of $\{1, \ldots, m\}$.
For proofs of (3) and Theorems 2.1, 2.2 the readers may refer to [9]. If (M, ω) is a closed symplectic manifold they are reduced to the ordinary ones.

References

[1] M. Audin, F. Lalonde, L. Polterovich, Symplectic rigidity: Lagrangian submanifolds, in: Holomorphic Curves in Symplectic Geometry, in: Progr. Math., vol. 117, Birkhäuser, 1994, pp. 271-318.
[2] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307-347.
[3] M. Kontsevich, Enumeration of rational curves via torus actions, in: H. Dijkgraaf, C. Faber, G.v.d. Geer (Eds.), Moduli Space of Surface, Birkhäuser, Boston, 1995, pp. 335-368.
[4] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, in: Topic in Symplectic 4-Manifolds, Irvine, CA, 1996, First Int. Press Lect. Ser., vol. I, International Press, Cambridge, MA, 1998, pp. 47-83.
[5] G. Liu, G. Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1-74.
[6] G. Liu, G. Tian, Weinstein conjecture and GW invariants, Commun. Contemp. Math. 2 (2000) 405-459.
[7] G. Liu, G. Tian, On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sinica 15 (1999) 53-80.
[8] G. Lu, Gromov-Witten invariants and rigidity of Hamiltonian loops with compact support on noncompact symplectic manifolds, Commun. Anal. Geom. 9 (2001) 1041-1092.
[9] G. Lu, Virtual moduli cycles and Gromov-Witten invariants of noncompact symplectic manifolds, math.DG/0306255, 17 June, revised V2, 1 August 2003.
[10] J.C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, in: Holomorphic Curves in Symplectic Geometry, in: Progr. Math., vol. 117, Birkhäuser, 1994, pp. 165-189.

[^0]: E-mail address: gclu@bnu.edu.cn (G. Lu).
 ${ }^{1}$ Partially supported by the NNSF 19971045 and 10371007 of China.

