

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 338 (2004) 885-888

Differential Geometry/Algebraic Geometry

Gromov-Witten invariants of noncompact symplectic manifolds

Guangcun Lu¹

Department of Mathematics, Beijing Normal University, Beijing 100875, PR China Received 5 November 2003; accepted after revision 6 March 2004 Available online 17 April 2004 Presented by Mikhaël Gromov

Abstract

This is a short survey about our Gromov–Witten invariant theory for noncompact geometrically bounded symplectic manifolds. *To cite this article: G. Lu, C. R. Acad. Sci. Paris, Ser. I 338 (2004).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Invariants de Gromov–Witten des variétés symplectiques non compactes. Nous présentons dans cette Note la théorie des invariants des variétés symplectiques non compactes, géométriquement bornées. *Pour citer cet article : G. Lu, C. R. Acad. Sci. Paris, Ser. I 338 (2004).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

It has been expected that the Gromov–Witten invariants should also be defined for noncompact symplectic manifolds (see, e.g., the remark on the page 337 of [3] by Kontsevich). We here develop the virtual moduli cycle techniques introduced in [4–7] to generalize work of [8] to arbitrary noncompact geometrically bounded symplectic manifolds. A Riemannian metric μ on a manifold M is said to be *geometrically bounded* if its sectional curvature is bounded above and injectivity radius $i(M, \mu) > 0$. Denote by $\mathcal{GR}(M)$ the set of all such Riemannian metrics on M. Let $\mathcal{J}(M, \omega)$ be the space of all ω -compatible almost complex structures on a symplectic manifold (M, ω) . A symplectic manifold (M, ω) without boundary is said to be *geometrically bounded* if there exists $J \in \mathcal{J}(M, \omega)$, $\mu \in \mathcal{GR}(M)$ and positive constants α_0 and β_0 such that $\omega(X, JX) \ge \alpha_0 \|X\|_{\mu}^2$ and $|\omega(X, Y)| \le \beta_0 \|X\|_{\mu} \|Y\|_{\mu}$ for all $X, Y \in TM$ (cf. [1,2,10]). We shall also say that such a J is (ω, μ) -geometrically bounded. Denote by $\mathcal{J}(M, \omega, \mu)$ the set of all (ω, μ) -geometrically bounded almost complex structures in $\mathcal{J}(M, \omega)$. It is a pathconnected subset in $\mathcal{J}(M, \omega)$. Denote by $\operatorname{Symp}_0^S(M, \omega)$ the connected component containing id_M of $\operatorname{Symp}_0(M, \omega)$ with respect to the C^{∞} -strong topology. For $\mathbb{K} = \mathbb{C}$, \mathbb{R} and \mathbb{Q} we shall consider the \mathbb{K} -coefficient deRham

E-mail address: gclu@bnu.edu.cn (G. Lu).

¹ Partially supported by the NNSF 19971045 and 10371007 of China.

¹⁶³¹⁻⁰⁷³X/\$ - see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2004.03.034

cohomology $H^*(M, \mathbb{K})$ and deRham cohomology $H^*_c(M, \mathbb{K})$ with compact support; $H^*(M, \mathbb{Q})$ (resp. $H^*_c(M, \mathbb{Q})$) consists of all deRham cohomology classes in $H^*(M, \mathbb{R})$ (resp. $H^*_c(M, \mathbb{R})$) which take rational values over all integral cycles.

2. Gromov–Witten invariants

Let (M, ω, J, μ) be a geometrically bounded symplectic manifold of dimension $2n, A \in H_2(M, \mathbb{Z})$ and integers $g \ge 0, m > 0$ with $2g + m \ge 3$. Let $\overline{\mathcal{M}}_{g,m}$ be the set of all isomorphism classes of stable curves with m marked points and of genus of $g, \kappa \in H_*(\overline{\mathcal{M}}_{g,m}, \mathbb{Q})$ and $\{\alpha_i\}_{1 \le i \le m} \subset H^*(M, \mathbb{Q}) \cup H_c^*(M, \mathbb{Q})$ satisfy

$$\sum_{i=1}^{m} \deg \alpha_i + \operatorname{codim}(\kappa) = 2c_1(M)(A) + 2(3-n)(g-1) + 2m.$$
(1)

Let $\overline{\mathcal{M}}_{g,m}(M, J, A)$ denote the set of equivalence classes of all *m*-pointed stable *J*-maps of genus *g* and of class $A \in H_2(M, \mathbb{Z})$ in *M*. It was observed by Gromov in his celebrated paper [2] that the 'size' of the closed *J*-holomorphic curve can be controlled in this class of symplectic manifolds. So for any compact subset $K \subset M$ the images of all maps in $\overline{\mathcal{M}}_{g,m}(M, J, A; K) := \{[\mathbf{f}] \in \overline{\mathcal{M}}_{g,m}(M, J, A) \mid f(\Sigma) \cap K \neq \emptyset\}$ may be contained in $c(\alpha_0, \beta_0, \mu)\omega(A)$ -neighborhood of *K* in *M* for some constant $c(\alpha_0, \beta_0, \mu) > 0$. It follows that $\overline{\mathcal{M}}_{g,m}(M, J, A; K)$ is compact.

Suppose that $\{\alpha_i\}_{1 \le i \le m} \subset H_c^*(M, \mathbb{Q}) \cup H^*(M, \mathbb{Q})$ has at least one element, say α_1 , belonging to $H_c^*(M, \mathbb{Q})$. We may choose their closed representative forms α_i^* , i = 1, ..., m, and a compact subset K_0 in M such that $\sup_{i=1}^{m} \alpha_i^* \subset K_0$. From $\overline{\mathcal{M}}_{g,m}(M, J, A; K_0)$ we can use the methods developed in [5–7] to construct a family of cobordant virtual moduli cycles

$$\mathcal{C}^{\mathbf{t}}(K_0) := \sum_{I \in \mathcal{N}} \frac{1}{|\Gamma_I|} \{ \hat{\pi}_I : \mathcal{M}_I^{\mathbf{t}}(K_0) \to \mathcal{W} \} \quad \forall \mathbf{t} \in \mathbf{B}_{\varepsilon}^{\mathrm{res}} (\mathbb{R}^{m_{n_3}}).$$

Let $\operatorname{ev}_i([f, \Sigma, \overline{\mathbf{z}}]) = f(z_i), i = 1, \dots, m$, and $\Pi_{g,m}([f, \Sigma, \overline{\mathbf{z}}]) = [\Sigma', \overline{\mathbf{z}}']$ be obtained by collapsing components of $(\Sigma, \overline{\mathbf{z}})$ with genus 0 and at most two special points. Using the map $\operatorname{EV}_{g,m} := \Pi_{g,m} \times (\prod_{i=1}^m \operatorname{ev}_i) : \mathcal{B}^M_{A,g,m} \to \overline{\mathcal{M}}_{g,m} \times M^m$, we define the GW-invariants as

$$\mathcal{GW}_{A,g,m}^{(\omega,\mu,J)}(\kappa;\alpha_1,\ldots,\alpha_m) := \int_{\mathrm{EV}_{g,m} \circ \mathcal{C}^{\mathbf{t}}(K_0)} \kappa^* \oplus \bigwedge_{i=1}^m \alpha_i^*$$
$$= \sum_{I \in \mathcal{N}} \frac{1}{|\Gamma_I|} \int_{\mathcal{M}_I^{\mathbf{t}}(K_0)} (\mathrm{EV}_{g,m} \circ \hat{\pi}_I)^* \left(\kappa^* \oplus \bigwedge_{i=1}^m \alpha_i^*\right), \tag{2}$$

if (1) is satisfied, and $\mathcal{GW}_{A,g,m}^{(\omega,\mu,J)}(\kappa;\alpha_1,\ldots,\alpha_m) = 0$ otherwise. They are well-defined. That is, the left of (2) does not depend on all related choices (see §4.2–§4.6 of [9]). As expected they are multilinear and supersymmetric on α_1,\ldots,α_m , and also independent of choices of $J \in \mathcal{J}(M,\omega,\mu)$. Moreover, they only depend on the connected component of μ in $\mathcal{GR}(M)$ with respect to the C^{∞} strong topology. (In fact it was proved in [9] that they are invariant under the *weak deformation* of (M,ω, J, μ) .) For any $\psi \in \text{Symp}_0^S(M,\omega)$ the following holds

$$\mathcal{GW}_{A,g,m}^{(\omega,\psi^*\mu,\psi^*J)}(\kappa;\alpha_1,\ldots,\alpha_m) = \mathcal{GW}_{A,g,m}^{(\omega,\mu,J)}(\kappa;\alpha_1,\ldots,\alpha_m).$$
(3)

Let $\mathcal{F}_m : \overline{\mathcal{M}}_{g,m} \to \overline{\mathcal{M}}_{g,m-1}$ be a map, forgetting the last marked point. It is a Lefschetz fibration and the integration along the fibre induces a map $(\mathcal{F}_m)_{\sharp}$ from $\Omega^*(\overline{\mathcal{M}}_{g,m})$ to $\Omega^{*-2}(\overline{\mathcal{M}}_{g,m-1})$. It also induces a 'shriek' map $(\mathcal{F}_m)_{\sharp}$ from $\mathcal{H}_*(\overline{\mathcal{M}}_{g,m-1}; \mathbb{Q})$ to $\mathcal{H}_{*+2}(\overline{\mathcal{M}}_{g,m}; \mathbb{Q})$.

Theorem 2.1 (Reduction formulas). If $(g, m) \neq (0, 3)$, (1, 1), then for any $\kappa \in H_*(\overline{\mathcal{M}}_{g,m-1}; \mathbb{Q})$, $\alpha_1 \in H_c^*(M; \mathbb{Q})$, $\alpha_2, \ldots, \alpha_m \in H^*(M; \mathbb{Q})$ with deg $\alpha_m = 2$ one has

 $\mathcal{GW}_{A,g,m}^{(\omega,\mu,J)}((\mathcal{F}_m)_!(\kappa);\alpha_1,\ldots,\alpha_m) = \alpha_m(A) \cdot \mathcal{GW}_{A,g,m-1}^{(\omega,\mu,J)}(\kappa;\alpha_1,\ldots,\alpha_{m-1}),$ $\mathcal{GW}_{A,g,m}^{(\omega,\mu,J)}(\kappa;\alpha_1,\ldots,\alpha_{m-1},\mathbf{1}) = \mathcal{GW}_{A,g,m}^{(\omega,\mu,J)}((\mathcal{F}_m)_*(\kappa);\alpha_1,\ldots,\alpha_{m-1}).$

Here $\mathbf{1} \in H^0(M, \mathbb{Q})$ *denotes the unit element* $H^*(M, \mathbb{Q})$ *, which is Poincaré dual to the fundamental class* [M] *in the second singular homology* $H_{2n}^{II}(M, \mathbb{Q})$ *.*

Let integers $g_i \ge 0$ and $m_i > 0$ satisfy: $2g_i + m_i \ge 3$, i = 1, 2. Set $g = g_1 + g_2$ and $m = m_1 + m_2$ and fix a decomposition $Q = Q_1 \cup Q_2$ of $\{1, \ldots, m\}$ with $|Q_i| = m_i$. Then one gets a canonical embedding $\varphi_Q : \overline{\mathcal{M}}_{g_1,m_1+1} \times \overline{\mathcal{M}}_{g_2,m_2+1} \to \overline{\mathcal{M}}_{g,m}$. Let $\psi : \overline{\mathcal{M}}_{g-1,m+2} \to \overline{\mathcal{M}}_{g,m}$ be the natural embedding obtained by gluing together the last two marked points. In the case dim $H^*(M) < \infty$ we take a basis $\{\beta_i\}$ of $H^*(M)$ and a dual basis $\{\omega_i\}$ of them in $H_c^*(M)$, i.e., $\langle \omega_j, \beta_i \rangle = \int_M \beta_i \wedge \omega_j = \delta_{ij}$. Let $\eta^{ij} = \int_M \omega_i \wedge \omega_j$ and $c_{ij} = (-1)^{\deg \omega_i \cdot \deg \omega_j} \eta^{ij}$.

Theorem 2.2 (Composition laws). Assume that dim $H^*(M) < \infty$. Let $\kappa \in H_*(\overline{\mathcal{M}}_{g-1,m+2}, \mathbb{Q})$, and $\alpha_i \in H^*(M, \mathbb{Q})$, i = 1, ..., m. Suppose that some $\alpha_t \in H^*_c(M, \mathbb{Q})$. Then

$$\mathcal{GW}_{A,g,m}^{(\omega,\mu,J)}(\psi_*(\kappa);\alpha_1,\ldots,\alpha_m) = \sum_{i,j} c_{ij} \cdot \mathcal{GW}_{A,g-1,m+2}^{(\omega,\mu,J)}(\kappa;\alpha_1,\ldots,\alpha_m,\beta_i,\beta_j).$$

Moreover, let $\kappa_i \in H_*(\overline{\mathcal{M}}_{g_i,m_i},\mathbb{Q})$, i = 1, 2, and $\alpha_s, \alpha_t \in H_c^*(M,\mathbb{Q})$ for some $s \in Q_1$ and $t \in Q_2$. Then

$$\mathcal{GW}_{A,g,m}^{(\omega,\mu,J)} \big(\varphi_{Q*}(\kappa_1 \times \kappa_2); \alpha_1, \dots, \alpha_m \big) = \epsilon(Q)(-1)^{\deg \kappa_2 \sum_{i \in Q_1} \deg \alpha_i} \\ \times \sum_{A=A_1+A_2} \sum_{k,l} \eta^{kl} \cdot \mathcal{GW}_{A_1,g_1,m_1+1}^{(\omega,\mu,J)} \big(\kappa_1; \{\alpha_i\}_{i \in Q_1}, \beta_k \big) \cdot \mathcal{GW}_{A_2,g_2,m_2+1}^{(\omega,\mu,J)} (\kappa_2; \beta_l, \{\alpha_i\}_{i \in Q_2}).$$

Here $\epsilon(Q)$ is the sign of the permutation $Q = Q_1 \cup Q_2$ of $\{1, \ldots, m\}$.

For proofs of (3) and Theorems 2.1, 2.2 the readers may refer to [9]. If (M, ω) is a closed symplectic manifold they are reduced to the ordinary ones.

References

- M. Audin, F. Lalonde, L. Polterovich, Symplectic rigidity: Lagrangian submanifolds, in: Holomorphic Curves in Symplectic Geometry, in: Progr. Math., vol. 117, Birkhäuser, 1994, pp. 271–318.
- [2] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307-347.
- [3] M. Kontsevich, Enumeration of rational curves via torus actions, in: H. Dijkgraaf, C. Faber, G.v.d. Geer (Eds.), Moduli Space of Surface, Birkhäuser, Boston, 1995, pp. 335–368.
- [4] J. Li, G. Tian, Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, in: Topic in Symplectic 4-Manifolds, Irvine, CA, 1996, First Int. Press Lect. Ser., vol. I, International Press, Cambridge, MA, 1998, pp. 47–83.
- [5] G. Liu, G. Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1–74.
- [6] G. Liu, G. Tian, Weinstein conjecture and GW invariants, Commun. Contemp. Math. 2 (2000) 405-459.
- [7] G. Liu, G. Tian, On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sinica 15 (1999) 53–80.

- [8] G. Lu, Gromov–Witten invariants and rigidity of Hamiltonian loops with compact support on noncompact symplectic manifolds, Commun. Anal. Geom. 9 (2001) 1041–1092.
- [9] G. Lu, Virtual moduli cycles and Gromov–Witten invariants of noncompact symplectic manifolds, math.DG/0306255, 17 June, revised V2, 1 August 2003.
- [10] J.C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, in: Holomorphic Curves in Symplectic Geometry, in: Progr. Math., vol. 117, Birkhäuser, 1994, pp. 165–189.

888