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Abstract

In this Note we make use of mass transportation techniques to give a simple proof of the finite speed of propagation of
the solution to the one-dimensional porous medium equation. The result follows by showing that the difference of support
of any two solutions corresponding to different compastiypported initial dat is a bounded in time function of a suitable
Monge—Kantorovich related metri€o cite thisarticle: J.A. Carrilloetal., C. R. Acad. Sci. Paris, Ser. | 338 (2004).
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Résumé

Finitudede la vitesse de propagation dans des milieux poreux en utilisant destechniquesdetransport de masse. Dans
cette Note nous utilisondes techniques de transport de masse pour donner aneepélémentaire de la finitude de la vitesse
de propagation des solutions de I'équatimono-dimensionnelle des milieux porewe résultat repose sur la preuve de la
propriété suivante : la différence du support entre delutisms quelconques correspondanties données initiales a support
compact différentes est une fonction, bornée en temps, d’'une métrique de Monge—Kantorovitch approjriéaer cet
article: J.A. Carrilloet al., C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We consider the problem

u,:(um)xx, xeR, t>0 m>1, (1)
u(x,0)=uo(x), xeR, ()
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whereug € LL(R) N L*®(R), lluoll L1y = 1, uo = 0 andug is compactly supported.

Much is already known about the problem (1), (2): see [1-5] and the references therein for existence, uniquenes:
and asymptotic behaviour results of the porous media equation. It also known that the degeneracy at @&vel
of the diffusivity D(u) = mu™ 1 causes the phenomenon calfette speed of propagatiof his means that the
support of the solutiom (-, t) to (1), (2) is a bounded set for all> 0. In fact it can be proved that the solution
u(x,t) ast — +oo converges to the Barenblaurce-typesolutionU (x, ¢, C) with the same mass as the initial
data.

In this Note we want to give a simple proof of thi@ite propagationproperty using mass transportation
techniques. Precisely, we prove that the difference of support of two solutions of (1), (2) with different compactly
supported initial conditions is a bounded in time functidéacuitable Monge—Kantorovich related metric.

Theorem 1.1. Let uy(x,t) anduz(x,t) be strong solutions of1), (2) with initial conditionsug1(x) and ug2(x)
respectively, whereg; € L1(R) N L®°(R), |luoi L1y =1, uoi = 0 andug; is compactly supported,= 1, 2, and
let2;(t)={xeR|uij(x,t) >0}, i=1,2

Let& (r) =inf[2;(1)], &E;(t) =sud$2;(¢)],fort > 0,i =1,2. Then

max{|&1(t) — &2(1)|, | E1(t) — E2()|} < Woo(uo1, u02),  Vt € [0, +00), (3)

whereWs, (101, ug2) is a constant, which depends only on the initial daga, uo2 and is defined irf18).

’

The finite speed of propagation property follows by just taking as one of the solutions a time translation of the
explicit Barenblatt solution which is known to have compact support expanding at thé/f4teb .

2. Proof

Consider a sequence of functiong € C*°([0, +00) x R), which are strong solutions (see [3]) of the
problemspP,

u,:(um)xx, xeR, t>0 m>1, 4)
u(x,0 =ug,(x), xek, 5)
whereug, (x), n € N, is a sequence of bounded, integrable and strictly positRfesmooth functions such that
all their derivatives are bounded I, the condition(m — 1)(uq}})xx > —auo, holds for some constamnt > 0,
and ug, — ug in LY(R) if n — 4+00. We may always do it in such a way thido, [l 1) = luoll 1wy and
luon Lo m) < lluollLoowy. From theL1-contraction property it follows that, — u in C([0, +00): L1(R)) if
n — 400, whereu is a strong solution of (1), (2) (see [3], Chapter IlI).
This sequence of regularized solutions can be fureipproximated by a sequence of initial boundary value
problems. We introduce a cutoff sequeges C*°(R), 1 < k € N, with the following properties:
Op(x)=1 for|x| <k—1, (6)
Or(x)=0 for|x|>k, O<6r <1l fork—1<|x|<k. )
The initial boundary value problem,;

U = (u’")xx, x €(=k,k), t >0, (8)
10, (X) 0 (x) )

N0, (X)Ok (x) [l 127
u(x,t)=0 for|x|=k, t >0, (10)

u(x,0) = uonk (x) :=
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is mass preserving and has a unique solutigiix, t) € C*((0, +00) x [—k, k]) N C ([0, +00) x [—k, k]), strictly
positive forx € (—k, k) and zero at the boundary (see [3], Proposition 6, Chapter Il). Becajyse~> ug, as
k — +o0, foralln € N, up; — u, in C([0, +00) : LY(R)) if k — +o00, whereu, is solution of the problen®,.

Thanks to estimates independentkofor the moments of the solutions of th®,; problems and passing to
the limit in the corresponding inequalisigit can be easily shown that the solutief(x, t) of (4), (5) enjoys an
important property. It holds

/ |x|Puy(x,t)dx < 400, V=0, Vpel[l, +00). (112)
R

We shall denote by, (R), with p € [1, +00), the set of all probability measures &with finite moments of
order p. Let IT(u, v) be the set of all probability measures BA havingu, v € P,(R) as marginal distributions
(see [6]). The Wassersteprdistance between two probability measunges € P, (R) is defined as

Wy, v)P = inf /Ix—yl”dﬂ(x,y), Vp €1, +00). (12)
mwell(v,un)

R2
W, defines a metric oi?,(R) (see [6]). Bound (11) then shows that the Wassergtetiistance between any two
solutions which is initially finite, remains finite at any subsequent time.

Any probability measurg. on the real line can be described in terms ofcitsnulative distribution function
F(x) = u((—o0, x]) which is a right-continuous and non-decreasing function With-co) = 0 andF (+o0) = 1.
Then, thegeneralized inversef F defined byF~1(n) = inf{x e R | F(x) > n} is also a right-continuous and
non-decreasing function dg, 1].

Let u, v € P,(R) be probability measures and IE{(x), G(x) be the respective distribution functions. On the
real line (see [6]), the value of the WasserstphtlistanceW, (., v) can be explicitly written in terms of the
generalized inverse of the distribution functions,

1
Wp(u,v)”=/|F_l(77)—G_l(77)|pd777 Vp €[l +00). (13)
0

Let u1(x,1), u2(x,t) be strong solutions of (1), (2) corresponding to initial conditiofg(x) and ug2(x)
respectively. We denote b, (x, r) anduz, (x, t) the strong solutions of (4), (5) with initial conditionsy, (x) and
uo2. (x) respectively, wherag;, — uo; in L1(R) for i = 1, 2. Analogously, we consider the solutiomg, (x, 1)
anduo, (x, 1) of the problemsP,x converging towards;, (x, t) fori = 1, 2 in C([0, +00) : LY(R)) ask — oo.

Let F;,.r (x, t) be the distribution functions ef; . fori = 1, 2. A direct computation shows thE};,}(n, t) solves
the following equation

AF L 3 ((dFF\"
ink —_ ink , i = 1’ 2’ (14)
at an an

fort > 0 andp € [0, 1]. Making use of Eq. (14), it is easy to prove that the Wassergtalistance

1 1/p
W (utnk, u2ni) (1) = {/|F1;k(n,t) - Fz;k(n,t)lpdn} . Vpell, +oo), (15)
0

is a non-increasing in time function. In fact, for any givep: 1, integrating by parts one obtains
1

1
d _ _ _ _ -2
E/|Fmi(n, 0 — Fytn. 0| dn = p(p - 1)/|Fmi(n, 0~ Fylan.nl”
0 0

< (Foe . )y = Fap G, ) [(Fp (. 0)9) ™" = (Fap(n.),) "] dn <0
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since the functionr =™, m > 1, is decreasing. Note that the boundary terms vanish due to the compact support of
the solutions, which implies

: - -1 . _ -1 .
lim (Fi(.0,) " = lim (F,i(n.0),) =0, i=12
n—0t n—1

On the other hand, for ap € [1, +00),

Wy uink, uz2nk) — Wp(u,, uz,), k — 400, (16)

Wy U1y, uzy) = Wp(ug, uz), n— 4o00. (17)
This implies thatW, (u1, u2) < W, (uo1, uo2), Vp € [1, +00). Since the functiorW,(u1, u2) is increasing with
respect tgp, we can define the quantity

Wooluz, uz) := lim W,(u1,u2) = sup es$F; (n, 1) — Fyt(n,1)|. (18)
pt+oo ne(0,1)
SinceW (101, 1op) is finite, we deduce easily théit,, (11, u2) is also a non-increasing in time function.

Note that the inverse functio —1(5) of a distribution F(x) = ffoou(s)ds, where u(s) is a integrable
compactly supported function, is continuous at the pgiat0 andny = 1. Thus we can justify the inequality

Woo(u1,uz) = sup es$F;t(n, 1) — Fyt(n, )| = max{|F; 10,1 — F;1(0,1)
n€(0,1)
>max{[£1(1) — &20)], | E1(1) — E20)]}. (19)
We remark that the above arguments only hold in one space dimension due to the fact that only in this case one ca
express thg-Wasserstein distance in terms of pseudo-inverse distribution functions, as given in (13).
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