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Abstract

In this Note we make use of mass transportation techniques to give a simple proof of the finite speed of propag
the solution to the one-dimensional porous medium equation. The result follows by showing that the difference of
of any two solutions corresponding to different compactlysupported initial data is a bounded in time function of a suitab
Monge–Kantorovich related metric.To cite this article: J.A. Carrillo et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Finitude de la vitesse de propagation dans des milieux poreux en utilisant des techniques de transport de masse. Dans
cette Note nous utilisonsdes techniques de transport de masse pour donner une preuve élémentaire de la finitude de la vites
de propagation des solutions de l’équation mono-dimensionnelle des milieux poreux.Le résultat repose sur la preuve de
propriété suivante : la différence du support entre deux solutions quelconques correspondantà des données initiales à supp
compact différentes est une fonction, bornée en temps, d’une métrique de Monge–Kantorovitch appropriée.Pour citer cet
article : J.A. Carrillo et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We consider the problem

ut = (
um

)
xx

, x ∈ R, t > 0, m > 1, (1)

u(x,0) = u0(x), x ∈ R, (2)

✩ Work partially supported by EEC network # HPRN-CT-2002-00282, by the bilateral project Azioni integrate Italia–Spagna, by the DF
Project JU359/5, by the Vigoni Project CRUI-DAAD and by the Spanish DGI-MCYT/FEDER project BFM2002-01710.

E-mail addresses:carrillo@mat.uab.es (J.A. Carrillo), gualdani@mathematik.uni-mainz.de (M.P. Gualdani), toscani@dimat.unipv.it
(G. Toscani).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.03.025



816 J.A. Carrillo et al. / C. R. Acad. Sci. Paris, Ser. I 338 (2004) 815–818

iqueness
el

e
n

al

on
pactly

of the

e

t

lue
whereu0 ∈ L1(R) ∩ L∞(R), ‖u0‖L1(R) = 1, u0 � 0 andu0 is compactly supported.
Much is already known about the problem (1), (2): see [1–5] and the references therein for existence, un

and asymptotic behaviour results of the porous media equation. It also known that the degeneracy at levu = 0
of the diffusivity D(u) = mum−1 causes the phenomenon calledfinite speed of propagation. This means that th
support of the solutionu(·, t) to (1), (2) is a bounded set for allt � 0. In fact it can be proved that the solutio
u(x, t) as t → +∞ converges to the Barenblattsource-typesolutionU(x, t,C) with the same mass as the initi
data.

In this Note we want to give a simple proof of thefinite propagationproperty using mass transportati
techniques. Precisely, we prove that the difference of support of two solutions of (1), (2) with different com
supported initial conditions is a bounded in time function of a suitable Monge–Kantorovich related metric.

Theorem 1.1. Let u1(x, t) andu2(x, t) be strong solutions of(1), (2) with initial conditionsu01(x) andu02(x)

respectively, whereu0i ∈ L1(R) ∩ L∞(R), ‖u0i‖L1(R) = 1, u0i � 0 andu0i is compactly supported,i = 1,2, and
let Ωi(t) = {x ∈ R | ui(x, t) > 0}, i = 1,2.

Let ξi(t) = inf[Ωi(t)], Ξi(t) = sup[Ωi(t)], for t � 0, i = 1,2. Then

max
{∣∣ξ1(t) − ξ2(t)

∣∣, ∣∣Ξ1(t) − Ξ2(t)
∣∣} � W∞(u01, u02), ∀t ∈ [0,+∞), (3)

whereW∞(u01, u02) is a constant, which depends only on the initial datau01, u02 and is defined in(18).

The finite speed of propagation property follows by just taking as one of the solutions a time translation
explicit Barenblatt solution which is known to have compact support expanding at the ratet1/(m+1).

2. Proof

Consider a sequence of functionsun ∈ C∞([0,+∞) × R), which are strong solutions (see [3]) of th
problemsPn

ut = (
um

)
xx

, x ∈ R, t > 0, m > 1, (4)

u(x,0) = u0n(x), x ∈ R, (5)

whereu0n(x), n ∈ N, is a sequence of bounded, integrable and strictly positiveC∞-smooth functions such tha
all their derivatives are bounded inR, the condition(m − 1)(u0

m
n )xx � −au0n holds for some constanta > 0,

and u0n → u0 in L1(R) if n → +∞. We may always do it in such a way that‖u0n‖L1(R) = ‖u0‖L1(R) and
‖u0n‖L∞(R) � ‖u0‖L∞(R). From theL1-contraction property it follows thatun → u in C([0,+∞) :L1(R)) if
n → +∞, whereu is a strong solution of (1), (2) (see [3], Chapter III).

This sequence of regularized solutions can be further approximated by a sequence of initial boundary va
problems. We introduce a cutoff sequenceθk ∈ C∞(R), 1< k ∈ N, with the following properties:

θk(x) = 1 for |x| < k − 1, (6)

θk(x) = 0 for |x| � k, 0 < θk < 1 for k − 1 < |x| < k. (7)

The initial boundary value problemPnk

ut = (
um

)
xx

, x ∈ (−k, k), t > 0, (8)

u(x,0) = u0nk(x) := u0n(x)θk(x)

‖u0n(x)θk(x)‖L1
, (9)

u(x, t) = 0 for |x| = k, t � 0, (10)



J.A. Carrillo et al. / C. R. Acad. Sci. Paris, Ser. I 338 (2004) 815–818 817

o

s

o

d

he
e

is mass preserving and has a unique solutionunk(x, t) ∈ C∞((0,+∞)×[−k, k])∩C([0,+∞)×[−k, k]), strictly
positive forx ∈ (−k, k) and zero at the boundary (see [3], Proposition 6, Chapter II). Becauseu0nk → u0n as
k → +∞, for all n ∈ N, unk → un in C([0,+∞) :L1(R)) if k → +∞, whereun is solution of the problemPn.

Thanks to estimates independent ofk for the moments of the solutions of thePnk problems and passing t
the limit in the corresponding inequalities, it can be easily shown that the solutionun(x, t) of (4), (5) enjoys an
important property. It holds∫

R

|x|pun(x, t)dx < +∞, ∀t � 0, ∀p ∈ [1,+∞). (11)

We shall denote byPp(R), with p ∈ [1,+∞), the set of all probability measures onR with finite moments of
orderp. Let Π(µ,ν) be the set of all probability measures onR

2 havingµ,ν ∈ Pp(R) as marginal distribution
(see [6]). The Wassersteinp-distance between two probability measuresµ,ν ∈ Pp(R) is defined as

Wp(µ,ν)p := inf
π∈Π(ν,µ)

∫
R2

|x − y|p dπ(x, y), ∀p ∈ [1,+∞). (12)

Wp defines a metric onPp(R) (see [6]). Bound (11) then shows that the Wassersteinp-distance between any tw
solutions which is initially finite, remains finite at any subsequent time.

Any probability measureµ on the real line can be described in terms of itscumulative distribution function
F(x) = µ((−∞, x]) which is a right-continuous and non-decreasing function withF(−∞) = 0 andF(+∞) = 1.
Then, thegeneralized inverseof F defined byF−1(η) = inf{x ∈ R | F(x) > η} is also a right-continuous an
non-decreasing function on[0,1].

Let µ,ν ∈ Pp(R) be probability measures and letF(x), G(x) be the respective distribution functions. On t
real line (see [6]), the value of the Wassersteinp-distanceWp(µ,ν) can be explicitly written in terms of th
generalized inverse of the distribution functions,

Wp(µ,ν)p =
1∫

0

∣∣F−1(η) − G−1(η)
∣∣p dη, ∀p ∈ [1,+∞). (13)

Let u1(x, t), u2(x, t) be strong solutions of (1), (2) corresponding to initial conditionsu01(x) and u02(x)

respectively. We denote byu1n(x, t) andu2n(x, t) the strong solutions of (4), (5) with initial conditionsu01n(x) and
u02n(x) respectively, whereu0in → u0i in L1(R) for i = 1,2. Analogously, we consider the solutionsu1nk(x, t)

andu2nk(x, t) of the problemsPnk converging towardsuin(x, t) for i = 1,2 in C([0,+∞) :L1(R)) ask → ∞.
LetFink(x, t) be the distribution functions ofuink for i = 1,2. A direct computation shows thatF−1

ink (η, t) solves
the following equation

∂F−1
ink

∂t
= − ∂

∂η

((
∂F−1

ink

∂η

)−m)
, i = 1,2, (14)

for t > 0 andη ∈ [0,1]. Making use of Eq. (14), it is easy to prove that the Wassersteinp-distance

Wp(u1nk, u2nk)(t) =
{ 1∫

0

∣∣F−1
1nk(η, t) − F−1

2nk(η, t)
∣∣p dη

}1/p

, ∀p ∈ [1,+∞), (15)

is a non-increasing in time function. In fact, for any givenp � 1, integrating by parts one obtains

d

dt

1∫
0

∣∣F−1
1nk(η, t) − F−1

2nk(η, t)
∣∣p dη = p(p − 1)

1∫
0

∣∣F−1
1nk(η, t) − F−1

2nk(η, t)
∣∣p−2

×(
F−1

1nk(η, t)η − F−1
2nk(η, t)η

)[(
F−1

1nk(η, t)η
)−m − (

F−1
2nk(η, t)η

)−m]
dη � 0
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since the functionx−m, m � 1, is decreasing. Note that the boundary terms vanish due to the compact sup
the solutions, which implies

lim
η→0+

(
F−1

ink (η, t)η
)−1 = lim

η→1−
(
F−1

ink (η, t)η
)−1 = 0, i = 1,2.

On the other hand, for allp ∈ [1,+∞),

Wp(u1nk, u2nk) → Wp(u1n,u2n), k → +∞, (16)

Wp(u1n,u2n) → Wp(u1, u2), n → +∞. (17)

This implies thatWp(u1, u2) � Wp(u01, u02), ∀p ∈ [1,+∞). Since the functionWp(u1, u2) is increasing with
respect top, we can define the quantity

W∞(u1, u2) := lim
p↑+∞Wp(u1, u2) = sup

η∈(0,1)

ess
∣∣F−1

1 (η, t) − F−1
2 (η, t)

∣∣. (18)

SinceW∞(u01, u02) is finite, we deduce easily thatW∞(u1, u2) is also a non-increasing in time function.
Note that the inverse functionF−1(η) of a distributionF(x) = ∫ x

−∞ u(s)ds, where u(s) is a integrable
compactly supported function, is continuous at the pointη = 0 andη = 1. Thus we can justify the inequality

W∞(u1, u2) = sup
η∈(0,1)

ess
∣∣F−1

1 (η, t) − F−1
2 (η, t)

∣∣ � max
{∣∣F−1

1 (0, t) − F−1
2 (0, t)

∣∣, ∣∣F−1
1 (1, t) − F−1

2 (1, t)
∣∣}

� max
{∣∣ξ1(t) − ξ2(t)

∣∣, ∣∣Ξ1(t) − Ξ2(t)
∣∣}. (19)

We remark that the above arguments only hold in one space dimension due to the fact that only in this case
express thep-Wasserstein distance in terms of pseudo-inverse distribution functions, as given in (13).
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