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Abstract

We study positive solutions of the equatien?Au + u = uP, wherep > 1 ande > 0 is small, with Neumann boundary
conditions in a three-dimensional domaih We prove the existence of solutions concentrating along some closed curve on
052. Tocitethisarticle: A. Malchiodi, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
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Résumé

Solutions se concentrant sur des courbes pour certains problémes elliptiques singuliéres. On étudie les solutions
positives de I’équati0|+52Au +u=uP, olp > 1ete > 0 est petit, avec conditions de tdmann sur le bord sur un domaine
£2 en dimension 3. On prouve l'existence de solutions qui se concentrent le long de certaines courbes fesifééxae

citer cet article: A. Malchiodi, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

On considére le probléme(Fci-dessuss2 est un domaine lisse et bornéBé, 'exposanty est plus grand que
1 ete est un réel positif petit. Etant donnée une géodésique simple, fermée, non dég@éd@nggs2, on prouve
I'existence de solutionzsgj de(ng) se concentrant surle long d’une suite:; — 0. Le profil deugj est donné par
la solution radiale de ().

Les fonctions sont obtenues comme poinitiques d’une fonctionnelle d’Eulef, définie surH1($2). Leur
energie est grande quand on la compare a celle des niveaux obtenus par mountain-pass level, et leur indice c
Morse tend vers l'infini lorsque; — 0. La preuve est basée sur un argument d'inversion locale, combiné avec une
étude fine du spectre d¢ au voisinage de solutions approchégsle (R.) qui possedent le profile requis. Puisque
I'indice de Morse déi, change avee, 1/ (ii;) peut avoir des valeurs propres nulles dépendant dlotre analyse
nous autorise a selectionner une suitde long de laquelle 'opérateur linéarisé est inversible.

Cette Note concerne les résultats obtenus dans [11]. Nous donnons ici le théoreme principal et les idées de I
preuve.
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1. Introduction

Given2 C R", p > 1 and a small positive parameterwe consider the following equation

—2Au+u=u? ingf,

u=0 onas, (Pe)

u>0 in 2.
Problem (R) arises in the study of a class of reaction—diffusion systems which model some experiments in
chemistry or biology, see [16]. For example, when tweemical substances interact and have very different
diffusivities, at equilibrium one of them can be nearly constant thr@Rghhe distribution of the second substance,
instead, may be very inhomogeneous and is described by an equation.ik&yically, ase tends to zero, one
expects solutions to become sharply concentrated near some regins of

Much work has been devoted to.{fn order to understand where concentration occurs and what the profile of
solutions looks like. In the cage < % due to several contributions (starting from the seminal works [10,17,18])
already the structure of solotis concentrated at points, callgpike-layershas been shown to be very rich. For
example, in [7], Gui and Wei construct solutions withpeaks at the boundary ¢ and/, peaks in the interior,
wherel1 andi, are arbitrary integer numbers. Naively, peaking2toccurs at critical points of the mean curvature
while peaking in the interior occurs at critical points of the distance from the boundary.

Similar results hold for the above singularly petied problem with Dirichleboundary conditions, or the
Nonlinear Schrédinger equation in the semiclasdiaait, see, e.g., [6,9] and references therein.

Only recently existence of solutionsmcentrating at different sets haedm proved. It is indeed conjectured,
see [16], that for any integet € {1,...,n — 1} problem (R) generically admits solutions concentrating at
k-dimensional sets. In [12,13] the authors have shown that, given any smooth bounded @om#&h, » > 2, and
any p > 1, problem (R) admits solutions concentrating at the whole boundary along a suitable seguesde.

We describe here a first result concerning conegiain at a curve on the boundary of a three-dimensional
domain, namely at a set of codimension 2.

Theorem 1.1. Let 22 € R® be a smooth bounded domain, and Jet- 1. Let : ST — 852 be a closed non-
degenerate geodesic without self-inggons. Then there exists a sequeage> 0 and a sequence of solutions
ue; of (P;) which concentrates dt. The profile of«,; is given by th€uniqug radial solution of the problem

—Au+u=u? in ]Ri,
u_0 onoRZ, (Po)
u=>0 ue Hl(Ri).

For reasons of brevity, we do not specify rigorously what the above expressiaentrates ak means. Some
more details are given in the next sections.

Remark 1. (a) We point out that in the theorem no upper boundgyas assumed, hence the exponent could also
be supercritical. This is due to the fact that the limit equatiay),(Rhich gives the profile of., is in RR?, and for
that there is no restriction for the existence of a solution. In the case of solutions concentrating at points, instead,
the subcriticality ofp is a necessary condition, see [3].

(b) The choice of apecificsequence; is fundamental for our approach, and is not used to recover compactness.
It is required to obtain the invertibility of the linearized equation at some approximate solutiond his
invertibility is false in general, and we do not expect that generically concentratiortdinaensional of solutions
with the same profile can occur for all the valueg oAnalogous phenomena occur in the construction of constant
mean curvature tubes shrinking at curves or manifolds, see [15].
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(c) By construction, the Morse index of; tends to infinity ag; tends to zero. This should be compared to a
result in [4], where it is proven that a famlly of solutions of YRvith uniform bounds on the Morse index must
concentrate at a finite number of points whetends to zero.

(d) Under some symmetry assumptions, solutions concentrating at manifolds may have bounded Morse index
in the space of invariant functions. In this case, as for the study of concentration at points, it is possible to use
minimax methods and finite-dimensional reductions in otd@rove existence, see for example [1,2,5,14,19].

Theorem 1.1 is proved with a local inversion argument. The first step, described in Section 2, consists in finding
an approximate solutioia,. Then in Section 3 an accurate an&ysf the linearized equation at is performed,
focusing on its spectral properties. Finally, Section 4 is devoted to the proof of Theorem 1.1, via the Contraction
Mapping Theorem.

The present Note concerns the result obtained in [11], where the procedure is carried out in full detail.

2. Approximate solutions

Whenp < 5 (the subcritical or critical case, recall thatc R3), solutions of (R) can be found as critical points
of the functionall, : H1(£2) — R defined by

Ig(u):%/[s |Vul? + u?] /W“ (1)
2

In order to find approximate solutioig, namely functions for whicljZ/(ii. )| is small, we introduce some local
coordinates 02 near the geodesie. Without loss of generality we can assume that the lengthisf2r and
thatr — h(r) is a parametrization by unit length defined h Sincer is simple, the ma@ : ST x [—§, §] (where
8 is a small number) defined below gives a system of coordinatek®oin a neighborhood of. For anyr € S2,
let e(t) € Ty 952 be a unit vector tangent @2 and satisfyingi(t) A e(t) = Vi), Wherevy is the inner unit
normal tod 2 ath(z).
Letting exp denote the exponential mapd@, we defined : St x [—§, 8] — 952 by
®(x1, x2) = €XPy ;) (x2e(x1),  (x1,x2) € ST x [-8, 8]. (2)

If g is the metric ofd2 induced byR3, we letg;; be the coefficients of in the above coordinates. From the
non-degeneracy df one can obtain the following result.

Lemma 2.1. Let (x1, x2) be the coordinates given 1§2). Then the bilinear form

1
(1, v) > /m) +5 / 92 g11(x1, O)uv
st st
is non-degenerate off 1(s1) x H1(S1).
Using the above mag@, we also define some parametrization of itfiterior of £2 in a neighborhood of. We
introduce the mag given by
D (x1, x2,x3) = P (x1, x2) + v(x1, x2)x3, x = (x1,x") € st x [—3, 8] x [0, 5]. 3)
Herev(x1, x2) denotes the inner unit normal &2 at @ (x1, x2).
Using these coordinates, the approximate soluti@nsvill have the formii. (x) >~ wo(x'/¢), x’ = (x2, x3),
wherewy is the unique radial solution of {2 More precisely, givet € N, we take
iie 1= ke = wo(x2/e + fo(x) + -+ + 72 fiia(x1), x3/e)
+ ewa(xy, x'/e) + - + eFwg (x, x /) + 0(e), (4)
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where f1, ..., fi—2 andws, ..., wy are suitable functions to be determined. This is done expanding formally the
equation—e2Aii, + i, = iif, with the choice of (4), in powers of. In this way one can find recursively the
functions{ f;} and{w;}. The term of ordet! in the expansion will indeed determing and f;_». In order to give

an idea of the method, we recall the following well-known result.

Lemma 2.2. Let L be linearization of(Pp) at the ground-state solutiomg, namelyLv = —Av + v — pwg_lv in
RZ; 2 =00n9dR2. ThenL is self-adjoint and its kernel it 1(IR% ) is generated bywo/dxx.
The expansion of théth term in the equation, after some scaling, will be of the fdrm = F(x1, fi—2(x1),
£/ 5(x1)) in ST x R2; 3 =0 on St x 9R2. Here, naivelyR?2 replaces the expanding rectangies /e, §/¢] x
[0, 8/¢] in thex’ variable. By Lemma 2.2, a necessary conditiontfar existence is therthogonality of the right-
hand side tdwo/dx» for everyx; € S. This is guaranteed if;_» satisfies some ODE of the second order, whose

solvability is a consequence of Lemma 2.1. All these arguments can be made rigorous to give the following result.

Proposition 2.3. Consider the Euler functional, defined in(1). Then for anyk € N there exist functions
e . 2 — R with the following properties

. ou
|1 gy < Ce** Y% >0 @i =E=0 onag, (5)

whereCy, depends only o, p andk.

3. Study of thelinearized operator

We now focus on///(ii;). Our aim is to prove that along some sequenge~> 0 this operator is invertible,
having some quantitative estimates on the nornhefitiverse. This is the content of Proposition 3.3.

Our method relies on viewing the eigenvalues as functions &f order to understand this dependence the
following result, due to Kato, see [8], is very useful.

Proposition 3.1. Let T (x) denote a differentiable family of operators from an Hilbert spateto itself, wherey
lies in a neighborhood d. Let7 (0) be a self-adjoint operator of the foridentity-compactand let (0) = ¢o# 1
be an eigenvalue of (0). Then the eigenvalue(y) is differentiable atO with respect toy. The (possibly
multivalued derivative of¢ is given byg—i = {eigenvalues oP;, o %(0) o Py}, where Py, : H — Hg, denotes
the projection onto thég-eigenspacei;, of T (0).

Note that, in order to apply Propositionl3 some information on the eigenspaklg, is required. To have
that in our case, we construct first a family of approximate eigenfunctib;ﬁ}sj, {lf/,f}k of I/ (i1). Consider the
eigenvalue problems

—¢]=wjp; InSY Y +aWye=Myr inSh (6)

with periodic boundargonditions, where (1) = %afzgll(z, 0) (see the previous section). We note thaiare just
elementary trigonometric functions, and the numlagrsan be written explicitly. Also, from Lemma 2.1 it follows
that all the numbers;, are different from zero.

If wo is as above and > 0, we letu, denote the first eigenvalue (which is simple) of the problem

_ . R
—Av+ 1+ a)v — pwé7 L =ug(—Av+v) in ]Ri; B_U =0 ona]Ri, (7
v

with corresponding eigenfunction,. Then one can show that, in the above coordinates, functions of the form
w]{'«‘ (x)=¢; (xl)vgzwj (x'/e)+0(e); ¥ = Y (x1)d2wo(x’/e) 4+ O(e) satisfy the approximate eigenvalue equations

I”(lI/]‘?) > Wi 1(¥f) = &2 W + 0(82). (8)

&
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Naively, the functiongZ¢ and lff,f can be thought as longitudinal and transvemsaties of vibratiorof ii.. Since
this is concentratedear the geodesik, in the second equation of (8) one obtains the eigenvalues of the Jacobi
operator (the second variation of the length).

The numberg: ; . in the last formula behawgualitativelyin the following way

je~—(p—1) +&2j?+OC). 9)

Since we want to get a control of ordef on the eigenvalues of/(i;), the last estimate is not accurate
enough, and that's why we need to use Proposition 3.1rderato apply it, we need to recover information on
the true eigenfunctions aof’ (ii,). We consider the three subspacest¥(§2) Hy = spar{l]/jg: j=1..., 50};

Hy = spanlf/,f: k=1,...,67%}; H3= (H1 ® H»)*, whereCy and & are numbers to be chosen appropriately.
One can prove that, for good choices@f and& and fore small, everyu € H1(£2) decomposes uniquely as

u =u1+u+u3, whereu; € H; for all i. We apply this decomposition to the eigenvectorgqfi,) corresponding

to eigenvalues which are close to zero.

Lemma 3.2. There exists$ > 0 sufficiently small with the following property. Letbe an eigenfunction of' (i)
with eigenvaluer € [—8¢2, 8¢2]. Then, writingv = v1 + v2 + v3, one has thafjv,|| = o(1) and ||lvs]| = o(1).
Furthermore, there hold% = %(Co 4+ 0(1)) (o(1) - 0 ase — 0), where we are consideringas a function ot
and whereCy is some constant depending pn

The first assertion of this lemma is proved by testing the eigenvalue equéti@nv = Av on the components
v1, v2 andv3. Once this is done, one also finds that the Fourier modes iof H; are mainly localized near
Jj~ % whereCy is another constant depending pnBasically, those are the modes for which the approximate
eigenvalueg., ;, see (9), are close to zero. Hence, havingexise characterization of the eigenfunctignve can
apply Proposition 3.1 and get the second statement.

Lemma 3.2 is applied in the following way. From the asymptoticg pf in (9) one finds gaps of with? in the
spectrum simply by counting the number of eigenvalues in a given interval. Then, vargintably, these gaps
can be brought near zero keeping their size nearly constant.

Proposition 3.3. Let i, be as in Propositior2.3. Then for a suitable sequeneg — 0, the operator. 5”/_ (de;) :
H(£2) - HY(£) is invertible and the inverse operator satisfieg’ (iie)) 71l < F% forall j e N.
“J

Remark 2. From our arguments, one can show that the set of vald@swhich /' (ii,) is invertible (and for which
our method produces solutions of.jPit not only a sequence, but it has density converging to 1 in smaller and
smaller right neighborhoods of the origin.

4. Proof of Theorem 1.1

Let ¢; be as in Proposition 3.3. For brevity, in the rest of the proof, we simply writstead ofs ;. Recall that
so far we have assumed thatl 5. Now we just apply the contraction mapping theorem, looking for a solution
of the formu, = ii, + w, w € HX(2). Sincel/ (ii,) is invertible (along the sequeneg), we can write

Ui +w)=0 & w=—(I/'GGe)) [L(E) +Gw)], (10)

where G (w) = I/ (@ + w) — I(ic) — I/ (@e)[w]. Note thatG (w)[v] = — [, [(@: + w)? — il — pal twlv,

v € HY(£2), henceG(w) is basically superlinear imnv. Let us define the operataf, : H1(£2) - H(2) as
Fo(w) = — (I (iie)) "Y1 (iie) + G(w)], w € HY(£2). We are going to prove thaf, is a contraction in a suitable
closed set o7 1(£2). From Proposition 2.3 and somkementary inequalities one finds
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| Few)| < { S S Pt (11)
Ce=2(eh2/2 4 |w||?) for p > 2,
| Fews) = Fewa)| < { Co ™ ") hwn —wall, pS2y g )
Ce™?(Jlwall + wall) w1 — w2l p>2
Now we choose integersandk such that

i for p <2, 3

d>1{p-1 k>d+§, (13)
2 forp > 2,

and we sef3 = {w € H1(22): ||w| < &?}. From (11) and (12) we find thdt, is a contraction in3 for ¢ small,

and the existence of a solutiap follows. This function, by construction, will have the required asymptotics. The
positivity of u. can be proved in a standard way, testing the equatiaia9n and using the Sobolev embeddings.
This concludes the proof in the cage< 5. For largerp see the remark below.

Remark 3. The proof in the supercritical case goes along the same way, but with some modification. One can
consider some truncated functional, whose nonlinearity is still subcriticalufiolarge. Then, the contraction
argument is performed in a set of functions with sn#h norm and smallL> norm. Using elliptic regularity
estimates, then one obtains an upper bound. 9 of the solutions, which is independent on the truncation.
Therefore, critical points of the modified Euler functional will be true solutions gf ¢Pen forp > 5.
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