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Abstract

We study positive solutions of the equation−ε2�u + u = up , wherep > 1 andε > 0 is small, with Neumann boundar
conditions in a three-dimensional domainΩ. We prove the existence of solutions concentrating along some closed cu
∂Ω. To cite this article: A. Malchiodi, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Solutions se concentrant sur des courbes pour certains problèmes elliptiques singulières. On étudie les solution
positives de l’équation−ε2�u + u = up, oùp > 1 etε > 0 est petit, avec conditions de Neumann sur le bord sur un domain
Ω en dimension 3. On prouve l’existence de solutions qui se concentrent le long de certaines courbes fermées de∂Ω. Pour
citer cet article : A. Malchiodi, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

On considère le problème (Pε) ci-dessus.Ω est un domaine lisse et borné deR
3, l’exposantp est plus grand qu

1 etε est un réel positif petit. Etant donnée une géodésique simple, fermée, non dégénéréeh dans∂Ω , on prouve
l’existence de solutionsuεj de(Pεj ) se concentrant surh le long d’une suiteεj → 0. Le profil deuεj est donné pa
la solution radiale de (P0).

Les fonctions sont obtenues comme points critiques d’une fonctionnelle d’EulerIε définie surH 1(Ω). Leur
energie est grande quand on la compare à celle des niveaux obtenus par mountain-pass level, et leur
Morse tend vers l’infini lorsqueεj → 0. La preuve est basée sur un argument d’inversion locale, combiné ave
étude fine du spectre deI ′′

ε au voisinage de solutions approchéesũε de (Pε) qui possèdent le profile requis. Puisq
l’indice de Morse dẽuε change avecε, I ′′

ε (ũε) peut avoir des valeurs propres nulles dépendant deε. Notre analyse
nous autorise à selectionner une suiteεj le long de laquelle l’opérateur linéarisé est inversible.

Cette Note concerne les résultats obtenus dans [11]. Nous donnons ici le théorème principal et les id
preuve.

E-mail address:malchiod@sissa.it (A. Malchiodi).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.03.023
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1. Introduction

GivenΩ ⊆ R
n, p > 1 and a small positive parameterε, we consider the following equation

−ε2�u + u = up in Ω,
∂u
∂ν

= 0 on∂Ω,

u > 0 in Ω.

(Pε)

Problem (Pε) arises in the study of a class of reaction–diffusion systems which model some experim
chemistry or biology, see [16]. For example, when two chemical substances interact and have very diffe
diffusivities, at equilibrium one of them can be nearly constant throughΩ . The distribution of the second substan
instead, may be very inhomogeneous and is described by an equation like (Pε). Typically, asε tends to zero, one
expects solutions to become sharply concentrated near some regions ofΩ .

Much work has been devoted to (Pε) in order to understand where concentration occurs and what the pro
solutions looks like. In the casep < n+2

n−2, due to several contributions (starting from the seminal works [10,17
already the structure of solutions concentrated at points, calledspike-layers, has been shown to be very rich. F
example, in [7], Gui and Wei construct solutions withl1 peaks at the boundary ofΩ andl2 peaks in the interior
wherel1 andl2 are arbitrary integer numbers. Naively, peaking at∂Ω occurs at critical points of the mean curvatu
while peaking in the interior occurs at critical points of the distance from the boundary.

Similar results hold for the above singularly perturbed problem with Dirichlet boundary conditions, or th
Nonlinear Schrödinger equation in the semiclassicallimit, see, e.g., [6,9] and references therein.

Only recently existence of solutions concentrating at different sets has been proved. It is indeed conjecture
see [16], that for any integerk ∈ {1, . . . , n − 1} problem (Pε) generically admits solutions concentrating
k-dimensional sets. In [12,13] the authors have shown that, given any smooth bounded domainΩ ⊆ R

n, n � 2, and
anyp > 1, problem (Pε) admits solutions concentrating at the whole boundary along a suitable sequenceεj → 0.

We describe here a first result concerning concentration at a curve on the boundary of a three-dimensio
domain, namely at a set of codimension 2.

Theorem 1.1. Let Ω ⊆ R
3 be a smooth bounded domain, and letp > 1. Let h :S1 → ∂Ω be a closed non

degenerate geodesic without self-intersections. Then there exists a sequenceεj → 0 and a sequence of solution
uεj of (Pεj ) which concentrates ath. The profile ofuεj is given by the(unique) radial solution of the problem

−�u + u = up in R
2+,

∂u
∂ν

= 0 on∂R
2+,

u > 0 u ∈ H 1(R2+).

(P0)

For reasons of brevity, we do not specify rigorously what the above expressionconcentrates ath means. Some
more details are given in the next sections.

Remark 1. (a) We point out that in the theorem no upper bound onp is assumed, hence the exponent could a
be supercritical. This is due to the fact that the limit equation (P0), which gives the profile ofuεj , is in R

2, and for
that there is no restriction for the existence of a solution. In the case of solutions concentrating at points,
the subcriticality ofp is a necessary condition, see [3].

(b) The choice of aspecificsequenceεj is fundamental for our approach, and is not used to recover compac
It is required to obtain the invertibility of the linearized equation at some approximate solutionsũεj . This
invertibility is false in general, and we do not expect that generically concentration at ak-dimensional of solutions
with the same profile can occur for all the values ofε. Analogous phenomena occur in the construction of cons
mean curvature tubes shrinking at curves or manifolds, see [15].
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(c) By construction, the Morse index ofuεj tends to infinity asεj tends to zero. This should be compared t
result in [4], where it is proven that a family of solutions of (Pε) with uniform bounds on the Morse index mu
concentrate at a finite number of points whenε tends to zero.

(d) Under some symmetry assumptions, solutions concentrating at manifolds may have bounded Mor
in the space of invariant functions. In this case, as for the study of concentration at points, it is possible
minimax methods and finite-dimensional reductions in order to prove existence, see for example [1,2,5,14,19]

Theorem 1.1 is proved with a local inversion argument. The first step, described in Section 2, consists in
an approximate solutioñuε . Then in Section 3 an accurate analysis of the linearized equation atũε is performed,
focusing on its spectral properties. Finally, Section 4 is devoted to the proof of Theorem 1.1, via the Con
Mapping Theorem.

The present Note concerns the result obtained in [11], where the procedure is carried out in full detail.

2. Approximate solutions

Whenp � 5 (the subcritical or critical case, recall thatΩ ⊆ R
3), solutions of (Pε) can be found as critical point

of the functionalIε :H 1(Ω) → R defined by

Iε(u) = 1

2

∫
Ω

[
ε2|∇u|2 + u2] − 1

p + 1

∫
Ω

|u|p+1. (1)

In order to find approximate solutionsũε, namely functions for which‖I ′
ε(ũε)‖ is small, we introduce some loc

coordinates on∂Ω near the geodesich. Without loss of generality we can assume that the length ofh is 2π and
that t �→ h(t) is a parametrization by unit length defined onS1. Sinceh is simple, the mapΦ :S1 × [−δ, δ] (where
δ is a small number) defined below gives a system of coordinates for∂Ω in a neighborhood ofh. For anyt ∈ S1,
let e(t) ∈ Th(t)∂Ω be a unit vector tangent to∂Ω and satisfyingḣ(t) ∧ e(t) = νh(t), whereνh(t) is the inner unit
normal to∂Ω ath(t).

Letting exp denote the exponential map on∂Ω , we defineΦ :S1 × [−δ, δ] → ∂Ω by

Φ(x1, x2) = exph(t)

(
x2e(x1)

)
, (x1, x2) ∈ S1 × [−δ, δ]. (2)

If ḡ is the metric of∂Ω induced byR
3, we let ḡij be the coefficients of̄g in the above coordinates. From th

non-degeneracy ofh one can obtain the following result.

Lemma 2.1. Let (x1, x2) be the coordinates given by(2). Then the bilinear form

(u, v) �→
∫
S1

u̇v̇ + 1

2

∫
S1

∂2
x2

ḡ11(x1,0)uv

is non-degenerate onH 1(S1) × H 1(S1).

Using the above mapΦ, we also define some parametrization of theinterior of Ω in a neighborhood ofh. We
introduce the map̃Φ given by

Φ̃(x1, x2, x3) = Φ(x1, x2) + ν(x1, x2)x3, x = (x1, x
′) ∈ S1 × [−δ, δ] × [0, δ]. (3)

Hereν(x1, x2) denotes the inner unit normal to∂Ω atΦ(x1, x2).
Using these coordinates, the approximate solutionsũε will have the formũε(x) 	 w0(x

′/ε), x ′ = (x2, x3),
wherew0 is the unique radial solution of (P0). More precisely, givenk ∈ N, we take

ũε := uk,ε = w0
(
x2/ε + f0(x1) + · · · + εk−2fk−2(x1), x3/ε

)
+ εw1(x1, x

′/ε) + · · · + εkwk(x1, x
′/ε) + o

(
εk

)
, (4)



778 A. Malchiodi / C. R. Acad. Sci. Paris, Ser. I 338 (2004) 775–780

ly the
e

ose
g result.

,

the

s

form
ns
wheref1, . . . , fk−2 andw1, . . . ,wk are suitable functions to be determined. This is done expanding formal
equation−ε2�ũε + ũε = ũ

p
ε , with the choice of (4), in powers ofε. In this way one can find recursively th

functions{fi} and{wi}. The term of orderεi in the expansion will indeed determinewi andfi−2. In order to give
an idea of the method, we recall the following well-known result.

Lemma 2.2. Let L be linearization of(P0) at the ground-state solutionw0, namelyLv = −�v + v − pw
p−1
0 v in

R
2+; ∂v

∂ν
= 0 on ∂R

2+. ThenL is self-adjoint and its kernel inH 1(R2+) is generated by∂w0/∂x2.

The expansion of theith term in the equation, after some scaling, will be of the formLwi = F(x1, fi−2(x1),

f ′′
i−2(x1)) in S1 × R

2+; ∂wi

∂ν
= 0 onS1 × ∂R

2+. Here, naively,R2+ replaces the expanding rectangle[−δ/ε, δ/ε] ×
[0, δ/ε] in thex ′ variable. By Lemma 2.2, a necessary condition forthe existence is the orthogonality of the right-
hand side to∂w0/∂x2 for everyx1 ∈ S1. This is guaranteed iffk−2 satisfies some ODE of the second order, wh
solvability is a consequence of Lemma 2.1. All these arguments can be made rigorous to give the followin

Proposition 2.3. Consider the Euler functionalIε defined in(1). Then for anyk ∈ N there exist functions
ũε :Ω → R with the following properties∥∥I ′

ε(ũε)
∥∥

H1(Ω)
� Ckε

k+1/2; ũε � 0 in Ω; ∂ũε

∂ν
= 0 on∂Ω, (5)

whereCk depends only onΩ , p andk.

3. Study of the linearized operator

We now focus onI ′′
ε (ũε). Our aim is to prove that along some sequenceεj → 0 this operator is invertible

having some quantitative estimates on the norm of the inverse. This is the content of Proposition 3.3.
Our method relies on viewing the eigenvalues as functions ofε. In order to understand this dependence

following result, due to Kato, see [8], is very useful.

Proposition 3.1. LetT (χ) denote a differentiable family of operators from an Hilbert spaceH into itself, whereχ
lies in a neighborhood of0. LetT (0) be a self-adjoint operator of the formIdentity-compact, and letζ(0) = ζ0 
= 1
be an eigenvalue ofT (0). Then the eigenvalueζ(χ) is differentiable at0 with respect toχ . The (possibly
multivalued) derivative ofζ is given by ∂ζ

∂χ
= {eigenvalues ofPζ0 ◦ ∂T

∂χ
(0) ◦ Pζ0}, wherePζ0 :H → Hζ0 denotes

the projection onto theζ0-eigenspaceHζ0 of T (0).

Note that, in order to apply Proposition 3.1, some information on the eigenspaceHζ0 is required. To have
that in our case, we construct first a family of approximate eigenfunctions{Ψ ε

j }j , {Ψ̃ ε
k }k of I ′′

ε (ũε). Consider the
eigenvalue problems

−φ′′
j = ωjφj in S1; −ψ ′′

k + a(t)ψk = λkψk in S1, (6)

with periodic boundaryconditions, wherea(t) = 1
2∂2

x2
ḡ11(t,0) (see the previous section). We note thatφj are just

elementary trigonometric functions, and the numbersωj can be written explicitly. Also, from Lemma 2.1 it follow
that all the numbersλk are different from zero.

If w0 is as above andα > 0, we letµα denote the first eigenvalue (which is simple) of the problem

−�v + (1+ α)v − pw
p−1
0 v = µα(−�v + v) in R

2+; ∂v

∂ν
= 0 on∂R

2+, (7)

with corresponding eigenfunctionvα . Then one can show that, in the above coordinates, functions of the
Ψ ε

j (x) = φj (x1)vε2ωj
(x ′/ε)+O(ε); Ψ̃ ε

k = ψk(x1)∂2w0(x
′/ε)+O(ε) satisfy the approximate eigenvalue equatio

I ′′
ε

(
Ψ ε

j

) 	 µj,εΨ
ε
j ; I ′′

ε

(
Ψ̃ ε

k

) = ε2λj Ψ̃
ε
k + o

(
ε2). (8)
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Naively, the functionsΨ ε
j andΨ̃ ε

k can be thought as longitudinal and transversalmodes of vibrationof ũε. Since
this is concentratednear the geodesich, in the second equation of (8) one obtains the eigenvalues of the J
operator (the second variation of the length).

The numbersµj,ε in the last formula behavequalitativelyin the following way

µj,ε ∼ −(p − 1) + ε2j2 + O(ε). (9)

Since we want to get a control of orderε2 on the eigenvalues ofI ′′
ε (ũε), the last estimate is not accura

enough, and that’s why we need to use Proposition 3.1. In order to apply it, we need to recover information
the true eigenfunctions ofI ′′

ε (ũε). We consider the three subspaces ofH 1(Ω) H1 = span{Ψ ε
j : j = 1, . . . , Ĉ0};

H2 = span{Ψ̃ ε
k : k = 1, . . . , ε−ξ }; H3 = (H1 ⊕ H2)

⊥, whereĈ0 and ξ are numbers to be chosen appropriat
One can prove that, for good choices ofĈ0 and ξ and forε small, everyu ∈ H 1(Ω) decomposes uniquely a
u = u1+u2+u3, whereui ∈ Hi for all i. We apply this decomposition to the eigenvectors ofI ′′

ε (ũε) corresponding
to eigenvalues which are close to zero.

Lemma 3.2. There existsδ > 0 sufficiently small with the following property. Letv be an eigenfunction ofI ′′
ε (ũε)

with eigenvalueλ ∈ [−δε2, δε2]. Then, writingv = v1 + v2 + v3, one has that‖v2‖ = o(1) and ‖v3‖ = o(1).
Furthermore, there holds∂λ

∂ε
= 1

ε
(C0 + o(1)) (o(1) → 0 asε → 0), where we are consideringλ as a function ofε

and whereC0 is some constant depending onp.

The first assertion of this lemma is proved by testing the eigenvalue equationI ′′
ε (ũε)v = λv on the component

v1, v2 and v3. Once this is done, one also finds that the Fourier modes ofv in H1 are mainly localized nea

j ∼ �C0
ε

, where�C0 is another constant depending onp. Basically, those are the modes for which the approxim
eigenvaluesµε,j , see (9), are close to zero. Hence, having a precise characterization of the eigenfunctionv, we can
apply Proposition 3.1 and get the second statement.

Lemma 3.2 is applied in the following way. From the asymptotics ofµj,ε in (9) one finds gaps of withε2 in the
spectrum simply by counting the number of eigenvalues in a given interval. Then, varyingε suitably, these gap
can be brought near zero keeping their size nearly constant.

Proposition 3.3. Let ũε be as in Proposition2.3. Then for a suitable sequenceεj → 0, the operatorI ′′
εj

(ũεj ) :
H 1(Ω) → H 1(Ω) is invertible and the inverse operator satisfies‖I ′′

εj
(ũεj )

−1‖ � C

ε2
j

for all j ∈ N.

Remark 2. From our arguments, one can show that the set of valuesε for whichI ′′
ε (ũε) is invertible (and for which

our method produces solutions of (Pε)) it not only a sequence, but it has density converging to 1 in smaller
smaller right neighborhoods of the origin.

4. Proof of Theorem 1.1

Let εj be as in Proposition 3.3. For brevity, in the rest of the proof, we simply writeε instead ofεj . Recall that
so far we have assumed thatp � 5. Now we just apply the contraction mapping theorem, looking for a solutiouε

of the formuε = ũε + w, w ∈ H 1(Ω). SinceI ′′
ε (ũε) is invertible (along the sequenceεj ), we can write

I ′′
ε (ũε + w) = 0 ⇔ w = −(

I ′′
ε (ũε)

)−1[
I ′
ε(ũε) + G(w)

]
, (10)

whereG(w) = I ′
ε(ũε + w) − I ′

ε(ũε) − I ′′
ε (ũε)[w]. Note thatG(w)[v] = − ∫

Ω [(ũε + w)p − ũ
p
ε − pũ

p−1
ε w]v,

v ∈ H 1(Ω), henceG(w) is basically superlinear inw. Let us define the operatorFε :H 1(Ω) → H 1(Ω) as
Fε(w) = −(I ′′

ε (ũε))
−1[I ′

ε(ũε) + G(w)], w ∈ H 1(Ω). We are going to prove thatFε is a contraction in a suitabl
closed set ofH 1(Ω). From Proposition 2.3 and some elementary inequalities one finds
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∥∥ �

{
Cε−2

(
εk+1/2 + ‖w‖p

)
for p � 2,

Cε−2
(
εk+2/2 + ‖w‖2

)
for p > 2,

‖w‖ � 1; (11)

∥∥Fε(w1) − Fε(w2)
∥∥ �

{
Cε−2

(‖w1‖p−1 + ‖w2‖p−1
)‖w1 − w2‖, p � 2,

Cε−2
(‖w1‖ + ‖w2‖

)‖w1 − w2‖, p > 2,
‖w1‖,‖w2‖ � 1. (12)

Now we choose integersd andk such that

d >


2

p − 1
for p � 2,

2 for p > 2,

k > d + 3

2
, (13)

and we setB = {w ∈ H 1(Ω): ‖w‖ � εd }. From (11) and (12) we find thatFε is a contraction inB for ε small,
and the existence of a solutionuε follows. This function, by construction, will have the required asymptotics.
positivity of uε can be proved in a standard way, testing the equation on(uε)

− and using the Sobolev embedding
This concludes the proof in the casep � 5. For largerp see the remark below.

Remark 3. The proof in the supercritical case goes along the same way, but with some modification. O
consider some truncated functional, whose nonlinearity is still subcritical for|u| large. Then, the contractio
argument is performed in a set of functions with smallH 1 norm and smallL∞ norm. Using elliptic regularity
estimates, then one obtains an upper bound inL∞ of the solutions, which is independent on the truncat
Therefore, critical points of the modified Euler functional will be true solutions of (Pε) even forp > 5.
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