Number Theory

On the special values of automorphic L-functions

Joachim Mahnkopf
Institut für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

Received 19 December 2003; accepted after revision 16 March 2004
Presented by Christophe Soulé

Abstract

Let π be a cuspidal representation of $\mathrm{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ with non-vanishing cohomology and denote by $L(\pi, s)$ its L-function. Under a certain local non-vanishing assumption, we prove the rationality of the values of $L(\pi \otimes \chi, 0)$ for characters χ, which are critical for π. Note that conjecturally any motivic L-function should coincide with an automorphic L-function on GL_{n}; hence, our result corresponds to a conjecture of Deligne for motivic L-functions. To cite this article: J. Mahnkopf, C. R. Acad. Sci. Paris, Ser. I 338 (2004). © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur les valeurs spéciales des fonctions L automorphes. Soit π une représentation cuspidale de $\operatorname{GL}_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$ dont la cohomologie d'algèbre de Lie relative ne s'annule pas et soit $L(\pi, s)$ sa fonction L automorphe. Sous l'hypothèse qu'une certaine intégrale locale ne s'annule pas nous démontrons la rationalité des valeurs $L(\pi \otimes \chi, 0)$ pour les charactères χ, qui sont critiques pour π. Notons que conjecturalement chaque fonction L motivique est égale a une fonction L automorphe attachée à GL_{n}, donc, notre résultat correspond à une conjecture de Deligne concernant les fonctions L motiviques. Pour citer cet article : J. Mahnkopf, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Statement of results

We shall use the following notations. $\mathbb{A}=\prod_{v} \mathbb{Q}_{v}$ is the ring of adeles of \mathbb{Q}. B_{n} resp. T_{n} resp. Z_{n} denotes the subgroup of GL_{n} consisting of upper triangular matrices resp. diagonal matrices resp. the center of GL_{n}. Throughout we assume $n \geqslant 3$. We write $X^{+}\left(T_{n}\right)$ to denote the set of dominant (with respect to B_{n}) algebraic characters of T_{n} and $\left(\rho_{\mu}, M_{\mu}\right)$ is the irreducible representation of GL_{n} of highest weight $\mu \in X^{+}\left(T_{n}\right)$. We set $\mu^{\vee}=-w_{n} \mu$, where w_{n} is the longest element in the Weyl group $W_{\mathrm{GL}_{n}}$ of $\mathrm{GL}_{n} ; \mu^{\vee}$ then is the highest weight of the contragredient representation ($\rho^{\vee}, M_{\mu}^{\vee}$). For any field F containing \mathbb{Q} we set $M_{\mu, F}=M_{\mu} \otimes F$. Moreover we denote by $\operatorname{Coh}\left(\mathrm{GL}_{n}, \mu\right)$ the set of all cuspidal automorphic representations $\pi=\otimes_{v} \pi_{v}$ of $\mathrm{GL}_{n}(\mathbb{A})$ such that

$$
H^{\bullet}\left(\mathfrak{g l}_{n}, \mathrm{SO}_{n}(\mathbb{R}) Z_{n}(\mathbb{R})^{0}, \pi_{\infty} \otimes M_{\mu}\right) \neq 0
$$

[^0]Since cuspidal representations are quasi unitary, $\operatorname{Coh}\left(\mathrm{GL}_{n}, \mu\right)$ is non-empty only if the weight $\mu=\left(\mu_{i}\right)$ satisfies the following purity condition: there is an integer $\mathrm{wt}(\mu) \in \mathbb{Z}$ such that

$$
\mu_{i}+\mu_{n+1-i}=\operatorname{wt}(\mu), \quad 1 \leqslant i \leqslant n
$$

In case n odd this implies $\mathrm{wt}(\mu) \in 2 \mathbb{Z}$. We note that a cuspidal representation π of $\mathrm{GL}_{n}(\mathbb{A})$ with non-vanishing relative Lie-Algebra cohomology is defined over a finite extension E_{π} / \mathbb{Q} (cf. [2], Théorème 3.13). Furthermore, these representations are algebraic in the sense of [2], Définition 1.8.

Let $\pi \in \operatorname{Coh}\left(\mathrm{GL}_{n}, \mu\right)$ and let $L(\pi, s)=\prod_{v} L\left(\pi_{v}, s\right)$ be the automorphic L-function attached to it. Any complex character χ_{∞} of \mathbb{R}^{*} is of the form $\chi_{\infty}=\varepsilon_{\infty}|\cdot|_{\infty}^{k}$, where ε_{∞} is of order $\leqslant 2$ and $k \in \mathbb{C}$. We say that χ_{∞} is critical for π_{∞} if $\bullet k \in 1 / 2+\mathbb{Z}$ if n is even and $k \in \mathbb{Z}$ if n is odd $\bullet L\left(\pi_{\infty} \otimes \chi_{\infty}, 0\right)$ and $L\left(\pi_{\infty}^{\vee} \otimes \chi_{\infty}^{-1}, 1\right)$ are regular values (note that under the conjectural correspondence between motives M and algebraic automorphic representations π on GL_{n} we have $L(M, s)=L(\pi, s+(n-1) / 2)$; cf. [2], 4.5, 4.16). We say that $\chi: \mathbb{Q}^{*} \backslash \mathbb{A}^{*} \rightarrow \mathbb{C}^{*}$ is critical for π if χ_{∞} is critical for π_{∞}. We denote the set of critical characters χ_{∞} resp. χ by $\operatorname{Crit}\left(\pi_{\infty}\right)$ resp. $\operatorname{Crit}(\pi)$. Using the classification of (generic) unitary $\left(\mathfrak{g l}_{n}, \mathrm{SO}_{n}\right)$-modules with non-vanishing cohomology we find:

Proposition 1.1. Let $\mu=\left(\mu_{i}\right) \in X^{+}\left(T_{n}\right)$ and let $\pi \in \operatorname{Coh}\left(\mathrm{GL}_{n}, \mu^{\vee}\right)$. Then, $\chi_{\infty}=\varepsilon_{\infty}|\cdot|_{\infty}^{k}$ is criticalfor π precisely if

- $-\mu_{n / 2}+1 / 2 \leqslant k \leqslant \mu_{n / 2}+1 / 2-\mathrm{wt}(\mu)$ if n is even;
- $-\mu_{(n-1) / 2} \leqslant k \leqslant \mu_{(n-1) / 2}+1-\mathrm{wt}(\mu)$ if n is odd.

In case that n is odd χ in addition has to satisfy a parity condition: denote by ω_{π} the central character of π and by $\left.\omega_{\pi}\right|_{\pi_{0}}$ its restriction to $\{ \pm \mathbf{1}\} \subset Z_{n}(\mathbb{R})$. Put $l=(\omega t(\mu)-n+1) / 2+k$; then χ_{∞} has to satisfy $\varepsilon_{\infty}=\left.\omega_{\pi}\right|_{\pi_{0}} \operatorname{sgn} l$ if $k>(1+\mathrm{wt}(\mu)) / 2$ and $\varepsilon_{\infty}=\left.\omega_{\pi}\right|_{\pi_{0}} \mathrm{sgn}^{l+1}$ if $k \leqslant(1+\mathrm{wt}(\mu)) / 2$.

Obviously, χ is critical for π precisely if $\chi^{-1}|\cdot|$ is critical for the contragredient representation π^{\vee}. In view of the functional equation relating $L(\pi \otimes \chi, 0)$ to $L\left(\pi^{\vee} \otimes \chi^{-1}|\cdot|, 0\right)$ it is therefore sufficient to consider points $\chi \in \operatorname{Crit}(\pi)$ with component at infinity $\chi_{\infty}=\varepsilon_{\infty}|\cdot|_{\infty}^{k}$ satisfying $k \leqslant(1-\operatorname{wt}(\mu)) / 2$. We denote the set of critical characters satisfying this condition by $\operatorname{Crit}\left(\pi_{\infty}\right) \leqslant$ and $\operatorname{Crit}(\pi) \leqslant$.

We define a collection of complex numbers $\Omega\left(\pi, \chi_{\infty}\right) \in \mathbb{C}^{*} / \widehat{E}_{\pi}^{*}$, where $\pi \in \operatorname{Coh}\left(\mathrm{GL}_{n}, \mu\right)$ and $\chi_{\infty} \in \operatorname{Crit}\left(\pi_{\infty}\right) \leqslant$ such that for any finite extension E / \widehat{E}_{π} the tuple

$$
\left\{\Omega\left(\pi^{\sigma}, \chi_{\infty}\right)\right\}_{\sigma \in \operatorname{Hom}(E, \mathbb{C})} \in(E \otimes \mathbb{C})^{*} / \widehat{E}_{\pi}^{*}
$$

is well defined. Here, $\widehat{E}_{\pi} / E_{\pi}$ is a certain finite extension and \widehat{E}_{π} is embedded as $\alpha \mapsto\{\sigma(\alpha)\}_{\sigma \in \operatorname{Hom}(E, \mathbb{C})}$. We set $\chi^{1}=\chi|\cdot|^{-k}$, where $\chi_{\infty}=\varepsilon_{\infty}|\cdot|_{\infty}^{k}$ and we define $\chi^{\sigma}=\sigma\left(\chi|\cdot|^{-k}\right)|\cdot|^{k}, \sigma \in \operatorname{Aut}(\mathbb{C} / \mathbb{Q})$.

Theorem 1.1. Assume that $\mu \in X^{+}\left(T_{n}\right)$ is regular and let $\pi \in \operatorname{Coh}\left(\mathrm{GL}_{n}, \mu^{\vee}\right)$.
(1) For all but finitely many $\chi \in \operatorname{Crit}(\pi) \leqslant$ we have

$$
L(\pi \otimes \chi, 0)=\Omega\left(\pi, \chi_{\infty}\right) \quad \bmod \widehat{E}_{\pi}\left(\chi^{1}\right)
$$

Moreover, denote by $G(\chi)$ the Gauss sum attached to χ. For all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ we have

$$
\left(G(\chi)^{[n / 2]} \frac{L(\pi \otimes \chi, 0)}{\Omega\left(\pi, \chi_{\infty}\right)}\right)^{\sigma}=G\left(\chi^{\sigma}\right)^{[n / 2]} \frac{L\left(\pi^{\sigma} \otimes \chi^{\sigma}, 0\right)}{\Omega\left(\pi^{\sigma}, \chi_{\infty}\right)}
$$

(2) Let $\chi_{\infty}^{\prime}=\varepsilon_{\infty}^{\prime}|\cdot|{ }_{\infty}^{k^{\prime}} \in \operatorname{Crit}(\pi) \leqslant$. Then, the ratio $\Omega\left(\pi, \chi_{\infty}\right) / \Omega\left(\pi, \chi_{\infty}^{\prime}\right)$ only depends on $\chi_{\infty}, \chi_{\infty}^{\prime}$ and μ; in particular, it does not depend on π (obviously, in case n odd it is also independent of ε_{∞} and $\varepsilon_{\infty}^{\prime}$).

Remark 1. (a) The theorem is valid only under a certain non-vanishing assumption (cf. below). This assumption is known to hold in case $n=3$ and is analogous to the assumption made in [1], p. 28.
(b) In cases $n=1,2$ (which we have excluded) Theorem 1.1 has previously been known to hold (cf. [4]).

The proof of Theorem 1.1 uses an induction over the rank of GL_{n}. To be more precise, let $\mu \in X^{+}\left(T_{n}\right)$. We select a weight $\lambda \in X^{+}\left(T_{n-1}\right)$ such that $\bullet \lambda \leq \mu$, i.e., $\mu_{1} \geqslant \lambda_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \lambda_{n-1} \geqslant \mu_{n} \bullet \lambda_{n / 2}=-k+1 / 2$ if n is even and $\lambda_{(n+1) / 2}=-k$ if n is odd. Proposition 1.1 implies that such a choice of λ is possible precisely if k is a critical point for π (i.e., $\varepsilon_{\infty}|\cdot|_{\infty}^{k} \in \operatorname{Crit}(\pi)$ for some ε_{∞}). We denote by $P \leqslant \mathrm{GL}_{n-1}$ the parabolic subgroup of type ($n-2,1$) containing B_{n-1} and by $W^{P} \subset W_{\mathrm{GL}_{n-1}}$ the relative Weyl group, i.e., W^{P} is a system of representatives for $W_{M_{P}} \backslash W_{\mathrm{GL}_{n-1}}$. We set

$$
\widehat{w}=\left(\begin{array}{cccccc}
1 & 2 & \cdots & {\left[\frac{n}{2}\right]-1} & {\left[\frac{n}{2}\right]} \\
1 & 2 & \cdots & {\left[\frac{n}{2}\right]-1} & n-1 & {\left[\frac{n}{2}\right]+1} \\
{\left[\frac{n}{2}\right]} & \cdots & n-1 \\
\cdots & n-2
\end{array}\right) \in W^{P} .
$$

We define the weight $\mu^{\prime}=\widehat{w}\left(\lambda+\rho_{n-1}\right)-\rho_{n-1} \mid T_{n-2} \in X^{+}\left(T_{n-2}\right)$, where ρ_{n-1} is half the sum of the positive roots of GL_{n-1} determined by B_{n-1} and we embed $T_{n-2} \hookrightarrow T_{n-1}$ via $t \mapsto \operatorname{diag}(t, 1)$. Using the \mathbb{Q}-structure on the cohomology of locally symetric spaces we define a collection of complex numbers $\Omega\left(\pi, \pi^{\prime}, \varepsilon_{\infty}\right) \in \mathbb{C}^{*} /\left(E_{\pi} E_{\pi^{\prime}}\right)^{*}$, where $\pi \in \operatorname{Coh}\left(\mathrm{GL}_{n}, \mu\right), \pi^{\prime} \in \operatorname{Coh}\left(\mathrm{GL}_{n-2}, \mu^{\prime}\right)$ and ε_{∞} is a character of order $\leqslant 2$ such that for any finite extension $E / E_{\pi} E_{\pi}^{\prime}$ the tuple $\left\{\Omega\left(\pi^{\sigma}, \pi^{\prime \sigma}, \varepsilon_{\infty}\right)\right\}_{\sigma \in \operatorname{Hom}(E, \mathbb{C})} \in(E \otimes \mathbb{C})^{*} /\left(E_{\pi} E_{\pi^{\prime}}\right)^{*}$ is well defined.

Theorem 1.2. Assume that $\mu \in X^{+}\left(T_{n}\right)$ is regular and let $\pi \in \operatorname{Coh}\left(\mathrm{GL}_{n}, \mu^{\vee}\right)$ and $\pi^{\prime} \in \operatorname{Coh}\left(\mathrm{GL}_{n-2}, \mu^{\prime}\right)$ (if n is odd π^{\prime} in addition has to satisfy a parity condition).
(1) For all $\chi \in \operatorname{Crit}(\pi) \leqslant$ with $\chi_{\infty}=\varepsilon_{\infty}|\cdot|_{\infty}^{k}$ and all $\sigma \in \operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ we have

$$
\left(\frac{G(\chi) P_{\mu}(k)}{\Omega\left(\pi, \pi^{\prime}, \varepsilon\left(\chi_{\infty}\right)\right)} \frac{L(\pi \otimes \chi, 0)}{L\left(\pi^{\prime \nu} \otimes \chi, 0\right)}\right)^{\sigma}=\frac{G\left(\chi^{\sigma}\right) P_{\mu}(k)}{\Omega\left(\pi^{\sigma}, \pi^{\prime \sigma}, \varepsilon\left(\chi_{\infty}\right)\right)} \frac{L\left(\pi^{\sigma} \otimes \chi^{\sigma}, 0\right)}{L\left(\left(\pi^{\prime V}\right)^{\sigma} \otimes \chi^{\sigma}, 0\right)} .
$$

Here, $P_{\mu}(k) \in \mathbb{C}$ only depends on k and μ (i.e., it is independent of π, π^{\prime}) and $\varepsilon\left(\chi_{\infty}\right)=\varepsilon_{\infty} \operatorname{sgn}^{k}$.
(2) $\operatorname{Crit}(\pi) \subset \operatorname{Crit}\left(\pi^{\prime \nu}\right)$.

Obviously, Theorem 1.1 follows from Theorem 1.2 using induction over n with the previously known cases $n=1,2$ of Theorem 1.1 serving as starting point for the induction.

Remark 2. Theorem 1.2 (and, hence, Theorem 1.1) is valid only under a certain non-vanishing assumption (cf. below).

2. Relation to Cohomology of locally symetric spaces

We set $S_{n}(K)=\mathrm{GL}_{n}(\mathbb{Q}) \backslash \mathrm{GL}_{n}(\mathbb{A}) / K \mathrm{SO}_{n}(\mathbb{R}) Z_{n}(\mathbb{R})^{0}$ and $F_{n}(K)=\mathrm{GL}_{n}(\mathbb{Q}) \backslash \mathrm{GL}_{n}(\mathbb{A}) / K \mathrm{SO}_{n}(\mathbb{R})$, whence, a natural map $p: F_{n}(K) \rightarrow S_{n}(K)$. We denote by $\bar{S}_{n}(K)$ the Borel-Serre compactification of $S_{n}(K) . \bar{S}_{n}(K)=$
 $\mathrm{GL}_{n} . \mathcal{M}_{\mu}^{\vee}$ denotes the locally constant sheaf on $S_{n}(K)$ and on $\bar{S}_{n}(K)$ attached to the finite dimensional representation M_{μ}^{\vee}. We set $H^{\bullet}\left(S_{n}, \mathcal{M}_{\mu}^{\vee}\right)=\lim _{K} H^{\bullet}\left(S_{n}(K), \mathcal{M}_{\mu}^{\vee}\right)$. By assumption, the representation π_{f} embeds into cohomology

$$
\begin{equation*}
\pi_{f} \hookrightarrow H^{b_{n}}\left(S_{n}, \mathcal{M}_{\mu}^{\vee}\right) . \tag{1}
\end{equation*}
$$

Here, b_{n} is the lowest degree, in which cuspidal cohomology occurs and π_{f} occurs with multiplicity 1 .
On the other hand, the cohomology of the face $\partial_{P} S_{n-1}(K)$ attached to the parabolic subgroup $P \leqslant \mathrm{GL}_{n-1}$ of type ($n-2,1$) with coefficients in \mathcal{M}_{λ} decomposes

$$
H^{i}\left(\partial_{P} S_{n-1}, \mathcal{M}_{\lambda}\right)=\bigoplus_{w \in W^{P}} \operatorname{Ind}_{P\left(\mathbb{A}_{f}\right)}^{\mathrm{GL}_{n-1}\left(\mathbb{A}_{f}\right)}\left(H^{i-\ell(w)}\left(S_{n-2}, \mathcal{M}_{w \cdot \lambda \mid T_{n-2}}\right) \otimes H^{0}\left(S_{1}, \mathcal{M}_{\left.w \cdot \lambda\right|_{G_{m}}}\right)\right)
$$

Let $\pi^{\prime} \in \mathcal{C o h}\left(\mathrm{GL}_{n-2}\right)$ and $\chi \in \operatorname{Crit}(\pi)$. Our choice of λ implies that $\pi_{f}^{\prime} \otimes \chi_{f}$ embeds into the cohomology of $S_{n-2} \times S_{1}$ with coefficients in $\mathcal{M}_{\left.\widehat{w} \cdot \lambda\right|_{T_{n-2}}} \otimes \mathcal{M}_{\left.\widehat{w} \cdot \lambda\right|_{\mathbb{G}_{m}}}$. Since $b_{n-1}=b_{n-2}+\ell(\widehat{w})$ we obtain a map

$$
\begin{equation*}
\operatorname{Ind}_{P}^{\mathrm{GL}_{n-1}} \pi_{f}^{\prime} \otimes \chi_{f} \hookrightarrow H^{b_{n-1}}\left(\partial_{P} S_{n-1}, \mathcal{M}_{\lambda}\right) \xrightarrow{\text { Eis }} H^{b_{n-1}}\left(S_{n-1}, \mathcal{M}_{\lambda}\right) \tag{2}
\end{equation*}
$$

The last arrow is given by Eisenstein summation (cf. [3,6]). Since $\lambda \preceq \mu$ we know that $\left.M_{\lambda} \hookrightarrow M_{\mu}\right|_{\mathrm{GL}_{n-1}}$ and we obtain a diagram

where $\left.\mathcal{M}_{\mu}^{\vee}\right|_{\mathrm{GL}_{n-1}}$ is the sheaf attached to $\left.M_{\mu}^{\vee}\right|_{\mathrm{GL}_{n-1}}$ and $i: F_{n-1}(K) \rightarrow S_{n}(K), g \mapsto \operatorname{diag}(g, 1)$ is the inclusion. Using the description of the cohomology via automorphic forms and combining the method of Zeta-integrals (cf. [5]) with the method of Langlands-Shahidi (cf. [7]) we are able to compute the pairing defined in (3): there are classes $\omega_{\pi} \in H^{b_{n}}\left(S_{n}, \mathcal{M}_{\mu}^{\vee}\right)\left(\pi_{f}\right)$ and $\omega_{\text {Eis } \pi^{\prime} \otimes \chi} \in H_{\mathrm{Eis}}^{b_{n-1}}\left(S_{n-1}, \mathcal{M}_{\lambda}\right)$ such that

$$
\begin{equation*}
\sum_{u} \int i^{*} r_{u}^{*} \omega_{\pi} \cup p^{*} \omega_{\mathrm{Eis} \pi^{\prime} \otimes \chi}=P_{\mu}(k) \frac{L(\pi \otimes \chi, 0)}{L\left(\pi^{\prime} \otimes \chi, 0\right)} \tag{4}
\end{equation*}
$$

Here, $u \in N_{P}\left(\mathbb{A}_{f}\right)$ runs over a finite set of unipotent matrices and r_{u} denotes right translation by $u . P_{\mu}(k)$ is the quotient of the local factor at infinity of $\sum_{u} \int i^{*} r_{u}^{*} \omega_{\pi} \cup p^{*} \omega_{\text {Eis } \pi^{\prime} \otimes \chi}$ by $L\left(\pi_{\infty} \otimes \chi_{\infty}, 0\right) / L\left(\pi_{\infty}^{\prime} \otimes \chi_{\infty}, 0\right)$. The choice of the local components at infinity of ω_{π} and $\omega_{\operatorname{Eis} \pi^{\prime} \otimes \chi}$ is already determined by the coefficient systems M_{μ} and M_{λ} and we de not know whether for these choices $P_{\mu}(k)=1$ or at least $P_{\mu}(k) \neq 0$. Thus, we have to make the

Assumption. $P_{\mu}(k) \neq 0$.
In case n odd we have computed the SO_{n} resp. SO_{n-1}-types supporting the cohomology classes ω_{π} resp. $\omega_{\operatorname{Eis} \pi^{\prime} \otimes \chi}$ and we verified that they allow for non-vanishing of $P_{\mu}(k)$. Using ideas of [3] we are able to compute the action of $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$ on the cohomology: we find that after dividing by an appropriate complex number $\Omega\left(\pi, \pi^{\prime}, \varepsilon\left(\chi_{\infty}\right)\right)$ the left-hand side in (4) behaves equivariantly with respect to the action of $\operatorname{Aut}(\mathbb{C} / \mathbb{Q})$, which finally yieds Theorem 1.2. As a last remark we note that the assumption that μ be regular perhaps can be circumvented by allowing more general parabolic subgroups $P \leqslant \mathrm{GL}_{n-1}$.

References

[^1]
[^0]: E-mail address: joachim.mahnkopf@univie.ac.at (J. Mahnkopf).

[^1]: [1] A. Ash, D. Ginzburg, p-adic L-functions for GL(2n), Inv. Math. 116 (1994) 27-73.
 [2] L. Clozel, Motifs et formes automorphes, in: Automorphic Forms, Shimura Varieties and L-Functions, vol. I, in: Perspect. Math., vol. 10, Academic Press, 1990, pp. 77-159.
 [3] G. Harder, Some results on the Eisenstein cohomology of arithmetic subgroups of GL n, in: Cohomology of Arithmetic Groups and Automorphic Forms, in: Lecture Notes in Math., vol. 1447, Springer, 1989, pp. 85-153.
 [4] G. Harder, General aspects in the theory of modular symbols, in: Sém. Théor. Nombres, Paris 1981-1982, in: PM, vol. 38, Birkhäuser, 1983.
 [5] H. Jacquet, J. Shalika, Euler products and the classification of automorphic representations II, Amer. J. Math. 103 (1981) $777-815$.
 [6] J. Schwermer, Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, in: Lecture Notes in Math., vol. 988, Springer, 1983.
 [7] F. Shahidi, Functional equation satisfied by certain L-functions, Comp. Math. 37 (1978) 171-207.

