

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 338 (2004) 759-762

Number Theory

On the special values of automorphic L-functions

Joachim Mahnkopf

Institut für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

Received 19 December 2003; accepted after revision 16 March 2004

Presented by Christophe Soulé

Abstract

Let π be a cuspidal representation of $GL_n(\mathbb{A}_{\mathbb{Q}})$ with non-vanishing cohomology and denote by $L(\pi, s)$ its *L*-function. Under a certain local non-vanishing assumption, we prove the rationality of the values of $L(\pi \otimes \chi, 0)$ for characters χ , which are critical for π . Note that conjecturally any motivic *L*-function should coincide with an automorphic *L*-function on GL_n ; hence, our result corresponds to a conjecture of Deligne for motivic *L*-functions. *To cite this article: J. Mahnkopf, C. R. Acad. Sci. Paris, Ser. I 338 (2004).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur les valeurs spéciales des fonctions L automorphes. Soit π une représentation cuspidale de $GL_n(\mathbb{A}_{\mathbb{Q}})$ dont la cohomologie d'algèbre de Lie relative ne s'annule pas et soit $L(\pi, s)$ sa fonction L automorphe. Sous l'hypothèse qu'une certaine intégrale locale ne s'annule pas nous démontrons la rationalité des valeurs $L(\pi \otimes \chi, 0)$ pour les charactères χ , qui sont critiques pour π . Notons que conjecturalement chaque fonction L motivique est égale a une fonction L automorphe attachée à GL_n , donc, notre résultat correspond à une conjecture de Deligne concernant les fonctions L motiviques. *Pour citer cet article : J. Mahnkopf, C. R. Acad. Sci. Paris, Ser. I 338 (2004).*

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Statement of results

We shall use the following notations. $\mathbb{A} = \prod_v \mathbb{Q}_v$ is the ring of adeles of \mathbb{Q} . B_n resp. T_n resp. Z_n denotes the subgroup of GL_n consisting of upper triangular matrices resp. diagonal matrices resp. the center of GL_n . Throughout we assume $n \ge 3$. We write $X^+(T_n)$ to denote the set of dominant (with respect to B_n) algebraic characters of T_n and (ρ_μ, M_μ) is the irreducible representation of GL_n of highest weight $\mu \in X^+(T_n)$. We set $\mu^{\vee} = -w_n \mu$, where w_n is the longest element in the Weyl group W_{GL_n} of GL_n ; μ^{\vee} then is the highest weight of the contragredient representation ($\rho^{\vee}, M_\mu^{\vee}$). For any field F containing \mathbb{Q} we set $M_{\mu,F} = M_\mu \otimes F$. Moreover we denote by $Coh(GL_n, \mu)$ the set of all cuspidal automorphic representations $\pi = \otimes_v \pi_v$ of $GL_n(\mathbb{A})$ such that

 $H^{\bullet}(\mathfrak{gl}_n, \mathrm{SO}_n(\mathbb{R})Z_n(\mathbb{R})^0, \pi_{\infty} \otimes M_{\mu}) \neq 0.$

E-mail address: joachim.mahnkopf@univie.ac.at (J. Mahnkopf).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2004.03.012

Since cuspidal representations are quasi unitary, $Coh(GL_n, \mu)$ is non-empty only if the weight $\mu = (\mu_i)$ satisfies the following purity condition: there is an integer wt(μ) $\in \mathbb{Z}$ such that

$$\mu_i + \mu_{n+1-i} = \operatorname{wt}(\mu), \quad 1 \leq i \leq n.$$

In case *n* odd this implies wt(μ) $\in 2\mathbb{Z}$. We note that a cuspidal representation π of GL_n(A) with non-vanishing relative Lie-Algebra cohomology is defined over a finite extension E_{π}/\mathbb{Q} (cf. [2], Théorème 3.13). Furthermore, these representations are *algebraic* in the sense of [2], Définition 1.8.

Let $\pi \in \text{Coh}(\text{GL}_n, \mu)$ and let $L(\pi, s) = \prod_{v} L(\pi_v, s)$ be the automorphic *L*-function attached to it. Any complex character χ_{∞} of \mathbb{R}^* is of the form $\chi_{\infty} = \varepsilon_{\infty} |\cdot|_{\infty}^k$, where ε_{∞} is of order ≤ 2 and $k \in \mathbb{C}$. We say that χ_{∞} is critical for π_{∞} if $\bullet k \in 1/2 + \mathbb{Z}$ if *n* is even and $k \in \mathbb{Z}$ if *n* is odd $\bullet L(\pi_{\infty} \otimes \chi_{\infty}, 0)$ and $L(\pi_{\infty}^{\vee} \otimes \chi_{\infty}^{-1}, 1)$ are regular values (note that under the conjectural correspondence between motives *M* and algebraic automorphic representations π on GL_n we have $L(M, s) = L(\pi, s + (n-1)/2)$; cf. [2], 4.5, 4.16). We say that $\chi : \mathbb{Q}^* \setminus \mathbb{A}^* \to \mathbb{C}^*$ is critical for π if χ_{∞} is critical for π_{∞} . We denote the set of critical characters χ_{∞} resp. χ by Crit(π_{∞}) resp. Crit(π). Using the classification of (generic) unitary (\mathfrak{gl}_n , SO_n)-modules with non-vanishing cohomology we find:

Proposition 1.1. Let $\mu = (\mu_i) \in X^+(T_n)$ and let $\pi \in Coh(GL_n, \mu^{\vee})$. Then, $\chi_{\infty} = \varepsilon_{\infty} |\cdot|_{\infty}^k$ is critical for π precisely if

- $-\mu_{n/2} + 1/2 \le k \le \mu_{n/2} + 1/2 \operatorname{wt}(\mu)$ if *n* is even;
- $-\mu_{(n-1)/2} \leq k \leq \mu_{(n-1)/2} + 1 \operatorname{wt}(\mu)$ if *n* is odd.

In case that n is odd χ in addition has to satisfy a parity condition: denote by ω_{π} the central character of π and by $\omega_{\pi}|_{\pi_0}$ its restriction to $\{\pm 1\} \subset Z_n(\mathbb{R})$. Put $l = (\operatorname{wt}(\mu) - n + 1)/2 + k$; then χ_{∞} has to satisfy $\varepsilon_{\infty} = \omega_{\pi}|_{\pi_0} \operatorname{sgn}^l$ if $k > (1 + \operatorname{wt}(\mu))/2$ and $\varepsilon_{\infty} = \omega_{\pi}|_{\pi_0} \operatorname{sgn}^{l+1}$ if $k \leq (1 + \operatorname{wt}(\mu))/2$.

Obviously, χ is critical for π precisely if $\chi^{-1}|\cdot|$ is critical for the contragredient representation π^{\vee} . In view of the functional equation relating $L(\pi \otimes \chi, 0)$ to $L(\pi^{\vee} \otimes \chi^{-1}|\cdot|, 0)$ it is therefore sufficient to consider points $\chi \in \operatorname{Crit}(\pi)$ with component at infinity $\chi_{\infty} = \varepsilon_{\infty}|\cdot|_{\infty}^{k}$ satisfying $k \leq (1 - \operatorname{wt}(\mu))/2$. We denote the set of critical characters satisfying this condition by $\operatorname{Crit}(\pi_{\infty})^{\leq}$ and $\operatorname{Crit}(\pi)^{\leq}$.

We define a collection of complex numbers $\Omega(\pi, \chi_{\infty}) \in \mathbb{C}^*/\widehat{E}_{\pi}^*$, where $\pi \in \text{Coh}(\text{GL}_n, \mu)$ and $\chi_{\infty} \in \text{Crit}(\pi_{\infty})^{\leq}$ such that for any finite extension E/\widehat{E}_{π} the tuple

$$\left\{\Omega\left(\pi^{\sigma},\chi_{\infty}\right)\right\}_{\sigma\in\operatorname{Hom}(E,\mathbb{C})}\in(E\otimes\mathbb{C})^{*}/\widehat{E}_{\pi}^{*}$$

is well defined. Here, $\widehat{E}_{\pi}/E_{\pi}$ is a certain finite extension and \widehat{E}_{π} is embedded as $\alpha \mapsto \{\sigma(\alpha)\}_{\sigma \in \operatorname{Hom}(E,\mathbb{C})}$. We set $\chi^1 = \chi |\cdot|^{-k}$, where $\chi_{\infty} = \varepsilon_{\infty} |\cdot|_{\infty}^k$ and we define $\chi^{\sigma} = \sigma(\chi |\cdot|^{-k}) |\cdot|^k$, $\sigma \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$.

Theorem 1.1. Assume that $\mu \in X^+(T_n)$ is regular and let $\pi \in Coh(GL_n, \mu^{\vee})$.

(1) For all but finitely many $\chi \in \operatorname{Crit}(\pi)^{\leq}$ we have

 $L(\pi \otimes \chi, 0) = \Omega(\pi, \chi_{\infty}) \mod \widehat{E}_{\pi}(\chi^{1}).$

Moreover, denote by $G(\chi)$ the Gauss sum attached to χ . For all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ we have

$$\left(G(\chi)^{[n/2]}\frac{L(\pi\otimes\chi,0)}{\Omega(\pi,\chi_{\infty})}\right)^{\sigma} = G(\chi^{\sigma})^{[n/2]}\frac{L(\pi^{\sigma}\otimes\chi^{\sigma},0)}{\Omega(\pi^{\sigma},\chi_{\infty})}.$$

(2) Let $\chi'_{\infty} = \varepsilon'_{\infty} |\cdot|_{\infty}^{k'} \in \operatorname{Crit}(\pi)^{\leq}$. Then, the ratio $\Omega(\pi, \chi_{\infty})/\Omega(\pi, \chi'_{\infty})$ only depends on χ_{∞} , χ'_{∞} and μ ; in particular, it does not depend on π (obviously, in case n odd it is also independent of ε_{∞} and ε'_{∞}).

760

Remark 1. (a) The theorem is valid only under a certain non-vanishing assumption (cf. below). This assumption is known to hold in case n = 3 and is analogous to the assumption made in [1], p. 28.

(b) In cases n = 1, 2 (which we have excluded) Theorem 1.1 has previously been known to hold (cf. [4]).

The proof of Theorem 1.1 uses an induction over the rank of GL_n . To be more precise, let $\mu \in X^+(T_n)$. We select a weight $\lambda \in X^+(T_{n-1})$ such that $\bullet \lambda \leq \mu$, i.e., $\mu_1 \geq \lambda_1 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_n \bullet \lambda_{n/2} = -k + 1/2$ if *n* is even and $\lambda_{(n+1)/2} = -k$ if *n* is odd. Proposition 1.1 implies that such a choice of λ is possible precisely if *k* is a critical point for π (i.e., $\varepsilon_{\infty} |\cdot|_{\infty}^k \in \operatorname{Crit}(\pi)$ for some ε_{∞}). We denote by $P \leq \operatorname{GL}_{n-1}$ the parabolic subgroup of type (n-2, 1) containing B_{n-1} and by $W^P \subset W_{\operatorname{GL}_{n-1}}$ the relative Weyl group, i.e., W^P is a system of representatives for $W_{M_P} \setminus W_{\operatorname{GL}_{n-1}}$. We set

$$\widehat{w} = \begin{pmatrix} 1 & 2 & \cdots & \left\lfloor \frac{n}{2} \right\rfloor - 1 & \left\lfloor \frac{n}{2} \right\rfloor & \left\lfloor \frac{n}{2} \right\rfloor + 1 & \cdots & n-1 \\ 1 & 2 & \cdots & \left\lfloor \frac{n}{2} \right\rfloor - 1 & n-1 & \left\lfloor \frac{n}{2} \right\rfloor & \cdots & n-2 \end{pmatrix} \in W^P.$$

We define the weight $\mu' = \widehat{w}(\lambda + \rho_{n-1}) - \rho_{n-1}|_{T_{n-2}} \in X^+(T_{n-2})$, where ρ_{n-1} is half the sum of the positive roots of GL_{n-1} determined by B_{n-1} and we embed $T_{n-2} \hookrightarrow T_{n-1}$ via $t \mapsto \operatorname{diag}(t, 1)$. Using the Q-structure on the cohomology of locally symmetric spaces we define a collection of complex numbers $\Omega(\pi, \pi', \varepsilon_{\infty}) \in \mathbb{C}^*/(E_{\pi}E_{\pi'})^*$, where $\pi \in \operatorname{Coh}(\operatorname{GL}_n, \mu), \pi' \in \operatorname{Coh}(\operatorname{GL}_{n-2}, \mu')$ and ε_{∞} is a character of order ≤ 2 such that for any finite extension $E/E_{\pi}E'_{\pi}$ the tuple $\{\Omega(\pi^{\sigma}, \pi'^{\sigma}, \varepsilon_{\infty})\}_{\sigma \in \operatorname{Hom}(E, \mathbb{C})} \in (E \otimes \mathbb{C})^*/(E_{\pi}E_{\pi'})^*$ is well defined.

Theorem 1.2. Assume that $\mu \in X^+(T_n)$ is regular and let $\pi \in Coh(GL_n, \mu^{\vee})$ and $\pi' \in Coh(GL_{n-2}, \mu')$ (if *n* is odd π' in addition has to satisfy a parity condition).

(1) For all $\chi \in \operatorname{Crit}(\pi)^{\leq}$ with $\chi_{\infty} = \varepsilon_{\infty} |\cdot|_{\infty}^{k}$ and all $\sigma \in \operatorname{Aut}(\mathbb{C}/\mathbb{Q})$ we have

$$\left(\frac{G(\chi) P_{\mu}(k)}{\Omega(\pi, \pi', \varepsilon(\chi_{\infty}))} \frac{L(\pi \otimes \chi, 0)}{L(\pi'^{\vee} \otimes \chi, 0)}\right)^{\sigma} = \frac{G(\chi^{\sigma}) P_{\mu}(k)}{\Omega(\pi^{\sigma}, \pi'^{\sigma}, \varepsilon(\chi_{\infty}))} \frac{L(\pi^{\sigma} \otimes \chi^{\sigma}, 0)}{L((\pi'^{\vee})^{\sigma} \otimes \chi^{\sigma}, 0)}$$

Here, $P_{\mu}(k) \in \mathbb{C}$ only depends on k and μ (i.e., it is independent of π , π') and $\varepsilon(\chi_{\infty}) = \varepsilon_{\infty} \operatorname{sgn}^{k}$. (2) $\operatorname{Crit}(\pi) \subset \operatorname{Crit}(\pi'^{\vee})$.

Obviously, Theorem 1.1 follows from Theorem 1.2 using induction over n with the previously known cases n = 1, 2 of Theorem 1.1 serving as starting point for the induction.

Remark 2. Theorem 1.2 (and, hence, Theorem 1.1) is valid only under a certain non-vanishing assumption (cf. below).

2. Relation to Cohomology of locally symetric spaces

We set $S_n(K) = \operatorname{GL}_n(\mathbb{Q}) \setminus \operatorname{GL}_n(\mathbb{A}) / K \operatorname{SO}_n(\mathbb{R}) Z_n(\mathbb{R})^0$ and $F_n(K) = \operatorname{GL}_n(\mathbb{Q}) \setminus \operatorname{GL}_n(\mathbb{A}) / K \operatorname{SO}_n(\mathbb{R})$, whence, a natural map $p: F_n(K) \to S_n(K)$. We denote by $\overline{S}_n(K)$ the Borel–Serre compactification of $S_n(K)$. $\overline{S}_n(K) = \bigcup_{P/\sim \partial_P} S_n(K)$ is a union of faces corresponding to conjugacy classes of rational parabolic subgroups P of GL_n . \mathcal{M}_{μ}^{\vee} denotes the locally constant sheaf on $S_n(K)$ and on $\overline{S}_n(K)$ attached to the finite dimensional representation \mathcal{M}_{μ}^{\vee} . We set $H^{\bullet}(S_n, \mathcal{M}_{\mu}^{\vee}) = \lim_{K} H^{\bullet}(S_n(K), \mathcal{M}_{\mu}^{\vee})$. By assumption, the representation π_f embeds into cohomology

$$\pi_f \hookrightarrow H^{b_n}(S_n, \mathcal{M}_{\mu}^{\vee}). \tag{1}$$

Here, b_n is the lowest degree, in which cuspidal cohomology occurs and π_f occurs with multiplicity 1.

On the other hand, the cohomology of the face $\partial_P S_{n-1}(K)$ attached to the parabolic subgroup $P \leq GL_{n-1}$ of type (n-2, 1) with coefficients in \mathcal{M}_{λ} decomposes

J. Mahnkopf / C. R. Acad. Sci. Paris, Ser. I 338 (2004) 759-762

$$H^{i}(\partial_{P}S_{n-1},\mathcal{M}_{\lambda}) = \bigoplus_{w \in W^{P}} \operatorname{Ind}_{P(\mathbb{A}_{f})}^{\operatorname{GL}_{n-1}(\mathbb{A}_{f})} \left(H^{i-\ell(w)}(S_{n-2},\mathcal{M}_{w \cdot \lambda|_{T_{n-2}}}) \otimes H^{0}(S_{1},\mathcal{M}_{w \cdot \lambda|_{\mathbb{G}_{m}}}) \right)$$

Let $\pi' \in Coh(GL_{n-2})$ and $\chi \in Crit(\pi)$. Our choice of λ implies that $\pi'_f \otimes \chi_f$ embeds into the cohomology of $S_{n-2} \times S_1$ with coefficients in $\mathcal{M}_{\widehat{w} \cdot \lambda|_{T_{n-2}}} \otimes \mathcal{M}_{\widehat{w} \cdot \lambda|_{G_m}}$. Since $b_{n-1} = b_{n-2} + \ell(\widehat{w})$ we obtain a map

$$\operatorname{Ind}_{P}^{\operatorname{GL}_{n-1}}\pi'_{f}\otimes\chi_{f}\hookrightarrow H^{b_{n-1}}(\partial_{P}S_{n-1},\mathcal{M}_{\lambda})\xrightarrow{\operatorname{Eis}}H^{b_{n-1}}(S_{n-1},\mathcal{M}_{\lambda}).$$
(2)

The last arrow is given by Eisenstein summation (cf. [3,6]). Since $\lambda \leq \mu$ we know that $M_{\lambda} \hookrightarrow M_{\mu}|_{\mathrm{GL}_{n-1}}$ and we obtain a diagram

where $\mathcal{M}_{\mu}^{\vee}|_{\mathrm{GL}_{n-1}}$ is the sheaf attached to $\mathcal{M}_{\mu}^{\vee}|_{\mathrm{GL}_{n-1}}$ and $i: F_{n-1}(K) \to S_n(K), g \mapsto \mathrm{diag}(g, 1)$ is the inclusion. Using the description of the cohomology via automorphic forms and combining the *method of Zeta-integrals* (cf. [5]) with the *method of Langlands–Shahidi* (cf. [7]) we are able to compute the pairing defined in (3): there are classes $\omega_{\pi} \in H^{b_n}(S_n, \mathcal{M}_{\mu}^{\vee})(\pi_f)$ and $\omega_{\mathrm{Eis}\pi'\otimes\chi} \in H^{b_{n-1}}_{\mathrm{Eis}}(S_{n-1}, \mathcal{M}_{\lambda})$ such that

$$\sum_{u} \int i^* r_u^* \omega_\pi \cup p^* \omega_{\text{Eis}\pi' \otimes \chi} = P_\mu(k) \, \frac{L(\pi \otimes \chi, 0)}{L(\pi' \otimes \chi, 0)}.$$
(4)

Here, $u \in N_P(\mathbb{A}_f)$ runs over a finite set of unipotent matrices and r_u denotes right translation by u. $P_\mu(k)$ is the quotient of the local factor at infinity of $\sum_u \int i^* r_u^* \omega_\pi \cup p^* \omega_{\text{Eis}\pi' \otimes \chi}$ by $L(\pi_\infty \otimes \chi_\infty, 0)/L(\pi'_\infty \otimes \chi_\infty, 0)$. The choice of the local components at infinity of ω_π and $\omega_{\text{Eis}\pi' \otimes \chi}$ is already determined by the coefficient systems M_μ and M_λ and we de not know whether for these choices $P_\mu(k) = 1$ or at least $P_\mu(k) \neq 0$. Thus, we have to make the

Assumption. $P_{\mu}(k) \neq 0$.

In case *n* odd we have computed the SO_n resp. SO_{n-1}-types supporting the cohomology classes ω_{π} resp. $\omega_{\text{Eis}\pi'\otimes\chi}$ and we verified that they allow for non-vanishing of $P_{\mu}(k)$. Using ideas of [3] we are able to compute the action of Aut(\mathbb{C}/\mathbb{Q}) on the cohomology: we find that after dividing by an appropriate complex number $\Omega(\pi, \pi', \varepsilon(\chi_{\infty}))$ the left-hand side in (4) behaves equivariantly with respect to the action of Aut(\mathbb{C}/\mathbb{Q}), which finally yieds Theorem 1.2. As a last remark we note that the assumption that μ be regular perhaps can be circumvented by allowing more general parabolic subgroups $P \leq GL_{n-1}$.

References

- [1] A. Ash, D. Ginzburg, *p*-adic *L*-functions for GL(2*n*), Inv. Math. 116 (1994) 27–73.
- [2] L. Clozel, Motifs et formes automorphes, in: Automorphic Forms, Shimura Varieties and L-Functions, vol. I, in: Perspect. Math., vol. 10, Academic Press, 1990, pp. 77–159.
- [3] G. Harder, Some results on the Eisenstein cohomology of arithmetic subgroups of GL_n , in: Cohomology of Arithmetic Groups and Automorphic Forms, in: Lecture Notes in Math., vol. 1447, Springer, 1989, pp. 85–153.
- [4] G. Harder, General aspects in the theory of modular symbols, in: Sém. Théor. Nombres, Paris 1981–1982, in: PM, vol. 38, Birkhäuser, 1983.
- [5] H. Jacquet, J. Shalika, Euler products and the classification of automorphic representations II, Amer. J. Math. 103 (1981) 777-815.
- [6] J. Schwermer, Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, in: Lecture Notes in Math., vol. 988, Springer, 1983.
 [7] F. Shahidi, Functional equation satisfied by certain *L*-functions, Comp. Math. 37 (1978) 171–207.

762