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Abstract

A metric spaceX is said to beabsolutely Lipschitz extendableif every Lipschitz functionf from X into anyBanach space
Z can be extended toanycontaining spaceY ⊇ X, where the loss in the Lipschitz constant in the extension is independe
Y, Z, andf . We show that various classes of natural metric spaces are absolutely Lipschitz extendable.To cite this article:
J.R. Lee, A. Naor, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Sur la propriété d’extension lipschitzienne absolue. On dit qu’un espace métriqueX a la propriété d’extension
lipschitzienne absoluesi pour tout espace de BanachZ, toute fonction lipschitziennef de X dansZ peut être étendue
tout espace métriqueY contenantX, avec une perte dans la constante de Lipschitz de l’extension qui ne dépend pas d
deY,Z et f . Nous montrons que plusieurs classes naturelles d’espacesmétriques ont la propriété d’extension lipschitzien
absolue.Pour citer cet article : J.R. Lee, A. Naor, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Published by Elsevier SAS on behalf of Académie des sciences.

Let (Y, dY ), (Z,dZ) be metric spaces, and for everyX ⊆ Y , denote bye(X,Y,Z) the infimum over all constant
K such that every Lipschitz functionf :X → Z can be extended to a functioñf :Y → Z satisfying‖f̃ ‖Lip �
K‖f ‖Lip. (If no suchK exists, we sete(X,Y,Z) = ∞.) We also definee(Y,Z) = sup{e(X,Y,Z): X ⊆ Y } and for
every integern, en(Y,Z) = sup{e(X,Y,Z): X ⊆ Y, |X| � n}.

Estimatinge(Y,Z) is a classical and fundamental problem that has attracted a lot of attention due to its in
interest and applications to geometry and approximation theory. It is a classical fact that for every metric sY ,
e(Y, �∞) = 1, and Kirszbraun’s famous extension theorem [8] states that wheneverH1 andH2 are Hilbert spaces
e(H1,H2) = 1. We refer to the books [2,16] for a detailed account of the casee(Y,Z) = 1 and list below three
results which deal with the casee(Y,Z) > 1, when the target spaceZ is a Banach space. In what follows,C is a
universal constant.

E-mail addresses:jrl@cs.berkeley.edu (J.R. Lee), anaor@microsoft.com (A. Naor).
1 The first author was partially supported by NSF grantCCR-0121555 and an NSF Graduate Research Fellowship.
1631-073X/$ – see front matter 2004 Published by Elsevier SAS on behalf of Académie des sciences.
doi:10.1016/j.crma.2004.03.005
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T1. (Johnson, Lindenstrauss and Schechtman [7]) For every metric spaceY and every Banach spaceZ, en(Y,Z) �
C logn.

T2. (Johnson, Lindenstrauss and Schechtman [7]) For everyd-dimensional normed spaceY and every Banach
spaceZ, e(Y,Z) � Cd .

T3. (Matoušek [12]) For every metric treeT and every Banach spaceZ, e(T ,Z) � C.

In this Note we observe a new phenomenon underlying these theorems which we refer to asabsolute
extendability—the notion that for some spacesX, Lipschitz functionsf from X into any Banach spaceZ can
be extended toany containing spaceY ⊇ X, where the loss in the Lipschitz constant is independent ofY, Z,
andf , and thus depends only onX. To this end, let us define, for a metric spaceX, theabsolute extendability
constant ae(X) by

ae(X) = sup
{
e(X,Y,Z): Y ⊇ X,Z a Banach space

}
.

If ae(X) < ∞, we say thatX is absolutely extendable. Additionally, for a family of metric spacesM, let us define
ae(M) = supX∈M ae(X) to be a uniform bound on the extendability of metrics inM. As far as we are aware, th
only previously known families of absolutely extendable metrics had such a property for a “trivial” reason
are the cases whenX is an absolute Lipschitz retract or when the familyM consists of finite metrics of uniforml
bounded cardinality (it is not too difficult to see that (T1) is true when logn is replaced byn).

In order to state our results, let us introduce some notation. LetG = (V ,E) be a countable graph with edg
lengths in[0,∞]. Denote byΣ(G) the one-dimensional simplicial complex that arises fromG by replacing every
edgee of G by an interval whose length is equal to that ofe. We now define the set of metrics supported onG,
denoted〈G〉, as the set of all subsets ofΣ(G) for all possible non-negative lengths on edges ofG. For a family
of graphsF , let 〈F〉 = ⋃

G∈F 〈G〉. Finally, recall that thedoubling constantof a metric spaceX, denotedλ(X),
is the infimum over all numbersλ such that every ball inX can be covered byλ balls of half the radius. Whe
λ(X) < ∞, one says thatX is doubling.

Theorem 1. The following extension results hold true:

(1) For a family of finite graphsF , ae(〈F〉) < ∞ if and only if 〈F〉 does not contain all finite metrics.
(2) If M is a two-dimensional Riemannian manifold of genusg, then for everyX ⊆ M, ae(X) � Cg.
(3) For every metric spaceX, we have ae(X) � C logλ(X).
(4) For everyn-point metric spaceX, ae(X) � C

logn
log logn

.

Observe that (2) implies that for every planar graphG, ae(〈G〉) � C, which improves (T3). Additionally sinc
anyn-point metric space is isometrically embeddable in a compact two-dimensional Riemannian manifold of gen
O(n3), in (2) aboveae(M) must tend to infinity with the genus ofM. Since logλ(X) = O(logn) for anyn-point
metric spaceX, and logλ(X) = O(d) wheneverX is a subset of somed-dimensional normed space, (3) unifi
and generalizes (T1) and (T2). Finally, it is clear that (4) improves on (T1) by a factor of log logn.

In what follows we will sketch the main steps in the proof of Theorem 1. In particular, in the ensuing argu
we will ignore all measurability assumptions. We referto our upcoming paper [10] for detailed proofs a
additional results.

Let (Y, d) be a metric space andX a subspace ofY . For the purpose of proving extension results, we may ass
thatX is closed. Let(�,F ,µ) be a measure space and fixK > 0. We shall say that a functionΨ :�×Y → [0,∞)

is aK-gentle partition of unity with respect toX if for every x ∈ Y \ X
∫
�

Ψ (ω,x)dµ(ω) = 1, for everyω ∈ �

andx ∈ X, Ψ (ω,x) = 0, and there exists a mappingγ :� → X such that for everyx, y ∈ Y ,∫
d
(
γ (ω), x

) · ∣∣Ψ (ω,x) − Ψ (ω,y)
∣∣dµ(ω) � Kd(x, y).
�
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Let Z be a Banach space, andf :X → Z a Lipschitz function. We extendf to a functionf̃ :Y → Z by defining
for x ∈ Y \ X, f̃ (x) = ∫

� f (γ (ω))Ψ (ω,x)dµ(ω). It is not difficult to check that theK-gentle condition ensure
that ‖f̃ ‖Lip � 3K‖f ‖Lip. All the statements in Theorem 1 actually produceK-gentle partitions of unity for the
appropriate value ofK.

Stochastic decomposition.We construct gentle partitions of unity by first producing an appropriate distributio
over partitions ofY . We say that(�,Pr, {Γ i(·), γ i(·)}i∈I ) is a stochastic decomposition ofY with respect toX
if I is some index set,(�,Pr) is a probability space, for everyω ∈ �, {Γ i(ω)}i∈I is a partition ofY and for
every i ∈ I, γ i :� → X is a function such that for allω ∈ �, d(γ i(ω),Γ i(ω)) � 2d(X,Γ i(ω)). For ∆ > 0
the decomposition is said to be∆-bounded if for everyω ∈ � and i ∈ I, diam(Γ i(ω)) � ∆. A ∆-bounded
decomposition is called(ε, δ)-padded if for everyx ∈ Y such thatd(x,X) < ε∆, Pr(∃i ∈ I s.t.d(x,X \ Γ i(ω)) �
ε∆) � δ.

Since we are interested in bounding the absolute extendability constant of a metric spaceX, we need to impose
intrinsic geometric restrictions onX which ensure thateverysuper-spaceY ⊇ X admits an appropriate stochas
decomposition with respect toX. This is a achieved via the following partition extension lemma.

Lemma 2 (Partition extension).Let (Y, d) be a metric space andX a closed subspace ofY . If X admits an(ε, δ)-
padded∆-bounded stochastic decomposition(with respect to itself), thenY admits an( ε

16, δ)-padded(1+ ε
2)∆-

bounded stochastic decomposition with respect toX.

To prove Lemma 2 we argue as follows. Let{(Γ i(·), γ i(·),�,µ)}i∈I be an(ε, δ)-padded∆-bounded stochasti
decomposition ofX with respect to itself. For every pointx ∈ Y , let tx ∈ X be such thatd(x, tx) � 2d(x,X). Now,
for everyω ∈ � andi ∈ I , consider the set

Γ̂ i(ω) = Γ i(ω) ∪ {
x ∈ Y : tx ∈ Γ i(ω) andd(x, tx) � ε∆/4

}
.

Finally, for any pointx ∈ Y \ ⋃
i∈I Γ̂ i (ω), placex in a singleton set{x}. It is not difficult to check that this yield

the required decomposition ofY with respect toX.
We pass from padded decompositions to gentle partitions of unity as follows. LetX be a closed subset ofY

such that for everyn ∈ Z, Y admits an(ε, δ)-padded 2n-bounded stochastic decomposition with respect toX. We
claim that thenY also admits aC

εδ
-gentle partition of unity with respect toX.

Let ϕ :R+ → R+ be any 2-Lipschitz map with supp(ϕ) ⊂ [1
2,4] and ϕ ≡ 1 on [1,2]. Additionally, let

g :R+ → R+ be such thatg ≡ 0 on [0,1], g ≡ 1 on [2,∞) and g(x) = x − 1 on [1,2]. For everyn ∈ Z let
(�n,Prn, {Γ i

n(·), γ i
n(·)}i∈I ) be a 2n-bounded stochastic decomposition ofY with respect toX, and denote by

(�,µ) be the disjoint union of{I × �n}n∈Z (where the measure onI is the counting measure). For everyx ∈ Y

andω ∈ �n there is a uniquei ∈ I for which x ∈ Γ i
n(ω), and we denoteπn

ω(x) = d(x,Y \ Γ i
n(ω)). For every

n ∈ Z, ω ∈ �n, i ∈ I andx ∈ Y set:

Ψ (i,ω, x) = 1

S(x)
· g

(
πn

ω(x)

ε2n−1

)
· ϕ

(
d(x,X)

ε2n−3

)
· 1Γ i

n (ω)(x) and γ (i,ω) = γ i
n(ω), (1)

whereS(x) is a normalization factor ensuring that
∫
�

Ψ (i,ω, x)dµ(i,ω) = 1. It is possible to show that thi
construction yields the required gentle partition of unity; we refer to [10] for the details.

The notion of a padded decomposition is motivated by recent advances in combinatorics and the
computer science. Often in theoretical computer science, one needs to analyze data with an inherent m
structure, and constructing well behaved stochastic decompositions has proved itself to be extreme
in various algorithmic applications. Variants of this approach have appeared in numerous contexts;
instance [11,9,1]. The structural results of [9,14] imply that for every integerr, if G is a graph which does no
admit the complete graphKr as a minor, then for some constantcr > 0, anyX ∈ 〈G〉 admits a∆-bounded(cr ,1/2)-
padded stochastic decomposition with respect to itself (for every∆ > 0). Part (2) of Theorem 1 follows from thi
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decomposition and a characterization (in terms of excluded minors) of graphs that can be realized on a s
bounded genus with no edge-crossings (see, e.g., [13]).

Additionally, for a family of graphsF , let mc(F) denote its closure under taking minors, i.e., the maxi
minor-closed family containingF . A deep theorem of Robertson and Seymour [15] states that ifmc(F) does
not containall finite graphs, then there existsr ∈ N such that all the graphs inF exclude aKr minor. Since
contraction/deletion of an edge corresponds to weighting by 0/∞, respectively, it follows that〈F〉 = 〈mc(F)〉.
Thus if 〈F〉 does not contain all finite metrics, then certainlymc(F) does not contain all finite graphs. From t
above reasoning, it follows thatae(〈F〉) < ∞, proving part (1) of Theorem 1. Part (3) of Theorem 1 is based
variant of a construction from [6] showing that if(X,d) is doubling then it admits a∆-bounded(c/ logλ(X),1/2)-
padded stochastic decomposition with respect to itself, for each∆ > 0. Finally, part (4) of Theorem 1 follows from
the decomposition of [3] and the improved analysis of [4,5]. We refer to the upcoming paper [10] for a d
account of these constructions and variants thereof, as well for additional extension theorems based on differ
notions of stochastic metric decomposition. In particular, in [10] we discuss results analogous to Theor
which the target space is not a Banach space, e.g., CAT(0) and related spaces.
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