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Abstract

In this article, we propose to study, in more generality, the probability-weighted moments method used by Hosking an
(1987) in the case of generalized Pareto distributions which depend on two parametersγ andσ . The objective is to extend th
domain of validity:γ < 1/2 required in order to obtain the asymptotic properties of their estimators. By simulations, we
the efficiency of our technique.To cite this article: J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un nouvel aperçu sur les estimateurs des moments pondérés. Dans cet article, nous proposons d’étudier, dans un c
plus général, la méthode des moments pondérés utilisée par Hosking et Wallis (1987) dans le cas de distributions
généralisées dépendant de deux paramètresγ et σ . L’objectif est d’élargir le domaine d’applications :γ < 1/2 indispensable
pour obtenir les propriétés asymptotiques de leurs estimateurs. Nous montrons l’efficacité de notre technique par l
simulations.Pour citer cet article : J. Diebolt et al., C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Les lois de Pareto généralisées ont été introduites par Pickands [6] pour modéliser les excès au-delà d
Elles dépendent de deux paramètresγ et σ . Leur évaluation n’est généralement pas un problème facile. Hos
et Wallis [5] ont proposé d’utiliser une version simplifiée des estimateurs des moments pondérés (PWM),
les deux premiers moments sont utilisés, et par simulations ils ont montré l’efficacité de leur technique pa
à des approches plus standards, comme la méthode du maximum de vraisemblance ou la méthode des
Le problème essentiel de leur approche est le domaine de validité :γ < 1/2, indispensable afin d’obtenir le
propriétés asymptotiques de leurs estimateurs. Le but de cet article est donc d’utiliser la méthode PWM d
sa généralité de façon à élargir le domaine d’applications et de permettre ainsi un plus large éventail d’uti
de cette technique. Nous illustrons par simulations l’efficacité de cette nouvelle approche.

E-mail address: guillou@ccr.jussieu.fr (A. Guillou).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.02.011
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1. Introduction

The distribution of the largest values of certain natural phenomena (e.g., waves, earthquakes, floods, . . .) is of
interest in many practical applications. This interest has given rise to a rapid development of extreme valu
in recent years. The traditional approach to the analysis of extreme values in a given population is base
family of generalized extreme value (GEV) distributions (see Fisher and Tippett [3]).

The GEV distribution is appropriate when the data consist of a set of maxima. However, there has be
criticism of this approach, because using only maxima leads to the loss of information contained in othe
sample values in a given period. This problem is remedied by considering several of the largest order
instead of just the largest one: that is, considering all values larger than a given threshold. The differences
these values and a given threshold are called exceedances over the threshold. These exceedances a
assumed to have a generalized Pareto distribution GPD(γ, σ ) whose distribution function is defined by

Gγ,σ (x)=




1−
(

1+ γ

σ
x

)−1/γ

if γ �= 0, σ > 0,

1− exp

(
− x

σ

)
if γ = 0, σ > 0,

(1)

wherex ∈ [0,∞[ if γ � 0 andx ∈ [0,−σ/γ [ if γ < 0, σ andγ being the scale and shape parameters.
Among all the ad-hoc methods used in parameter estimation, the method of moments has attracted

interest. In full generality, it consists in equating model-moments based onGγ,σ to the corresponding empirica
moments based on the data. Their general properties are notoriously unreliable on account of the poor
properties of second- and higher-order sample moments. Another currently favored method consists in u
maximum likelihood (ML) approach, whose justification is based on large-sample theory, and therefore th
been little assessment of the performance of this method when applied to small or moderate samples. Sin
method is completely satisfactory, we propose to use, in this paper, the probability-weighted moments
in its full generality. First we explain the ‘classical’ probability-weighted moments (PWM) method, which
introduced by Greenwood et al. [4] and used by Hosking and Wallis [5]. Note that all these methods (mo
ML, PWM) were also used in order to estimate the parameters of the GEV distribution and that recently, Co
Dixon [1] introduced a penalized likelihood method which improves on the small-sample properties of the c
ML method.

The probability-weighted moments of a positive random variableX with distribution functionF(x)= P(X � x)
are the quantities

Mp,r,s = E
(
Xp
(
F(X)

)r(1−F(X))s),
wherep, r ands are positive real numbers.

Greenwood et al. [4] exhibited several distributions (the Gumbel, logistic and Weibull distributions, a
others) for which the relationship between the parameters of the distribution and the PWMsM1,r,s is simpler
than the relationship between the parameters and the conventional momentsMp,0,0. Whenr ands are integers
Fr(1− F)s may be expressed as a linear combination of either powers ofF or powers of(1− F), so it is natural
to summarize a distribution either by the momentsM1,r,0 (r = 0,1, . . .) or byM1,0,s (s = 0,1, . . .).

Hosking and Wallis [5] proposed to base estimation on the first two probability-weighted moments:

µs = E
[
X
(
1−Gγ,σ (X)

)s]= σ

(s + 1)(s + 1− γ ) with s = 0 ands = 1.

The parameters(γ, σ ) can be recovered by

γ = 2− µ0 and σ = 2µ0µ1
.

µ0 − 2µ1 µ0 − 2µ1
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The PWM estimatorŝγn and σ̂n are obtained by replacingµ0 andµ1 by estimators based on an observ
sample of sizen. For instance, Hosking and Wallis [5] proposed to useµ̂s := 1

n

∑n
j=1(1 − pj,n)sXj,n, where

X1,n � · · · � Xn,n denotes the ordered sample andpj,n = (j − 0.35)/n. For γ < 1/2, the probability-weighted
moments estimatorŝγn andσ̂n are asymptotically normally distributed with a variance-covariance matrix give

1

(1− 2γ )(3− 2γ )

(
(1− γ )(2− γ )2(1− γ + 2γ 2) σ (γ − 2)(2− 6γ + 7γ 2 − 2γ 3)

σ (γ − 2)(2− 6γ + 7γ 2 − 2γ 3) σ 2(7− 18γ + 11γ 2 − 2γ 3)

)
.

The PWM estimators have several advantages over existing methods of estimation. They are fast and st
ward to compute and always yield feasible values for the estimated parameters. The biases of the estim
small and they decrease rapidly as the sample size increases. The standard deviations of the PWM estim
comparable with those of the ML estimators for moderate sample sizes and are often less than those o
estimators for small samples.

The main problem with this method is the range of validity:γ < 1/2, in order to derive the asymptotic propert
of the PWM estimators. This condition is restrictive for many applications (as in insurance, . . .), where at leas
the domainγ � 1 should be covered. In order to solve this problem, we propose to use the PWM met
its full generality, i.e. the approach used should not be reduced to the two first moments only. With th
instead of defining the estimators(γ̂n, σ̂n) of (γ, σ ) on the basis of(µ̂0, µ̂1), we propose to define new estimato
(γ̂s1,s2,n, σ̂s1,s2,n) based on(µ̂s1,n, µ̂s2,n) defined as

µ̂s1,n := 1

s1 + 1

∞∫
0

(
1− Fn(x)

)s1+1 dx, (2)

whereFn is the classical empirical distribution function based onX1, . . . ,Xn, a sample from a GPD(γ, σ ), ands1
ands2 are real numbers such that 1� s1< s2.

In Section 2, we establish the main asymptotic properties of(µ̂s1,n, µ̂s2,n) from which we deduce those o
(γ̂s1,s2,n, σ̂s1,s2,n). Then, in Section 3, some simulations are proposed in order to give an indication about the
of the parameters(s1, s2). The couple(s1, s2)= (1,1.5) seems to give, in all our simulated examples, estima
with small variances. Finally, we study the efficiency ofγ̂1,1.5,n in a MSE-sense.

2. Main results

Let 1� s1< s2. We denote byT(s1,s2) theC1-diffeomorphism which transforms(µs1,µs2) into (γ, σ ):

T(s1,s2) : ]0,∞[2 ∩ {(x, y): (s1 + 1)x > (s2 + 1)y
}−→ ]−∞, s1 + 1[ × ]0,∞[,

γ = (s1 + 1)2µs1 − (s2 + 1)2µs2
(s1 + 1)µs1 − (s2 + 1)µs2

and σ = (s2 + 1)(s1 + 1)(s2 − s1)µs1µs2
(s1 + 1)µs1 − (s2 + 1)µs2

.

Now, we need to define an estimator for the PWMµs1. For practical reasons, we propose to use the estimatorµ̂s1,n
defined in (2) and we establish in our Theorem 2.1 the asymptotic normality of(µ̂s1,n, µ̂s2,n).

Theorem 2.1. Let µs1 and µs2, 1 � s1 < s2, be the PWM of a random variable X from a GPD(γ, σ ). Denoting
their estimates by µ̂s1,n and µ̂s2,n respectively, then for all γ < s1 + 1/2 :

√
n(µ̂s1,n −µs1, µ̂s2,n −µs2)−→d

(
σ

1∫
0

ts1−γ−1B(t)dt, σ

1∫
0

ts2−γ−1B(t)dt

)
,

where B is a Brownian bridge and the variance-covariance matrix of the limiting distribution is given by
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Γs1,s2 =
( σ2

(2s1+1−2γ )(s1+1−γ )2
σ2

(s1+1−γ )(s2+1−γ )(s2+s1+1−2γ )

σ2

(s1+1−γ )(s2+1−γ )(s2+s1+1−2γ )
σ2

(2s2+1−2γ )(s2+1−γ )2

)
.

Proof. A Taylor expansion of order 2 with remainder gives

√
n(µ̂s1,n −µs1)= d −

∞∫
0

αn
(
F(x)

)(
1−F(x))s1 dx

+ s1√
n

∞∫
0

1∫
0

(1− t)(αn(F(x)))2
(

1−F(x)− t√
n
αn
(
F(x)

))s1−1

dt dx =: T1,n + T2,n,

whereαn(·) denotes the classical empirical process based on uniform random variables. Then, we prove
all γ < s1 + 1/2,

T1,n −→d −σ
1∫

0

ts1−γ−1B(t)dt,

T2,n −→P 0.

To studyT1,n, we decompose the integral into three parts: the integral from 0 to1
n
, from 1

n
to 1− 1

n
and from 1− 1

n
to 1. The first and the last integral can be treated using Jaeschke’s theorem (see, e.g., Shorack and W
p. 600). For the second one, we use Einmahl and Mason’s result [2]. For the convergence ofT2,n to 0 in probability,
we first remark that, after changing variables,

0� T2,n � s1σ√
n

1∫
0

∣∣αn(1− u)∣∣
1∫

0

∣∣αn(1− u)∣∣(u− t√
n
αn(1− u)

)s1−1

u−γ−1 dt du

� −σ
1∫

0

αn(1− u)
((
u− 1√

n
αn(1− u)

)s1
− us1

)
u−γ−1 du.

Let U1,n � · · · � Un,n be the uniform random variables on which the processαn(·) is based. We decompose t
latter integral into two parts: from 0 toU1,n and fromU1,n to 1. The convergence to 0 in probability ofT2,n then
follows by application of Jaeschke’s theorem and use of Kiefer’s theorem and Robbins and Siegmund’s
(see, e.g., Shorack and Wellner [7], pp. 407–408). Theorem 2.1 can then easily be deduced.

From this theorem, we can now establish our main result which is the asymptotic normality of our est
(γ̂s1,s2,n, σ̂s1,s2,n), for all γ < s1 + 1/2.

Corollary 2.2. Let γ̂s1,s2,n and σ̂s1,s2,n be the estimators of the GPD(γ, σ ) deduced from the estimators µ̂s1,n and
µ̂s2,n using the C1-diffeomorphism T(s1,s2). Then, for all 1 � s1< s2 and all γ < s1 + 1/2,

√
n(γ̂s1,s2,n − γ, σ̂s1,s2,n − σ)−→d N (0,Σs1,s2),

where

Σs1,s2 = As1,s2Γs1,s2Ats1,s2,
with As1,s2 =DT(s1,s2)(µs1,µs2).
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Proof. From Theorem 2.1, we derive that

(γ̂s1,s2,n, σ̂s1,s2,n)=d T(s1,s2)
(
(µs1,µs2)+

1√
n

(
ξ1 + ξ(n)1 , ξ2 + ξ(n)2

))
,

whereξ = (ξ1, ξ2) follows aN (0,Γs1,s2) distribution andξ(n) = (ξ (n)1 , ξ
(n)
2 ) converges to(0,0) in distribution as

n→ ∞. A Taylor expansion ofT(s1,s2) gives our Corollary 2.2.

3. Simulations

Our aim now is to give some indications about the choice of the parameters(s1, s2). If we study the expressio
ofΣs1,s2 as a function of(s1, s2), we find that there is no value of(s1, s2) which minimizes the asymptotic varianc
of γ̂s1,s2,n and σ̂s1,s2,n simultaneously in the domain{(s1, s2): 1 � s1 < s2, γ < s1 + 1/2}. However, a graphica
study of these functions for different values ofγ (−1/2,0,1/2,3/4,1) shows that they have almost the sa
behaviour. Considering the optimal values for(s1, s2) in these cases, the choice of(s1, s2)= (1,1.5) seems to be a
good compromise for practical use. For example, forγ = 0, the optimal value is(s1, s2)= (1,1.1), and forγ = 1,
it is (1,2). Note that this means that the asymptotic properties of our estimators are valid for allγ < 3/2, which is
enough for many applications. As an example, we give in Fig. 1 the results for(γ = 1, σ = 1).

A computer simulation experiment was run using the values(s1, s2) = (1,1.5) for the GPD. Simulations
were performed for sample sizesn = 25,50,100,200 and 500 with the shape parameter taking the va
γ = −0.4,0,0.4,1. The scale parameterσ was set to 1 throughout. Since the method is equivariant under
changes of the data, settingσ = 1 involves no loss of generality. For each combination of values ofn andγ , 50 000
random samples were generated from the GPD. Our simulation results are summarized in Table 1, wh
the root mean squared error (RMSE) ofγ̂s1,s2,n (similar results can be obtained forσ̂s1,s2,n). We can see that th
generalized PWM method seems to give small RMSE in all the cases and these RMSE decrease quick
sample size increases.
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Fig. 1. Graph of the asymptotic variance ofγ̂s1,s2,n for (γ = 1, σ = 1) whereX = s1, Y = s2 − s1.
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Table 1
RMSE of γ̂s1,s2,n for different values ofn andγ (σ = 1)

n γ

−0.4 0 0.4 1

25 0.56 0.46 0.39 0.40
50 0.36 0.30 0.26 0.30

100 0.24 0.20 0.18 0.23
200 0.17 0.15 0.12 0.17
500 0.10 0.088 0.078 0.11
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