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Abstract

We construct an example of a Fuchsian group such that the corresponding horocycle flow has no minimal sets.To cite this
article: M. Kulikov, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Le flot horicyclique sans ensemble minimal.On construit un exemple de groupe Fuchsien pour lequel le flot horocyc
est sans ensemble minimal.Pour citer cet article : M. Kulikov, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction.

One considers the groupG = SL(2,R)/{±Id} as a group of orientation preserving isometries of the hyperb
planeH2 = {x + iy ∈ C | y > 0} with the metric dl2 = (dx2 + dy2)/y2. If Γ is a Fuchsian group (= discrete
subgroup ofG), one considers onΓ \G (which is isomorphic to the unit tangent bundle to the surfaceH2/Γ of
constant negative curvature) the (contracting)horocycle flow uR given by the right action of the one-parame
subgroup{ut : t ∈ R}, whereut = ( 1 t

0 1). If Γ is a uniform lattice thenuR is minimal and ifΓ is a non-uniform
lattice then the onlyuR-minimal sets are periodic orbits (e.g., see [4]). The case of infinitely generatedΓ is not
well studied yet, and here we construct the following example:

Theorem 1.1.There exists Fuchsian group Γ such that the horocycle flow on Γ \G has no minimal sets.

This seems to be the first example of such a flow of algebraic nature (smooth flows without minimal se
constructed in [2,5]). Note that any homogeneous flow on space of finite volume always has a minimal
while in our example vol(Γ \G) = ∞.

We skip several technical details here (see detailed exposition in [6]).
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2. Idea of proof

We use here some facts about the limit set and the classification of its points which one can find i
The limit set Λ = Λ(Γ ) ⊂ ∂H2 = R ∪ {∞} for a Fuchsian groupΓ consists of all accumulation points of th
orbit Γ z for some (hence, any)z ∈ H2. Let π :G → Γ \G be the projection and Vis+ : T1H2 → ∂H2 be the
visual map. The non-wandering setΩ+ ⊂ Γ \G of uR equals toπ(Vis−1+ (Λ)). There is a disjoint decompositio
Λ = Λh ∪ Λp ∪ Λd ∪ Λirr, where the sets ofhorocycle points Λh, parabolic points Λp , discrete points Λd

and irregular pointsΛirr consist of limit points such that corresponding horocyclesvuR, v ∈ π(Vis−1+ (ξ)), are,
respectively, dense inΩ+, periodic, closed nonperiodic, and neither dense nor closed inΩ+. There is a simple
geometrical description of these classes (e.g., see [7]). For instance,ξ ∈ Λh iff for some (hence, any)z ∈ H and
anyw ∈ H there existsγ ∈ Γ such thatγ (z) ∈ Int(Oξ (w)), whereOξ(z) ⊂ H2 is the horocycle based atξ ∈ ∂H2

throughz ∈ H
2 (= a Euclidean circle or a line throughz tangent toR at ξ ) and Int(Oξ (z)) is its interior.

Here we introduce a new classΛs of limit points with the shift property: a pointξ ∈ Λs iff ξ ∈ Λ and for some
(hence, any)v ∈ π(Vis−1+ (ξ)), there exists a realt �= 0 such thatvuR ∩ vuRgt �= ∅, wheregR is the geodesic flow
onΓ \G. Sincev ∈ π(Vis−1+ (Λh)) impliesvuR = Ω+, we haveΛh ⊂ Λs .

Lemma 2.1.If Λ = Λs and Λirr �= ∅ then Ω+ does not contain uR-minimal subsets.

Idea of proof. Assume there existsuR-minimal setC ⊂ Ω+. ConditionΛirr �= ∅ impliesC �= Ω+. Fixing a point
in H2, by means of the Busemann cocycle the set of all horocycles in T1H2 can be identified with∂H2 × R,
and Γ action on it is a skew product overΓ -action on∂H2 with translations ofR in fibers. The setC′ =
π−1(C)/uR ⊂ Λ × R is Γ -minimal, which together withΛ = Λs implies C′ ∩ ({ξ} × R) ⊃ ({ξ} × {k + qZ})
for someξ ∈ Λ, k, q ∈ R, q �= 0. This fact and minimality ofΓ -action onΛ (e.g., see [1]) impliesC′ = Λ × R,
henceC = Ω+. Contradiction. ✷

By semicircle here we always mean a Euclidean semicircleS ⊂ H2 with diameter contained inR. Denote its
centerc(S) ∈ R and Euclidean radiusr(S). For semicirclesS andS′ with r(S) = r(S′), |c(S) − c(S′)| � 2r(S),
denoteh(S,S′)(z) = c(S) + c(S′) − invS(z), where invS is the inversion relative toS. Thenh(S,S′) ∈ G and
h(S,S′)(Ext(S)) = Int(S′), where Ext and Int are the exterior and the interior of a semicircle, respectively. IfI (h)

is theisometric circle ofh ∈ G thenI (h(S,S′)) = S.
Let us say that a family of semicircles{Sl}l∈Z\{0} forms a crocodile with coefficient K ∈ (0,1) on a

segment[a, b] ⊂ R iff r(S±2l ) = r(S±(2l−1)) = Kl−1(1−K)(b − a)/8, l ∈ N, and the diameters form a sequen
of ‘commutators’S1, S2, S−1, S−2, . . . , S2l−1, S2l , S−2l+1, S−2l , . . . (see Fig. 1).

Lemma 2.2.Suppose a Fuchsian group has a system of generators containing h(Sl, S−l ), l ∈ N, where a family of
semicircles {Sl}l∈Z\{0} forms a crocodile on a segment [a, b]. Then b ∈ Λs .

Proof is a direct calculation.
Let Q, K andκ be such thatQ> 1, κ ∈ (0,1), K ∈ (0,1) and(1+ κ)/(1− κ) <Q. For anyk ∈ N, consider

(see Fig. 2) semicirclesS±(2k−1),0 with r(S±(2k−1),0) = κQk, c(S±(2k−1),0) = ±Qk , and put for anyk ∈ Z,

h2k−1,0 = h(S2k−1,0, S−2k+1,0). For anyk ∈ Z, consider also a family of semicircles{S2k,l}l∈Z\{0} which forms
a crocodile on[c(S2k−1,0) + r(S2k−1,0), c(S2k+1,0) − r(S2k+1,0)) with coefficientK; for anyk ∈ Z, l ∈ Z \ {0},

Fig. 1. Crocodile.
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Fig. 2. Generators ofΓ .

put h2k,l = h(S2k,l , S2k,−l ). Let D denote the exterior to allSk,l . Consider the Fuchsian groupΓ = 〈H 〉, H =
{hk,l : k ∈ 2Z + 1, l = 0 or k ∈ 2Z, l ∈ N}.

Let us analyzeΛh(Γ ). Our main tool (Proposition 2.5 below) bases on the following simple observation:

Lemma 2.3(See [3, Proof of Theorem 5.4]).Let ξ �= ∞. Suppose there exist {γn} ⊂ Γ and {wn} ⊂ {z ∈ H2: Rez =
ξ} such that wn → ξ, n → ∞, and γn(wn) /∈ Int(Oγn(ξ)(i)). Then ξ ∈ Λh.

Let d be the Euclidean distance on half-planeH2, and for a semicircleS, put J (M,S) = (d(M,c(S)) −
r(S))/max{r(S), |c(S)|,1}.

Lemma 2.4.For any a > 0, there exists δ = δ(a) > 0 such that for any two semicircles S and S′ with J (S′, S) > a

and for any ξ ∈ Int(S) ∩ R, the following holds: Int(Oξ (i))∩ Int(S′) ⊂ {z: Im z � δ}.

Proof relays on easy computations (see [6]).
If D is a fundamental domain forΓ then for anyξ ∈ Λ \ Γ (∞), one can define (not uniquely, in gener

a geometric code, that is is a sequence(h(j))∞j=1 such thath(j) ∈ H ∪ H−1, h(j) �= (h(j+1))−1, j ∈ N, and

h(1) · · ·h(n)(z0) → ξ for somez0 ∈ H2 (e.g., see [3]). Denoteh(j)
− = (h(j))−1, S(j) = I (h(j)) andS

(j)
− = I (h

(j)
− )

One says that the geometric code containssimple (complex) jump of length a > 0 at positionj iff JS(j) > a

(respectively, JC(j) > a), where JS(j) = J (S(j−1), S
(j)
− ) and JC(j) = J (h

(j−1)
− (S(j−2)), S

(j)
− ).

Proposition 2.5.If a geometric code of a limit point ξ ∈ Λ \ Γ (∞) contains infinitely many simple or complex
jumps of some fixed length a > 0 then ξ ∈ Λh.

Idea of proof. Consider here only the case of simple jumps. For anyn, choosewn ∈ h(1) · · ·h(n)(D) ∩ {z ∈
H

2: Rez = ξ} (thenwn → ξ ). Givenln � n + 2 defineγn = h
(ln−1)
− · · ·h(1)

− . Thenγn(ξ) ∈ Int(S(ln)− ) andγn(wn) ∈
h
(ln−1)
− · · ·h(n+1)

− (D) ⊂ Gln−1,n+1 ⊂ Int(S(ln−1)), whereGr,s = h
(r)
− · · ·h(s+1)

− (Int(S(s))) ⊂ Int(S(r)), r � s (see
Fig. 3). Now one can show that if we takeln large enough, then we haveGln−1,n+1 ⊂ {z: Im z < δ}. If we
require in addition forln, that the inequality JS(ln) > a holds, thenGln−1,n+1 ∩ Int(Oγn(ξ)(i)) = ∅ by Lemma 2.4,
henceγn(wn) /∈ Int(Oγn(ξ)(i)). Becausen has been chosen arbitrary, Lemma 2.3 saysξ ∈ Λh, and the proof is
over.

Fig. 3. Proof of Proposition 2.5.
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One can show thatQ, κ, K can be chosen such that for someC > 0 we have (a)|k1 − k2| > 1 ⇒
J (Sk1,l1, Sk2,l2) > C, (b) |k| > 2m+1⇒ J ({z: |Rez| � c(S2m+1,0)}, Sk,l) > C, (c) |k| < 2m+1⇒ J ({z: |Rez| �
c(S2m+1,0)}, Sk,l) > C and (d)D is a fundamental domain forΓ . While the choice of constants satisfying (a),
and (c) bases on easy computations, condition (d) is not so simple (see [6]).

Lemma 2.6.If for any a > 0 a geometric code (h(j)), h(j) = hkj ,lj , of a limit point ξ ∈ Λ \Γ (∞) contains finitely
many complex jumps of length a then there exist j0,m ∈ N such that for all j � j0 we have 2m−3 � |kj | � 2m−1.

Idea of proof. One can show using conditions (a), (b) and (c) above, that every time if some 2m − 1, m ∈ N, is
contained between|kj | and|kj+1|, then the geometric code contains a simple or a complex jump of lengthC at
positionj (see details in [6]).

Proposition 2.7.For Q, κ and K chosen above, we have Ω+ = Γ \G, Λ = Λs and Λirr �= ∅.

Idea of proof. Since diameters ofSk,l cover the absoluteΛ = ∂H2 andD is a fundamental domain, we ha
Λ = ∂H2, hence Ω+ = Γ \G. Arguments similar to that of [3] yieldΓ (∞) ⊂ Λirr ∩ Λs (see [6]). It remains to
proveΛ \ Γ (∞) ⊂ Λs . SinceΛh ⊂ Λs , Proposition 2.5 and Lemma 2.6 implies that we may restrict ourselv
the case 2m − 3 � |kj | � 2m − 1, j ∈ N, for a geometric codeh(j), h(j) = hkj ,lj , of a pointξ ∈ Λ \ Γ (∞).
If sup|lj | < ∞ then ξ ∈ Λ(Γ0), where Γ0 = 〈{h(j)}〉 is finitely generated, and Lehner’s theorem [1] sa
Λ(Γ0) = Λh(Γ0)∪ Λp(Γ0). SinceΛp(Γ0) ⊂ Λp(Γ ) = ∅, ξ ∈ Λh(Γ0) ⊂ Λh(Γ ) ⊂ Λs(Γ ).

Assume now sup|lj | = ∞. Then |ljs | → ∞ and ∀s ∈ N kjs = 2m or ∀s ∈ N kjs = −2m for some
subsequence{js} ⊂ N. Consider only the casekjs = 2m. As in the proof of Proposition 2.5, putwn ∈
h(1) · · ·h(n)(D)∩{Rez = ξ} (thenwn → ξ ) andγ (j) = h

(j−1)
− · · ·h(1)

− . Then we getγ (js)(ξ) → ζ = c(S2m+1,0)−
r(S2m+1,0), s → ∞. Givenn, the Euclidean radii of horocyclesR(n)

s = r(γ (js)(Oξ (wn))) increase ins, because

inversion invS increases the radius of any horocycle intersecting semicircleS. If for some n, R
(n)
s → R0 ∈

(0,∞), s → ∞, then γ (js)(Oξ(wn)) → Oζ (2R0), s → ∞. HencevuR ⊃ wuR for somev ∈ π(Vis−1+ (ξ)),
w ∈ π(Vis−1+ (ζ )). Lemma 2.2 givesζ ∈ Λs , which impliesξ ∈ Λs .

Otherwise, for anyn and somes, R
(n)
s > r(O(1+κ)Qm(i)) � r(Oγ (js)(ξ)(i)). This imply γ (js)(wn) /∈

IntOγ(js)(ξ)(i), henceξ ∈ Λh ⊂ Λs by Lemma 2.3. We are done.
Finally, Lemma 2.1 and Proposition 2.7 immediately yield Theorem 1.1.
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