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Abstract

We construct an example of a Fuchsian group such that the corresponding horocycle flow has no miniffatisethis
article: M. Kulikov, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé
Le flot horicycligue sans ensemble minimalOn construit un exemple de groupe Fuchsien pour lequel le flot horocyclique

est sans ensemble minimBbur citer cet article: M. Kulikov, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction.

One considers the group = SL(2, R)/{=£Id} as a group of orientation preserving isometries of the hyperbolic
planeH? = {x + iy € C | y > 0} with the metric d® = (dx? + dy?)/y2. If I" is a Fuchsian group={ discrete
subgroup ofG), one considers of"\G (which is isomorphic to the unit tangent bundle to the surféégr™ of
constant negative curvature) the (contractihgiocycle flow ur given by the right action of the one-parameter
subgroup{u,: t € R}, whereu, = ((1) ’1). If I is a uniform lattice themp is minimal and ifI" is a non-uniform
lattice then the only:g-minimal sets are periodic orbits (e.g., see [4]). The case of infinitely genefatschot
well studied yet, and here we construct the following example:

Theorem 1.1.There exists Fuchsian group I" such that the horocycle flow on '\ G has ho minimal sets.

This seems to be the first example of such a flow of algebraic nature (smooth flows without minimal sets were
constructed in [2,5]). Note that any homogeneous flow on space of finite volume always has a minimal set [8],
while in our example vall'\G) = oo.

We skip several technical details here (see detailed exposition in [6]).
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2. ldea of proof

We use here some facts about the limit set and the classification of its points which one can find in [3,7].
The limit set A = A(I") Cc 9H? = R U {00} for a Fuchsian groug™ consists of all accumulation points of the
orbit I'z for some (hence, any) € H?. Let 7:G — I'\G be the projection and Vis: T'H? — 9H? be the
visual map. The non-wandering s€t, c I'\G of ur equals to;r(\ﬁsjrl(A)). There is a disjoint decomposition
A=A, UA,U Az U Ajrr, Where the sets ofiorocycle points A, parabolic points A, discrete points Ay
andirregular points Ay, consist of limit points such that corresponding horocyaieg, v € n(\ﬁsjrl(g)), are,
respectively, dense i®,, periodic, closed nonperiodic, and neither dense nor close&g.inThere is a simple
geometrical description of these classes (e.g., see [7]). For instarcd,, iff for some (hence, any) € H and
anyw € H there existyy € I" such thaty (z) € Int(O¢ (w)), whereOg (z) C H? is the horocycle based ate dH?
throughz € H? (= a Euclidean circle or a line throughtangent taR at&) and IN(O¢ (z)) is its interior.

Here we introduce a new clags of limit points with the shift property: a pointé € A, iff £ € A and for some
(hence, any) € n(\ﬁs;l(S)), there exists a reals£ 0 such thabug N vurg; # ¥, wheregr is the geodesic flow
onI"\G. Sincev € n(\ﬁs;l(Ah)) impliesvur = 24, we haveA;, C A;.

Lemma 2.1.1f A = Ay and Ay # @ then 2 does not contain ur-minimal subsets.

Idea of proof. Assume there existsz-minimal setC C 2. ConditionAj;r # @ impliesC # §2.;. Fixing a point
in H2, by means of the Busemann cocycle the set of all horocycleslif? Ean be identified witfH? x R,
and I" action on it is a skew product over-action ondH? with translations ofR in fibers. The seC’ =
7~ 1(C)/ur C A x R is I'-minimal, which together withA = A, implies C’ N ({€} x R) D ({&} x {k + gZ})
for somet € A, k,q € R, g #0. This fact and minimality of "-action onA (e.g., see [1]) implie€’ = A x R,
henceC = §2. Contradiction. O

By semicircle here we always mean a Euclidean semicittle H? with diameter contained iiR. Denote its
centerc(S) € R and Euclidean radius(S). For semicircless andS” with r(S) = r(S"), |c(S) — c(S")| = 2r(S),
denotehn (S, ) (z) = c(S) + ¢(S’) — invs(z), where iny is the inversion relative t&. Thenh(S, S") € G and
h(S, S")(Ext(S)) = Int(S"), where Ext and Int are the exterior and the interior of a semicircle, respectivély.)lf
is theisometric circle of h € G thenI (h(S, S')) = S.

Let us say that a family of semicirclesS;};cz\(0) forms a crocodile with coefficient K € (0,1) on a
segmenfa, b] CRiff r(Stz) =r(St@-1)) = K'=Y(1-K)(b—a)/8, | €N, and the diameters form a sequence
of ‘commutators’Sy, S2, S_1,S_2, ..., Sy-1, S, S—2+1, S—27, ... (see Fig. 1).

Lemma 2.2.Suppose a Fuchsian group has a system of generators containing 2(S;, S—;), [ € N, where a family of
semicircles {S;};ez\ 0y forms a crocodile on a segment [a, b]. Then b € A;.

Proof is a direct calculation.

Let O, K andx be suchthap > 1, k € (0,1), K €(0,1) and(1+«)/(1—«) < Q. For anyk € N, consider
(see Fig. 2) semicirclesy x—1).0 With r(S2x—1).0) = Kk OF, c(Sx2x-1).0) = £0, and put for anyk € Z,
hok—1,0 = h(S2x—1,0, S—2x+1,0). For anyk e Z, consider also a family of semicirclgs$y; ;}c7\j0; Which forms
a crocodile onc(Sok—1.0) + ¥ (S2k—1,0), c(S2k+1.0) — r(S2k+1,0)) With coefficientK; for anyk € Z, | € 7 \ {0},

S Sa S_1 S-e
S3 S84 5_35_4
am b

Fig. 1. Crocodile.
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Fig. 2. Generators af".

put ok = h(Sak, S2x.—1). Let D denote the exterior to all; ;. Consider the Fuchsian group= (H), H =
{hp1: ke2Z+1,1=00rke2Z, | eN}.
Let us analyzer, (I'). Our main tool (Proposition 2.5 below) bases on the following simple observation:

Lemma 2.3(See [3, Proof of Theorem 5.4])et £ # oo. Supposethereexist {y,}  I" and {w,,} C {z € H%: Rez =
&} suchthat w, — &, n — oo, and y, (w,) ¢ INt(0,, &) (i)). Then& € Ay,.

Let d be the Euclidean distance on half-plaHé, and for a semicircleS, put J(M, S) = (d(M, ¢(S)) —
r(8))/ maxr(S), lc(S)], 1}.

Lemma 2.4.For any a > 0, there exists § = §(a) > 0 such that for any two semicircles § and " with J (§’, S) > a
and for any £ € Int(S) N R, thefollowing holds: Int(Og (i)) N Int(S") C {z: Imz > §}.

Proof relays on easy computations (see [6]).

If D is a fundamental domain faf" then for anyé € A\ I'(co), one can define (not uniquely, in general)
a geometric code, that is is a sequencé)72,; such thath')) € H U H L n) £ @nU+tD)y=1  jeN, and
KD ... (z0) — £ for somezg € H2 (e.g., see [3]). Denote”) = (h)~1, U = (h)) andSY = 1Y)
One says that the geometric code containgple (complex) jump of lengtha > 0 at position; iff JS(j) > a
(respectively, JCj) > a), where J%j) = J(SU=, $Y)y and 3@ ) = J (hY P (50U-2), sV,

Proposition 2.5.1f a geometric code of a limit point £ € A \ I"(co) contains infinitely many simple or complex
jumps of some fixed lengtha > O then & € Aj,.

Idea of proof. Consider here only the case of simple jumps. For anghoosew, € A ...h™W(D) N {z €
H2: Rez = £} (thenw, — &). Givenl, > n + 2 definey, = k"~ ...aD. Theny, &) € Int(s") andy, (w,) €
R0V "Dy € Gy _1pe1 C INKSED), where Gy = b7 - hS TV (Int(S®)) C Int(SD), r > 5 (see
Fig. 3). Now one can show that if we takkg large enough, then we hav@;,_1 ,+1 C {z: Imz < §}. If we
require in addition fo¥,,, that the inequality J&,) > a holds, thenG;,_1 ,+1 N INt(0,,, ) (i)) =¥ by Lemma 2.4,
hencey, (w,) ¢ Int(0,, &) (i)). Becauser has been chosen arbitrary, Lemma 2.3 saysAy, and the proof is
over.

S(f")

Imz=4§
[ oy, — [
Gl,,, —1,n+1 Yn (u'n) Tn (6)

Fig. 3. Proof of Proposition 2.5.
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One can show thap, «, K can be chosen such that for sorie> 0 we have (a)lk1 — k2| > 1 =
J(Sky,tzs Skatz) > C, (D) [k| > 2m+1= J ({z: |Rez| < e(S2m+1,0)}, Ska) > C, (C) [k| < 2m+1= J({z: |Rez| >
¢(S2m+1.0)}, Sk.1) > C and (d)D is a fundamental domain fdr. While the choice of constants satisfying (a), (b)
and (c) bases on easy computations, condition (d) is not so simple (see [6]).

Lemma 2.6.1f for any a > 0 a geometric code (h), h) = hy, ., of alimit point& € A\ I'(co) containsfinitely
many complex jumps of length a then thereexist jo, m € N suchthat for all j > jowehave2m —3 < |k;| < 2m —1.

Idea of proof. One can show using conditions (a), (b) and (c) above, that every time if seame1l2 m € N, is
contained betweefk ;| and|k;41], then the geometric code contains a simple or a complex jump of lengih
position j (see details in [6]).

Proposition 2.7.For Q, « and K chosen above, we have 21 = I'\G, A = Ay and Ajyy # @.

Idea of proof. Since diameters of; ; cover the absolutel = 9H2 and D is a fundamental domain, we have
A = 9H?, hence 22, = I'\G. Arguments similar to that of [3] yield"(co) C Ajrr N Ay (see [6]). It remains to
prove A\ I'(c0) C Ay. SinceAy, C Ay, Proposition 2.5 and Lemma 2.6 implies that we may restrict ourselves to
the case @ — 3< |kj| < 2m — 1, j €N, for a geometric codé'), ') = hy, ., of a point € A\ I'(c0).
If supll;| < oo then& e A(Jp), where Iy = ({hD}) is finitely generated, and Lehner’s theorem [1] says
A(I) = Ap(I'o) U A, (Ip). SinceA ,(I'o) C Ap(IN) =@, & € Ap(Io) C Ap(I') C Ag(ID).

Assume now sup;| = co. Then |/ | - oo and Vs € N k; =2m or Vs ¢ N k;, = —2m for some
subsequencgj;} C N. Consider only the casé; = 2m. As in the proof of Proposition 2.5, pub, e

hD ... ™ (D) N {Rez = &} (thenw, — &) andy (j) =hY ™Y ... hD. Thenwe gey () (€) — ¢ = c(Sam+1.0) —
r(S2m+1.0), § — 0o. Givenn, the Euclidean radii of horocycldﬁﬁ") = r(y (js)(Og (wy))) increase irs, because
inversion inyg increases the radius of any horocycle intersecting semiciclé for somen, R§”) — Rp €
(0,00), s = o0, theny (js)(Os(wn)) = O:(2Ro), s — oo. Hencevugr D wur for somev € n(\ﬁsil(g)),
w e 7(Vis;1(¢)). Lemma 2.2 gives € Ay, which impliest € A;.

Otherwise, for anyn and somes, R‘E”) > r(Oatiyom (@) = r(Oy (e (@)). This imply y(ji)(w,) ¢
Int Oy, ()& (i), hencek € A, C A; by Lemma 2.3. We are done.
Finally, Lemma 2.1 and Proposition 2.7 immediately yield Theorem 1.1.
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