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Abstract

We study finite extension groups of lattices in Lie groups which have finitely many connected components. We sh
every non-cocompact Fuchsian group (these are the non-cocompact lattices inPSL(2,R)) has an extension group of finite inde
which is not isomorphic to a lattice in a Lie group with finitely many connected components. On the other hand we pr
these are, in an appropriate sense, the only lattices in Lie groups which have extension groups of this kind. We also
an extension group of finite index of a lattice in a Lie group with finitely many connected components has only finitel
conjugacy classes of finite subgroups.To cite this article: F. Grunewald, V. Platonov, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Nouvelles propriétés des réseaux dans les groupes de Lie.On étudie les extensions finies de réseaux dans les gro
de Lie n’ayant qu’un nombre fini de composantes connexes. Nous démontrons que tout groupe fuchsien (ce sont le
non-cocompacts dansPSL(2,R)) possède une extension finie qui n’est isomorphe à aucun réseau dans un groupe de L
un nombre fini de composantes connexes. D’autre part, nous démontrons que ces groupes sont les seuls, parmi les r
les groupes de Lie, pour lesquels il existe de telles extensions finies. Nous montrons aussi qu’une extension finie d’
dans un groupe de Lie ayant un nombre fini de composantes connexes n’a qu’un nombre fini de classes de conju
sous-groupes finis.Pour citer cet article : F. Grunewald, V. Platonov, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Soit G un groupe de Lie réel n’ayant qu’un nombre fini de composantes connexes. Unréseau dansG est un
sous-groupe discretΓ � G tel que l’espace homogèneG/Γ possède une mesureG-invariante finie. Un réseauΓ
deG s’appellecocompactsi G/Γ est compact. Un groupe abstrait est dit unréseaus’il est isomorphe à un résea
dans un groupe de Lie ayant un nombre fini de composantes connexes. Nous donnons une description d
réseaux (dans les groupes de Lie ayant un nombre fini de composantes connexes) qui ont la propriété
chaque extension finie est encore un réseau.

E-mail addresses:fritz@math.uni-duesseldorf.de (F. Grunewald), vplatonov@sympatico.ca (V. Platonov).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2003.12.021
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Notre premier théorème s’occupe du casG = PSL(2,R).

Théorème 0.1.SoitΓ un réseau dansPSL(2,R). On a:

(i) Si Γ est cocompact et∆ est une extension finie deΓ , alors∆ est un réseau.
(ii) Si Γ n’est pas cocompact, alorsΓ possède une extension finie qui n’est pas un réseau.

La construction des extensions qui servent à démontrer le Théorème 0.1(ii) se trouve dans la Section 2
Notre deuxième résultat affirme que ces phénomènes sont uniquement liés au groupe de LiePSL(2,R).

Théorème 0.2.SoitΓ un réseau dans un groupe de Lie réel ayant un nombre fini de composantes conne
suppose que la composante connexe de l’identitéG◦ n’a aucun facteur simple isomorphe àPSL(2,R) tel que la
projection deΓ ∩ G◦ dans ce facteur soit discrète mais non cocompacte. Si∆ est une extension finie deΓ , alors
∆ est un réseau.

Nous démontrons aussi que tout groupe qui est extension finie d’un réseau n’a qu’un nombre fini de cl
conjugaison de sous-groupes finis. Ce résultat se déduit de l’existence de domaines fondamentaux pour
ayant des propriétés de finitude convenables. Soitg un groupe fini opérant sur un groupeΓ ; alors le premier
ensemble de cohomologieH 1(g,Γ ) est défini par Borel et Serre dans [1]. Nous obtenons le théorème de fin
suivant :

Théorème 0.3.SoitΓ un réseau et soitg un groupe fini opérant surΓ . AlorsH 1(g,Γ ) est fini.

Ce résultat a été démontré par Borel et Serre dans [1] lorsqueΓ est un g-groupe arithmétique, et plu
généralement pourΓ un groupe arithmétique dans [5].

1. Introduction

Let G be a real Lie group with finitely many connected components. Alattice inG is a discrete subgroupΓ � G

so that the homogeneous spaceG/Γ carries a finiteG-invariant measure. A latticeΓ in G is calledcocompactif
G/Γ is compact. An abstract group is said to be alattice if it is isomorphic to a lattice in a real Lie group which h
finitely many connected components. The main aim of this work is concerned with the structure of finite ex
groups of lattices. We call a group∆ a finite extensionof a groupΓ if ∆ contains an isomorphic copy ofΓ of
finite index. The following surprising result shows that not every finite extension of a lattice is again a lattic

Theorem 1.1.LetΓ be a lattice inPSL(2,R). Then the following hold:

(i) If Γ is cocompact and∆ is a finite extension ofΓ then∆ is a lattice.
(ii) If Γ is not cocompact thenΓ has a finite extension which is not a lattice.

Part (i) of Theorem 1.1 is proved in [5]. The proof uses Kerkhoff’s positive solution of the Nielsen reali
problem, see [7]. This method can be used to describe more specifically the Lie group in which a give
extension of a cocompact lattice inPSL(2,R) can be realised as a lattice, see Section 2. The finite exten
which we use to prove part (ii) of Theorem 1.1 can be found in Section 2.

By the following theorem the lattices mentioned in part (ii) of Theorem 1.1 are in an appropriate sense t
lattices which have finite extensions which are not lattices.
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Theorem 1.2.LetΓ be a lattice in a real Lie groupG which has finitely many connected components. Assume
the connected component of the identityG◦ does not have a simple factor isomorphic toPSL(2,R) such that the
projection ofΓ ∩ G(R)◦ into this factor is discrete but not cocompact. If∆ is a finite extension group ofΓ , then
∆ is a lattice.

We have the following generalization of Theorem 1.1(i):

Corollary 1.3. LetΓ be a cocompact lattice in a real Lie groupG which has finitely many connected compone
Then every finite extension ofΓ is a lattice.

A group∆ is called polycyclic by finite if it contains a polycyclic subgroup of finite index. It is well known
every polycyclic by finite group contains a subgroup of finite index which is a lattice in a simply connect
group (see [10], Chapter 3). This result together with Theorem 1.2 leads to:

Theorem 1.4.Every polycyclic by finite group is a lattice in a finite extension of a simply connected solvab
group.

One of the basic finiteness properties satisfied by lattices is that they have only finitely many conjugacy
of finite subgroups. To prove this result one first considers the case in whichΓ is a lattice in a semi-simple Li
groupG. ThenΓ acts discontinuously on the the symmetric spaceX of G. The finiteness property is implied b
the existence of a suitable fundamental domain for the action ofΓ on X. The general case follows by a simp
reduction argument. Next we ask about the generalization of this finiteness result to groups∆ which are finite
extensions of latticesΓ . There is no direct way to deduce the finiteness property for∆ from that ofΓ since there
is a finitely generated subgroup∆ of SL(4,Z) which contains infinitely many conjugacy classes of element
order 4 (see [5]). This group∆ even contains a torsion-free subgroup of finite index. We prove as one of our
results:

Theorem 1.5.Let ∆ be a group which contains a lattice of finite index. Then∆ has only finitely many conjugac
classes of finite subgroups.

If g is a finite group acting by group automorphisms on a groupΓ then the first cohomology setH 1(g,Γ ) is
defined by Borel and Serre in [1]. Our Theorem 1.5 implies:

Theorem 1.6.Let Γ be a lattice andg a finite group acting onΓ by group automorphisms. ThenH 1(g,Γ ) is
finite.

Problems like the above were already studied in the following formally similar but different situation
G < GL(n,C) be a linear algebraic groupG defined overQ andΓ � G an arithmetic subgroup. The paper [
contains a criterion similar to Theorem 1.2 for a finite extension group∆ of Γ to be an arithmetic group. This pap
also gives examples in which∆ is not an arithmetic group. The paper [6] is devoted to the study of the sol
case. Note here that in contrast to our Theorem 1.4 there are interesting polycyclic groups which are not a
groups. Theorem 1.5 was proved by Borel and Serre in [1] for split extensionsΓ � g whereg is a finite group and
Γ is ag-arithmetic group. Its generalization to any finite extension group of an arithmetic group is contained
Also Theorem 1.6 was proved by Borel and Serre in [1] for ag-arithmetic groupΓ and generalized in [5].

2. Proof of Theorem 1.1

This section mainly contains the constructions which are necessary to prove part (ii) of Theorem 1.1.
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As already mentioned part (i) is proved in [5]. We start off with a finite extension∆ of a cocompact latticeΓ
in PSL(2,R). Assuming thatΓ is torsion-free and normal in∆ we find that the centraliserZ∆(Γ ) of Γ in ∆ is
a finite normal subgroup of∆. Moreover the finite subgroup∆/(Γ · Z∆(Γ ) of the outer automorphism group
Γ has a fixed point acting on the Teichmüller space ofΓ by Kerkhoff’s result. This then implies that∆/Z∆(Γ ) is
isomorphic to a cocompact discrete subgroup inPSL(2,R). In general we can prove that there is a finite extens
H of PSL(2,R) so that∆ is isomorphic to a cocompact lattice inH .

Let nowΓ be a lattice inPSL(2,R) which is not cocompact inPSL(2,R). It is well known thatΓ is the free
product of� ∈ N ∪ {0} infinite cyclic groups andn ∈ N ∪ {0} finite cyclic groups that is

Γ = 〈
h1, . . . , h�, e1, . . . , en | em1

1 = · · · = emn
n = 1

〉 ∼= Z ∗ · · · ∗ Z ∗ Cm1 ∗ · · · ∗ Cmn (1)

see [4]. HereCm stands for the finite cyclic group of orderm. The condition that the groupΓ defined in (1) is
isomorphic to a (non-cocompact) lattice inPSL(2,R) is:

� − 1+
n∑

i=1

(
1− 1

mi

)
> 0. (2)

Also it is well-known that a lattice inPSL(2,R) is not cocompact if and only if it contains a free subgroup of fin
index.

For each of the groups listed in (1) we shall construct an extension group which we prove not to be a la
these proofs we shall use the following result as a first reduction step.

Proposition 2.1.Let ∆ be a finite extension of a latticeΓ in PSL(2,R). Assume that∆ is a lattice in the real Lie
groupG. ThenG can be expressed asG = H · K whereH, K are closed normal subgroups ofG with H ∩ K

being a finite subgroup of the center ofG and whereH is a finite extension ofPSL(2,R) andK is compact. If∆
has no nontrivial finite normal subgroups then∆ is isomorphic to a lattice inPGL(2,R).

The first statement of Proposition 2.1 follows from results of Prasad [9] (see [5], Section 2 for more det
∆ has no nontrivial finite normal subgroups we can choose the compact subgroupK to be trivial and∆ is a lattice
in the finite extensionH of PSL(2,R). Consider then the homomorphism

Φ :H → Aut(H ◦) = PGL(2,R), Φ(h)(g) := hgh−1 (h ∈ H, g ∈ H ◦).

The kernel ofΦ is a finite normal subgroup ofH . This shows thatΦ(∆) is a lattice inPGL(2,R) isomorphic to∆.
In constructing the finite extension groups we make the following case distinction:

1. � = 2, n = 0.

HereΓ = 〈h1, h2〉 is a free group on 2 generators. Consider the following three automorphisms ofΓ :

σ1(h1) := h−1
1 , σ2(h2) := h−1

2 , σ3(h1) := h2, σ3(h2) := h1 (3)

with the convention thatσi acts identically on the generators not mentioned. LetA be the subgroup of th
automorphism group ofΓ generated byσ1, σ2, σ3 and put∆ := Γ �A. The groupA is isomorphic to the dihedra
group of order 8, hence∆ containsΓ as a subgroup of index 8. The group∆ is not a lattice. To see this notice fir
that∆ has no nontrivial finite normal subgroups. We infer from the Proposition 2.1 that if∆ is a lattice then it is a
lattice inPGL(2,R). We identify∆ with its image inPGL(2,R) and put∆◦ := ∆ ∩ PSL(2,R). By the above∆◦
is a noncocompact lattice inPSL(2,R) and has a decomposition (1). It follows from Kurosh’s theorem that e
Abelian subgroup of∆◦ is cyclic. Hence∆◦ is of index 2 in∆. We also find that∆◦ ∩ A is cyclic of order 4 and
hence is generated byσ3σ1. This also impliesσ2σ1 = (σ3σ1)

2 is in ∆◦ but σ1 is not in∆◦. Notice thatσ2σ1 is an
involution centralized byσ1. A simple computation shows that the centralizer inPGL(2,R) of every involution
from PSL(2,R) is contained inPSL(2,R). This finishes the proof that∆ is not a lattice.
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From a presentation of∆ it is easy to see that there is a unique subgroup of index 2 in∆ which is isomorphic
to a lattice inPSL(2,R). This subgroup is isomorphic toC2 ∗ C4.

2. � � 2, � + n � 3.

In this case the latticeΓ needs generatorsh1, h2 and at least one more generatorf (equal toh3 or e1) in the
product decomposition (1). LetA be the subgroup of the automorphism group ofΓ generated byσ1, σ2, σ3 given
in (3) (with the convention thatσi acts identically on the generators not mentioned) and put∆ := Γ � A. Then∆

containsΓ as a subgroup of index 8 and∆ is not a lattice. To see this notice again that∆ has no nontrivial finite
normal subgroups. We infer from the Proposition 2.1 that if∆ is a lattice then it is a lattice inPGL(2,R). Let B
be the Zariski closure of the subgroupT := 〈h2, f 〉 in PGL(2,R). SinceT is not solvableB containsPSL(2,R).
The elementσ1 centralizesT and henceB which is a contradiction.

3. � = 1.

In this case we haven � 1. We consider first the casen = 1. LetΓ1 be the kernel of the obvious homomorphis
Γ → Cm1, it is the subgroup (freely) generated by

h1, h2 := e1h1e
−1
1 , . . . , hm1 := e

m1−1
1 h1e

1−m1
1 . (4)

The symmetric groupSm1 embedds in an obvious way into the automorphism group ofΓ1 by permuting
the generators (4). Further we can embedCm1

2 as a groupA0 of automorphism group ofΓ1 by letting ε =
(ε1, . . . , εm1) (εi = ±1) act asε(hi) := h

εi

i . We letA be the subgroup of the automorphism group ofΓ1 generated
by A0 andSm1. The groupA is isomorphic to the permutational wreath productA0 � Sm1 and has order 2m1m1!.
Put∆ := Γ1 � A, thenΓ is obviously isomorphic to a subgroup of index 2m1(m1 − 1)! in ∆. The group∆ is not
a lattice. Form1 = 2 this group is isomorphic to the group, also called∆, in the case� = 0, n = 0 above and we
already know that∆ is not a lattice. Form1 � 3 we note that∆ has no nontrivial finite normal subgroups and he
would embed as a lattice intoPGL(2,R). But all finite subgroups of this group are either cyclic or dihedral gro

If n > 1 we use analogously to the case� � 2, � + n � 3 a similar construction to find an extension group∆ of
Γ which is not a lattice.

4. � = 0.

We first treat the casen = 2. In this casem1 or m2 is bigger than 2. Ifm1 = 2, m2 = 3 we letΓ1 be the kernel of the
obvious homorphismΓ → C2. This group is isomorphic toC3 ∗ C3 which has (similar to the case� = 2, n = 0)
the dihedral groupD4 of order 8 in its automorphism group. We put∆ := Γ1 � D4. The group∆ containsΓ as
a subgroup of index 4. By an argument analogous to that in the case� = 2, n = 0 the group∆ is not a lattice. If
m1 = 2, m2 = 4 we noted in the case� = 2, n = 0 that there is an extension group of index 2 which is not a lat
If m1 = 3, m2 = 3 or m1 = 3, m2 = 4 we letΓ1 be the kernel of the obvious homorphismΓ → Cm2 and find
an appropriate permutational wreath productA in the automorphism group ofΓ1 (see� = 1). The split extension
∆ := Γ1 � A contains a copy ofΓ as a subgroup of finite index and is not a lattice. In all other cases we re
m1, m2 so thatm2 � m1 and letΓ1 be the kernel of the obvious homorphismΓ → Cm2. This group is isomorphic
to the free product ofm2 copies ofCm1. HenceΓ1 contains the symmetric groupSm2 in its automorphism group
The group∆ := Γ1�Sm2 containsΓ as a subgroup of index(m2−1)!. By arguments used before∆ is not a lattice.
All casesn � 3 can be treated similarly to the last case. Letmn satisfymn � mi for i = 1, . . . , n and letΓ1 be the
kernel of the obvious homorphismΓ → Cmn . This group is isomorphic to a free product of finite cyclic grou
and contains an appropriate permutation groupS in its automorphism group. The group∆ := Γ1 � S contains a
copy ofΓ as a subgroup of finite index. By our usual arguments∆ is not a lattice.

Let Γ be a lattice inPSL(2,R) which is not cocompact. Letm(Γ ) be the minimal index of an extensio
group∆ of Γ which is not a lattice. The question whetherm(Γ ) = 2 (in all cases) leads, for small� andn in the
decomposition (1), to very interesting problems about the existence of lattices inPSL(2,R).
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3. Proof of Theorem 1.2

The strategy of the proof of Theorem 1.2 is the same as for the proof of Theorem 1.2 in [5]. In the arg
Q-defined algebraic maps have to be replaced by analytic maps and arithmetic groups have to be rep
lattices. The results then translate more or less word for word. We give a brief sketch.

Let Γ be a lattice in the Lie groupG and ∆ a finite extension ofΓ . We may assume thatΓ is a normal
subgroup of∆. If the maps fromΓ → Γ which are induced by conjugation with elements from∆ can be obtained
by restriction of analytic maps fromG to G then∆ can be proved to be a lattice in a finite extension of the
groupG (see [5], Section 2). IfG is semisimple andΓ is an irreducible lattice inG this follows from standard
rigidity results. IfΓ is not irreducible Lemma 2.7 and Corollary 2.8 from [5] are easily adapted. For Lie grouG

which have a nontrivial solvable radical the rigidity results of Section 3 of [5] can be translated almost w
word from the algebraic-arithmetic to the analytic-lattice world.

4. Conjugacy classes of finite subgroups

For the proof of Theorem 1.5 a special case has to be treated beforehand.

Proposition 4.1.LetΓ = Γ1 ×· · ·×Γk be a direct product of finitely many groups which are lattices inPSL(2,R).
Then every finite extension group∆ of Γ has only finitely many conjugacy classes of finite subgroups.

If k = 1 and ifΓ1 is not cocompact inPSL(2,R) then∆ is a finite extension of a finitely generated free gro
We then use the fact that such a group is the fundamental group of a finite graph of groups (see [3]) toge
the fixed point theorem for finite groups acting on trees (see [2]). Ifk = 1 and if Γ1 is cocompact inPSL(2,R)

then Theorem 1.1 implies our result. Direct products are treated by an induction technique using the fix
theorem for finite groups acting on CAT(0)-spaces (see [2], Section 1).

A statement similar to Proposition 4.1 but for finite extensions of free groups of infinite rank does not ho
minimal counterexample (that is[∆ : F∞] = 2) is given in [8].

Sketch of the proof of Theorem 1.5.By factoring out the (connected) solvable radical ofG we reduce to a
case whenG is semisimple. The above Proposition 4.1 allows us to reduce our proof to the case of a sem
Lie group without factors isomorphic toPSL(2,R). We then use Theorem 1.2 and the existence of fundam
domains with Siegel’s property for a lattice in a semisimple Lie group.✷
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