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Abstract

We simplify the proof of the theorem that close to any pseudoholomorphic disk there passes a pseudoholomor
of arbitrary close size with any pre-described sufficiently close direction. We apply these results to the Kobayashi a
pseudodistances. It is shown they coincide in dimensions higher than four. The result is new even in the complex casTo cite
this article: B. Kruglikov, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Déformation de grands disques pseudo-holomorphes et application à la pseudonorme de Hanh. Nous simplifions la
preuve du théorème montrant que près de tout disque pseudo-holomorphe il passe un disque pseudo-holomorph
proche quelconque et avec une direction pré-fixée suffisamment proche. Nous appliquons ces résultats aux pseudod
Kobayashi et Hanh. Nous montrons qu’elles coïncident en dimensions supérieures à quatre. Le résultat est nouveau,
le cas complexe.Pour citer cet article : B. Kruglikov, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Théorème 0.1. Pour une variété quasi-complexe(M,J ), considérons un disque pseudo-holomorphe

f0 : (DR, i)→ (M,J ), (f0)∗(0)e = v0 �= 0.

Ici, e = 1 est le vecteur unité en0 ∈ C. Pour toutε > 0, il existe un voisinageVε(v0) du vecteurv0 ∈ TM tel que à
chaquev ∈ Vε(v0) corresponde un disque pseudo-holomorphe

f : (DR−ε, i)→ (M,J ), f∗(0)e = v.

La courbe approximantef peut être choisie plongée/immergée si la courbef0 le peut.

E-mail address:kruglikov@math.uit.no (B. Kruglikov).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2003.12.010



296 B. Kruglikov / C. R. Acad. Sci. Paris, Ser. I 338 (2004) 295–299

ici grâce
xploitant

do-
jectifs) [2].

ême
e, avec un

h of [7])

d

e
den

the main

ike
Ce théorème a été prouvé dans [2] par la méthode de Newton et la machinerie de [7] . Nous le prouvons
au théorème des fonctions implicites pour l’équation linéarisée le long du disque pseudo-holomorphe, en e
l’opérateur de GreenTr . L’assertion généralise les Théorèmes 1.7, 3.1.1(ii) de [5] et [10] respectivement.

Une application est reliée à la pseudo-norme de Kobayashi–Royden :FM(v) = inf{1/r | f : (Dr, i) →
(M,J ), f∗(0)e = v}, v ∈ TM. Le théorème ci-dessus assure la semi-continuité supérieure deFM , ce qui implique
que la pseudo-distance de KobayashidM(x, y) = inf{∫ γ ∗FM | γ : [0,1] → M, γ (0) = x, γ (1) = y} est bien
définie. De façon similaire, la pseudo-norme de HanhSM(v) est définie avec la condition supplémentaire quef est
injective. Cela engendre aussi la pseudo-distance de HanhhM via l’intégration suivant un chemin. Chaque pseu
distance coïncide avec celle définie grâce aux chaînes de disques pseudo-holomorphes (resp. disques in

Théorème 0.2. Pour les variétés quasi-complexes(M2n, J ), n > 2, on a: SM = FM .

Dans le cas de domainesM ⊂ Cn, la formule a été prouvée dans [8]. La généralisation est nouvelle, m
dans le cas complexe général. La preuve est basée sur une idée de type Whitney pour déformer la courb
nombre suffisant de paramètres pour résoudre les singularités.

1. Deformation of big pseudoholomorphic disks

We aim here to prove the following statement, which was proved by another (analogous to the approac
and more complicated method in [2].

Theorem 1.1. Let (M2n, J ) be an almost complex manifold and

f0 : (DR, i)→ (M,J ), (f0)∗(0)e = v0 ∈ TM, v0 �= 0,

be a pseudoholomorphic disk. Heree = 1 is the unit vector at0 ∈ C. For everyε > 0 there exists a neighborhoo
Vε(v0) of the vectorv0 such that for eachv ∈ Vε there is anε-close in a fixedCk-norm, slightly smaller
pseudoholomorphic disk

f : (DR−ε, i)→ (M,J ), f∗(0)e = v.

The approximating curvef can be embedded/immersed if such is the curvef0.

This theorem was used in [2] for the proof of equivalence of two definitions of Kobayashi pseudodistancdM in
almost complex category. In the second definitiondM is associated via path integration to the Kobayashi–Roy
pseudonorm:

FM(v) = inf
{
1/r | f : (Dr, i)→ (M,J ), f∗(0)e = v

}
, v ∈ TM.

The above theorem assuresFM to be upper semicontinous, implying that

dM(x, y)= inf

{∫
γ ∗FM | γ : [0,1] →M, γ (0)= x, γ (1)= y

}
is well-defined.

Moreover, since an embedded disk can always be perturbed to embedded we prove simultaneously
properties of the Hanh pseudonormSM(v), which is defined by the same formula asFM with an additional
requirement onf to be injective. This pseudometric generates a pseudodistance via path integration, lFM

generatesdM , and this coincides (cf. [2]) with the distancehM(x, y) = inf
∑m

k=1d(zk,wk), defined via injective
chainsfk :D1 → (M2n, J ), k = 1, . . . ,m, f1(z1) = p, fm(wm) = q andfk(wk) = fk+1(zk+1), whered is the
Poincaré metric onD1.
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2. New proof of Theorem 1.1

Our approach to the close pseudoholomorphic curves existence result is similar to that of [10], wh
linearization of the structureJ was made at a point. We linearize the structure along the disk and use the red
of the almost complex problem to a complex one via the Green operator:

Tr :Ck
(
Dr,C

n
) → Ck+1(Dr,C

n
)
, g(z) �→ 1

2π i

∫ ∫
Dr

g(z)

ζ − z
dζ ∧ dζ̄ .

It is continuous in the Sobolev and Hölder norms [11] and obeys the identities:∂̄Tr = Id, Tr ∂̄|
Ck+1

0
= Id .

Proof. We study at first the case, when the curve is embedded. LetU be a neighborhood of the shrunk pseud
holomorphic curvef0(DR−ε). We can assume [2] the disk is standardf0(DR−ε) = DR−ε × {0}n−1 ⊂ Cn and the
almost complex structureJ : U → EndR(C

n), J 2 = −1, along it is the standard complex structureJ (z) = J0 for
all z ∈ DR−ε. The equation forf to be pseudoholomorphic reads:

∂̄f + qJ (f )∂f = 0, qJ (z)= [
J0 + J (z)

]−1 · [J0 − J (z)
]
,

which due to the above properties is equivalent to

∂̄h = 0, h = [
Id+TR−ε ◦ qJ (f ) ◦ ∂]

(f ).

For k ∈ R \ Z, k > 1, consider the map

Φ : J ×Ck+1(DR−ε;U) −→ Ck+1
(
DR−ε;Cn

)
,

(J, s) �−→ [
Id+TR−ε ◦ qJ (f0 + s) ◦ ∂]

(f0 + s),

whereJ is a neighborhood of the given almost complex structureJ in Ck-topology. We considerU as the total
space of the “normal bundle”, with the sections being denoted bys, so that every mapf ∈Ck+1(DR−ε;U), that is
C1-close to(f0)|DR−ε , has a unique representationf = f0 + s.

The mapΦJ = Φ(J, ·) is Ck-smooth and satisfies:ΦJ (0) = f0, Φ ′
J (0) = Id. It has the Taylor decompositio

(with ‖ · ‖ being theCk+1-norm):

ΦJ (s)= f0 + s + o
(‖s‖).

Therefore ImΦJ contains a small neighborhood of the curvef0.
Let Z = (a, v) ∈ TCn andhZ(z) = a + vz be the holomorphic disk inU , z ∈ DR−ε . It is close tof0 whenever

Z is close toZ0 = (0, (1,0, . . . ,0)) ∈ TCn. Define

fZ = f0 +Φ−1
J (hZ).

It is aJ -holomorphic(R − ε)-disk, which satisfies:fZ − hZ = o(|Z −Z0|).
Consider theCk-mapΨ :C2n → C2n, Z �→ (fZ(0), (fZ)∗(0)e). Since the above estimate impliesΨ ′(Z0)= Id,

the mapΨ (Z) is a localCk -diffeomorphismof a neighborhood ofZ0. In particular, for everyZ = (a, v) sufficiently
close toZ0 there exists a pair̃Z = (α, ζ ) such thatΨ (Z̃) =Z.

Now the obtained mapf = fZ̃ is C1-close tof0 and so is embedded. It is also smooth due to the usual el
regularity [7,5,10]. Iff0 is immersed, the reasoning is the same for the neighborhoodU obtained viaf0 by the
pull-back.

In the general case for the mapf0 : (DR−ε, i) → (M,J ) we consider the grapĥf0 : (DR−ε, i) → (DR−ε ×
M, Ĵ = i × J ), which is injective and apply the part of the statement already proved.✷
Remark 1. The proof implies persistence of big pseudoholomorphic disks (with an insignificant loss of size)
perturbation not only of the initial vector, but also of the almost complex structureJ (note the role ofJ above), as
well as existence of a deformation of the initial curve to the perturbed one. This generalizes Theorems 1
and 3.1.1(ii) of [10].
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3. Kobayashi–Royden vs. Hanh pseudometric

The properties of the Kobayashi–Royden pseudometric for almost complex manifolds was discussed in
us consider the non-integrable versionSM of the Hanh pseudometric. By a theorem of Overholt [8] it coinci
with the Kobayashi–Royden pseudometricFM for domainsM ⊂ Cn of dimensionn > 2. We generalize this to th
non-integrable case.

Theorem 3.1. SM = FM for almost complex manifolds(M2n, J ), n > 2.

Proof. SinceSM � FM , it is enough to show that whatever smallε > 0 is, any pseudoholomorphic disk of radi
R > 0 can be approximated by an injective pseudoholomorphic disk of radiusR− ε with the same initial direction

We give at first a new simple proof of Overholt’s theorem from [8]. LetM ⊂ Cn be a domain andf :DR →M

be a holomorphic map. DenotefW (z) = f (z) −w2z
2 − w3z

3, z ∈ DR−ε , W = (w2,w3) ∈ C2n. For smallW the
map has still the image inM. Also note thatfW (0)= f (0) andf ′

W(0)= f ′(0).
By the Sard theorem a genericw2 ∈ Cn is outside the set{

f (z1)− f (z2)

z2
1 − z2

2

∣∣∣∣ z1, z2 ∈ DR−ε

}
∪

{
f ′(z)

2z

∣∣∣∣ z ∈ DR−ε

}
.

For such a choice the mapfw2,0 is injective outside the anti-diagonal{z2 = −z1}. Note that regularity of the origin
is preserved. So, switching onw3 being generic, we get the mapfw2,w3 to be injective everywhere.

In other words, the Sard theorem implies that the set ofW = (w2,w3) for whichfW is not injective has measur
zero and so a generic pair of small vectorsw2,w3 ∈ Cn defines the required approximating diskfW (z).

In the general complex case we should shift along some holomorphic vector fields. This is achieved
graph-lift construction and Royden’s lemma [9] that an embedded holomorphic disk, shrunk a bit, has
neighborhood.

It is easier, however, to consider the general case of almost complex manifolds(M,J ) and to deduce th
statement for integrableJ as a corollary.

Denote byπ :DR−ε ×M →M the projection. As in Theorem 1.1, the graph-liftf̂0 :DR−ε →DR−ε ×M can be
deformed to the familyf̂Ŵ = f̂0+Φ̂−1

Ĵ
(gŴ ), wheregŴ = ŵ0+ŵ1z−ŵ2z

2−ŵ3z
3, Ŵ = (ŵ2, ŵ3), ŵj ∈ C

n+1 and

(ŵ0, ŵ1)= (ϕ̂0(ŵ2, ŵ3), ϕ̂1(ŵ2, ŵ3)) are someCk-smooth functions, close tôZ0 = (0, (1,0, . . . ,0)) and such tha
(f̂Ŵ (0), (f̂Ŵ )∗(0)e)= Ẑ0 ∈ TCn+1. We identify abovef̂0 with g0̂, the first coordinate disk, and its neighborho

with a ballB ⊂ Cn+1, equipped with the structurêJ = i × J .
Similarly to the first proof we get:f̂Ŵ = gŴ + ρŴ , whereρŴ = o(|Ŵ |). Now fŴ is an embedding i

πf̂Ŵ (z1) �= πf̂Ŵ (z2) for z1 �= z2 and ∂πf̂Ŵ (z) �= 0. We consider only the first, more complicated, injectiv
condition. It’s negation is equivalent togŴ (z1)− gŴ (z2)= [ρŴ ]|z2

z1 + ζ , ζ ∈D, or equivalently:

ŵ2(z1 + z2)+ ŵ3
(
z2

1 + z1z2 + z2
2

) = ŵ1 + ρŴ (z2)− ρŴ (z1)

z2 − z1
+ ζ̃ .

The last equation is never satisfied for a.e. smallŴ = (ŵ2, ŵ3) in C
2n+2. In fact, forŵ1 = ϕ1(ŵ2, ŵ3) the r.h.s. is

o(|Ŵ |). Thus the claim follows from the Sard theorem, if at least one of the coefficients ofŵ2 andŵ3 is not small.
Since

D ×D = [
U5δ(z1 = z2 = 0)

] ∪ [
D ×D \Uδ(z1 = −z2)

] ∪ [
D ×D \Uδ

(
z1 = (−1

2 ± i
√

3
2

)
z2

)]
, (1)

and the regularity at(0,0) is preserved under small perturbation we may achieve injectivity away from the
diagonal by the quadratic perturbation and then in its neighborhood by a cubic one. This finishes the proo✷

For n = 1, when almost complex structures are automatically integrable, the equalitySM = FM for domains
M ⊂ C is equivalent to contractibility (M = D1 or C). In the case ofC-dimensionn = 2 the equality may fail to
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hold (however arguments of Theorem 2 show thatFM coincides with the pseudonorm̃SM obtained via immerse
disks).

Example 1. Consider the mapϕα :D1 → C2, z �→ (z(αz − 1)2, αz2(αz − 1)), |α| > 1. It has a unique self
intersection pointϕα(0) = ϕα(1/α) = 0, which is transversal:ϕ′

α(0) = (1,0), ϕα(1/α) = (0,1), and so non-
removable. For a neighborhoodU of the image Im(ϕα) the pseudonormsFU andSU are different.

For the productM4 = U2
1 × U2

2 the pseudonormsSM andFM were compared in [1]. It is however uncle
if we can majorizeSM � c · FM , with a constant depending onM, or more generally, if Kobayashi and Han
hyperbolicities (dM , resp.SM being a metric) are equivalent. Of course, the former implies the latter.

It was shown in [4] that contractible tame almost complex domains are hyperbolic. In other cas
hyperbolicity may be lost.

Example 2. Consider the Reeb foliation ofR3 with the standardT 2 as a leaf. This foliation propagates v
parallel transports toR2n = R3 × R2n−3, n � 2, and there is an almost complexJ on R2n making the foliation
pseudoholomorphic. Every domain containing the leafT 2 is neither tame nor hyperbolic. Forn = 2 only a curve
of genus 1 can be realized pseudoholomorphically in an almost complex(R2n, J ) [6]. Forn > 2 the sphereS2 can
be realized pseudoholomorphically, yielding a non-tame and non-hyperbolic domain in(R2n, J ) [4].

Remark 2. In [6] the analogy between geodesics and pseudoholomorphic disks was exploited (the Nijenhui
plays the role of the curvature [3]). It is however limited: by Theorem 3.1 there are no analogs for con
points in complex time curves theory. In fact the pseudoholomorphic curves are more flexible: there p
pseudoholomorphic disk through every finite collection of points.

References

[1] W. Jarnicki, Kobayashi–Royden vs. Hanh pseudometric inC2, Ann. Polon. Math. 75 (3) (2000) 289–294.
[2] B.S. Kruglikov, Existence of close pseudoholomorphic disks for almost complex manifolds and application to the Kobayashi–

pseudonorm, Funct. Anal. Appl. 33 (1) (1999) 46–58.
[3] B.S. Kruglikov, Tangent and normal bundles in almost complex geometry, Preprint Univ. Tromsø, 2002-46.
[4] B.S. Kruglikov, M. Overholt, The Kobayashi pseudodistance on almost complex manifolds, Differential Geom. Appl. 11 (1999) 26
[5] D. McDuff, Singularities ofJ -holomorphic curves in almost complex 4-manifolds, J. Geom. Anal. 2 (3) (1992) 249–266.
[6] J. Moser, Pseudo-holomorphic curves on a torus, Proc. Roy. Irish Acad. Sect. A, Suppl. 95 (1995) 13–21.
[7] A. Nijenhuis, W. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. Math. 77 (1963) 424–489.
[8] M. Overholt, Injective hyperbolicity of domains, Ann. Polon. Math. 62 (1) (1995) 79–82.
[9] H.L. Royden, The extension of regular holomorphic maps, Proc. Amer. Math. Soc. 43 (2) (1974) 306–310.

[10] J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, in: M. Audin, J. Lafontaine (Eds.), Holom
Curves in Symplectic Geometry, in: Progr. Math., vol. 117, Birkhäuser, 1994, pp. 165–189.

[11] I.N. Vekua, Generalized Analytic Functions, Fiz.-Mat. Literatury, Moscow, 1959 (in Russian); Engl. translation: Pergamon, L
1962.


