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Abstract

We give ap-adic proof of Hodge symmetry for smooth and projective varieties of dimension three over the field of co
numbers.To cite this article: K. Joshi, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une preuve p-adique de la symétrie de Hodge pour les variétés de dimension 3. Nous donnons une preuvep-adique de
la symétrie de Hodge pour une variété complexe, projective et lisse de dimension trois.Pour citer cet article : K. Joshi, C. R.
Acad. Sci. Paris, Ser. I 338 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Dans cette Note nous donnons une preuvep-adique de la symétrie de Hodge pour les variétés projectives,
de dimension au plus trois (Théorème 3.1). Notre approche est basée sur l’observation suivante : d’abord o
que l’analoguep-adique de la symétrie de Hodge est vraie pour une variété projective et lisse sur un corps
de caractéristiquep > 0 (Théorème 3.2) où les nombres de Hodgesont remplacés par les invariantesp-adiques
introduites par Ekedahl, appelées nombres de Hodge–Witt. La symétrie de Hodge–Witt pour des variétés d
décrites était montrée par Ekedahl, en utilisant son théorème de dualité. Ensuite, on a utilisé un autre
de Ekedahl qui donne l’égalité des nombres de Hodge–Witt et ceux de Hodge sous certaines condi
dégénération de la suite spectrale de Hodge–de Rham en caractéristiquep > 0 implique que ces conditions so
satisfaites. Pour déduire le Théorème 3.1 du Théorème 3.2 on utilise le « spreading out argument » stan
critère de Deligne–Illusie. Dans la Remarque 2 nous démontrons que l’hypothèse que la cohmologie cristalline de
X soit sans torsion est nécessaire.

E-mail address:kirti@math.arizona.edu (K. Joshi).
1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2003.11.038
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1. Introduction

Let X/C be a smooth projective variety. Forp,q � 0, lethp,q = dimHq(X,Ω
p

X/C
). By the Hodge decompos

tion theorem (see [7, Chapter 0, Section 7]) the spacesHq(X,Ω
p

X/C
),Hp(X,Ω

q

X/C
) are complex conjugates an

hence for allp,q � 0 we have:

hp,q = hq,p. (1)

In this Note we give ap-adic proof of (1) whenX/C is a smooth projective variety of dimension at most th
(see Theorem 3.1). Our approach is based on the following observation: One first notes that ap-adic analogue
of (1) holds whenX/C is replaced by a smooth, projective variety ofdimension at most three over a perfect fie
of characteristicp > 0 (see Theorem 3.2) and Hodge numbers are replaced byp-adic invariants introduced b
Ekedahl [5, IV 3.1] called Hodge–Witt numbers. These invariants take into account the torsion in the slope spec
sequence as well as the slopes of Frobenius in the crystalline cohomology of the variety. Hodge–Witt symme
for such varieties was proved by Ekedahl (see [5, VI 3.3 (ii)]) using his duality theorem.

Next one appeals to another result of Ekedahl (see [5, IV, 3.3.1]) which guarantees the equality of Hodge–W
numbers and the Hodge numbers under suitable circumstances. That these required conditions are met is a sim
consequence of the degeneration of Hodge–de Rham spectral sequence in characteristicp (which is a hypothesis
in Theorem 3.2). To deduce Theorem 3.1 from Theorem 3.2 we use a standard “spreading out argument
Deligne–Illusie criterion (see [2, Corollary 2.4]) for the deneration of the Hodge to de Rham spectral seque
Remark 2 we show that in Theorem 3.2 thehypothesis that the crystalline cohomology ofX be torsion free canno
be relaxed.

The restriction on dimension in Theorems 3.1, 3.2 arises because Hodge–Witt symmetry is not known to hol
all dimensions. However, Ekedahl (see [5, VI, 3.2 (ii)]) gave a necessary and sufficient condition for Hodge–W
symmetry to hold (in any dimension). This condition is given in terms of a certain equality of domino numb
the slope spectral sequence (see [11]). We conjecture that Hodge–Witt symmetry (and hence Ekedahl’s nece
and sufficient conditions) holds under a fairly mild hypothesis onX (see Conjecture 1). As Hodge symmetry is tr
over complex numbers one can turn our proof of Theorem 3.1 around to deduce the validity of Conjecture
the slightly stronger hypothesis thatX admits a smooth lifting to Witt vectors.This is the content of Proposition 3.

2. Hodge–Witt symmetry

To keep this Note brief, we will refer to [9,11] and [3–5] for notations and basic results. In particular we
recall the notion of dominos here but make use of it. All the properties of dominos we need here are convenie
summarized in Illusie’s survey [10]. In this sectionX/k is a smooth projective variety over a perfect field
characteristicp > 0. Let Hj(X,WΩi

X) be the Hodge–Witt cohomology groups ofX. Let T i,j be the dimension
of the domino (see [10, p. 42]) associated to the differential

Hj
(
X,WΩi

X

) → Hj
(
X,WΩi+1

X

)
.

Let mi,j be the slope numbers (see [5, 0, 6.1 and 6.2 (ii)] or [10, p. 64]) associated to the slopes of Frobe
the crystalline cohomology ofX. We recall the definition here for the reader’s convenience. Let for any rat
numberλ, let hn

cris,λ be the dimension (= multiplicity) of the slopeλ in Hn
cris(X/W). Then by definition ofmi,j

we have

mi,j =
∑

λ∈[i,i+1)

(i + 1− λ)h
i+j

cris,λ +
∑

λ∈[i−1,i)

(λ − i + 1)h
i+j

cris,λ. (2)

Then the Hodge–Witt numbers ofX (see [10, p. 64]), denotedhi,j
W , are defined to be

h
i,j
W = mi,j + T i,j − 2T i−1,j+1 + T i−2,j+2. (3)
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Note that by [11, I, 2.18.1]T i,j is zero if the corresponding differential of the slope spectral sequence is z
The following symmetry of slope numbers is a consequence of [1] and [14, Theorem 1] and is due to E

(see [5, VI, 3.1 (ii)]).

Lemma 2.1. For any smooth projective varietyX/k over a perfect fieldk of characteristicp and for alli, j we have

mi,j = mj,i . (4)

We will also need the following elementary lemma due to Ekedahl (see [5, VI, 3.3 (ii)]).

Lemma 2.2. LetX/k be a smooth projective variety over a perfect fieldk of characteristicp > 0. Then

h
0,1
W = h

1,0
W , (5)

h
0,2
W = h

2,0
W . (6)

Proof. From the definition ofhi,j
W (see (3)) and the fact that the domino numberT i,j = 0 if one ofi, j is negative,

we see that we have

h
0,1
W = m0,1 + T 0,1, (7)

h
1,0
W = m1,0 + T 1,0 − 2T 0,1, (8)

h
0,2
W = m0,2 + T 0,2, (9)

h
2,0
W = m2,0 + T 2,0 − 2T 1,1 + T 0,2. (10)

Now by Lemma 2.1 it suffices to prove thatT 0,1, T 1,1 andT 1,0, T 2,0 are zero. The vanishing of the first two
a consequence of the fact thatH 1(X,W(OX)),H 1(X,WΩ1

X) are finite type overW (see [11, II, 3.11]) and th
vanishing of the remaining two is a consequence of the fact thatH 0(X,WΩ1

X), H 0(X,WΩ2
X) are of finite type

overW , which is proved in [9, 2.18, p. 614].�
Remark 1. In [5, VI, 3.3] Ekedahl has shown thath

i,j
W = h

j,i
W for any smooth projective threefoldX/k andi, j � 0.

The proof of the assertionhi,3−i
W = h

3−i,i
W uses Ekedahl’s duality theorem (see [3]). We note here that we d

use Ekedahl’s duality in the proof of Theorem 3.2 given below but use the two lemmas above. We also n
Ekedahl’s duality is not sufficient to prove Hodge–Witt symmetry in higher dimensions.

3. Hodge symmetry for threefolds

Theorem 3.1. Let X/C be a smooth projective variety over complex numbers of dimension at most three
hodge symmetry(1) holds forX.

This theorem will follow from the following more general assertion.

Theorem 3.2. Let X/k be a smooth projective variety of dimension at most three over a perfect fieldk of
characteristicp > 0. Assume that the Hodge to de Rham spectral sequence ofX degenerates and the crystallin
cohomology ofX is torsion free. Then Hodge symmetry(1) holds for Hodge numbers ofX/k.

Proof. Observe that the equalityhi,dim(X)−i = hdim(X)−i,i is a trivial consequence of Serre duality (see [8,
Theorem 7.6]). So we have to provehi,j = hj,i when i + j � dim(X) − 1. This already proves the result f
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dim(X) = 1. Now observe that in any caseh0,1 = h1,0 follows by reduction to the Picard variety ofX (this needs
torsion-freeness ofH 2

cris(X/W) which enables us to deduce that Pic(X) is reduced (see [9, II, 5.16]); also s
Remark 2) , where the assertion is trivial and this proves the result for dim(X) = 2. So we are left with dim(X) = 3
and have to prove thath0,2 = h2,0.

One first notes thatH ∗(X,WΩ•
X) is a Mazur–Ogus object in the derived category of bounded complex

modules over the Cartier–Dieudonne–Raynaud algebra. Tosee this one observes that the slope spectral sequ
computes the crystalline cohomology ofX (see [9, 3.1.1, p. 614]) and thatH ∗(X,WΩ•

X) is a coherent module ove
the Cartier–Dieudonne–Raynaud algebra (see [11, II, Theorem 2.2]). By ourhypothesis the crystalline cohomolo
of X is torsion free, so by the universalcoefficient theorem we see that:

rankW Hn
cris(X/W) = dimk Hn

dR(X/k).

Finally as the Hodge–de Rham spectral sequence ofX degenerates atE1, we see that the number on the right
equal to

∑
i+j=n dimHi(X,Ω

j
X). Hence by the definition of Mazur–Ogus objects (see [5, IV, 1.1]) we see

H ∗(X,WΩ•
X) is a Mazur–Ogus object. Hence we can apply [5, Corollary 3.3.1, p. 86] to see thath

i,j

W = hi,j and
so by Lemma 2.2 we are done.�
Proof of Theorem 3.1. Now to prove Theorem 3.1 it will suffice to reduce to the situation where we can a
Theorem 3.2. This is done by a “spreading out” argument as in [2, Corollary 2.4]. Letn be the dimension ofX/C.
By writing C as a direct limit of its subrings of finite type overZ, we can assume thatX arises by extension o
scalars from a projective and smooth scheme of finite typeX /S, which is pure of relative dimensionn, and where
S is affine, integral, smooth of finite type overZ, and the relative Hodge and de Rham cohomology groups ofX /S

are locally free of finite type and so commute with base extensions. Further shrinkingS if required we can also
assume that the Hodge to de Rham spectral sequence ofX /S degenerates atE1, and thatn! is invertible inOS .

Now to complete the proof we choose a closed point ofS and apply Theorem 3.2 to the fibre over it, and n
that the hypothesis of the theorem are satisfied. Indeed the degeneration of Hodge to de Rham spectral
on the special fibre follows from Deligne–Illusie criterion for degeneration (see [2, Corollary 2.4]) and the to
freeness of crystalline cohomology of the special fibrefollows from the comparison theorem between de Rh
and crystalline cohomologies and the factthat the relative de Rham cohomology ofX /S is locally free. �
3.1. Some remarks

Remark 2. The assumption that the crystalline cohomology ofX is torsion free is a necessary assumption in Th
rem 3.2. If this assumption is dropped then Hodge symmetry fails in positive characteristic. Here is one exam
surfaces): this is taken from [9, Chapter II, Section 7.3]. LetX be a smooth projective Enriques surface in cha
teristic two. Assume thatX is singular, i.e.,H 1(X,OX) is one-dimensional and Frobenius is bijective on this ve
space; such surfaces exist only in characteristic two. Then one has a complete list of the Hodge invariantsX. In
particular in the present situation, there are no global one forms onX but asH 1(X,OX) �= 0, the Picard schem
of X is not reduced (it is equal toµ2 so the Albanese variety is zero and hence the second crystalline cohom
of X has torsion (it is ofV -torsion type in Illusie’s classification of torsion). In fact as the proof of [9, Propositio
7.3.5, p. 656] shows, the cohomology ofX with coefficients in the sheaf of Witt vectors is of finite type and soX is
Hodge–Witt. Other examples of surfaces (in any characteristicp) where Hodge symmetry fails can be found in [1

One would like to conjecture that Hodge–Witt symmetry should hold under some reasonable hypothes
is a precise statement:

Conjecture 1. Suppose thatX/k is a smooth, projective variety over a perfect field. Assume thatX lifts to
W2 and the crystalline cohomology ofX is torsion free. ThenX satisfies Hodge–Witt symmetry. In particul
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Ekedahl’s conditions hold forX, that is for alli, j , the dimension,T i,j of the domino associated to the different
d :Hj(X,WΩi) → Hj(X,WΩj+1) satisfies

T i,j = T j−2,i+2. (11)

Remark 3. We recall that the equality (11) was shown by Ekedahl to be a necessary and sufficient condi
Hodge–Witt symmetry to hold (see [5, VI, 3.2 (ii)]). We refer to this equality as “Ekedahl’s condition for Hodg
Witt symmetry”. We note that the proof of Theorems3.1, 3.2 can be turned around: as one does know that H
symmetry does hold over complex numbers, one can use the proof just given to deduce Hodge–Witt symme
holds on the special fibre. Here is a precise assertion.

Proposition 3.1. Let X/k be a smooth projective variety over a perfect field of characteristicp > 0. Assume
thatX admits a smooth, projective lifting to Witt vectorsW(k) of k, and thatp > dim(X). Assume further that th
crystalline cohomology ofX is torsion free. Then Hodge–Witt symmetry holds forX.

Proof. Choose a smooth liftingY/W of X. We deduce the fact thatH ∗(X,WΩ•
X) is a Mazur–Ogus object exact

as in the proof of Theorem 3.2. This implies that the Hodge numbers ofX are the same as the Hodge–Witt numb
of X. By the torsion freeness of the crystalline cohomology we deduce that the de Rham cohomology ofY/W

is torsion free as well. Now by [6], the Hodge de Rham spectral sequence ofY/W degenerates atE1 and the
Hodge filtration is by direct summands, hence the all the Hodge groupsHj(Y,Ωi

Y/W ) are torsion free as well. B
extending scalars fromW to C, and using the Hodge theorem we deduce that Hodge–Witt symmetry holds.
IV, 3.2 (ii)] we see that (11) is satisfied.�
Remark 4. In a forthcoming work (see [13]) we have investigated properties of Hodge–Witt numbers and
numbers in detail. For instance we have shown that for allsmooth projective surfaces of general type which lift
W2 and have torsion free crystalline cohomology, the following inequality holds

c2
1 � 5c2 + 6b1. (12)

Herec1, c2 have their usual meaning andb1 is the first Betti number ofX computed, say, using étale cohomolo
For this and other investigations on Hodge–Witt numbers we refer the reader to [13].

Remark 5. In general the conditions of Theorem 3.2 are not very easy to verify. But here is one applic
assume thatX is Frobenius split and thatp � 5. Then by a result of Mehta (see [12]) we see that Hodge de R
spectral sequence ofX degenerates atE1, so if crystalline cohomology ofX is torsion free thenX satisfies Hodge
symmetry.
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