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Abstract

We give ap-adic proof of Hodge symmetry for smooth and projective varieties of dimension three over the field of complex
numbersTo citethisarticle: K. Joshi, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé
Une preuve p-adique de la symétrie de Hodge pour les variétés de dimension 3. Nous donnons une preuyeadique de
la symétrie de Hodge pour une variété complexe, projective et lisse de dimensioRdmisiter cet article: K. Joshi, C. R.
Acad. Sci. Paris, Ser. | 338 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version francaise abr égée

Dans cette Note nous donnons une prepralique de la symétrie de Hodge pour les variétés projectives, lisses
de dimension au plus trois (Théoréme 3.1). Notre approche est basée sur I'observation suivante : d’abord on obsery
que l'analoguep-adique de la symétrie de Hodge est vraie pour une variété projective et lisse sur un corps parfait
de caractéristique > 0 (Théoréme 3.2) ou les nombres de Hodgat remplacés par les invariantesadiques
introduites par Ekedahl, appelées nombres de Hoddge—Vd symétrie de Hodge—Witt pour des variétés déja
décrites était montrée par Ekedahl, en utilisant son théoréme de dualité. Ensuite, on a utilisé un autre résulta
de Ekedahl qui donne I'égalité des nombres de Hodge—Witt et ceux de Hodge sous certaines conditions. La
dégénération de la suite spectrale de Hodge—de Rham en caracténistigdiémplique que ces conditions sont
satisfaites. Pour déduire le Théoreme 3.1 du Théoréme 3.2 on utilise le « spreading out argument» standard et |
critere de Deligne—lllusie. Dans la Remarque 2 nousalénons que I'hypothése que lalimologie cristalline de
X soit sans torsion est nécessaire.
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1. Introduction

Let X/C be a smooth projective variety. Fprg > 0, leth?9 =dim HY (X, 9;’;/@)- By the Hodge decomposi-

tion theorem (see [7, Chapter 0, Section 7]) the spaft&sy, Q)’;/C), HP(X, ng/c) are complex conjugates and
hence for allp, ¢ > 0 we have:

BPd — P 1)

In this Note we give g-adic proof of (1) whenX/C is a smooth projective variety of dimension at most three
(see Theorem 3.1). Our approach is based on the following observation: One first notegtadicaanalogue

of (1) holds whenX/C is replaced by a smooth, projective varietydifnension at most three over a perfect field
of characteristicp > 0 (see Theorem 3.2) and Hodge numbers are replacggdgic invariants introduced by
Ekedahl [5, IV 3.1] called Hodge—Witt numbers. These irsats take into account the torsion in the slope spectral
sequence as well as the slopes of Frobenius in th&tatine cohomology of the variety. Hodge—Witt symmetry
for such varieties was proved by Ekedahl (see [5, VI 3.3 (ii)]) using his duality theorem.

Next one appeals to another result of Ekedahl (se®/3.3.1]) which guarantees the equality of Hodge—Witt
numbers and the Hodge numbers under suitable circusesamhat these required conditions are met is a simple
consequence of the degen@a of Hodge—de Rham spectral sequence in charactepgiichich is a hypothesis
in Theorem 3.2). To deduce Theorem 3.1 from Theorem 3.2 we use a standard “spreading out argument” and the
Deligne-lllusie criterion (see [2, Corollary 2.4]) for the deneration of the Hodge to de Rham spectral sequence. In
Remark 2 we show that in Theorem 3.2 thgothesis that the crystalline cohomologybe torsion free cannot
be relaxed.

The restriction on dimension in Theorems 3.1, 3i8es because Hodge—Witt symmetry is not known to hold in
all dimensions. However, Ekedahl (see [5, VI, 3.2]Jigave a necessary and sufficient condition for Hodge—Witt
symmetry to hold (in any dimension). This condition is given in terms of a certain equality of domino numbers for
the slope spectral sequence (sed).]e conjecture that Hodge—-Witt symmetry (and hence Ekedahl's necessary
and sufficient conditions) holds under a fairly mild hypothesiXofsee Conjecture 1). As Hodge symmetry is true
over complex numbers one can turn our proof of Theorem 3.1 around to deduce the validity of Conjecture 1 under
the slightly stronger hypothesis th¥tadmits a smooth lifting to Witt vector$his is the content of Proposition 3.1.

2. Hodge-Witt symmetry

To keep this Note brief, we will refer to [9,11] and [3-5] for notations and basic results. In particular we do not
recall the notion of dominos here but make use of it. A8 properties of dominos we need here are conveniently
summarized in lllusie’s survey [10]. In this sectidy k is a smooth projective variety over a perfect field of
characteristigpp > 0. Let H/ (X, W£2},) be the Hodge-Witt cohomology groups Xf Let 7"/ be the dimension
of the domino (see [10, p. 42]) associated to the differential

HY (X, WRk) — H/ (X, Wil
Let m*/ be the slope numbers (see [5, 0, 6.1 and 6.2 (ii)] or [10, p. 64]) associated to the slopes of Frobenius on
the crystalline cohomology aX. We recall the definition here for the reader’s convenience. Let for any rational

numbera, let i , be the dimension= multiplicity) of the slopex in Hg;(X/W). Then by definition ofn’/
we have

mhi= 3" i+ 1-Dhgl + Y =i+ Dhg,. )
reli,i+1) reli—1,i)

Then the Hodge—-Witt numbers &f (see [10, p. 64]), denote’d;/, are defined to be
Wy =mi 4 T =i hiAL  pi=2)42 ©)
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Note that by [11, I, 2.18.1T"/ is zero if the corresponding differential of the slope spectral sequence is zero.
The following symmetry of slope humbers is a consequence of [1] and [14, Theorem 1] and is due to Ekedahl
(see [5, VI, 3.1 (ii)]).

Lemma 2.1. For any smooth projective variety/ k over a perfect field of characteristicp and for alli, j we have
m') =ml, 4)
We will also need the following elementary lemma due to Ekedahl (see [5, VI, 3.3 (ii)]).
Lemma 2.2. Let X/ k be a smooth projective variety over a perfect fielof characteristicy > 0. Then
Wt =n3’, (5)

h$Z = n%?. (6)

Proof. From the definition ohiv’vj (see (3)) and the fact that the domino numbBéf = 0 if one ofi, j is negative,
we see that we have

Wyt =m®t 4+ 701, (7
B0 =m0 4+ TR0 _ o701 (8)
2 =m®2 4+ 102, )
hﬁ’,o —m20 4 720 _oplly 702 (10)

Now by Lemma 2.1 it suffices to prove thafl, 711 and 710, 720 are zero. The vanishing of the first two is
a consequence of the fact that (X, W(Oy)), HX(X, WQ}() are finite type oveW (see [11, II, 3.11]) and the
vanishing of the remaining two is a consequence of the factatfak, W2%), HO(X, W2) are of finite type
over W, which is proved in [9, 2.18, p. 614].0

Remark 1. In[5, VI, 3.3] Ekedahl has shown thhi;vj = hJWl for any smooth projective threefoki/ k andi, j > 0.

The proof of the assertiohl’g,s_i = h"év_i’i uses Ekedahl's duality theorem (see [3]). We note here that we do not
use Ekedahl’s duality in the proof of Theorem 3.2 given below but use the two lemmas above. We also note that
Ekedahl’s duality is not sufficient to prove Hodge—Witt symmetry in higher dimensions.

3. Hodge symmetry for threefolds

Theorem 3.1. Let X/C be a smooth projective variety over complex nhumbers of dimension at most three. Then
hodge symmetrfl) holds forX.

This theorem will follow from the following more general assertion.
Theorem 3.2. Let X/k be a smooth projective variety of dimension at most three over a perfectkfiefd
characteristicp > 0. Assume that the Hodge to de Rham spectral sequenkedefjenerates and the crystalline

cohomology o¥ is torsion free. Then Hodge symmetty holds for Hodge numbers of/ k.

Proof. Observe that the equalitydMX) = = pdiMX)=ii is 3 trivial consequence of Serre duality (see [8, IIl,
Theorem 7.6]). So we have to proye’/ = h/'* wheni + j < dim(X) — 1. This already proves the result for
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dim(X) = 1. Now observe that in any cag&! = 119 follows by reduction to the Picard variety &f (this needs
torsion-freeness OHCZHS(X/ W) which enables us to deduce that @ig is reduced (see [9, Il, 5.16]); also see
Remark 2) , where the assertion is trivial and this proves the result faidim 2. So we are left with diriX) =3

and have to prove thaf2 = 120,

One first notes thatl* (X, W2%) is a Mazur—Ogus object in the derived category of bounded complexes of
modules over the Cartier—Dieudonne—Raynaud algebrae&dhis one observes that the slope spectral sequence
computes the crystalline cohomologyXf(see [9, 3.1.1, p. 614]) and thAt* (X, W2%) is a coherent module over
the Cartier—Dieudonne—Raynaud dige(see [11, Il, Theorem 2.2]). By ohypothesis the crystalline conomology
of X is torsion free, so by the universadefficient theorem we see that:

ranky Hgo(X/ W) = dimg Hi(X/ k).

Finally as the Hodge—de Rham spectral sequence dégenerates &y, we see that the number on the right is
equal tOZiﬂ-:n dimH! (X, .Q)’(). Hence by the definition of Mazur-Ogus objects (see [5, IV, 1.1]) we see that

H*(X, WQy) is a Mazur—Ogus object. Hence we can apply [5, Corollary 3.3.1, p. 86] to sele’;‘t,’haihi’f and
so by Lemma 2.2 we are donen

Proof of Theorem 3.1. Now to prove Theorem 3.1 it will suffice to reduce to the situation where we can apply
Theorem 3.2. This is done by a “spreading out” argument as in [2, Corollary 2.4}. hethe dimension ok /C.

By writing C as a direct limit of its subrings of finite type ov&r we can assume that arises by extension of
scalars from a projective and smooth scheme of finite /p&, which is pure of relative dimension and where

S is affine, integral, smooth of finite type ovér and the relative Hodge and de Rham cohomology groups/sf

are locally free of finite type and so commute with base extensions. Further shrigifimgquired we can also
assume that the Hodge to de Rham spectral sequentgdtiegenerates a1, and that:! is invertible inOy.

Now to complete the proof we choose a closed point ahd apply Theorem 3.2 to the fibre over it, and note
that the hypothesis of the theorem are satisfied. Indeed the degeneration of Hodge to de Rham spectral sequen
on the special fibre follows from Deligne—lllusie criterion for degeneration (see [2, Corollary 2.4]) and the torsion-
freeness of crystalline cohomology of the special fitmgows from the comparison theorem between de Rham
and crystalline cohomologies and the fawit the relative de Rham cohomologyAf S is locally free. O

3.1. Some remarks

Remark 2. The assumption that the crystalline cohomologxds torsion free is a necessary assumption in Theo-
rem 3.2. If this assumption is dropped then Hodge symmetry fails in positive characteristic. Here is one example (for
surfaces): this is taken from [9, Chapter II, Section 7.3]. Xdie a smooth projective Enriques surface in charac-
teristic two. Assume that is singular, i.e. (X, Ox) is one-dimensional and Frobenius is bijective on this vector
space; such surfaces exist only in characteristic two. Then one has a complete list of the Hodge invaXiaimts of
particular in the present situation, there are no global one form bat asH(X, Ox) # 0, the Picard scheme

of X is not reduced (it is equal t@, so the Albanese variety is zero and hence the second crystalline cohomology
of X has torsion (it is oV -torsion type in lllusie’s classification obtsion). In fact as the proof of [9, Proposition
7.3.5, p. 656] shows, the cohomologyXfwith coefficients in the sheaf of Witt vectors is of finite type andsis
Hodge—Witt. Other examples of surfaces (in any charactep$tichere Hodge symmetry fails can be found in [15].

One would like to conjecture that Hodge—Witt symmetry should hold under some reasonable hypothesis. Here
is a precise statement;

Conjecture 1. Suppose thaX/k is a smooth, projective variety over a perfect field. Assume thdifts to
W2 and the crystalline cohomology d&f is torsion free. TherX satisfies Hodge—Witt symmetry. In particular
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Ekedahl's conditions hold faX, that is for alli, j, the dimension7’>/ of the domino associated to the differential
d:HI(X, W' — HI(X, W2/t1) satisfies

Remark 3. We recall that the equality (11) was shown by Ekedahl to be a necessary and sufficient condition for
Hodge—Witt symmetry to hold (see [5, VI, 3.2 (ii)]). Wefee to this equality as “Ekedahl’s condition for Hodge—
Witt symmetry”. We note that the proof of Theore®i4, 3.2 can be turned around: as one does know that Hodge
symmetry does hold over complex numbers, one canthis proof just given to deduce Hodge—-Witt symmetry
holds on the special fibre. Here is a precise assertion.

Proposition 3.1. Let X/k be a smooth projective variety over a perfect field of characterigtic 0. Assume
that X admits a smooth, projective lifting to Witt vectd#g k) of k, and thatp > dim(X). Assume further that the
crystalline cohomology aX is torsion free. Then Hodge—Witt symmetry holdsXor

Proof. Choose a smooth liftingf/ W of X. We deduce the fact th&f*(X, W25) is a Mazur—Ogus object exactly

as in the proof of Theorem 3.2. This implies that the Hodge numbeXsao€ the same as the Hodge—Witt numbers
of X. By the torsion freeness of the crystallinehomology we deduce thaté de Rham cohomology df/ W

is torsion free as well. Now by [6], the Hodge de Rham spectral sequenkEgWfdegenerates a1 and the
Hodge filtration is by direct summands, hence the all the Hodge grAupE, QQ/W) are torsion free as well. By
extending scalars fror¥ to C, and using the Hodge theorem we deduce that Hodge—Witt symmetry holds. By [5,
IV, 3.2 (ii)] we see that (11) is satisfied.O

Remark 4. In a forthcoming work (see [13]) we have investigated properties of Hodge—Witt numbers and slope
numbers in detail. For instance we have shown that fagralboth projective surfaces of general type which lift to
W> and have torsion free crystalline cohomology, the following inequality holds

¢ < 5e + 6by. (12)

Herec1, c2 have their usual meaning ahd is the first Betti number ok computed, say, using étale cohomology.
For this and other investigations on Hodge—Witt numbers we refer the reader to [13].

Remark 5. In general the conditions of Theorem 3.2 are not very easy to verify. But here is one application:
assume thak is Frobenius split and that > 5. Then by a result of Mehta (see [12]) we see that Hodge de Rham
spectral sequence af degenerates &1, so if crystalline cohomology oX is torsion free therX satisfies Hodge
symmetry.
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