

Available online at www.sciencedirect.com

C. R. Acad. Sci. Paris, Ser. I 338 (2004) 55-58

Algebraic Geometry

Chow groups of surfaces with $h^{2,0} \leq 1$

Catriona Maclean

Institut de mathématiques de Jussieu, Université Paris 6, 175, rue de Chevaleret, 75013 Paris, France

Received 19 August 2003; accepted after revision 18 November 2003

Presented by Jean-Pierre Demailly

Abstract

We will investigate the geometry of rational equivalence classes of points on a surface *S*. We will show that if *S* is a general projective K3 surface then these equivalence classes are dense in the complex topology. We will also show that if *S* has the property that these equivalence classes are Zariski dense, then $h^{2,0}(S) \leq 1$. *To cite this article: C. Maclean, C. R. Acad. Sci. Paris, Ser. I 338 (2004).*

© 2003 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Les groupes de Chow des surfaces telles que $h^{2,0} \leq 1$. Nous considérons la géométrie des classes d'équivalence rationelle des points d'une surface *S*. Nous montrons que si *S* est une surface K3 générale, ces classes d'équivalence sont denses pour la topologie complexe. Nous montrons également que si *S* a la propriété que ces classes d'équivalence sont Zariski dense, alors $h^{2,0}(S) \leq 1$. *Pour citer cet article : C. Maclean, C. R. Acad. Sci. Paris, Ser. I 338 (2004).* © 2003 Published by Elsevier SAS on behalf of Académie des sciences.

1. Introduction and statement of results

The connection between the Chow group $CH_0(S)$ of 0-cycles on a surface S and $h^{2,0}(S)$ has been an object of interest since Mumford's 1968 paper [6], in which he proved the following result.

Theorem 1.1 (Mumford). If $CH_0(S)$ is representable, then $h^{2,0}(S) = 0$.

Bloch [1] conjectured that the converse is also true.

Conjecture 1 (Bloch). If S is a smooth projective surface and $h^{2,0}(S) = 0$ then CH₀(S) is representable.

Bloch, Kas and Liebermann proved the Bloch conjecture for surfaces not of general type in [2]. This conjecture has also been shown to hold for various surfaces of general type such that $h^{2,0}(S) = 0$ – see, for example, [9].

E-mail address: catriona@math.jussieu.fr (C. Maclean).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2003 Published by Elsevier SAS on behalf of Académie des sciences. doi:10.1016/j.crma.2003.10.039

Our aim is to show there is also a close connection between the condition $h^{2,0}(S) = 1$ and the geometry of 0-cycles on S. In particular, we will show the following result.

Theorem 1.2. Let S be a general smooth projective K3 surface. Then for general $x \in S$, the set

 $\{y \in S \mid y \equiv x\}$

is dense in S (for the complex topology).

Here \equiv denotes rational equivalence between points. We will also prove a partial converse to this result.

Theorem 1.3. Let S be a smooth complex surface, such that for a generic point x of S the set

 $\{y \in S \mid y \equiv x\}$

is Zariski dense in S. Then $h^{2,0}(S) \leq 1$.

2. Proof of Theorem 1.2

The proof of this theorem relies on three fundamental facts:

- 1. If *E* is an elliptic curve and $x \in E$, then the set $\{y \in E \mid ny \equiv nx \text{ for some integer } n\}$ is dense in *E*.
- 2. There are many families of elliptic curves on a K3 surface.
- 3. By a theorem of Roitman's, [7], the Chow group of a K3 surface is torsion-free.

What we actually need to prove the theorem is two one-dimensional families of elliptic curves which intersect transversally. A sketch proof the existence of singular rational curves and families of singular elliptic curves can be found in the appendix to [5], attributed to Mumford and Bogolomov independently. Chen proved in [3] the following theorem.

Theorem 2.1 (Chen). For any integers $n \ge 3$ and d > 0, the linear system $|\mathfrak{O}_S(d)|$ on a general K3 surface S in \mathbb{P}^n contains an irreducible nodal rational curve.

The following proposition is an easy corollary of this (see the appendix to [5] or [4] (p. 70)).

Proposition 2.2. The linear system $|O_S(d)|$ on a general K3 surface S in \mathbb{P}^n contains a 1-dimensional family of curves of geometric genus ≤ 1 whose general element is irreducible and nodal.

Indeed, the proposition follows from the theorem by a standard dimension count. If *S* is a K3 surface in \mathbb{P}^N and the general element of $|\mathcal{O}_S(d)|$ is a smooth curve of genus *g*, then Saint-Donat calculated in [8] (p. 609) that the dimension of $|\mathcal{O}_S(d)|$ is *g*. However, the codimension of the space of nodal irreducible curves of geometric genus ≤ 1 in M_g is g - 1. The proposition follows.

We now choose two distinct irreducible 1-dimensional families,

 $\pi_1: F_1 \to B_1, \qquad \pi_2: F_2 \to B_2$

which are in the linear systems $|O_S(1)|$ and $|O_S(2)|$ respectively and whose general elements are integral nodal curves of geometric genus ≤ 1 . There are surjective maps $\phi_i : F_i \to S$.

We consider those $x \in S$ such that x is not contained in the image under ϕ_2 of any non-integral fibre of π_2 . This is the only condition needed to prove the theorem for x.

56

Choose $y \in F_1$ such that $\phi_1(y) = x$ and denote $\pi_1(y)$ by z. Denote the curve $\pi_1^{-1}(z)$ by D. There is a surjective map from a nodal curve of genus ≤ 1 to D, $r: \overline{D} \to D$.

Every component of \overline{D} is of geometric genus ≤ 1 . There is a component of \overline{D} which intersects $(\phi_1 \circ r)^{-1}(x)$ and whose image under $\phi_1 \circ r$ is not a single point. Denote the image of this component by *E*. Since *E* has a normalisation of genus ≤ 1 , the set

 $\{z \in E \text{ such that } z - x \text{ is torsion in } CH^0(E)\}$

is dense in E. By a result of Roitman's, [7], the torsion part of $CH^0(S)$ is 0. Hence, the set

 $\{z \in E \text{ such that } z \equiv x \text{ in } CH^0(S)\}$

is dense in E.

Our strategy is as follows. The curve *E* is transverse to general elements of the family F_2 . Consider the curves in the family F_2 which are elliptic or rational and meet *E* in a point rationally equivalent to *x*. The set of such curves is dense in F_2 . If E_2 is such a curve then the set {points of E_2 rationally equivalent to *x*} is dense in E_2 .

More precisely, consider the variety $V = \phi_2^{-1}(E)$ which parameterises points of intersection of *E* with a curve in the family F_2 . The projection of *V* onto B_2 is surjective. Let S_E be the set

 $\{y \in E \text{ such that } y \equiv x \text{ in } CH^0(S)\}.$

The set S_E is dense in E for the complex topology. We denote by T the closure of

 $\{y \in S \text{ such that } y \equiv x \text{ in } CH^0(S)\}.$

We define \widetilde{B}_2 to be the open set in B_2 parameterising irreducible members of the family F_2 . Consider

$$Z = \pi_2 \circ \phi_2^{-1}(S_E),$$

the set parameterising curves in the family F_2 which meet E in at least one point of S(E). We denote by \widetilde{Z} the set $Z \cap \widetilde{B}_2$. Once again, if $z \in \widetilde{Z}$, then the set

 $\{y \in F_{2,z} \text{ such that } y \equiv x \text{ in } CH^0(S)\}$

is dense in $F_{2,z}$, the fibre over z in F_2 . Hence, T contains $\pi_2^{-1}(\widetilde{Z})$. We now need the following lemma.

Lemma 2.3. The set Z is dense in B_2 .

Proof. There is a component *C* of *V* mapping surjectively to *E*. Since *x* is not contained in any non-integral fibre of π_2 , and *E* is not an element of $|\mathcal{O}_S(2)|$ for degree reasons, $\pi_2 : C \to B_2$ is surjective. Since *C* is irreducible and $\phi_2|_C$ is surjective onto $E \phi_2|_C^{-1}(S(E))$ is dense in *C*. It follows that, since $\pi_2|_C$ is surjective and continuous, *Z* is dense in B_2 . \Box

It immediately follows that T is dense in S. This completes the proof of Theorem 1.2.

3. Proof of Theorem 1.3

Now suppose that *S* satisfies the hypothesis that for general $x \in S$ the set $\{y \in S \mid x \equiv y \in CH^0(S)\}$ is Zariski dense in *S*. We want to show that $h^{2,0}(S) \leq 1$. Mumford proved the following result in [6].

Theorem 3.1 (Mumford). There exists a countable union of maps of reduced algebraic schemes $\phi_i : W_i \to S \times S$ such that the following hold.

(1) $x \equiv y$ if and only if there exists *i* such that $(x, y) \in \phi_i(W_i)$.

(2) Let pr^1 and pr^2 be the two projections from $S \times S$ onto S. Consider the maps

 $\pi_i^1 \text{ and } \pi_i^2 : W_i \to S$ given by $\pi_i^j = pr^j \circ \phi_i$. We then have for any 2-form on S, ω , $\pi_i^{1*}(\omega) = \pi_i^{2*}(\omega)$.

We may restrict ourselves to the case where the images of all the maps ϕ_i are of dimension ≤ 2 , since Mumford proved in [6] that

Proposition 3.2 (Mumford). If there is an *i* such that the image of ϕ_i is of dimension ≥ 3 then $h^{2,0}(S) = 0$.

We now choose *y* such that

- (1) $y \notin \pi_i^j(W_i)$ for any *i* such that dim $(\text{Im}\phi_i) \leq 1$.
- (2) There do not exist x, i, j such that $(x, y) \in \text{Im}(\phi_i)$ and π_i^j is not submersive at any point of $\phi_i^{-1}(x, y)$.

(3) The set $\{x \in S \mid y \equiv x\}$ is Zariski dense in *S*.

Since the varieties described in (1) and (2) are of dimension ≤ 1 and, by assumption, (3) holds for general y, there exists such a y. The theorem follows from the following proposition.

Proposition 3.3. There is no non-zero 2-form ω on S vanishing at y.

Proof. Let ω be such a 2-form, and consider $x \in S$ such that $y \equiv x$. By the assumptions on y it follows that ω vanishes at x. Indeed, there is some W_i such that $(x, y) \in \phi_i(W_i)$. By assumption (2), there exists $p \in W_i$ such that $\phi_i(p) = (x, y)$ and π_i^1 , π_i^2 are both submersive at p. We know that $\pi_i^{2*}(\omega)(p) = 0$ since $\omega(y) = 0$. It follows that $\pi_i^1 * (\omega)(p) = 0$. But by assumptions (1) and (2), this implies that $\omega(x) = 0$. Therefore, since the set of such points is Zariski dense, ω is identically 0. \Box

It follows immediately that $h^{2,0}(S) \leq 1$. This completes the proof of the theorem.

Acknowledgements

I would like to express my gratitude to my thesis supervisor, Claire Voisin, for proposing this problem and for all her help.

References

- [1] S. Bloch, K₂ of Artinian Q-algebras, with application to algebraic cycles, Comm. Algebra 3 (1975) 405-428.
- [2] S. Bloch, A. Kas, D. Lieberman, Zero cycles on surfaces with $p_g = 0$, Compositio Math. 33 (2) (1976) 135–145.
- [3] X. Chen, Rational curves on K3 surfaces, J. Algebraic Geometry 8 (2) (1999) 245-278.
- [4] P. Griffiths, M. Green, Two applications of algebraic geometry to entire holomorphic mappings, in: The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, CA, 1979), Springer, New York, 1980, pp. 41–74.
- [5] S. Mori, S. Mukai, The uniruledness of the moduli space of curves of genus 11, in: Algebraic Geometry (Tokyo/Kyoto, 1982), in: Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 334–353.
- [6] D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968) 195-204.
- [7] A. Roitman, The torsion of the group of 0-cycles modulo rational equivalence, Ann. of Math. (2) 111 (3) (1980) 553-569.
- [8] B. Saint-Donat, Projective models of K3 surfaces, Amer. J. Math. 96 (1974) 602-639.
- [9] C. Voisin, Sur les zéro-cycles de certaines hypersurfaces munies d'un automorphisme, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (4) (1992) 473–492.

58