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Abstract

We will investigate the geometry of rational equivalence classes of points on a s8rfagewill show that ifS is a general
projective K3 surface then these equivalence classes are dense in the complex topology. We will also shdinhdmathe
property that these equivalence classes are Zariski dense$Pes) < 1. To cite this article: C. Maclean, C. R. Acad. Sci.
Paris, Ser. | 338 (2004).
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Résumé

L esgroupesde Chow des surfacestellesque 120 < 1. Nous considérons la géométrie des classes d’équivalence rationelle
des points d'une surface Nous montrons que $i est une surface K3 générale, ces classes d'équivalence sont denses pour la
topologie complexe. Nous montrons également queaia propriété que ces classes d’équivalence sont Zariski dense, alors

h20(S) < 1. Pour citer cet article: C. Maclean, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2003 Published by Elsevier SAS on behalf of Académie des sciences.

1. Introduction and statement of results

The connection between the Chow groupdC$) of 0-cycles on a surfacg andx%2(S) has been an object of
interest since Mumford’s 1968 paper [6], in which he proved the following result.

Theorem 1.1 (Mumford).If CHo(S) is representable, then 2%9(S) = 0.
Bloch [1] conjectured that the converse is also true.
Conjecture 1 (Bloch).f S is a smooth projective surface and 729(S) = 0 then CHo(S) is representable.

Bloch, Kas and Liebermann proved the Bloch conjecture for surfaces not of general type in [2]. This conjecture
has also been shown to hold for various surfaces of general type sud?#i&) = 0 — see, for example, [9].
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Our aim is to show there is also a close connection between the condftfis) = 1 and the geometry of
0-cycles onS. In particular, we will show the following result.

Theorem 1.2. Let S be a general smooth projective K3 surface. Then for general x € S, the set
{yeSly=x}
isdensein S (for the complex topology).

Here= denotes rational equivalence between points. We will also prove a partial converse to this result.

Theorem 1.3. Let S be a smooth complex surface, such that for a generic point x of S the set
{yeSly=xj}
is Zariski densein S. Then h29(S) < 1.

2. Proof of Theorem 1.2
The proof of this theorem relies on three fundamental facts:

1. If E is an elliptic curve and € E, then the sety € E | ny = nx for some integen} is dense ink.
2. There are many families of elliptic curves on a K3 surface.
3. By a theorem of Roitman’s, [7], the Chow group of a K3 surface is torsion-free.

What we actually need to prove the theorem is two one-dimensional families of elliptic curves which intersect
transversally. A sketch proof the existence of singular rational curves and families of singular elliptic curves can
be found in the appendix to [5], attributed to Mumford and Bogolomov independently. Chen proved in [3] the
following theorem.

Theorem 2.1 (Chen).For any integersn > 3and d > 0, thelinear system |Os(d)| on a general K3 surface S in P
contains an irreducible nodal rational curve.

The following proposition is an easy corollary of this (see the appendix to [5] or [4] (p. 70)).

Proposition 2.2. The linear system |Og(d)| on a general K3 surface S in P" contains a 1-dimensional family of
curves of geometric genus < 1 whose general element isirreducible and nodal.

Indeed, the proposition follows from the theorem by a standard dimension cosiris. 4 K3 surface il and
the general element 00 5(d)| is a smooth curve of genus then Saint-Donat calculated in [8] (p. 609) that the
dimension of Os(d)| is g. However, the codimension of the space of nodal irreducible curves of geometric genus
<1in M, is g — 1. The proposition follows.

We now choose two distinct irreducible 1-dimensional families,

m1. F1 — Bi, 2. Fo— B

which are in the linear systemi®s(1)| and|0s(2)| respectively and whose general elements are integral nodal
curves of geometric genus 1. There are surjective maps: F; — S.

We consider those € S such thatx is not contained in the image undgr of any non-integral fibre af». This
is the only condition needed to prove the theorenxfor
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Choosey € Fy such thatp1(y) = x and denoter;(y) by z. Denote the curvel‘l(z) by D. There is a surjective
map from a nodal curve of genss1to D, r:D — D.

Every component oD is of geometric genus 1. There is a component @ which intersectggy o r)~1(x)
and whose image unden o r is not a single point. Denote the image of this componenEbysince E has a
normalisation of genus 1, the set

{z € E such that — x is torsion in CH(E)}
is dense inE. By a result of Roitman’s, [7], the torsion part of €&$) is 0. Hence, the set
{z € E such that = x in CHY(S)}

is dense ink.

Our strategy is as follows. The cuniis transverse to general elements of the fanilly Consider the curves
in the family F> which are elliptic or rational and meét in a point rationally equivalent te@. The set of such
curves is dense ift2. If E3 is such a curve then the ggioints of E; rationally equivalent ta} is dense ink».

More precisely, consider the variely/= ¢2‘1(E) which parameterises points of intersectionfbith a curve
in the family F»>. The projection ofV onto B is surjective. LetSg be the set

{y € E such thaty = x in CHO(S)}.

The setSg is dense inE for the complex topology. We denote Bythe closure of
{y € S such thaty = x in CHY($)}.

We defineB; to be the open set iB> parameterising irreducible members of the fan#iy Consider
Z=m200;"(Sk),

the set parameterising curves in the fanfilywhich meett in at least one point o§ (E). We denote bﬁ the set
Z N Bz. Once again, it € Z, then the set

{y € F>; such thaty = x in CHO(S)}
is dense inFy ., the fibre over in F>. Hence,T containmz‘l(f). We now need the following lemma.
Lemma2.3. Theset Z isdensein Bo.
Proof. There is a componeid of V mapping surjectively t&. Sincex is not contained in any non-integral fibre
of 72, andE is not an element gfds(2)| for degree reasonsy : C — By is surjective. Sinc€ is irreducible and
¢2|c is surjective ontaE ¢2|51(S(E)) is dense inC. It follows that, sincerz|¢ is surjective and continuoug, is
denseinB;. O

It immediately follows that" is dense inS. This completes the proof of Theorem 1.2.

3. Proof of Theorem 1.3

Now suppose tha$ satisfies the hypothesis that for general S the set{y € § | x = y € CHO(S)} is Zariski
dense inS. We want to show that?°(S) < 1. Mumford proved the following result in [6].

Theorem 3.1 (Mumford). There exists a countable union of maps of reduced algebraic schemes ¢; : W; — S x S
such that the following hold.

(1) x =y ifandonlyif thereexistsi such that (x, y) € ¢; (W;).
(2) Let prl and pr2 bethetwo projections from S x S onto S. Consider the maps
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rtandz?: W — S
given by nl.j = pri/ o ¢;. We then have for any 2-formon S, o,

() = 17 ().

We may restrict ourselves to the case where the images of all thegnaps of dimensior 2, since Mumford
proved in [6] that

Proposition 3.2 (Mumford).If thereisan i such that theimage of ¢; is of dimension > 3 then #29(S) = 0.

We now choose such that

Q) y¢ nij(W,») for anyi such that dinlim¢;) < 1.
(2) There do not exist, i, j such that(x, y) € Im(¢;) andnl.’ is not submersive at any point ¢fl(x, y).
(3) Thesetx € S| y=x}is Zariski dense irs.

Since the varieties described in (1) and (2) are of dimensidnand, by assumption, (3) holds for geneyal
there exists such a. The theorem follows from the following proposition.

Proposition 3.3. Thereis no non-zero 2-formw on S vanishing at y.

Proof. Let w be such a 2-form, and considere S such thaty = x. By the assumptions on it follows that w
vanishes at. Indeed, there is somi&; such thaix, y) € ¢; (W;). By assumption (2), there existse W; such that
¢i(p) = (x,y) andrl, =2 are both submersive at We know thatr?*(»)(p) = 0 sincew(y) = 0. It follows that
nil * (w)(p) = 0. But by assumptions (1) and (2), this implies that) = 0. Therefore, since the set of such points
is Zariski densegy is identically 0. O

It follows immediately that29(S) < 1. This completes the proof of the theorem.
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