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Abstract

We give examples of elliptic curvesE/Q and rational pointsP ∈ E(Q) such thatP is divisible by 4 inE(Qv) for each
rational placev but P is not divisible by 4 inE(Q). This is an analogue of a well-known example, withGm in place ofE :
namely,P = 16 is a rational 8-th power locally almost everywhere, but not globally inQ∗ = Gm(Q). To cite this article:
R. Dvornicich, U. Zannier, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Un analogue pour les courbes elliptiques de l’exemple de Grunwald–Wang. Nous donnons des exemples de cour
elliptiquesE/Q et de points rationnelsP ∈ E(Q) tels queP soit divisible par 4 dansE(Qv) pour tout place rationnellev, sans
queP soit divisible par 4 dansE(Q). Il s’agit d’un analogue d’un exemple bien connu, avecGm à la place deE : on sait
que, dansQ∗ = Gm(Q), P = 16 est localement une puissance8-ième presque partout, maisP n’est pas une puissance8-ième
globalement. Pour citer cet article : R. Dvornicich, U. Zannier, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In the paper [2] we considered the following local-global question (see also [4]). LetA be a commutative
algebraic group defined over a number fieldk, let q be a positive integer and letP ∈ A(k). Let Mk be the set of
places on the fieldk and suppose that, for almost all placesv ∈Mk , one hasP ∈ qA(kv).

Question. Can one conclude thatP = qD for someD ∈ A(k)?

After giving some general cohomological criteria, we concentrated on the cases whenA is either a torus o
an elliptic curve. In short, some results are as follows (note that it is sufficient to consider the case wheq is a
powerpm of a primep).

(i) If A = Gm, then the answer is affirmative for all odd prime powersq and for q|4 (see [1, Chapter IX
Theorem 1]). On the other hand, it is negative forq = 8,P = 16 (andk = Q). This celebrated counterexample, fi
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discovered by Trost [5], is related to the Grunwald–Wang Theorem (see [1, Chapter X, Theorem 1] and a
(ii) For q = p, the answer is positive ifA is a torus of dimension� max(3,2(p − 1)), but it can be negative fo
general tori, no matter the primep (see [2, §§4, 5]). (iii) The answer is positive ifA = E is an elliptic curve and
q = p (see also [6]).

The case of an elliptic curve andq = pm with m � 2 remained open. We checked that a certain underl
cohomological condition (recalled in Section 2 below), sufficient for a positive answer, is not always ve
Conversely, however, it was not clear whether a counterexample to that condition would necessarily le
negative answer to our question.

Actually, we have now found that, similarly to the ‘Grunwald–Wang case’ ofGm, for certain elliptic curves
the questionhas a negative answer, already whenq = 4 andk = Q. The purpose of this note is just to descr
explicitly some relevant examples and to discuss how they were found. In particular, we shall prove the fol

Theorem 1.1. There exist elliptic curvesE defined overQ and pointsP ∈ E(Q) such thatP ∈ 4E(Qv) for almost
all v ∈MQ butP /∈ 4EQ.

It is worth noticing that, in the Grunwald–Wang example, ‘almost all’ cannot be replaced by ‘all’, in view o
exceptional casev = 2 (there exists a completely similar example without exceptions, but withk = Q(i)). On the
contrary, for elliptic curves we are able to produce an example in whichP ∈ 4E(Qv) for all v ∈MQ butP /∈ 4EQ

(see Section 4).
As to possible generalizations, for a given elliptic curve and a fieldk, results by Serre [4] on the Galois action

torsion points show that the alluded cohomological (sufficient) condition is verified for largeq (see also [6]), henc
our questionhas a positive answer for givenk, E andq > q0(k,E). On the other hand, we do not know wheth
in general, examples similar to the present ones, with curves defined overQ andP ∈ E(Q), actually exist for any
given primep andq = pm with m� 2. We intend to give more detail on these points in a future paper.

2. A cohomological condition

We briefly recall a few things from [2]. LetA, k, P , q be as above and denote byk̄ an algebraic closur
of k. Suppose thatP ∈ qA(kv) for almost allv ∈ Mk . We writeP = qD for someD ∈ A(k̄); letting σ run over
Gk := Gal(k̄/k), we consider the cocycleZσ :=Dσ −D, with values inA[q]. It turns out [2, Corollary 2.3] tha
D ∈ A(K), whereK = k(A[q]) is the field generated overk by theq-torsion points ofA(k̄), and that what really
matters isG := Gal(K/k) rather thanGk . We then viewZ as a cocycle onG and denote by the same symb
its class inH 1(G,A[q]). In view of the Tchebotarev theorem, the local conditions amount to the vanishi
the restriction of{Zσ } in H 1(C,A[q]) for any cyclicC ⊂G. These cocycle classes make up a subgroup den
H 1

loc(G,A[q]). A simple argument shows that, if the cocycle vanishes inH 1(G,A[q]), then the pointP is globally
divisible byq , i.e., thequestionhas a positive answer. In particular, this holds whenH 1

loc(G,A[q])= 0.
In [2, §3] we have listed some cases whenq = p or q = p2. For q = p2, several counterexamples to t

vanishing ofH 1
loc were found. However, it is not truea priori that the counterexamples come from cocycles obta

as above, by division of a point; namely, we do not know whetherH 1
loc(G,A[q]) 
= 0 implies a negative answe

to ourquestion; to verify this, further checking is needed. In order to perform calculations ‘by hand’ on el
curves, we have chosen the counterexamples withq = 4 andG of smallest possible size, i.e., of order 4. The gro
of order 4 we shall work with (not explicitly given in the list of examples in [2]) is as follows.

Since for an elliptic curveE the groupE[4](k̄) is isomorphic to(Z/(4))2, we identifyG with a subgroup of
GL2(Z/(4)). We define

G=
{
I + 2

(
x y

x + y x + y

)
, x, y ∈ Z/(4)

}
=

{(
1 0
0 1

)
,

(−1 0
2 −1

)
,

(
1 2
2 −1

)
,

(−1 2
0 1

)}
.

As is straightforward to verify, a nonzero element inH 1
loc(G, (Z/(4))

2) is given by the cocycle

Zσ =
(

2y
0

)
, for σ = σ(x, y)= I + 2

(
x y

x + y x + y

)
. (1)
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Starting from these data, and working in the simplest case of the rationals, we seek an elliptic curveE/Q and a point
P ∈ E(Q) with the following properties. LetK = Q(E[4]); we first require that the representation of Gal(K/Q)

on (Z/(4))2 corresponds toG with respect to some basis forE[4] overZ/(4), so that in particular[K : Q] = 4.
Then we require that, for some pointD ∈ E(K) with 4D = P , the cocycleDσ −D ∈ E[4] corresponds toZσ (with
respect to the same basis forE[4]), namely

Zσ =Dσ −D. (2)

We shall give numerical examples in Section 4, proving Theorem 1.1. In the next Section 3 we shall p
general family and describe the motivations which led to the sought construction.

3. The construction

We first note that the above conditions and (1) yieldDσ(1,0) = D. Thus we seekD ∈ E(k), for the fixed field
k ⊂K of σ(1,0). We have[k : Q] = 2.

For simplicity we work with curvesE having a Weierstrass equation of the form

y2 = (x − α)(x − β)(x − γ ), (3)

whereα,β, γ ∈ Q are distinct rationals which satisfyα+β + γ = 0. They correspond of course to the three po
of order 2, denotedA, B, C respectively.

Since 2Zσ = 0, the conjugate pointD′ overQ differs fromD by a 2-torsion point; thus we write

D′ =D +A. (4)

Also, writeD = (u, v)= (u0 + √
δu1, v0 + √

δv1), whereu0, u1, v0, v1, δ ∈ Q and wherek = Q(
√
δ) andδ is not

a rational square.
SettingD′ := (u′, v′), by a standard calculation we find from (4) that{

λ2 = u′ + u+ α = 2u0 + α ∈ Q,

−v′ = λ(u′ − α),

whereλ = v/(u− α) is the slope of the lineAD (D cannot be a 2-torsion point, soλ is well defined). Note tha
the second equation yieldsλ′ = −λ. Thereforeλ= t

√
δ for somet ∈ Q.

Substitutingv = λ(u− α) into v2 = (u− α)(u− β)(u− γ ) we find(u− β)(u− γ )= λ2(u− α)= t2δ(u− α)

or, equivalently,{
u2

0 + δu2
1 + αu0 + βγ = t2δ(u0 − α),

2u0u1 + αu1 = t2δu1.

Note that the last equation is actually implicit in the previous ones 2u0 + α = λ2 = t2δ. Using 2u0 = t2δ − α to
substitute foru0 in the first equation of the last displayed pair, and puttings = 2u1, we get

δs2 = δ2t4 − 6αδt2 + (β − γ )2. (5)

Conversely, given a rational solution of this equation, we may proceed backwards and get a pointD as above
satisfying (4).

We may verify thatQ(E[4]) = Q(
√−1,

√
α − β,

√
β − γ ,

√
γ − α ). To represent Gal(Q(E[4])/Q) as a

subgroup of GL2(Z/(4)), we use a basisA′,B ′ ∈ E[4] with A = 2A′, B = 2B ′; specifically, for some given
determination of the square roots,A′ = (α + √

(α − β)(α − γ ), (α − β)
√
α − γ + (α − γ )

√
α − β ), B ′ =

(β + √
(β − α)(β − γ ), (β − γ )

√
β − α + (β − α)

√
β − γ ).

We require that Gal(Q(E[4])/Q) corresponds to the groupG defined above; by direct computation, th
amounts to the conditions thatγ − α and (α − β)(β − γ ) are (nonzero) rational squares and thatQ(E[4]) =
Q(

√−1,
√
α − β) has degree 4 overQ.

Also, recall that we want to satisfy (2), namelyZσ =Dσ −D. This means thatD is fixed byσ(1,0) and that is
sent toD+A by σ(0,1) and byσ(1,1) or, equivalently, that

√
δ lies in the fixed field ofσ(1,0). By computation,
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using the above basisA′,B ′, it may be verified that this fixed field isQ(
√−1); hence we must impose thatδ

equals−1 (up to nonzero squares).
Now, the arithmetical conditions onα,β, γ mentioned above correspond to rational points on a certain rat

curve. It is easy to parametrize it: settingγ − α = ξ2, α − β = (β − γ )η2 and combining these equations w
α + β + γ = 0, we obtain

α = −ξ2(1+ 2η2)

3(1+ η2)
, β = −ξ2(1− η2)

3(1+ η2)
, γ = ξ2(2+ η2)

3(1+ η2)
. (6)

From this parametrization, however, we have to discard the points corresponding toξη = 0 (for whichα, β , γ are
not distinct) and to 1+ η2 a rational square (for which[K : Q] = 2).

Finally, givenα, β , γ , Eq. (5) (withδ = −1) parametrizes a pointD suitable for us. Namely, the suitable choic
for D correspond to the rational points on the(s, t)-plane curve defined by

−s2 = t4 + 6αt2 + (β − γ )2. (7)

Note that the right side has distinct roots int , since 36α2 − 4(β − γ )2 = 16(α − γ )(α − β) 
= 0. Therefore (7)
represents a curve of genus 1.1

We may reformulate these conclusions by saying that the relevant curvesE are parametrized rationally by (6
while for a given curveE the relevant pointsD andP = 4D are parametrized by the rational points on the curve
of genus 1.

4. Numerical examples

It is not hard to recognize that the curve (7) has rational points for infinitely many values of(ξ, η), with
ξη 
= 0 and 1+ η2 not a rational square, giving rise to non-isomorphic curves. The simplest numerical c
is ξ = 5, η = 2, which, in view of the above formulas, givesα = −15, β = 5, γ = 10. The curve (7)
becomes−s2 = t4 − 90t2 + 25, which admits the rational pointt = 1, s = 8. In turn, this gives the point
D = (7+ 4

√−1,−4+ 22
√−1), P = (1561/122,19459/123) on the elliptic curvey2 = (x + 15)(x− 5)(x− 10).

We may indeed verify directly thatP is divisible by 4 locally with a single exception, but not globally. In fa
one finds that the set of 16 pointsD∗ such that 4D∗ = P may be partitioned as follows: four of them veri
Q(D∗) = Q(

√−1), eight of them verifyQ(D∗) = Q(
√

5) and four of themQ(D∗) = Q(
√−5), hence none is

rational. As to the local divisibility, it follows from the fact that for each placev ∈ MQ, v 
= 2, at least one amon√−1,
√

5,
√−5 lies inQv . Note that this feature is again similar to the situation of the Grunwald–Wang exa

where four of the division points of 16 by 8 are defined overQ(
√−1), two overQ(

√
2) and two overQ(

√−2).
To get rid of exceptions regarding the local divisibility, we can chooseξ = 65, η = 8, which givesα =

−2795, β = 1365, γ = 1430; the curve (7) has the rational point(s, t) = (112,1), which corresponds to
D = (1397+ 56

√−1,−56+ 4192
√−1), P = (5086347841/18482,−35496193060511/18483). Here we have

thatQ(D∗)= Q(
√−1) (four times),Q(D∗) = Q(

√
65) (eight times) andQ(D∗)= Q(

√−65) (four times), and
for all v at least one among

√−1,
√

65,
√−65 lies inQv .
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