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Abstract

We give examples of elliptic curve$/Q and rational pointsP € £(Q) such thatP is divisible by 4 in€(Q,) for each
rational placev but P is not divisible by 4 in£(Q). This is an analogue of a well-known example, wit, in place of&:
namely, P = 16 is a rational 8-th power locally almost everywhere, but not globallyQif = G,,(Q). To cite this article:
R. Dvornicich, U. Zannier, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
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Résumé

Un analogue pour les courbes dliptiques de I'exemple de Grunwald-Wang. Nous donnons des exemples de courbes
elliptigues&/Q et de points rationnel® € £(Q) tels queP soit divisible par 4 dan§ (Q,) pour tout place rationnelle, sans
que P soit divisible par 4 dang (Q). Il s'agit d'un analogue d’'un exemple bien connu, ad&g; a la place def : on sait
gue, dan€)* = G, (Q), P = 16 est localement une puissangéeme presque partout, mai n'est pas une puissan@ieme
globalementPour citer cet article: R. Dvornicich, U. Zannier, C. R. Acad. Sci. Paris, Ser. | 338 (2004).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

In the paper [2] we considered the following local-global question (see also [4])ALle¢ a commutative
algebraic group defined over a number fig|det ¢ be a positive integer and lét € A(k). Let M; be the set of
places on the field and suppose that, for almost all plaees M, one hasP € g A(k,).

Question. Can one conclude th@ = ¢ D for someD € A(k)?

After giving some general cohomological criteria, we concentrated on the casesAvisegither a torus or
an elliptic curve. In short, some results are as follows (note that it is sufficient to consider the casg isten
powerp™ of a primep).

@) If A= Gy, then the answer is affirmative for all odd prime powerand forq|4 (see [1, Chapter IX,
Theorem 1]). On the other hand, it is negativedet 8, P = 16 (andk = Q). This celebrated counterexample, first

E-mail addressesdvornic@dm.unipi.it (R. Dvornicich), zannier@iuav.it (U. Zannier).

1631-073X/$ — see front matterl 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2003.10.034



48 R. Dvornicich, U. Zannier / C. R. Acad. Sci. Paris, Ser. | 338 (2004) 47-50

discovered by Trost [5], is related to the Grunwald—Wang Theorem (see [1, Chapter X, Theorem 1] and also [3]).
(ii) For g = p, the answer is positive i#l is a torus of dimensiord max(3, 2(p — 1)), but it can be negative for
general tori, no matter the prime(see [2, §84, 5]). (iii) The answer is positivef = £ is an elliptic curve and

q = p (see also [6]).

The case of an elliptic curve and= p™ with m > 2 remained open. We checked that a certain underlying
cohomological condition (recalled in Section 2 below), sufficient for a positive answer, is not always verified.
Conversely, however, it was not clear whether a counterexample to that condition would necessarily lead to a
negative answer to our question.

Actually, we have now found that, similarly to the ‘Grunwald—Wang caseGgf for certain elliptic curves
the questionhas a negative answer, already whes 4 andk = Q. The purpose of this note is just to describe
explicitly some relevant examples and to discuss how they were found. In particular, we shall prove the following

Theorem 1.1. There exist elliptic curve§ defined ovefQ and pointsP € £(Q) such thatP € 4£(Q,) for almost
all ve Mg but P ¢ 4&q.

It is worth noticing that, in the Grunwald—Wang example, ‘almost all’ cannot be replaced by ‘all’, in view of the
exceptional case = 2 (there exists a completely similar example without exceptions, butinitt)(i)). On the
contrary, for elliptic curves we are able to produce an example in wRiedE(Q,) for all v € Mg but P ¢ 4Eq
(see Section 4).

As to possible generalizations, for a given elliptic curve and a figtdsults by Serre [4] on the Galois action on
torsion points show that the alluded cohomological (sufficient) condition is verified fordaigge also [6]), hence
our questionhas a positive answer for givén £ andqg > go(k, £). On the other hand, we do not know whether,
in general, examples similar to the present ones, with curves definedaved P € £(Q), actually exist for any
given primep andg = p™ with m > 2. We intend to give more detail on these points in a future paper.

2. A cohomological condition

We briefly recall a few things from [2]. Le#, k, P, ¢ be as above and denote kyan algebraic closure
of k. Suppose thaP € g A(k,) for almost allv € My. We write P = ¢ D for someD e A(k); letting o run over
Gy := Gal(k/ k), we consider the cocyclé, := D° — D, with values inA[q]. It turns out [2, Corollary 2.3] that
D € A(K), whereK = k(Al[q)) is the field generated ovérby theg-torsion points ofA(k), and that what really
matters isG := Gal(K/k) rather thanG,. We then viewZ as a cocycle oG and denote by the same symbol
its class inH1(G, A[q]). In view of the Tchebotarev theorem, the local conditions amount to the vanishing of
the restriction of Z,} in H(C, A[q)) for any cyclicC c G. These cocycle classes make up a subgroup denoted
ngC(G, Alg1). A simple argument shows that, if the cocycle vanishe8 G, .A[¢1), then the poin® is globally
divisible byg, i.e., thequestiorhas a positive answer. In particular, this holds WIH%;&(G, Alg]) =0.

In [2, §3] we have listed some cases wher= p or ¢ = p2. For g = p?, several counterexamples to the
vanishing olegc were found. However, it is not trugepriori that the counterexamples come from cocycles obtained
as above, by division of a point; namely, we do not know whemlég(G, Alg]) # 0 implies a negative answer
to ourquestion to verify this, further checking is needed. In order to perform calculations ‘by hand’ on elliptic
curves, we have chosen the counterexamplesgvithl andG of smallest possible size, i.e., of order 4. The group
of order 4 we shall work with (not explicitly given in the list of examples in [2]) is as follows.

Since for an elliptic curve the group&[4](k) is isomorphic to(Z/(4))?, we identify G with a subgroup of
GL2(Z/(4)). We define

R R R (R R A RERA N ]

As is straightforward to verify, a nonzero elemeergc(G, (Z./(4))?) is given by the cocycle

(& _ _ x y
ZU_(O)’ fora_a(x,y)_1+2<x+y x~|—y>' (1)
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Starting from these data, and working in the simplest case of the rationals, we seek an elliptit/€uarel a point
P € £(Q) with the following properties. LeK = Q(£[4]); we first require that the representation of G&lQ)
on (Z/(4))? corresponds t@ with respect to some basis f6f4] overZ/(4), so that in particulafk : Q] = 4.
Then we require that, for some poibte £(K) with 4D = P, the cocycleD? — D e £[4] corresponds t&, (with
respect to the same basis #j#]), namely

Z, =D’ — D. )

We shall give numerical examples in Section 4, proving Theorem 1.1. In the next Section 3 we shall present a
general family and describe the motivations which led to the sought construction.

3. Theconstruction

We first note that the above conditions and (1) yiBiti1-% = D. Thus we seelD e £(k), for the fixed field
k C K of o(1,0). We havek : Q] = 2.
For simplicity we work with curveg having a Weierstrass equation of the form

V=@ —a)x —B)x—yp), (3)

wherea, B, y € Q are distinct rationals which satisfy+ g + y = 0. They correspond of course to the three points
of order 2, denoted, B, C respectively.
Since Z,, = 0, the conjugate poind’ overQ differs from D by a 2-torsion point; thus we write

D'=D+A. (4)

Also, write D = (u, v) = (1o + v/Su1, vo + +/3v1), whereug, u1, vo, v1, 8 € Q and whereék = Q(+/8) ands is not
a rational square.
SettingD’ := (u’, V'), by a standard calculation we find from (4) that

{Azzu/+u+a:2uo+ae(@,
- =AW —a),
wherei = v/(u — «) is the slope of the lined D (D cannot be a 2-torsion point, sois well defined). Note that
the second equation yield$= —x. Therefore. = /5 for somer € Q.

Substitutingy = A(u — ) into v2 = (u — a)(u — B)(u — y) we find (u — B)(u — y) = 12(u — o) = 128 (u — o)
or, equivalently,

{ 14(2J +8u% +aug+ By = t28(uo —a),
2ugul + aug = t25141.

Note that the last equation is actually implicit in the previous ongs2a = A2 = t25. Using 219 = 125 — « t0
substitute foug in the first equation of the last displayed pair, and puttirg2u1, we get

852 =8%t* — 6ast® + (B — y)°. (5)

Conversely, given a rational solution of this equation, we may proceed backwards and get B psirabove,
satisfying (4).

We may verify thatQ(£[4]) = Q(v/—1 Vo — B, /B — .y —a). To represent G&Q(E[4])/Q) as a
subgroup of Gk(Z/(4)), we use a basigl’, B’ € £[4] with A = 2A’, B = 2B’; specifically, for some given
determination of the square rootd) = (@ + /(@ — B)la —y), (@ — B)Ja—y + (@« — y)Ja —B), B’ =
B+VB-—a)B—-1),(B=vINB—a+(B—a)/B—V).

We require that G&lQ(£[4])/Q) corresponds to the grou@ defined above; by direct computation, this
amounts to the conditions that — o and (¢« — 8)(8 — y) are (nonzero) rational squares and tRa€[4]) =
Q/—1, Vo = B) has degree 4 ovép.

Also, recall that we want to satisfy (2), nameély = D° — D. This means thab is fixed byo (1, 0) and that is
senttoD + A by o (0, 1) and byo (1, 1) or, equivalently, that/s lies in the fixed field ot (1, 0). By computation,




50 R. Dvornicich, U. Zannier / C. R. Acad. Sci. Paris, Ser. | 338 (2004) 47-50

using the above basié’, B/, it may be verified that this fixed field i®(v/—1); hence we must impose that
equals—1 (up to nonzero squares).

Now, the arithmetical conditions an 8, y mentioned above correspond to rational points on a certain rational
curve. It is easy to parametrize it: settipg— o = £2, « — B = (8 — y)n? and combining these equations with
a+ B+ y =0, we obtain

_ B+ 29? P _Ea-») B2+ )
TR T Ran VT sawd
From this parametrization, however, we have to discard the points corresponding-to (for whicha, g8, y are
not distinct) and to & 2 a rational square (for whicfX : Q] = 2).

Finally, givena, 8, v, Eq. (5) (withs = —1) parametrizes a poil suitable for us. Namely, the suitable choices

for D correspond to the rational points on tizer)-plane curve defined by

—s?=r*4+6ar’+ (B—y)° (7)

Note that the right side has distinct rootszinsince 3&2 — 4(8 — )2 = 16(a — y)(a — B) # 0. Therefore (7)
represents a curve of genud 1.

We may reformulate these conclusions by saying that the relevant cfiiaesparametrized rationally by (6),
while for a given curve the relevant point® and P = 4D are parametrized by the rational points on the curve (7)
of genus 1.

4. Numerical examples

It is not hard to recognize that the curve (7) has rational points for infinitely many valugs of, with
&n # 0 and 1+ 52 not a rational square, giving rise to non-isomorphic curves. The simplest numerical choice
is £ =5, n =2, which, in view of the above formulas, gives= —15, 8 =5, y = 10. The curve (7)
becomes—s? = 14 — 90r2 4 25, which admits the rational point= 1, s = 8. In turn, this gives the points
D= (7+4J—-1, -4+ 22-1), P = (1561122, 1945912%) on the elliptic curvey? = (x + 15)(x — 5)(x — 10).
We may indeed verify directly thaP is divisible by 4 locally with a single exception, but not globally. In fact,
one finds that the set of 16 poinf¥* such that £* = P may be partitioned as follows: four of them verify
Q(D*) = Q(+/—1), eight of them verifyQ(D*) = Q(+/5) and four of themQ(D*) = Q(+/=5), hence none is
rational. As to the local divisibility, it follows from the fact that for each place Mg, v # 2, at least one among
v—1,+/5, /=5 lies inQ,. Note that this feature is again similar to the situation of the Grunwald—Wang example,
where four of the division points of 16 by 8 are defined o@&x/—1), two overQ(+/2) and two overQ(+/—2).

To get rid of exceptions regarding the local divisibility, we can chogse 65, n = 8, which givesa =
—2795, 8 = 1365, y = 1430; the curve (7) has the rational poi@t ) = (112 1), which corresponds to
D = (1397+ 56¢—1, —56 + 4192,/—1), P = (50863478411848, —3549619306051/11848). Here we have
thatQ(D*) = Q(+/—1) (four times),Q(D*) = Q(+/65) (eight times) and)(D*) = Q(~/—65) (four times), and
for all v at least one among'—1, v/65, /—65 lies inQ,.
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1 Actually, it is easily seen that this curve is birational wéttover Q(+/—1); however, it has not always a rational point, evea,if, y are
subject to (6); in fact, it may be verified that for= 7 = 1 the curve (7) has no points ov@p, anda fortiori over Q.



