Partial Differential Equations

About a Liouville phenomenon

V.V. Kurta
American Mathematical Society (Mathematical Reviews), 416 Fourth Street, P.O. Box 8604, Ann Arbor, MI 48107-8604, USA

Received 16 July 2003; accepted 13 October 2003
Presented by Pierre-Louis Lions

Abstract

This work is devoted to the study of a new Liouville-type phenomenon for entire subsolutions of elliptic partial differential equations of the form $$
A(u)=0 .
$$

Typical examples of the operator $A(u)$ are the p-Laplacian for $p>1$ and its well-known modifications. To cite this article: V.V. Kurta, C. R. Acad. Sci. Paris, Ser. I 338 (2004). © 2003 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Autour d'un phénomène de type Liouville. Ce travail est consacré à l'étude d'un nouveau phénomène de type Liouville pour des sous-solutions entières d'équations aux dérivées partielles elliptiques de la forme

$$
A(u)=0 .
$$

Des exemples typiques de l'opérateur $A(u)$ sont le p-laplacien pour $p>1$ et ses modifications bien connues. Pour citer cet article : V.V. Kurta, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
© 2003 Published by Elsevier SAS on behalf of Académie des sciences.

1. Introduction

Due to the famous Liouville theorem it is well known that any subharmonic function on \mathbb{R}^{2} bounded below by a constant is itself a constant. On the other hand it is also well known that for $n \geqslant 3$ there exist non-constant subharmonic functions on \mathbb{R}^{n} bounded below by a constant. The purpose of this work is to determine for $n \geqslant 3$ "the sharp distance at infinity" between the non-constant subharmonic functions on \mathbb{R}^{n} bounded below by a constant and this constant itself in the form of a Liouville-type theorem and to characterize basic properties of quasilinear elliptic partial differential operators, which make it possible to obtain such a Liouville-type theorem for subsolutions of quasilinear elliptic partial differential equations of the form

$$
\begin{equation*}
A(u)=0 \tag{1}
\end{equation*}
$$

[^0]on \mathbb{R}^{n}.
Typical examples of the operator $A(u)$ are the p-Laplacian
\[

$$
\begin{equation*}
\Delta_{p}(u):=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \tag{2}
\end{equation*}
$$

\]

for $p>1$ and its well-known modification (see, e.g., [1, p. 155])

$$
\begin{equation*}
\tilde{\Delta}_{p}(u):=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right) \tag{3}
\end{equation*}
$$

for $n \geqslant 2$ and $p>1$.

2. Definitions

Let $A(u)$ be a differential operator defined formally by

$$
\begin{equation*}
A(u)=\sum_{i=1}^{n} \frac{\mathrm{~d}}{\mathrm{~d} x_{i}} A_{i}(x, u, \nabla u) . \tag{4}
\end{equation*}
$$

Here and in what follows $n \geqslant 2$. We assume that the functions $A_{i}(x, \eta, \xi), i=1, \ldots, n$, satisfy the usual Carathéodory conditions on $\mathbb{R}^{n} \times \mathbb{R}^{1} \times \mathbb{R}^{n}$. Namely, they are continuous in η, ξ for a.e. $x \in \mathbb{R}^{n}$ and measurable in x for any $\eta \in \mathbb{R}^{1}$ and $\xi \in \mathbb{R}^{n}$.

Definition 2.1. Let $\alpha>1$ be a given number. The operator $A(u)$, defined by (4), belongs to the class $\mathcal{A}(\alpha)$ if for all $\eta \in \mathbb{R}^{1}$, all $\xi, \psi \in \mathbb{R}^{n}$, and almost all $x \in \mathbb{R}^{n}$ the inequality

$$
\begin{equation*}
0 \leqslant \sum_{i=1}^{n} \xi_{i} A_{i}(x, \eta, \xi) \tag{5}
\end{equation*}
$$

with equality only in the case when $\xi=0$, and the inequality

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \psi_{i} A_{i}(x, \eta, \xi)\right|^{\alpha} \leqslant \mathcal{K}|\psi|^{\alpha}\left(\sum_{i=1}^{n} \xi_{i} A_{i}(x, \eta, \xi)\right)^{\alpha-1} \tag{6}
\end{equation*}
$$

with a certain positive constant \mathcal{K}, hold.
It is easy to see that condition (6) is fulfilled whenever the inequality

$$
\begin{equation*}
\left(\sum_{i=1}^{n} A_{i}^{2}(x, \eta, \xi)\right)^{\alpha / 2} \leqslant \mathcal{K}\left(\sum_{i=1}^{n} \xi_{i} A_{i}(x, \eta, \xi)\right)^{\alpha-1} \tag{7}
\end{equation*}
$$

holds for all $\eta \in \mathbb{R}^{1}$, all $\xi, \psi \in \mathbb{R}^{n}$, and almost all $x \in \mathbb{R}^{n}$. Hence, the operator $A(u)$ defined by (4) and satisfying conditions (5) and (7) belongs to the class $\mathcal{A}(\alpha)$.

Remark 1. Conditions (6) and (7) on the behavior of the coefficients of partial differential operators were introduced in [2].

It is not difficult to verify that for any given $p>1$ the differential operators (2) and (3) as well as the differential operator defined by (4) and satisfying the well-known growth conditions

$$
\begin{equation*}
\left(\sum_{i=1}^{n} A_{i}^{2}(x, \eta, \xi)\right)^{1 / 2} \leqslant \mathcal{K}_{1}|\xi|^{p-1} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
|\xi|^{p} \leqslant \mathcal{K}_{2} \sum_{i=1}^{n} \xi_{i} A_{i}(x, \eta, \xi) \tag{9}
\end{equation*}
$$

with some positive constants $\mathcal{K}_{1}, \mathcal{K}_{2}$, belong to the class $\mathcal{A}(\alpha)$ with $\alpha=p$.
It is also easy to see that a linear divergent elliptic partial differential operator

$$
\begin{equation*}
L:=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial}{\partial x_{i}}\right) \tag{10}
\end{equation*}
$$

with $a_{i j}(x)$ measurable bounded coefficients and with the (possibly non-uniformly) positive-definite quadratic form

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \tag{11}
\end{equation*}
$$

belongs to the class $\mathcal{A}(\alpha)$ with $\alpha=2$ but does not satisfy condition (9) for any fixed $p>1$.
In connection with this we give another example of an operator that belongs to the class $\mathcal{A}(\alpha)$ with a certain $\alpha>1$ but does not satisfy condition (9). Let $a(x, \eta, \xi)$ be a positive bounded function which satisfies the Carathéodory conditions on $\mathbb{R}^{n} \times \mathbb{R}^{1} \times \mathbb{R}^{n}$. It is evident that for a given $p>1$ the weighted p-Laplacian

$$
\begin{equation*}
\bar{\Delta}_{p}(u):=\operatorname{div}\left(a(x, u, \nabla u)|\nabla u|^{p-2} \nabla u\right) \tag{12}
\end{equation*}
$$

belongs to the class $\mathcal{A}(\alpha)$ with $\alpha=p$ but does not satisfy condition (9) for any fixed $p>1$ if the function $a(x, \eta, \xi)$ is assumed to be only positive, but not bounded below away from zero.

It can happen that an operator $A(u)$ given by (4) belongs simultaneously to several different classes $\mathcal{A}(\alpha)$. For example, the well-known mean curvature operator

$$
\begin{equation*}
\Xi(u):=\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) \tag{13}
\end{equation*}
$$

belongs to the classes $\mathcal{A}(\alpha)$ for all $1<\alpha \leqslant 2$; similarly its modification for $p \geqslant 2$,

$$
\begin{equation*}
\Xi_{p}(u):=\operatorname{div}\left(\frac{|\nabla u|^{p-2} \nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) \tag{14}
\end{equation*}
$$

belongs to the classes $\mathcal{A}(\alpha)$ for all $\alpha \in(p-1, p]$ and $p \geqslant 2$.
Obviously, operators (13) and (14) do not satisfy conditions (9), (10) for any fixed $p \geqslant 1$.
Definition 2.2. Let $\alpha>1$ be a given number, and let the operator $A(u)$, given by (4), belong to the class $\mathcal{A}(\alpha)$. A function $u: \mathbb{R}^{n} \rightarrow(-\infty,+\infty)$ is called an entire subsolution of Eq. (1) if it belongs to the space $W_{\text {loc }}^{1, \alpha}\left(\mathbb{R}^{n}\right)$ and satisfies the integral inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \sum_{i=1}^{n} \varphi_{x_{i}} A_{i}(x, u, \nabla u) \mathrm{d} x \geqslant 0 \tag{15}
\end{equation*}
$$

for every non-negative function $\varphi \in W^{1, \alpha}\left(\mathbb{R}^{n}\right)$ with compact support.

3. Results

Theorem 3.1. Let $\alpha \geqslant n$ be a given number, and let the operator $A(u)$, given by (4), belong to the class $\mathcal{A}(\alpha)$. Let $u(x)$ be an entire subsolution of (1) bounded below by a constant. Then $u(x)=$ const., a.e. on \mathbb{R}^{n}.

Theorem 3.2. Let $\alpha \in(1, n)$ be a given number, and let the operator $A(u)$, given by (4), belong to the class $\mathcal{A}(\alpha)$. Let $u(x)$ be an entire subsolution of (1) bounded below by a constant c and such that $u \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{n}\right)$. Then either $u(x)=c$, a.e. on \mathbb{R}^{n}, or the equality

$$
\begin{equation*}
\liminf _{r \rightarrow+\infty}\left[\sup _{r \leqslant|x| \leqslant 2 r}(u(x)-c)\right] r^{(n-\alpha) /(\alpha-1-\nu)}=+\infty \tag{16}
\end{equation*}
$$

holds with any fixed $v \in(0, \alpha-1)$.
Theorem 3.3. Let $\alpha \in(1, n)$ be a given number, and let the operator $A(u)$, given by (4), belong to the class $\mathcal{A}(\alpha)$. Let $u(x)$ be an entire subsolution of (1), bounded below by a constant c. Then either $u(x)=c$, a.e. on \mathbb{R}^{n}, or the equality

$$
\begin{equation*}
\liminf _{r \rightarrow+\infty} r^{-\alpha} \int_{r \leqslant|x| \leqslant 2 r}(u(x)-c)^{\alpha-1-v} \mathrm{~d} x=+\infty \tag{17}
\end{equation*}
$$

holds with any fixed $v \in(0, \alpha-1)$.
Remark 2. It is important to note that for any given $\alpha \in(1, n)$ the function

$$
\begin{equation*}
u(x)=\left(1+|x|^{\alpha /(\alpha-1)}\right)^{(\alpha-n) / \alpha} \tag{18}
\end{equation*}
$$

is a non-negative entire subsolution of the equation

$$
\begin{equation*}
\Delta_{p}(u)=0 \tag{19}
\end{equation*}
$$

with $p=\alpha$ such that the equality

$$
\begin{equation*}
\liminf _{r \rightarrow+\infty}\left[\sup _{r \leqslant|x| \leqslant 2 r}(u(x)-0)\right] r^{(n-\alpha) /(\alpha-1)}=C \tag{20}
\end{equation*}
$$

holds with a certain positive constant C.
Remark 3. The statements of Theorems 3.2 and 3.3 with $\alpha=2$ are new results even for entire classical subsolutions of the equation

$$
\begin{equation*}
\Delta u=0 \tag{21}
\end{equation*}
$$

Remark 4. Similar results to those of Theorem 3.1 for entire continuous subsolutions of (1) were obtained in [3].

References

[1] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
[2] V.M. Miklyukov, Capacity and a generalized maximum principle for quasilinear equations of elliptic type, Dokl. Akad. Nauk SSSR 250 (1980) 1318-1320.
[3] V.M. Miklyukov, Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion, Mat. Sb. 111 (153) (1980) 42-66.

[^0]: E-mail address: vvk@ams.org (V.V. Kurta).
 1631-073X/\$ - see front matter © 2003 Published by Elsevier SAS on behalf of Académie des sciences. doi:10.1016/j.crma.2003.10.022

