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Abstract

This work is devoted to the study of a new Liouville-type phenomenon for entire subsolutions of elliptic partial diffe
equations of the form

A(u)= 0.

Typical examples of the operatorA(u) are thep-Laplacian forp > 1 and its well-known modifications.To cite this article:
V.V. Kurta, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2003 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Autour d’un phénomène de type Liouville. Ce travail est consacré à l’étude d’un nouveau phénomène de type Lio
pour des sous-solutions entières d’équations aux dérivées partielles elliptiques de la forme

A(u)= 0.

Des exemples typiques de l’opérateurA(u) sont lep-laplacien pourp > 1 et ses modifications bien connues.Pour citer cet
article : V.V. Kurta, C. R. Acad. Sci. Paris, Ser. I 338 (2004).
 2003 Published by Elsevier SAS on behalf of Académie des sciences.

1. Introduction

Due to the famous Liouville theorem it is well known that any subharmonic function onR
2 bounded below

by a constant is itself a constant. On the other hand it is also well known that forn � 3 there exist non-constan
subharmonic functions onRn bounded below by a constant. The purpose of this work is to determine forn� 3 “the
sharp distance at infinity” between the non-constant subharmonic functions onR

n bounded below by a constant a
this constant itself in the form of a Liouville-type theorem and to characterize basic properties of quasilinear
partial differential operators, which make it possible to obtain such a Liouville-type theorem for subsolut
quasilinear elliptic partial differential equations of the form

A(u)= 0 (1)
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Typical examples of the operatorA(u) are thep-Laplacian

	p(u) := div
(|∇u|p−2∇u) (2)

for p > 1 and its well-known modification (see, e.g., [1, p. 155])

	̃p(u) :=
n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣
p−2

∂u

∂xi

)
(3)

for n� 2 andp > 1.

2. Definitions

LetA(u) be a differential operator defined formally by

A(u)=
n∑
i=1

d

dxi
Ai(x,u,∇u). (4)

Here and in what followsn � 2. We assume that the functionsAi(x, η, ξ), i = 1, . . . , n, satisfy the usua
Carathéodory conditions onRn × R

1 × R
n. Namely, they are continuous inη, ξ for a.e.x ∈ R

n and measurable i
x for anyη ∈ R

1 andξ ∈ R
n.

Definition 2.1. Let α > 1 be a given number. The operatorA(u), defined by (4), belongs to the classA(α) if for
all η ∈ R

1, all ξ,ψ ∈ R
n, and almost allx ∈ R

n the inequality

0�
n∑
i=1

ξiAi(x, η, ξ), (5)

with equality only in the case whenξ = 0, and the inequality∣∣∣∣∣
n∑
i=1

ψiAi(x, η, ξ)

∣∣∣∣∣
α

� K|ψ|α
(

n∑
i=1

ξiAi(x, η, ξ)

)α−1

, (6)

with a certain positive constantK, hold.

It is easy to see that condition (6) is fulfilled whenever the inequality(
n∑
i=1

A2
i (x, η, ξ)

)α/2
� K

(
n∑
i=1

ξiAi(x, η, ξ)

)α−1

(7)

holds for allη ∈ R
1, all ξ,ψ ∈ R

n, and almost allx ∈ R
n. Hence, the operatorA(u) defined by (4) and satisfyin

conditions (5) and (7) belongs to the classA(α).

Remark 1. Conditions (6) and (7) on the behavior of the coefficients of partial differential operators
introduced in [2].

It is not difficult to verify that for any givenp > 1 the differential operators (2) and (3) as well as the differen
operator defined by (4) and satisfying the well-known growth conditions(

n∑
A2
i (x, η, ξ)

)1/2

�K1|ξ |p−1 (8)

i=1
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dratic

the
and

|ξ |p � K2

n∑
i=1

ξiAi(x, η, ξ), (9)

with some positive constantsK1,K2, belong to the classA(α) with α = p.
It is also easy to see that a linear divergent elliptic partial differential operator

L :=
n∑

i,j=1

∂

∂xj

(
aij (x)

∂

∂xi

)
(10)

with aij (x) measurable bounded coefficients and with the (possibly non-uniformly) positive-definite qua
form

n∑
i,j=1

aij (x)ξiξj (11)

belongs to the classA(α) with α = 2 but does not satisfy condition (9) for any fixedp > 1.
In connection with this we give another example of an operator that belongs to the classA(α) with a certain

α > 1 but does not satisfy condition (9). Leta(x, η, ξ) be a positive bounded function which satisfies
Carathéodory conditions onRn × R

1 × R
n. It is evident that for a givenp > 1 the weightedp-Laplacian

	̄p(u) := div
(
a(x,u,∇u)|∇u|p−2∇u) (12)

belongs to the classA(α) with α = p but does not satisfy condition (9) for any fixedp > 1 if the functiona(x, η, ξ)
is assumed to be only positive, but not bounded below away from zero.

It can happen that an operatorA(u) given by (4) belongs simultaneously to several different classesA(α). For
example, the well-known mean curvature operator

Ξ(u) := div

( ∇u√
1+ |∇u|2

)
(13)

belongs to the classesA(α) for all 1< α � 2; similarly its modification forp � 2,

Ξp(u) := div

( |∇u|p−2∇u√
1+ |∇u|2

)
, (14)

belongs to the classesA(α) for all α ∈ (p− 1,p] andp � 2.
Obviously, operators (13) and (14) do not satisfy conditions (9), (10) for any fixedp � 1.

Definition 2.2. Let α > 1 be a given number, and let the operatorA(u), given by (4), belong to the classA(α).
A functionu :Rn → (−∞,+∞) is called an entire subsolution of Eq. (1) if it belongs to the spaceW

1,α
loc (R

n) and
satisfies the integral inequality∫

Rn

n∑
i=1

ϕxiAi(x,u,∇u)dx � 0 (15)

for every non-negative functionϕ ∈W1,α(Rn) with compact support.

3. Results

Theorem 3.1.Letα � n be a given number, and let the operatorA(u), given by(4), belong to the classA(α). Let
u(x) be an entire subsolution of(1) bounded below by a constant. Thenu(x)= const., a.e. onRn.
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ions

in [3].

R 250

tortion,
Theorem 3.2.Letα ∈ (1, n) be a given number, and let the operatorA(u), given by(4), belong to the classA(α).
Let u(x) be an entire subsolution of(1) bounded below by a constantc and such thatu ∈ L∞

loc(R
n). Then either

u(x)= c, a.e. onR
n, or the equality

lim inf
r→+∞

[
sup

r�|x|�2r

(
u(x)− c

)]
r(n−α)/(α−1−ν) = +∞ (16)

holds with any fixedν ∈ (0, α− 1).

Theorem 3.3.Letα ∈ (1, n) be a given number, and let the operatorA(u), given by(4), belong to the classA(α).
Let u(x) be an entire subsolution of(1), bounded below by a constantc. Then eitheru(x)= c, a.e. onR

n, or the
equality

lim inf
r→+∞ r

−α
∫

r�|x|�2r

(
u(x)− c

)α−1−ν
dx = +∞ (17)

holds with any fixedν ∈ (0, α− 1).

Remark 2. It is important to note that for any givenα ∈ (1, n) the function

u(x)= (
1+ |x|α/(α−1))(α−n)/α

(18)

is a non-negative entire subsolution of the equation

	p(u)= 0 (19)

with p = α such that the equality

lim inf
r→+∞

[
sup

r�|x|�2r

(
u(x)− 0

)]
r(n−α)/(α−1) = C (20)

holds with a certain positive constantC.

Remark 3.The statements of Theorems 3.2 and 3.3 withα = 2 are new results even for entire classical subsolut
of the equation

	u= 0. (21)

Remark 4. Similar results to those of Theorem 3.1 for entire continuous subsolutions of (1) were obtained
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