Number Theory/Algebraic Geometry

Almost all reductions modulo p of an elliptic curve have a large exponent

William Duke ${ }^{1}$
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA
Received 20 June 2003; accepted 7 October 2003
Presented by Jean-Pierre Serre

Abstract

Let E be an elliptic curve defined over \mathbb{Q}. Suppose that $f(x)$ is any positive function tending to infinity with x. It is shown (under GRH) that for almost all p, the group of \mathbb{F}_{p}-points of the reduction of $E \bmod p$ contains a cyclic group of order at least $p / f(p)$. To cite this article: W. Duke, C. R. Acad. Sci. Paris, Ser. I 337 (2003). © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Presque toutes les réductions mod p d'une courbe elliptique sur \mathbb{Q} ont un groupe de points qui est presque cyclique. Soit E une courbe elliptique sur \mathbb{Q}. Soit $f(x)$ une fonction réelle positive tendant vers l'infini. Nous montrons (sous GRH) que, pour presque tout p, le groupe des \mathbb{F}_{p}-points de la réduction de $E \bmod p$ contient un groupe cyclique d'ordre au moins $p / f(p)$. Pour citer cet article : W. Duke, C. R. Acad. Sci. Paris, Ser. I 337 (2003). © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let E be an elliptic curve defined over \mathbb{Q}. For a prime p of good reduction for E the reduction of E modulo p is an elliptic curve E_{p} defined over the finite field \mathbb{F}_{p} with p elements. The finite abelian group $E_{p}\left(\mathbb{F}_{p}\right)$ of \mathbb{F}_{p}-rational points of E_{p} has size

$$
\begin{equation*}
\# E_{p}\left(\mathbb{F}_{p}\right)=p+1-a_{p} \tag{1}
\end{equation*}
$$

where $\left|a_{p}\right|<2 \sqrt{p}$, and structure

$$
\begin{equation*}
E_{p}\left(\mathbb{F}_{p}\right) \simeq\left(\mathbb{Z} / d_{p} \mathbb{Z}\right) \oplus\left(\mathbb{Z} / e_{p} \mathbb{Z}\right) \tag{2}
\end{equation*}
$$

for uniquely determined positive integers d_{p}, e_{p} with $d_{p} \mid e_{p}$. Here e_{p} is the size of the maximal cyclic subgroup of $E_{p}\left(\mathbb{F}_{p}\right)$, called the exponent of E_{p}.

[^0]Schoof [3] initiated the study of e_{p} as a function of p. It is immediate from (1) and (2) that $\sqrt{p} \ll e_{p} \ll p$. If E has no complex multiplication (CM) he showed by an elegant argument that

$$
e_{p} \gg \frac{\log p}{\log \log p} \sqrt{p}
$$

He also observed that this is likely to be false if E has CM. For example, for a prime of the form $p=(4 n)^{2}+1$ the CM curve E given by $y^{2}=x^{3}-x$ has $e_{p}=d_{p}=4 n=\sqrt{p-1}$. It is conjectured that there are infinitely many such p, but of course these anomalous primes may only occur rarely.

In this Note I will show that e_{p} is much larger for almost all p. Recall that a statement holds for almost all primes if the number of exceptional primes $p \leqslant x$ for which it does not hold is $o(\pi(x))$ as $x \rightarrow \infty$. As usual, $\pi(x)$ is the number of all primes $\leqslant x$. To obtain the optimal result in the non-CM case we assume the generalized Riemann hypothesis (GRH) for Dedekind zeta functions.

Theorem 1.1. Let E be an elliptic curve defined over \mathbb{Q}. If E does not have CM assume GRH. Let $f(x)$ be any positive function on $[2, \infty)$ that tends to infinity with x. Then the exponent e_{p} of E_{p} satisfies $e_{p}>p / f(p)$ for almost all p.

This result is optimal in the sense that it is not true for bounded f (see the statement below (10)). Unconditionally we are able to show that

$$
\begin{equation*}
e_{p}>p^{3 / 4} / \log p \tag{3}
\end{equation*}
$$

for almost all p (see the discussion above (9)).
For the proof of Theorem 1.1 we exploit the obvious fact that for any sequence of positive integers d_{p} the number of primes $p \leqslant x$ with $d_{p}>y$ is bounded from above by $\sum_{n>y} \pi_{n}(x)$, where

$$
\begin{equation*}
\pi_{n}(x)=\#\left\{p \leqslant x: d_{p} \equiv 0(\bmod n)\right\} . \tag{4}
\end{equation*}
$$

For d_{p} defined in (2), the function $\pi_{n}(x)$ counts split primes in the n-th division field of E and we are reduced to estimating the number of such primes from above in various ranges of n. For large enough n this is done using known properties of the Frobenius automorphism for a division field. For CM curves we also handle small n unconditionally using the Brun-Titchmarsh theorem in the associated quadratic field. To treat small n for non-CM curves we apply a strong version of the Chebotarev theorem that is conditional on GRH.

2. Reduction

From now on assume that p denotes a prime >3 of good reduction for a fixed elliptic curve E defined over \mathbb{Q}. In order to prove Theorem 1.1 it is sufficient to show that as $x \rightarrow \infty$ we have $\#\left\{p \leqslant x: d_{p}>f(p) / 3\right\}=\mathrm{o}(\pi(x))$, where d_{p} is defined in (2). For this it is enough to prove that as $x \rightarrow \infty$

$$
\#\left\{x / \log x \leqslant p \leqslant x: d_{p}>g(x)\right\}=\mathrm{o}(x / \log x)
$$

where $g(x)=\frac{1}{3} \inf \{f(y): x / \log x \leqslant y \leqslant x\}$. Clearly $g(x) \rightarrow \infty$ as $x \rightarrow \infty$. Set for $x \geqslant 3$

$$
\begin{equation*}
S(x)=\sum_{g(x)<n \leqslant 2 \sqrt{x}} \pi_{n}(x) \tag{5}
\end{equation*}
$$

where $\pi_{n}(x)$ is defined in (4). Obviously $\#\left\{x / \log x \leqslant p \leqslant x: d_{p}>g(x)\right\} \leqslant S(x)$ and so it is sufficient to prove that $S(x)=\mathrm{o}(x / \log x)$ as $x \rightarrow \infty$.

Let $E[n]$ denote the group of n-division points of E and $L_{n}:=\mathbb{Q}(E[n])$ be the n-th division field of E. Then L_{n} / \mathbb{Q} is a finite Galois extension whose Galois group G_{n} is a subgroup of $\operatorname{Aut}(E[n]) \cong \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$. It is clear
that p splits completely in L_{n} exactly when $d_{p} \equiv 0(\bmod n)$. The ring of endomorphisms $\operatorname{End}_{\mathbb{F}_{p}}\left(E_{p}\right)$ of E_{p} over \mathbb{F}_{p} is an order in the imaginary quadratic field $\mathbb{Q}\left(\left(a_{p}^{2}-4 p\right)^{1 / 2}\right)$ of discriminant Δ_{p}. Define $b_{p} \in \mathbb{Z}^{+}$by

$$
\begin{equation*}
4 p=a_{p}^{2}-\Delta_{p} b_{p}^{2} \tag{6}
\end{equation*}
$$

and consider the (integral) matrix

$$
\sigma_{p}=\left(\begin{array}{cc}
\left(a_{p}+b_{p} \delta_{p}\right) / 2 & b_{p} \tag{7}\\
b_{p}\left(\Delta_{p}-\delta_{p}\right) / 4 & \left(a_{p}-b_{p} \delta_{p}\right) / 2
\end{array}\right)
$$

where δ_{p} is 0 or 1 according to whether $\Delta_{p} \equiv 0$ or $1(\bmod 4)$. Then, as shown in [1], for an integer n such that $p \nmid n$, the matrix σ_{p} reduced modulo n represents the class of the Frobenius over p for L_{n}. In particular, if p splits in L_{n} then $b_{p} \equiv 0(\bmod n)$ and $a_{p} \equiv 2(\bmod n)$. We then have immediately from (6) that for $n \leqslant 2 \sqrt{x}$

$$
\begin{equation*}
\pi_{n}(x) \ll x^{3 / 2} n^{-3} \tag{8}
\end{equation*}
$$

In fact, this estimate may be improved a little by applying the Brun-Titchmarsh theorem, but we will not need this improvement here.

Let $h(x)=\frac{1}{4}\left(x \log ^{3} x\right)^{1 / 4}$. Summing (8) over the range $h(x) \leqslant n \leqslant 2 \sqrt{x}$ shows that, with the possible exception of at most $\mathrm{O}\left(x \log ^{-3 / 2} x\right)$ values of p, the set $E_{p}\left(\mathbb{F}_{p}\right)$ contains points of order at least $p^{3 / 4} / \log p$, thus justifying the second statement after Theorem 1.1 above. ${ }^{2}$ Toward the proof of Theorem 1.1, we also derive for $S(x)$ from (5) that

$$
\begin{equation*}
S(x)=\sum_{g(x)<n<h(x)} \pi_{n}(x)+\mathrm{O}\left(x \log ^{-3 / 2} x\right) \tag{9}
\end{equation*}
$$

This leads us to the problem of estimating $\pi_{n}(x)$ for smaller values of n, where we must distinguish between the CM and non-CM cases.

3. $\mathbf{C M}$

We now complete the proof of Theorem 1.1 in the CM case.
Suppose that E has CM by an order \mathcal{O} of discriminant $\Delta=m^{2} \Delta_{K}$ in the imaginary quadratic field $K=$ $\mathbb{Q}\left(\sqrt{\Delta_{K}}\right)$ of discriminant Δ_{K}. If p is supersingular, so $a_{p}=0$, then either $d_{p}=1$ or $d_{p}=2$. Otherwise we have that $\Delta_{p}=\Delta$ and from (6)

$$
4 p=a_{p}^{2}-\Delta b_{p}^{2}=a_{p}^{2}-\Delta_{K}\left(m b_{p}\right)^{2}
$$

It follows easily from (7) and the discussion following it (or from the classical theory of complex multiplication) that for $n>2$

$$
\pi_{n}(x) \leqslant \#\left\{p \leqslant x: p=N(\rho) \text { for some } \rho \in \mathcal{O}_{K} \text { with } \rho \equiv 1(\bmod n)\right\}
$$

The Brun-Titchmarsh theorem is readily generalized to the fixed number field K and its ray class group mod n, which has size

$$
\#\left(\mathcal{O}_{K} / n \mathcal{O}_{K}\right)^{\times}=n^{2} \prod_{p \mid n}\left(1-p^{-1}\right)\left(1-\chi_{K}(p) p^{-1}\right) \geqslant \phi(n)^{2}
$$

[^1]where χ_{K} is the quadratic character of K and ϕ is the Euler function. This is carried out in [2] and gives, in particular when $n<h(x)=\frac{1}{4}\left(x \log ^{3} x\right)^{1 / 4}$, that
$$
\pi_{n}(x) \ll \frac{x}{\phi(n)^{2} \log x}
$$

This finishes the proof of Theorem 1.1 in the CM case since, according to (9),

$$
\sum_{g(x)<n<h(x)} \pi_{n}(x) \ll g(x)^{-1+\varepsilon}(x / \log x)=\mathrm{o}(x / \log x)
$$

for any $\varepsilon>0$, as $x \rightarrow \infty$.

4. Non-CM

In the non-CM case we must at this point apply the (conditional) Chebotarev theorem in order to bound $\pi_{n}(x)$ in the range $g(x)<n<h(x)$. The ordinary Chebotarev theorem applied to the Galois extension L_{n} / \mathbb{Q} implies that

$$
\begin{equation*}
\pi_{n}(x) \sim \frac{1}{\left|G_{n}\right|} \pi(x) \tag{10}
\end{equation*}
$$

as $x \rightarrow \infty$. This is certainly enough to conclude that for any fixed $n \in \mathbb{Z}^{+}$we have $e_{p} \leqslant(2 / n) p$ for a positive proportion of p, justifying the first statement after Theorem 1.1 above.

To obtain a strong uniform estimate we assume GRH for the Dedekind zeta functions for L_{n}. Assuming this, we have the following useful conditional version (see (20_{R}) p. 134 of [5]):

$$
\pi_{n}(x)=\frac{1}{\left|G_{n}\right|} \pi(x)+\mathrm{O}\left(x^{1 / 2} \log (x n N)\right)
$$

where the implied constant is absolute and N is the conductor of E. It follows that to finish the proof of Theorem 1.1 it is sufficient to show that

$$
\sum_{g(x)<n<h(x)}\left|G_{n}\right|^{-1}=\mathrm{o}(1)
$$

as $x \rightarrow \infty$. This is deduced immediately from Serre's result [4] that in the non-CM case the index of G_{n} in $\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$ is bounded in n and the well known formula

$$
\# \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})=n^{4} \prod_{\substack{\ell \mid n \\ \ell \text { prime }}}\left(1-\ell^{-1}\right)\left(1-\ell^{-2}\right)
$$

Acknowledgements

I thank Igor Shparlinski for his inquiry leading me to write this Note. I also thank J.-P. Serre for suggesting several improvements of an earlier version.

References

[1] W. Duke, Á Tóth, The splitting of primes in division fields of elliptic curves, Experiment. Math. 11 (2003) 555-565.
[2] J. Hinz, M. Lodemann, On Siegel zeros of Hecke-Landau zeta-functions, Monatsh. Math. 118 (1994) 231-248.
[3] R. Schoof, The exponents of the groups of points on the reductions of an elliptic curve, in: Arithmetic Algebraic Geometry (Texel, 1989), in: Progr. Math., Vol. 89, Birkhäuser, Boston, MA, 1991, pp. 325-335.
[4] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972) 259-331, also in: Collected Papers, Vol. III, Springer-Verlag, 1985.
[5] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. Math. I. H. E. S. 54 (1981) 123-201, also in: Collected Papers, Vol. III, Springer-Verlag, 1985.

[^0]: E-mail address: duke@math.ucla.edu (W. Duke).
 ${ }^{1}$ Research partially supported by the NSF.

[^1]: ${ }^{2}$ After seeing a previous version of this Note, I. Shparlinski pointed out to me that an immediate extension of the proof of (8) yields the estimate $\#\left\{p \leqslant x\right.$: there exists a curve over \mathbb{F}_{p} with $\left.d_{p} \equiv 0(\bmod n)\right\} \ll x^{3 / 2} n^{-3}$. This shows that, for almost all p, the group of \mathbb{F}_{p}-points of every elliptic curve defined over \mathbb{F}_{p} contains points of order at least $p^{3 / 4} / \log p$.

