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Abstract

LetE be an elliptic curve defined overQ. Suppose thatf (x) is any positive function tending to infinity withx. It is shown
(under GRH) that for almost allp, the group ofFp-points of the reduction ofE modp contains a cyclic group of order at lea
p/f (p). To cite this article: W. Duke, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Presque toutes les réductions mod p d’une courbe elliptique sur Q ont un groupe de points qui est presque cyclique.
SoitE une courbe elliptique surQ. Soitf (x) une fonction réelle positive tendant vers l’infini. Nous montrons (sous GRH)
pour presque toutp, le groupe desFp-points de la réduction deE modp contient un groupe cyclique d’ordre au moinsp/f (p).
Pour citer cet article : W. Duke, C. R. Acad. Sci. Paris, Ser. I 337 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

LetE be an elliptic curve defined overQ. For a primep of good reduction forE the reduction ofE modulop is
an elliptic curveEp defined over the finite fieldFp with p elements. The finite abelian groupEp(Fp) of Fp-rational
points ofEp has size

#Ep(Fp)= p+ 1− ap, (1)

where|ap|< 2
√
p, and structure

Ep(Fp)� (Z/dpZ)⊕ (Z/epZ), (2)

for uniquely determined positive integersdp , ep with dp|ep. Hereep is the size of the maximal cyclic subgroup
Ep(Fp), called the exponent ofEp.
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Schoof [3] initiated the study ofep as a function ofp. It is immediate from (1) and (2) that
√
p � ep � p. If E

has no complex multiplication (CM) he showed by an elegant argument that

ep 	 logp

log logp

√
p.

He also observed that this is likely to be false ifE has CM. For example, for a prime of the formp = (4n)2 + 1
the CM curveE given byy2 = x3 − x hasep = dp = 4n= √

p− 1. It is conjectured that there are infinitely ma
suchp, but of course these anomalous primes may only occur rarely.

In this Note I will show thatep is much larger foralmost allp. Recall that a statement holds for almost
primes if the number of exceptional primesp � x for which it does not hold iso(π(x)) asx → ∞. As usual,
π(x) is the number of all primes� x. To obtain the optimal result in the non-CM case we assume the gener
Riemann hypothesis (GRH) for Dedekind zeta functions.

Theorem 1.1. LetE be an elliptic curve defined overQ. If E does not have CM assume GRH. Letf (x) be any
positive function on[2,∞) that tends to infinity withx. Then the exponentep of Ep satisfiesep > p/f (p) for
almost allp.

This result is optimal in the sense that it is not true for boundedf (see the statement below (10
Unconditionally we are able to show that

ep > p3/4/ logp (3)

for almost allp (see the discussion above (9)).
For the proof of Theorem 1.1 we exploit the obvious fact that for any sequence of positive integersdp the

number of primesp � x with dp > y is bounded from above by
∑

n>y πn(x), where

πn(x)= #{p� x: dp ≡ 0 (modn)}. (4)

For dp defined in (2), the functionπn(x) counts split primes in then-th division field ofE and we are reduced t
estimating the number of such primes from above in various ranges ofn. For large enoughn this is done using
known properties of the Frobenius automorphism for a division field. For CM curves we also handle sn
unconditionally using the Brun–Titchmarsh theorem in the associated quadratic field. To treat smalln for non-CM
curves we apply a strong version of the Chebotarev theorem that is conditional on GRH.

2. Reduction

From now on assume thatp denotes a prime>3 of good reduction for a fixed elliptic curveE defined overQ.
In order to prove Theorem 1.1 it is sufficient to show that asx → ∞ we have #{p � x: dp > f (p)/3} = o(π(x)),
wheredp is defined in (2). For this it is enough to prove that asx → ∞

#{x/ logx � p � x: dp > g(x)} = o(x/ logx),

whereg(x)= 1
3 inf{f (y): x/ logx � y � x}. Clearlyg(x)→ ∞ asx → ∞. Set forx � 3

S(x)=
∑

g(x)<n�2
√
x

πn(x), (5)

whereπn(x) is defined in (4). Obviously #{x/ logx � p � x: dp > g(x)} � S(x) and so it is sufficient to prov
thatS(x)= o(x/ logx) asx → ∞.

Let E[n] denote the group ofn-division points ofE andLn := Q(E[n]) be then-th division field ofE. Then
Ln/Q is a finite Galois extension whose Galois groupGn is a subgroup of Aut(E[n])∼= GL2(Z/nZ). It is clear
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thatp splits completely inLn exactly whendp ≡ 0 (modn). The ring of endomorphisms EndFp (Ep) of Ep over
Fp is an order in the imaginary quadratic fieldQ((a2

p − 4p)1/2) of discriminant�p. Definebp ∈ Z+ by

4p= a2
p −�pb

2
p (6)

and consider the (integral) matrix

σp =
(
(ap + bpδp)/2 bp
bp(�p − δp)/4 (ap − bpδp)/2

)
, (7)

whereδp is 0 or 1 according to whether�p ≡ 0 or 1 (mod 4). Then, as shown in [1], for an integern such that
p � n, the matrixσp reduced modulon represents the class of the Frobenius overp for Ln. In particular, ifp splits
in Ln thenbp ≡ 0 (modn) andap ≡ 2 (modn). We then have immediately from (6) that forn� 2

√
x

πn(x)� x3/2n−3. (8)

In fact, this estimate may be improved a little by applying the Brun–Titchmarsh theorem, but we will not ne
improvement here.

Leth(x)= 1
4(x log3x)1/4. Summing (8) over the rangeh(x)� n� 2

√
x shows that, with the possible excepti

of at most O(x log−3/2x) values ofp, the setEp(Fp) contains points of order at leastp3/4/ logp, thus justifying
the second statement after Theorem 1.1 above.2 Toward the proof of Theorem 1.1, we also derive forS(x) from (5)
that

S(x)=
∑

g(x)<n<h(x)

πn(x)+ O
(
x log−3/2x

)
. (9)

This leads us to the problem of estimatingπn(x) for smaller values ofn, where we must distinguish between t
CM and non-CM cases.

3. CM

We now complete the proof of Theorem 1.1 in the CM case.
Suppose thatE has CM by an orderO of discriminant� = m2�K in the imaginary quadratic fieldK =

Q(
√
�K) of discriminant�K . If p is supersingular, soap = 0, then eitherdp = 1 or dp = 2. Otherwise we have

that�p =� and from (6)

4p= a2
p −�b2

p = a2
p −�K(mbp)

2.

It follows easily from (7) and the discussion following it (or from the classical theory of complex multiplica
that forn > 2

πn(x)� #{p� x: p =N(ρ) for someρ ∈ OK with ρ ≡ 1 (modn)}.
The Brun–Titchmarsh theorem is readily generalized to thefixednumber fieldK and its ray class group modn,
which has size

#(OK/nOK)
× = n2

∏
p|n

(
1−p−1)(1− χK(p)p

−1) � φ(n)2,

2 After seeing a previous version of this Note, I. Shparlinski pointed out to me that an immediate extension of the proof of (8) y
estimate #{p � x: there exists a curve overFp with dp ≡ 0 (modn)} � x3/2n−3. This shows that, for almost allp, the group ofFp-points of
everyelliptic curve defined overFp contains points of order at leastp3/4/ logp.
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whereχK is the quadratic character ofK andφ is the Euler function. This is carried out in [2] and gives,
particular whenn < h(x)= 1

4(x log3x)1/4, that

πn(x)� x

φ(n)2 logx
.

This finishes the proof of Theorem 1.1 in the CM case since, according to (9),∑
g(x)<n<h(x)

πn(x)� g(x)−1+ε(x/ logx)= o(x/ logx)

for anyε > 0, asx → ∞.

4. Non-CM

In the non-CM case we must at this point apply the (conditional) Chebotarev theorem in order to bounπn(x)

in the rangeg(x) < n< h(x). The ordinary Chebotarev theorem applied to the Galois extensionLn/Q implies that

πn(x)∼ 1

|Gn|π(x) (10)

asx → ∞. This is certainly enough to conclude that for any fixedn ∈ Z+ we haveep � (2/n)p for a positive
proportion ofp, justifying the first statement after Theorem 1.1 above.

To obtain a strong uniform estimate we assume GRH for the Dedekind zeta functions forLn. Assuming this,
we have the following useful conditional version (see(20R) p. 134 of [5]):

πn(x)= 1

|Gn|π(x)+ O
(
x1/2 log(xnN)

)
,

where the implied constant is absolute andN is the conductor ofE. It follows that to finish the proof of Theorem 1
it is sufficient to show that∑

g(x)<n<h(x)

|Gn|−1 = o(1)

as x → ∞. This is deduced immediately from Serre’s result [4] that in the non-CM case the index ofGn in
GL2(Z/nZ) is bounded inn and the well known formula

# GL2(Z/nZ)= n4
∏
$|n

$ prime

(
1− $−1)(1− $−2).
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