

Available online at www.sciencedirect.com

(2)

C. R. Acad. Sci. Paris, Ser. I 337 (2003) 689-692

Number Theory/Algebraic Geometry

Almost all reductions modulo *p* of an elliptic curve have a large exponent

William Duke¹

UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA Received 20 June 2003; accepted 7 October 2003 Presented by Jean-Pierre Serre

Abstract

Let *E* be an elliptic curve defined over \mathbb{Q} . Suppose that f(x) is any positive function tending to infinity with *x*. It is shown (under GRH) that for almost all *p*, the group of \mathbb{F}_p -points of the reduction of *E* mod *p* contains a cyclic group of order at least p/f(p). *To cite this article: W. Duke, C. R. Acad. Sci. Paris, Ser. I 337 (2003).* @ 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Presque toutes les réductions mod p **d'une courbe elliptique sur** \mathbb{Q} **ont un groupe de points qui est presque cyclique.** Soit E une courbe elliptique sur \mathbb{Q} . Soit f(x) une fonction réelle positive tendant vers l'infini. Nous montrons (sous GRH) que, pour presque tout p, le groupe des \mathbb{F}_p -points de la réduction de E mod p contient un groupe cyclique d'ordre au moins p/f(p). *Pour citer cet article : W. Duke, C. R. Acad. Sci. Paris, Ser. I 337 (2003).*

© 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Let *E* be an elliptic curve defined over \mathbb{Q} . For a prime *p* of good reduction for *E* the reduction of *E* modulo *p* is an elliptic curve E_p defined over the finite field \mathbb{F}_p with *p* elements. The finite abelian group $E_p(\mathbb{F}_p)$ of \mathbb{F}_p -rational points of E_p has size

$$#E_p(\mathbb{F}_p) = p + 1 - a_p,\tag{1}$$

where $|a_p| < 2\sqrt{p}$, and structure

$$E_p(\mathbb{F}_p) \simeq (\mathbb{Z}/d_p\mathbb{Z}) \oplus (\mathbb{Z}/e_p\mathbb{Z}),$$

for uniquely determined positive integers d_p , e_p with $d_p|e_p$. Here e_p is the size of the maximal cyclic subgroup of $E_p(\mathbb{F}_p)$, called the exponent of E_p .

E-mail address: duke@math.ucla.edu (W. Duke).

¹ Research partially supported by the NSF.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2003.10.006

Schoof [3] initiated the study of e_p as a function of p. It is immediate from (1) and (2) that $\sqrt{p} \ll e_p \ll p$. If E has no complex multiplication (CM) he showed by an elegant argument that

$$e_p \gg \frac{\log p}{\log \log p} \sqrt{p}.$$

He also observed that this is likely to be false if E has CM. For example, for a prime of the form $p = (4n)^2 + 1$ the CM curve E given by $y^2 = x^3 - x$ has $e_p = d_p = 4n = \sqrt{p-1}$. It is conjectured that there are infinitely many such p, but of course these anomalous primes may only occur rarely.

In this Note I will show that e_p is much larger for *almost all* p. Recall that a statement holds for almost all primes if the number of exceptional primes $p \le x$ for which it does not hold is $o(\pi(x))$ as $x \to \infty$. As usual, $\pi(x)$ is the number of all primes $\le x$. To obtain the optimal result in the non-CM case we assume the generalized Riemann hypothesis (GRH) for Dedekind zeta functions.

Theorem 1.1. Let *E* be an elliptic curve defined over \mathbb{Q} . If *E* does not have *CM* assume *GRH*. Let f(x) be any positive function on $[2, \infty)$ that tends to infinity with *x*. Then the exponent e_p of E_p satisfies $e_p > p/f(p)$ for almost all *p*.

This result is optimal in the sense that it is not true for bounded f (see the statement below (10)). Unconditionally we are able to show that

$$e_p > p^{3/4} / \log p \tag{3}$$

for almost all p (see the discussion above (9)).

For the proof of Theorem 1.1 we exploit the obvious fact that for any sequence of positive integers d_p the number of primes $p \leq x$ with $d_p > y$ is bounded from above by $\sum_{n>y} \pi_n(x)$, where

$$\pi_n(x) = \#\{p \le x \colon d_p \equiv 0 \pmod{n}\}. \tag{4}$$

For d_p defined in (2), the function $\pi_n(x)$ counts split primes in the *n*-th division field of *E* and we are reduced to estimating the number of such primes from above in various ranges of *n*. For large enough *n* this is done using known properties of the Frobenius automorphism for a division field. For CM curves we also handle small *n* unconditionally using the Brun–Titchmarsh theorem in the associated quadratic field. To treat small *n* for non-CM curves we apply a strong version of the Chebotarev theorem that is conditional on GRH.

2. Reduction

From now on assume that p denotes a prime >3 of good reduction for a fixed elliptic curve E defined over \mathbb{Q} . In order to prove Theorem 1.1 it is sufficient to show that as $x \to \infty$ we have $\#\{p \le x : d_p > f(p)/3\} = o(\pi(x))$, where d_p is defined in (2). For this it is enough to prove that as $x \to \infty$

$$#\{x/\log x \leqslant p \leqslant x \colon d_p > g(x)\} = o(x/\log x).$$

where $g(x) = \frac{1}{3} \inf\{f(y): x / \log x \le y \le x\}$. Clearly $g(x) \to \infty$ as $x \to \infty$. Set for $x \ge 3$

$$S(x) = \sum_{g(x) < n \leq 2\sqrt{x}} \pi_n(x), \tag{5}$$

where $\pi_n(x)$ is defined in (4). Obviously $\#\{x/\log x \le p \le x: d_p > g(x)\} \le S(x)$ and so it is sufficient to prove that $S(x) = o(x/\log x)$ as $x \to \infty$.

Let E[n] denote the group of *n*-division points of *E* and $L_n := \mathbb{Q}(E[n])$ be the *n*-th division field of *E*. Then L_n/\mathbb{Q} is a finite Galois extension whose Galois group G_n is a subgroup of $\operatorname{Aut}(E[n]) \cong \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$. It is clear

690

that *p* splits completely in L_n exactly when $d_p \equiv 0 \pmod{n}$. The ring of endomorphisms $\operatorname{End}_{\mathbb{F}_p}(E_p)$ of E_p over \mathbb{F}_p is an order in the imaginary quadratic field $\mathbb{Q}((a_p^2 - 4p)^{1/2})$ of discriminant Δ_p . Define $b_p \in \mathbb{Z}^+$ by

$$4p = a_p^2 - \Delta_p b_p^2 \tag{6}$$

and consider the (integral) matrix

$$\sigma_p = \begin{pmatrix} (a_p + b_p \delta_p)/2 & b_p \\ b_p (\Delta_p - \delta_p)/4 & (a_p - b_p \delta_p)/2 \end{pmatrix},\tag{7}$$

where δ_p is 0 or 1 according to whether $\Delta_p \equiv 0$ or 1 (mod 4). Then, as shown in [1], for an integer *n* such that $p \nmid n$, the matrix σ_p reduced modulo *n* represents the class of the Frobenius over *p* for L_n . In particular, if *p* splits in L_n then $b_p \equiv 0 \pmod{n}$ and $a_p \equiv 2 \pmod{n}$. We then have immediately from (6) that for $n \leq 2\sqrt{x}$

$$\pi_n(x) \ll x^{3/2} n^{-3}.$$
(8)

In fact, this estimate may be improved a little by applying the Brun–Titchmarsh theorem, but we will not need this improvement here.

Let $h(x) = \frac{1}{4}(x \log^3 x)^{1/4}$. Summing (8) over the range $h(x) \le n \le 2\sqrt{x}$ shows that, with the possible exception of at most $O(x \log^{-3/2} x)$ values of p, the set $E_p(\mathbb{F}_p)$ contains points of order at least $p^{3/4}/\log p$, thus justifying the second statement after Theorem 1.1 above.² Toward the proof of Theorem 1.1, we also derive for S(x) from (5) that

$$S(x) = \sum_{g(x) < n < h(x)} \pi_n(x) + O\left(x \log^{-3/2} x\right).$$
(9)

This leads us to the problem of estimating $\pi_n(x)$ for smaller values of *n*, where we must distinguish between the CM and non-CM cases.

3. CM

We now complete the proof of Theorem 1.1 in the CM case.

Suppose that *E* has CM by an order \mathcal{O} of discriminant $\Delta = m^2 \Delta_K$ in the imaginary quadratic field $K = \mathbb{Q}(\sqrt{\Delta_K})$ of discriminant Δ_K . If *p* is supersingular, so $a_p = 0$, then either $d_p = 1$ or $d_p = 2$. Otherwise we have that $\Delta_p = \Delta$ and from (6)

$$4p = a_p^2 - \Delta b_p^2 = a_p^2 - \Delta_K (mb_p)^2.$$

It follows easily from (7) and the discussion following it (or from the classical theory of complex multiplication) that for n > 2

$$\pi_n(x) \leq \#\{p \leq x: p = N(\rho) \text{ for some } \rho \in \mathcal{O}_K \text{ with } \rho \equiv 1 \pmod{n}\}.$$

The Brun–Titchmarsh theorem is readily generalized to the *fixed* number field K and its ray class group mod n, which has size

$$#(\mathcal{O}_K/n\mathcal{O}_K)^{\times} = n^2 \prod_{p|n} (1-p^{-1}) (1-\chi_K(p)p^{-1}) \ge \phi(n)^2,$$

691

² After seeing a previous version of this Note, I. Shparlinski pointed out to me that an immediate extension of the proof of (8) yields the estimate $\#\{p \leq x: \text{ there exists a curve over } \mathbb{F}_p \text{ with } d_p \equiv 0 \pmod{n}\} \ll x^{3/2}n^{-3}$. This shows that, for almost all p, the group of \mathbb{F}_p -points of *every* elliptic curve defined over \mathbb{F}_p contains points of order at least $p^{3/4}/\log p$.

where χ_K is the quadratic character of *K* and ϕ is the Euler function. This is carried out in [2] and gives, in particular when $n < h(x) = \frac{1}{4} (x \log^3 x)^{1/4}$, that

$$\pi_n(x) \ll \frac{x}{\phi(n)^2 \log x}.$$

This finishes the proof of Theorem 1.1 in the CM case since, according to (9),

$$\sum_{g(x) < n < h(x)} \pi_n(x) \ll g(x)^{-1+\varepsilon} (x/\log x) = o(x/\log x)$$

for any $\varepsilon > 0$, as $x \to \infty$.

4. Non-CM

In the non-CM case we must at this point apply the (conditional) Chebotarev theorem in order to bound $\pi_n(x)$ in the range g(x) < n < h(x). The ordinary Chebotarev theorem applied to the Galois extension L_n/\mathbb{Q} implies that

$$\pi_n(x) \sim \frac{1}{|G_n|} \pi(x) \tag{10}$$

as $x \to \infty$. This is certainly enough to conclude that for any fixed $n \in \mathbb{Z}^+$ we have $e_p \leq (2/n)p$ for a positive proportion of p, justifying the first statement after Theorem 1.1 above.

To obtain a strong uniform estimate we assume GRH for the Dedekind zeta functions for L_n . Assuming this, we have the following useful conditional version (see (20_R) p. 134 of [5]):

$$\pi_n(x) = \frac{1}{|G_n|} \pi(x) + O(x^{1/2} \log(xnN)),$$

where the implied constant is absolute and N is the conductor of E. It follows that to finish the proof of Theorem 1.1 it is sufficient to show that

$$\sum_{(x) < n < h(x)} |G_n|^{-1} = o(1)$$

as $x \to \infty$. This is deduced immediately from Serre's result [4] that in the non-CM case the index of G_n in $GL_2(\mathbb{Z}/n\mathbb{Z})$ is bounded in *n* and the well known formula

$$\# \operatorname{GL}_{2}(\mathbb{Z}/n\mathbb{Z}) = n^{4} \prod_{\substack{\ell \mid n \\ \ell \text{ prime}}} (1 - \ell^{-1}) (1 - \ell^{-2}).$$

Acknowledgements

I thank Igor Shparlinski for his inquiry leading me to write this Note. I also thank J.-P. Serre for suggesting several improvements of an earlier version.

References

g

- [1] W. Duke, Á Tóth, The splitting of primes in division fields of elliptic curves, Experiment. Math. 11 (2003) 555–565.
- [2] J. Hinz, M. Lodemann, On Siegel zeros of Hecke-Landau zeta-functions, Monatsh. Math. 118 (1994) 231-248.
- [3] R. Schoof, The exponents of the groups of points on the reductions of an elliptic curve, in: Arithmetic Algebraic Geometry (Texel, 1989), in: Progr. Math., Vol. 89, Birkhäuser, Boston, MA, 1991, pp. 325–335.
- [4] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972) 259–331, also in: Collected Papers, Vol. III, Springer-Verlag, 1985.
- [5] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. Math. I. H. E. S. 54 (1981) 123–201, also in: Collected Papers, Vol. III, Springer-Verlag, 1985.

692