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Abstract

Let A C Z be a finite set of integers of cardinalit| = N > 2. Given a positive integdr, denotek A (resp.A®)) the set of all
sums (resp. products) éfelements ofd. We prove that for alb > 1, there existg = k(b) such that magkA|, [A®)]) > NP.
This answers affirmably questions raised in &dnd Szemerédi (Stud. Pure Math., 1983, pp. 213-218), Elekes et al.
(J. Number Theory 83 (2) (2002) 194—201) and recently, by S. Konjagin (private communication). The method is based on
harmonic analysis techniques in the spirit of Chang (Ann. Math. 157 (2003) 939-957) and combinatorics o gragthis
article: J. Bourgain, M.-C. Chang, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Sur les ensembles de sommes et produits multiples d’ensembles finis d’entie®it A C Z un ensembile fini d’entiers et
|A| = N > 2. Pour tout entier positif, denotons A (resp.A®)) 'ensemble de toutes les sommes (resp. produité)ééments
de A. On démontre que pour tolt> 1, il existek = k(b) tel que max|kA|, [A®) > NP, Ceci répond affirmativement a des
questions posées dans Bsdet Szemerédi (Stud. Pure Math., 1983, pp. 213-218), Elekes et al. (J. Number Theory 83 (2)
(2002) 194-201) et, récemment, par S. Konjagin (communication privée). La méthode est basée sur des arguments d’analys
harmonique dans l'esprit de Chang (Ann. Math. 157 (2003) 939-957) et de la combinatoire sur des aphater cet
article: J. Bourgain, M.-C. Chang, C. R. Acad. Sci. Paris, Ser. | 337 (2003).
O 2003 Académie des sciences. Published by Editions scientifiques et médicales Elsevier SAS. All rights reserved.

1. Preliminaries and statement of the result

For a finite subset of integers C Z, denote

kA=A+---+ A, thek-fold sumset
—————
k
and

AP =Ax...x A, thek-fold product set
——
k
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A number of results and problems going back to the seminal paper of Erdds and Szemerédi [4] express the fac
thatkA andA® cannot be both ‘small’. More precisely, it is conjectured in [4] that fokadl Z, ands > 0

kAl +[AD| > ek, )| A]FE. (1)

This problem is still open, even fdr = 2. In the case = 2, the best results obtained so far are based on
geometric combinatorics such as the Szemerédi—Trotter theorem (this approach works equally well for sets of rea
numbers). The record to date is due to Solymosi [8]

12A] - |[AP] > c(e)| AP/, (2)

Also based on the Szemerédi—Trotter theorem, it was shown in [3] that for géreral

kAl [AB| > c|APP27", 3)
In view of conjecture (1) and the lower bound (3), it is natural to explore first the issue whether
log(lkA| + AR
QAL +14DD @

ACZ, |A|=2 log|A|
This problem was formulated in [3] and also, more recently by Konjagin [5] (motivated by issues concerning

exponential sums). Our main result is an affirmative answer.
Theorem 1.1.For all b > 1there isk € Z and that ifA C Z is an arbitrary finite set, withA| = N > 2, then

kAl +]A®| > N (5)
Remark 1. (i) Our argument gives some explicit lower bound on how latd®s to be (it involves exponential
dependence oh), but we made no attempt here to optimize the result (of course, if (1) is true, we may take in (5)
anyk € Zy, k > b, providedN is sufficiently larger).

(ii) At this point, we do not have the analogue of the theorem for detsR of real numbers. As in [2], our
approach makes essential use of prime factorization.

2. Brief description of the argument

The proof uses several ingredients of combinatorial and analytical nature. In particular, we do rely on Freiman’s
lemma and Gowers’ improved version of the Balog—Szemerédi theorem, the basic harmonic analysis inequality
from [2] and finally, the ‘induction on scales’ argument from [1] to bootstrap the estimates. The general strategy
of our proof bears resemblance to [2] in the sense that we asstffig'small’ and prove that therk A| has to be
large. However, ‘smallness’ o - A| in [2] is the assumption

|A- Al < K|A] (6)

with K a constant (a condition much too restrictive for our purpose).
If (6) holds, it is shown in [2] that

|A+ Al > c(K)|A]? 7
and more generally
[hA| > (K, h)|A|". 8)

Let us briefly recall the approach.
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Consider the map given by prime factorization
Zy — R=[]Zxo0.
p

n=[]r" — a=@)).
p

wherep runs in the seP of primes.
The setA is mapped to4d C R satisfying by (6)

[24] < K| AJ. 9

Freiman’s lemma implies then that dih< K (where ‘dim’ refers to the smallest vector space containi)g
Hence there is a subsétc P, |I| < K, such that the restriction; is one-to-one restricted tgl. Harmonic
analysis implies then that

2q(A) < (Cq)¥ (10)
for an absolute constagt, and for ally > 2. By 1, (A), we mean thel, -constant of the finite set C Z, defined by

j{:cneZﬂnQ

neA

, (11)
L4(T)

g (A) = max’

whereT = R/Z and the max is taken over all sequen@g9,c with (3~ c2)¥/? < 1. See [7] for more details.
Eq. (10) results from the following more general inequality that will also be crucial here (see [2]):

Proposition 2.1.Let p1, ..., p; be distinct primes and associate to each= (a1, ..., ;) € (220)" a trigono-
metric polynomialF,, on T such that

(n,p)=1, foralln e suppF,, and for all p € Py.

Then, for any moment > 2

D Fa(pyt--- pito)
o

1/2
< (Cq>k<2 ||Fa||,§) : (12)
q

Thus (10) follows from (12) taking, (6) = €¥'? and{p1, ..., px} =1 C P.
Denoting forh > 2

rn(n; A) = [{(x1, ... xn) € AMln=x1+ -+ xn )]
A simple application of Parseval’s identity gives

> s A2 <o (A -1

nehA
and using Cauchy—Schwartz inequality ®i),_,, , 7 (n; A), it follows that
A"
hA| 2 ——-. 13
A= S Ay (13)
Thus we obtain (8) with
c(K,h) > (Ch)=2"K, (14)

Obviously, this statement has no interest unl€ss log|A|.
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The main point in what follows is to be able to carry some of the preceding analysis under a much weaker
assumptiork < |A|%, e small. We will prove the following statement:

Proposition 2.2.Giveny > 0 and g > 2, there is a constaniA = A(y, g) such that ifA C Z is a finite set,
[A|=N, |A-A| < KN, then

Ag(A) < KANY. (15)
Thus fixingg, Proposition 2.2 provides already nontrivial information assunking N?, with § > 0 sufficiently
small.

Assuming Proposition 2.2, let us derive the theorem. We may assumé that, to simplify the situation.
Fix b and assume (5) fails for some large= 2¢ (to be specified). Hence, passing4o

lkA| < N?,
[26A] 2714 ~12A]
[26-1A] 26241 |A
and we may findg = 20 such that

< NP1 (16)

|2kO-A| < N(h_l)/l.

m a7
DenoteB = koA C R andB = A%0) | the corresponding subset®f . Thus by (17)
|B-B| < N®=D/{ . (18)
Apply Proposition 2.2 to the sét, |B| = No, K = N?~D/t with ¢, y specified later.
Hence from (15)
Aq(A) < ag(B) < NO=D/OANY o N(G=D/tATDY, (19)
Takingg = 2k, (13) and (19) imply
hA| > NA-2G-D/0A-2by)h (20)

Takeh = 2b <k, y = 133 Recall thatd = A(y, ¢), henced = A(b). Takel = 100 A(b), so thatk = 2 = k(b).
Inequality (20) then clearly implies that

[kA| > N°.
This proves the theorem.
Returning to Proposition 2.2, it will suffice to prove the following weaker version
Proposition 2.3.Giveny > 0,7t > 0andg > 2, and A as in Propositior2.2, there is a subsed’ C A satisfying
|A’] > N7, (21)
Ag(A)) < KNV, (22)
whereA = A(t, y,q).

3. Proof of Proposition 2.2 assuming Proposition 2.3

Denotingy the indicator function, one has obviously

> xear =147 xa- (23)
z€A/A’
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Let A’ be the subset obtained in Proposition 2.3. Then (23) is easily seen to imply

A

Wiy < Y agea)=| 2 kq(A’)<H anv. (24)

zeA/A’

If A C R isthe setintroduced before, application of Ruzsa’s inequality on sum-difference sets [6] gives

A
H =|A— A < K% A =K>2N. (25)
Thus, by (21), (24) and (25), we have
Ag(A) < KATENTHY, (26)

whereA = A(z, v, q). Replacingy by § andr = %, (15) follows.
Proposition 2.2 is derived from more technical statements involving graphs.
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