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FINITENESS OF π1 AND GEOMETRIC INEQUALITIES
IN ALMOST POSITIVE RICCI CURVATURE

BY ERWANN AUBRY 1

ABSTRACT. – We show boundedness of the diameter and finiteness of the fundamental group under a
global Lp control (for p > n/2) of the Ricci curvature. Conversely, metrics with similar L

n
2 -control of

their Ricci curvature are dense in the set of complete metrics of any compact differentiable manifold.
© 2007 Elsevier Masson SAS

RÉSUMÉ. – Les théorèmes de Myers sur le diamètre et le groupe fondamental s’étendent aux variétés
dont la courbure de Ricci est presque supérieure à n − 1 en norme Lp pour p > n/2. Inversement, les
métriques à courbure de Ricci presque supérieure à n − 1 au sens L

n
2 sont denses dans l’ensemble des

métriques riemanniennes de toute variété compacte.
© 2007 Elsevier Masson SAS

1. Introduction

Finding the topological, geometrical or analytical properties induced by curvature bounds is
a classical problem in Riemannian geometry. For instance, S. Myers showed that any complete
n-manifold with Ric � k(n−1), k > 0, is compact with diameter bounded by π√

k
and has a

finite π1. Conversely, J. Lohkamp showed in [11] that on every n-manifold with n � 3 there
exists a metric with negative Ricci curvature. This paper is devoted to the study of Riemannian
manifolds satisfying only an Lp bound on the negative lower part of their Ricci curvature tensors.

NOTATIONS. – For any positive real p, we set ρp =
∫

M
(Ric−(n−1))p

−, where Ric(x) =
infX∈TxM\{0} Ricx(X,X)/g(X,X) is the lowest eigenvalue of the Ricci tensor at x ∈ M and
for any function f , we set f−(x) = max(−f(x),0).

Our first result is the following Bishop type theorem.

THEOREM 1.1. – Let (Mn, g) be a complete manifold and p > n
2 ; then we have

Vol(M,g) � VolSn
(
1 + ρ

9
10
p

)(
1 + C(p,n)ρ

1
10
p

)
,

where C(p,n) denotes a constant that depends only on p and n. In particular, if ρp < ∞, then
(Mn, g) has finite volume.

In the case Ric � n− 1, our estimate implies the classical Bishop theorem. However note that
the manifolds with Ric � n−1 are automatically compact, with finite π1, and form a precompact

1 Partially supported by FNRS Swiss Grant n◦ 20-101469.
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676 E. AUBRY
family for the Gromov–Hausdorff distance on the length spaces, whereas the manifolds with
finite ρp form a family that contains every compact Riemannian manifold and some noncompact
ones (for instance hyperbolic manifolds with finite volume), and is Gromov–Hausdorff dense
among all the length spaces (Prop. 9.1). Note also that the condition p > n/2 is optimal since
for any V > 0 and any ε > 0, there exists a large (actually dense for the Gromov–Hausdorff
distance among the length spaces) family of Riemannian manifolds with volume V and ρn

2
� ε

(Prop. 9.2). P. Petersen and G. Wei have shown a similar estimate (Th. 1.1 of [15]) for compact
manifolds but with an upper bound that depends also on the diameter of M .

Our second main result is the following Myers type theorem.

THEOREM 1.2. – Let (Mn, g) be a complete manifold and p > n/2. If ρp

VolM � 1
C(p,n) ; then

M is compact with finite π1 and

Diam(M,g) � π ×
(

1 + C(p,n)
(

ρp

VolM

) 1
10

)
.

COMMENTS AND REMARKS. –
1) Such a diameter bound was obtained in [14] under stronger curvature assumptions but the

finiteness of the π1 was a conjecture (see also [19]). As noticed in [14], although L∞

bounds on the curvature transfer readily to the universal cover, the situation is different for
integral controls since we cannot assume the compactness of the universal cover. The main
point of this paper is to pass over this difficulty and to get information on the fundamental
group from purely integral control on the Ricci curvature.

2) For any k > 0, a renormalization argument readily shows that we can replace ρp by
ρk

p =
∫

M
(Ric−k(n−1))p

− in Theorems 1.2 and 1.1 provided we replace C(p,n) by
C(p,n, k), and also VolSn by VolS

n

k
n
2

and π by π√
k

. The space Rn makes obvious that
it does not generalize to k � 0.

3) The Cartesian product of a small S
1 with a finite volume hyperbolic manifold shows that

the compactness and the π1-finiteness cannot be obtained if we only assume that ρp is
small (or that ρp

VolM is finite). We can also slightly modify the example A.2 of [8] to get a
manifold with infinite topology, finite volume and finite ρp, which, when multiplied by a
small S

1, gives a manifold with infinite topology, finite volume and ρp as small as we want.
4) In the case p = 1 and n = 2 the theorem is still valid (π1-finiteness obviously follows

from the Gauss–Bonnet theorem), but in case p = n/2 and n � 3 no generalization of the
classical results known under Ric � n − 1 can be expected, as shown by the following
theorem.

THEOREM 1.3. – Let (Mn, g) be any compact Riemannian n-manifold (n � 3). There exists
a sequence of complete Riemannian metrics (gm) on M that converges to g in the Gromov–
Hausdorff distance and such that

ρn/2(gm)
Volgm

→ 0.

Since 1941 several generalizations of Myers’ theorem appeared, under roughly three different
kinds of hypothesis:

a) the control on integrals of the Ricci curvature along minimizing geodesics ([1,5,3,10,12]),
b) the Ricci curvature is almost bounded from below by n− 1 (in many different senses) but

not allowed to take values under a given negative number ([7,20,17,19]),
4e SÉRIE – TOME 40 – 2007 – N◦ 4



FINITENESS OF π1 AND GEOMETRIC INEQUALITIES 677
c) the L∞ lower bound on the Ricci curvature of the case b) is replaced by bounds on
other Riemannian invariants (for example the volume bounded from below or the diameter
bounded from above or the sectional curvature bounded).

The proofs of Myers’ theorem of type a) and b) are essentially based on the second variation
formula for the length of geodesics, but we cannot use this formula under our curvature
assumptions. To prove Myers’ theorems of type c), where the use of the second variation formula
also fails, alternative techniques, based on Moser iteration schemas, have been developed (see
[4,14,7,17]). But, until this present article (Prop. 8.1), only two bounds on Sobolev constants
were known under an integral control of the Ricci curvature: one by S. Gallot requiring a bound
on the diameter [8], one by D. Yang requiring a lower bound on the volume of the small balls
[21]. Such extra hypotheses are natural (and necessary) for manifolds with almost nonnegative
Ricci curvature, but are not relevant in our context: for instance a lower bound on the volume
would bound the cardinality of π1 whereas the set of n-manifolds with Ricci curvature bounded
from below by n− 1 has finite but not bounded cardinalities of π1.

To avoid these unnatural extra hypotheses, we develop another technique based on measure
concentration estimates, which allows to prove the following local version of the Myers’
theorem.

LEMMA 1.4. – Let (Mn, g) be a manifold (not necessarily complete). If M contains a
subset T satisfying the following conditions:

1. T is star-shaped at a point x (see Definition p. 679),
2. B(x,RT ) ⊃ T ⊃ B(x,R0) for some RT � R0 > π,

3. ε = R2
T

[
1

VolT

∫
T

(
Ric− (n− 1)

)p

−

] 1
p

� B(p,n)
(

1− π

R0

)100

,

then Diam(Mn, g) � π(1 + C(p,n)ε1/20) (and M ⊂ T ).

The connected sum of an n-sphere of diameter 2R0 − π with a Euclidean n-space by a
sufficiently small cylinder shows that to get the compactness of M , we need that T contain a
ball of radius R0 > π and also that 1

VolT

∫
T
(Ric− (n− 1))p

− tend to 0 when R0 tends to π.
To prove Lemma 1.4, we show that if the Lp norm on T of (Ric− (n− 1))− tends to 0, then

the probability Riemannian measure of T concentrates in B(x,π) while that of any B(y, r)⊂ T
remains uniformly bounded from below by a positive increasing function of r. These two
contradicting behaviours of the measure in T prevent the manifold from having points too far
away from x.

To prove Theorem 1.1, we decompose M into star-shaped subsets and show that either M has
small volume or Lemma 1.4 applies to at least one of these subsets. The bound on the volume
is then inferred by the volume estimates developed for the proof of Lemma 1.4. To show the
π1-finiteness of Theorem 1.2, we construct a star-shaped domain in the universal Riemannian
cover of (Mn, g) which satisfies the assumptions of Lemma 1.4.

Under our curvature assumptions, we also get the following generalization of the Lichnerowicz
theorem (which becomes false with p = n

2 when n � 3).

PROPOSITION 1.5. – Let us denote by λ1, λ1
1 and λ̃1

1 respectively the first nonzero eigenvalue
of the Laplacian on functions, the first eigenvalue on 1-forms and on co-closed 1-forms of
(Mn, g). Then:

λ1(Mn, g) = λ1
1(M

n, g) � n×
(

1−C(p,n)
(

ρp

VolM

) 1
p
)

,
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λ̃1
1(M

n, g) � 2(n− 1)×
(

1−C(p,n)
(

ρp

VolM

) 1
p
)

.

By adapting the proofs of Lemmas 5.1 and 4.1 (see [2] for details), we further obtain a Bishop–
Gromov type result:

PROPOSITION 1.6. – If η10 = ρp

VolM � 1
C(p,n) then, for all x ∈ M and all radii 0 � r � R,

we have: (
Voln−1 S(x,R)

L1−η(R)

) 1
2p−1

−
(

Voln−1 S(x, r)
L1−η(r)

) 1
2p−1

� η2(R− r)
2p−n
2p−1 ,

VolB(x, r)
VolB(x,R)

� (1− η)
A1(r)
A1(R)

,

where Lk(t) (resp. Ak(t)) stands for the volume of a geodesic sphere (resp. ball) of radius t in
(Sn, can

k ), hence also:

Voln−1 S(x,R) �
(
1 + η2

)
L1−η(R),

VolB(x,R) � (1 + η)A1(R).

Note that, in contrast to the case Ric � (n − 1), we cannot expect, under our assumptions,
an upper bound on the quotient Voln−1 S(x,.)

L1
for all possible values of r � Diam(M) since the

diameter of our manifolds can be greater than π. These results are similar to the results obtained
in [15] and [14] under stronger curvature assumptions.

Finally, Theorem 1.2 and Proposition 1.6 imply that the set of n-manifolds satisfying ρp

VolM �
C(p,n), for a p > n/2, is pre-compact for the Gromov–Hausdorff distance. We show in the last
section that this property is false in the case n � 3 and p = n/2, even for the pointed Gromov–
Hausdorff distance.

This article is organised as follows. To prove Lemma 1.4, we need to improve the estimates on
volume established in [14] (see also [8], [21] and [15] for other similar estimates and techniques).
Section 2 is devoted to a brief survey on the volume of star-shaped domains. In Section 3, we
establish a comparison lemma (see Lemma 3.1) à la Petersen–Sprouse–Wei which provides a
bound from above of the mean curvature of geodesic spheres of radius r by a curvilinear integral
of (Ric − (n − 1))−. This lemma is used in Sections 4 and 5 to establish some estimates on
the concentration of the Riemannian probability measure. The diameter and volume bounds
of Theorems 1.1 and 1.2 are proved in Section 6. Section 7 is devoted to the proof of the
π1-finiteness of Theorem 1.2, and Section 8 to the proof of Proposition 1.5. Finally, we discuss
in Section 9 the case p = n/2.

2. Volume and mean curvature of spheres

NOTATIONS. – Let x ∈ M . We denote by Ux the injectivity domain of the exponential map
at x and we identify points of Ux \ {0x} with their polar coordinates (r, v) ∈ R

∗
+ × S

n−1
x

(where S
n−1
x is the set of normal vectors at x). We write vg for the Riemannian measure and

set ω = exp∗
x vg = θ(r, v)dr dv, where dv and dr are the canonical measures of S

n−1
x and R

∗
+.

Henceforth, we extend θ to (R∗
+ × S

n−1) \Ux by 0.
For all (r, v) in Ux \{0}, we denote by h(r, v) the mean curvature at expx(rv) (for the exterior

normal ∂
∂r ) of the sphere centered at x and of radius r. This function h is defined on Ux and

satisfies the formula ∂θ (t, v) = h(t, v)θ(t, v) (cf. [18], p. 329).
∂r

4e SÉRIE – TOME 40 – 2007 – N◦ 4



FINITENESS OF π1 AND GEOMETRIC INEQUALITIES 679
For all real k, we set hk = (n − 1) s′
k(r)

sk(r) for the corresponding function on the model space
(Sn

k , gk) (n-dimensional, simply connected, with sectional curvature k) where,

sk(r) =
sinh(

√
|k|r)√

|k|
when k < 0, sk(r) = r when k = 0,

sk(r) =

⎧⎪⎪⎨⎪⎪⎩
sin(

√
kr)√

k
if r � π√

k

0 if r >
π√
k

,
when k > 0.

On Ux (resp. on Ux ∩ B(0, π√
k
) if k > 0), we set ψk = (hk − h)−. Following [15], we will use

the following lemma:

LEMMA 2.1. – Let u be an element of S
n−1
x and Iu = ]0, r(u)[ the interval of values t such

that (t, u) ∈ Ux. The function t 	→ ψk(t, u) is continuous, right and left differentiable everywhere
in Iu ∩ ]0, π√

k
[ and it satisfies:⎧⎪⎨⎪⎩

1) lim
t→0+

ψk(t, u) = 0,

2)
∂ψk

∂r
+

ψ2
k

n− 1
+

2ψkhk

n− 1
� ρk

(where this differential inequality is satisfied by the right and left derivatives of ψk and where
ρk = (Ric− k(n− 1))−).

Proof. – We apply the well known Bochner formula

g(∇Δf,∇f) =
1
2
Δ|∇f |2 + |Ddf |2 + Ric(∇f,∇f)

to the distance to x function dx (where we have used the convention Δf = − trDdf ). Since
|∇dx| = 1 and the Hessian Dd(dx) is zero on R∇dx and equal to the second fundamental form of
the geodesic sphere of center x on ∇d⊥x , we infer that h satisfies the following Riccati inequality

∂h

∂r
+

h2

n− 1
+ Ric

(
∂

∂r
,

∂

∂r

)
� 0.

This inequality becomes an equation on the model spaces (Sn
k , gk), which easily gives

inequality 2) of Lemma 2.1. Since h ∼ (n − 1)/r + o(1) (see [18] for details), we also easily
get 1). �
2.1. Volume of star-shaped domains

DEFINITION. – Let x ∈ M and T ⊂ M . We say that T is star-shaped at x if for all y ∈ T
there exists a minimizing geodesic from x to y contained in T . Equivalently, we may assume that
T = expx(Tx), where Tx is an affine star-shaped subset of Ux ⊂ TxM .

Given T , a subset of M star-shaped at x, let AT (r) denote the volume of B(x, r)∩ T . We set
LT (r) the (n − 1)-dimensional volume of (rSn−1

x ) ∩ Ux ∩ Tx for the measure θ(r, .)dv. Note
that LT (r) =

∫
S

n−1
x

1Txθ(r, v)dv and AT (r) =
∫ r

0
LT (t)dt. Finally, the functions corresponding

to θ, A and L on the model manifold (Sn
k , gk) will be denoted by θk , Ak and Lk respectively.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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The regularity properties of the functions LT and AT used subsequently are summarized in the
following lemma:

LEMMA 2.2. – Let T be a star-shaped subset of (M,g).
(i) LT is a right continuous, left lower semi-continuous function,

(ii) AT is a continuous, right differentiable function of derivative LT .
(iii) Given α ∈ ]0,1], the function

f(r) =
(

LT (r)
Lk(r)

)α

− α

VolSn−1

r∫
0

∫
S

n−1
x

(
LT (s)
Lk(s)

)α−1

1Txψk
θ

θk

is decreasing either on R
∗
+ (if k � 0) or on ]0, π√

k
[ (if k > 0).

Proof. – To prove (i), note that θ(r, v)1Tx is the product of rn−11Tx(r, v) by the Jacobian of
expx, hence r 	→ θ(r, v)1Tx is positive on an interval ]0, r(v)[, vanishes on [r(v),+∞[, and so
is right continuous and left lower semi-continuous on R. We infer also that 1Txθ is bounded on
every compact of TxM . This yields the boundedness of LT on every compact subset of [0,+∞[.
We infer (i) from the Lebesgue dominated convergence theorem and the Fatou lemma. Property
(ii) now follows from (i) by the definition of AT .

To complete the proof of Lemma 2.2, we note that, by definition of LT , and since VolM \
expx(Ux) = 0, we may assume that Tx ⊂ Ux. For all integers m � 1, let T

(m)
x = (1− 1

m )Tx ⊂ Tx

be the image of Tx by the homothety of center 0 and factor (1 − 1
m ) in Tx0M and set

T (m) = expx(T (m)
x ). By the monotone convergence theorem, we have AT = limm→∞ AT (m)

and LT = limm→∞ LT (m) . Hence, it only remains to show (iii) for T (m). We will use the
following elementary lemma:

LEMMA 2.3. – A function f : [a, b] → R is decreasing if and only if it satisfies the two
conditions

(a) for all x ∈ [a, b[, limsuph→0+
f(x+h)−f(x)

h � 0,
(b) for all x ∈ ]a, b], lim infh→0− f(x + h) � f(x).

As for LT and AT , the function r 	→
∫

S
n−1
x

1
T

(m)
x

ψk
θ
θk

(r, v)dv is right continuous, left
lower semi-continuous on Ik = ]0,+∞[ if k � 0 (resp. on Ik = ]0, π√

k
[ if k > 0), and

r 	→
∫ r

0

∫
S

n−1
x

1
T

(m)
x

ψk
θ
θk

is continuous, right differentiable on Ik; so the function f satisfies
inequality (b) of Lemma 2.3. We now prove (a):

For all r > 0, let S
r
T (m) = {v ∈ S

n−1
x | rv ∈ T

(m)
x }. We denote by L̃(r + t) the volume

of (r + t).Sr
T (m) for the measure θ(r + t, .)dv. Since T

(m)
x is star-shaped at x, we have

L̃(r + t) � LT (m)(r + t) (with equality if t = 0). Hence

lim
t→0+

L
(m)
T (r + t)−L

(m)
T (r)

t
� lim

t→0+

L̃(r + t)− L̃(r)
t

.

Since L̃(r + t) =
∫

Sr

T (m)
θ(r + t, v)dv and ∂θ

∂r = hθ, we obtain, by differentiating this integral

expression of L̃ (note that hθ and ψkθ are integrable on the set S
r
T (m) , which could be false for T

and this is why we introduced the sets T (m)): for any t ∈ [0, 1
m−1r[, the closure of (r + t).Sr

T (m)

in TxM is compact and belongs to Ux \ {0x} because the cut-radius is continuous on S
(n−1)
x

4e SÉRIE – TOME 40 – 2007 – N◦ 4



FINITENESS OF π1 AND GEOMETRIC INEQUALITIES 681
(see [18]) and bounded from below by m
m−1r > r + t on S

r
T (m) ; but, the function h = 1

θ
∂θ
∂r is

smooth on Ux \ {0x}, and so uniformly bounded on every set (r + t).S(m)
T (r),

lim
t→0+

L̃(r + t)− L̃(r)
t

=
∫

S
n−1
x

h1T (m)θ dv �
∫

S
n−1
x

(ψk + hk)1T (m)θ dv.

Combining the last two inequalities, we get:

limt→0+
LT (m)(r + t)−LT (m)(r)

t
� hk(r)LT (m)(r) +

∫
S

n−1
x

1T (m)ψkθ.

The case α = 1 of (a) easily follows, noting that Lk has derivative hkLk and that:

limsup
t→0+

L
T (m) (r+t)

Lk(r+t) − L
T (m) (r)

Lk(r)

t

= limsup
t→0+

LT (m)(r + t)−LT (m)(r)
tLk(r)

+ lim
t→0+

[
LT (m)(r + t)

1
t

( 1
Lk(r + t)

− 1
Lk(r)

)]
=

1
VolSn−1θk(r)

[
limsup

t→0+

LT (m)(r + t)−LT (m)(r)
t

− hk(r)LT (m)(r)
]
.

To prove inequality (b) for any α ∈ ]0,1], we first set B = 1
VolSn−1

∫
S

n−1
x

1
S
(m)
T

ψk
θ
θk

dv. For

all ε > 0, there exists tε > 0 such that for all t ∈ ]0, tε[, we have
L

(m)
T

(r+t)

Lk(r+t) � L
(m)
T

(r)

Lk(r) + t(B + ε).
So, by concavity we get:

(
L

(m)
T (r)
Lk(r)

+ t(B + ε)
)α

−
(

L
(m)
T (r)
Lk(r)

)α

� α

(
L

(m)
T (r)
Lk(r)

)α−1

t(B + ε).

It follows that limsupt→0+
f(r+t)−f(r)

t � αε
(L

(m)
T

(r)

Lk(r)

)α−1
, which gives (b) by letting ε tend

to 0. �

3. Comparison lemma on mean curvature

The following lemma improves Lemma 2.2 in [15] and Theorem 2.1 in [14]. We provide
a pointwise bound on ψk which, in case k > 0, admits a sharp polynomial blow-up when
r → π√

k
; these both improvements are necessary for our proof of Theorem 1.2 (see the proof

of Lemma 4.1).

LEMMA 3.1. – Let k ∈ R, p > n/2 and r > 0; assume r � π
2
√

k
if k > 0. We have:

ψ2p−1
k (r, v)θ(r, v) � (2p− 1)p

(
n− 1
2p− n

)p−1
r∫

0

ρp
k(t, v)θ(t, v)dt.

Moreover if k > 0 and π√ < r < π√ , then

2 k k
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682 E. AUBRY
sin4p−n−1(
√

kr)ψ2p−1
k (r, v)θ(r, v) � (2p− 1)p

(
n− 1
2p− n

)p−1
r∫

0

ρp
k(t, v)θ(t, v)dt.

These two inequalities hold for all normal vector v ∈ S
n−1
x , even if we replace θ everywhere by

1[0,sv [θ ( for any sv � 0).

Remark. – The bounds diverge when p tends to n/2 except in the case n = 2 (which then
yields a control of ψk by the L1-norm of ρk).

Proof. – Let φ be a nonnegative C1 function on Ux \ {0}, bounded in the neighborhood of 0.
By Lemma 2.1, the function r 	→ φ(r, v)ψ2p−1

k (r, v)θ(r, v) is continuous and right differentiable
on Iv , and its derivative satisfies:

∂

∂r

(
φψ2p−1

k θ
)
� (2p− 1)ρkφψ2p−2

k θ −
(

2p− n

n− 1

)
φψ2p

k θ

+
(

4p− n− 1
n− 1

hk − 1
φ

∂φ

∂r

)
−

φψ2p−1
k θ

where we used ∂θ
∂r = hθ � hkθ + ψkθ. Setting X = (

∫ r

0
φψ2p

k θ dt) and integrating, we get:

0 � φψ2p−1
k θ(r) � (2p− 1)

( r∫
0

φρp
kθ dt

)1/p

X1− 1
p −

(
2p− n

n− 1

)
X(1)

+

[ r∫
0

(
4p− n− 1

n− 1
hk − 1

φ

∂φ

∂r

)2p

−
φθ dt

]1/2p

X1− 1
2p

where we used limt→0 φ(t, v)ψ2p−1
k (t, v)θ(t, v) = 0. Dividing out by X1− 1

p , we obtain a

quadratic polynomial that takes a nonnegative value at X
1
2p and we infer:( r∫

0

φψ2p
k θ dt

) 1
2p

�
√

(n− 1)(2p− 1)
2p− n

( r∫
0

φρp
kθ dt

)1/2p

+
n− 1
2p− n

( r∫
0

(
hk

2p− 1 + (2p− n)
n− 1

− ∂φ/∂r

φ

)2p

−
φθ dt

)1/2p

.

We prove the first inequality of Lemma 3.1 by taking φ(r, v) = 1. Indeed then, the above
inequality and the positivity of hk yield:

r∫
0

ψ2p
k θ dt �

(
(2p− 1)(n− 1)

2p− n

)p
r∫

0

ρp
kθ dt.

Plugging this into inequality (2), we obtain

ψ2p−1
k θ(r) � (2p− 1)p

(
n− 1
2p− n

)p−1
( r∫

ρp
kθ dt

)
.

0
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For the second inequality, we set φ = sin4p−n−1(
√

kr) and observe that, in this case, the last
term of inequality (2) vanishes. So we get for all r < π√

k
:

sin4p−n−1(
√

kr)ψ2p−1
k θ � (2p− 1)p

(
n− 1
2p− n

)p−1

π√
k∫

0

ρp
kθ dt. �

4. Hyper-concentration of the measure

In this section, we prove the first volume estimate required in our proof of Theorem 1.2. It
says that, if the Ricci curvature concentrates sufficiently above n − 1 on a star-shaped subset T
of M at x, then the Riemannian measure of T is almost contained in B(x,π)∩ T .

LEMMA 4.1. – There exists an explicit constant C(p,n) such that if (Mn, g) contains a
subset T , star-shaped at a point x, on which:

ε = R2
T

[
1

VolT

∫
T

(
Ric− (n− 1)

)p

−

] 1
p

�
(

π

6

)2− 1
p

,

where RT is such that T ⊂ B(x,RT ), then, for all radius RT � r � π:

LT (r) � C(p,n)
r

ε
p(n−1)
2p−1 VolT.

Remark. – The same conclusion holds in case n = 2 and p = 1 by letting n = 2 and p → 1 in
the proof below.

Proof. – Lemma 2.2 (with 0 < t � r < π√
k

, α = 1
2p−1 and k > 0 fixed) yields:(

LT (r)
Lk(r)

) 1
2p−1

−
(

LT (t)
Lk(t)

) 1
2p−1

� 1
2p− 1

r∫
t

(
LT

Lk

) 1
2p−1−1 1

VolSn−1

∫
S

n−1
x

1Txψk
θ

θk
.(2)

Since (
LT /Lk

) 2(1−p)
2p−1

VolSn−1

∫
S

n−1
x

1Txψk
θ

θk
� 1(

Lk

) 1
2p−1

( ∫
S

n−1
x

1Txψ2p−1
k θ

) 1
2p−1

,

we get that:

1
VolSn−1

r∫
t

(
LT (s)
Lk(s)

) 2−2p
2p−1

∫
S

n−1
x

1Txψk
θ

θk
dv ds(3)

�
r∫

t

(
√

k)
n−1
2p−1

sin2(
√

ks)

( ∫
S

n−1
x

1Tx

sin4p−n−1(
√

ks)ψ2p−1
k θ

VolSn−1
dv

) 1
2p−1

ds.

If we combine inequalities (2), (3), Lemma 3.1 and the equality Lk(s) = VolSn−1 sinn−1(
√

ks)

(
√

k)n−1 ,

we get that:
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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(
LT (r)

sinn−1(
√

kr)

) 1
2p−1

−
(

LT (t)
sinn−1(

√
kt)

) 1
2p−1

�
(

(n− 1)
(2p− 1)(2p− n)

) p−1
2p−1

( ∫
T∩B(x,r)

ρp
k

) 1
2p−1

r∫
t

1
sin2(

√
ks)

ds.

We set ε′ = ε
p

2p−1 , kr = (π−ε′)2

r2 and we assume that t ∈ [ π
2(π−ε′)r, r]. By concavity of the sine

function on [π
2 , π], we have that

r∫
t

1
sin2(

√
krs)

ds � π2(r − t)
4(π −

√
krt)(π −

√
krr)

� π2(r − t)
4(π −

√
krt)ε′

� πr

2ε′

(we have used that t 	→ r−t
π−

√
kr t

is decreasing) and so we get that:

LT (r)
1

2p−1

(sin(
√

krr))
n−1
2p−1

− LT (t)
1

2p−1

(sin(
√

krt))
n−1
2p−1

� π

2R
1

2p−1
T

(
n− 1

(2p− 1)(2p− n)

) p−1
2p−1

Vol(T )
1

2p−1 .

Multiplying this inequality by (sin(r
√

kr))
n−1
2p−1 � (ε′)

n−1
2p−1 , we infer that for all t ∈ [ π

2(π−ε′)r, r]

LT (r)
1

2p−1 � LT (t)
1

2p−1

(
ε′

sin((π − ε′) t
r )

) n−1
2p−1

+
π

2R
1

2p−1
T

(
n− 1

(2p− 1)(2p− n)

) p−1
2p−1

VolT
1

2p−1 ε′
n−1
2p−1 .

Using the inequality (a + b)α � 2α−1(aα + bα) (for all a, b � 0), with α = 2p− 1, and the fact
that sin[(π − ε′) t

r ] � sin(π
6 ) = 1

2 when t ∈ [ π
2(π−ε′)r,

5π
6(π−ε′)r], we get that

LT (r) � 22p+n−3ε
p(n−1)
2p−1 LT (t) +

π2p−1

2RT
Vol(T )ε

p(n−1)
2p−1

(
n− 1

(2p− 1)(2p− n)

)p−1

,

for all t ∈ [ π
2(π−ε′)r,

5π
6(π−ε′)r] (note that 5π

6(π−ε′)r � r, hence t
r � 1).

By the mean value property, there exists t ∈ [ π
2(π−ε′)r,

5π
6(π−ε′)r] such that LT (t) is bounded

from above by 3(π−ε′)
πr

∫ 5πr
6(π−ε′)

πr
2(π−ε′)

LT (s)ds which is less than 3
r

∫ RT

0
L = 3

r Vol(T ). In summary,

we conclude that

LT (r) �
[
3.22p+n−3 +

π2p−2

2

(
n− 1

(2p− 1)(2p− n)

)p−1]Vol(T )
r

ε
p(n−1)
2p−1 . �

5. Lower bound on the volume of geodesic balls

In this section, we bound from below the relative volume of the geodesic balls. The following
lemma, which is the second step of the proof of Theorem 1.2, contains generalizations of
Theorem 2.1 of [16] to star-shaped domains or nonconcentric balls.
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LEMMA 5.1. – Let n � 2 be an integer and p > n/2 be a real. There exist (computable)
constants C(p,n) > 0 and B(p,n) such that when (Mn, g) contains a star-shaped subset T
which satisfies

ε = R2
T

[
1

VolT

∫
T

(Ric)p
−

] 1
p

� B(p,n),

then we have
(i) for all 0 < r � R � RT , AT (r)

AT (R) � (1−C(p,n)ε
p

2p−1 ) rn

Rn ;
(ii) if T = B(x,R0), y ∈ T and r � 0 satisfy d(x, y) + r � R0, then(

VolB(y, r)
VolB(x,R0)

) 1
2p′−1

�
(

r

R0

) n
2p′−1

[(
2
3
−C(p,n)ε

p′
2p′−1

)(
r

R0

) 2n
2p′−1

−C(p,n)ε
p′

2p′−1

]
,

where p′ = max(n,p).

Proof. – Lemma 2.2 (with k = 0 and α = 1) and the Hölder inequality yield, for all t � r �
RT :

LT (r)
rn−1

− LT (t)
tn−1

�
r∫

t

LT (s)1−
1

2p−1

sn−1

( ∫
S

n−1
x

1Txψ2p−1
0 θ dv

) 1
2p−1

ds.

Then Lemma 3.1 implies that

LT (r)
rn−1

− LT (t)
tn−1

� C(p,n)

r∫
t

LT (s)1−
1

2p−1

sn−1

( ∫
B(x,s)∩T

ρp
0

) 1
2p−1

� C(p,n)
tn−1

( ∫
T

ρp
0

) 1
2p−1

r∫
t

L
1− 1

2p−1
T .

Multiplying this inequality by nrn−1tn−1, using the inequality

r∫
t

L
1− 1

2p−1
T � (r − t)

1
2p−1

(
AT (r)−AT (t)

)1− 1
2p−1 ,

and integrating the result with respect to t from 0 to r, we get that

d

dr

(
AT

rn

)
�

(
AT (r)

rn

)1− 1
2p−1

C(p,n)
( ∫

T

ρp
0

) 1
2p−1

nr
1−n
2p−1(4)

(since AT (r)
rn is right differentiable). Integrating once again yields

[
AT (R)

Rn

] 1
2p−1

−
[
AT (r)

rn

] 1
2p−1

� C(p,n)
( ∫

ρp
0

) 1
2p−1

R
2p−n
2p−1 (Er,R

T ).

T

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



686 E. AUBRY
Inequality
(
ER,RT

T

)
implies

[
AT (R)

AT (RT )Rn

] 1
2p−1

� R
−n

2p−1
T

(
1−C(p,n)ε

p
2p−1

)
� 1

2
R

−n
2p−1
T

as soon as B(p,n) is sufficiently small. This and (Er,R
T ) imply (i).

To show (ii), we may assume, by the Hölder inequality, that p ∈ ]n/2, n]. Let z ∈ B(x,R0)
and (r,R) such that 0 < r � R � R0 − d(x, z). Multiplying (Er,R

B(z,R)) by ( 1
Ax(R0)

)
1

2p−1 and
since B(z,R) ⊂ B(x,R0), we get that

(
Az(R)
Ax(R0)

) 1
2p−1

� C(p,n)
(

R2ε

R2
0

) p
2p−1

+
(

R

r

) n
2p−1

(
Az(r)

Ax(R0)

) 1
2p−1

.

We now construct a sequence of increasing balls Bi = B(yi,Ri) such that B1 = B(y, r), Bk is
concentric to B(x,R0), and Bi contains a ball centered at yi+1 and of radius ri+1 close to Ri.

Let γ : [0, d(x, y)] → M be a minimizing geodesic from x to y and α = α(p,n) < 1 close
enough to 1 such that we have −Logα � 2Log(2 − α), (2 − α)2p−nαn < 1 and α

n
2p−1 � 2

3 .

For all integers 1 � i � k = E[2 + Log(1+
d(x,y)

r )

Log(2−α) ], we define

yi = γ
(
d(x, y) + r − (2− α)i−1r

)
if i � k − 1, yk = x,

ri = α(2− α)i−2r, Ri = (2− α)i−1r.

We have B(yi+1, ri+1) ⊂ B(yi,Ri) ⊂ B(x,R0) for any i � k − 1. We set z = yi+1, R = Ri+1

and r = ri+1, in the inequality above and get(
Ayi+1(Ri+1)

Ax(R0)

) 1
2p−1

� C(p,n)
(

r2ε

R2
0

) p
2p−1

(2− α)
2pi

2p−1 +
(

(2− α)nAyi+1(ri+1)
αnAx(R0)

) 1
2p−1

,

� C(p,n)
(

r2ε

R2
0

) p
2p−1

(2− α)
2pi

2p−1 +
(

(2− α)nAyi(Ri)
αnAx(R0)

) 1
2p−1

,

If we set ai = (
Ayi+1 (Ri+1)

Ax(R0)
)

1
2p−1 , C = C(p,n)( r2ε

R2
0
)

p
2p−1 , β = (2 − α)

2p
2p−1 , d = (2−α

α )
n

2p−1 ,

then the last inequalities is ai+1 � Cβi + dai for any 0 � i � k − 1, hence ai � C di−βi

d−β +

di−1a1 � C di

d−β + di−1a1 � di−1(a1 + C 1
1−β/d ), that is to say

(
Ayk−1(Rk−1)

Ax(R0)

) 1
2p−1

�
(

2− α

α

)n(k−2)
2p−1

[(
Ay(r)

Ax(R0)

) 1
2p−1

+
C(p,n)( r2ε

R2
0
)

p
2p−1

1− (2− α)
2p−n
2p−1 α

n
2p−1

]
.

By inequality (i) of Lemma 5.1 we get(
Ayk−1(Rk−1)

Ax(R0)

) 1
2p−1

�
(

Ayk=x(rk)
Ax(R0)

) 1
2p−1

�
(
1−C(p,n)ε

p
2p−1

)
α

n
2p−1 (2− α)

n(k−2)
2p−1

(
r

R

) n
2p−1

.

0
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These two estimates on
Ayk−1 (Rk−1)

Ax(R0)
, and the fact that by assumption α

n(k−1)
2p−1 � α

n
2p−1 ×

( r
r+d(x,y) )

−n Log α
(2p−1)Log(2−α) � 2

3 ( r
R0

)
2n

2p−1 , imply that there exist constants C(p,n) > 0 and
B(p,n) > 0 such that when ε � B(p,n),

(
Ay(r)

Ax(R0)

) 1
2p−1

�
(

r

R0

) n
2p−1

[(
2
3
−C(p,n)ε

p
2p−1

)(
r

R0

) 2n
2p−1

−C(p,n)ε
p

2p−1

]
. �

In the case (n,p) = (2,1), the following lemma holds

LEMMA 5.2. – There exists constants B > 0 and C > 0 such that if a surface (S2, g) contains

a star-shaped subset T on which the sectional curvature K satisfies ε = R2
T

VolT

∫
T

K− � B, then

(i)
AT (r)
VolT

�
(

r

RT

)2(
1− ε ln

(
RT

r

))
,

for all r � RT . In addition, if T = B(x,R0), y ∈ T and d(x, y) + r � R0, then

(ii)
VolB(y, r)

VolB(x,R0)
�

(
r

R0

)4(
1− 3ε

(
R0

r

)2)
.

Proof. – The constant C(p,n) involved in inequality (4) is 2p−1
2p ( n−1

(2p−1)(2p−n) )
p−1
2p−1 . In case

n = 2, we can let p tend to 1 in that differential inequality and get d
dr ( A

r2 ) � 1
r

∫
T

K−. This

implies A(R)
R2 − A(r)

r2 � ln R
r

∫
T

K− and so (i).
(ii) is proved as in Lemma 5.1 (note that, in this case, we may let α tend to 1, which simplifies

the final formula). �

6. Diameter bound

6.1. Proof of Lemma 1.4

Note that if B(p,n) is sufficiently small then Lemma 5.1 implies AT (R)
VolT � Rn

2Rn
T

. Hence we

may assume that T = B(x,R0) and π < R0 � 2π. Fix δ ∈ ]0, R0−π
2 [. If y ∈ M is at a distance

greater than (π + δ) from x, then we have B(y, δ) ⊂ B(x,π + 2δ) \ B(x,π). Lemma 4.1 now
yields the bounds

VolB(y, δ) �
π+2δ∫
π

L � 2C(p,n)A(R0)δε
p(n−1)
(2p−1)

(where A(R0) = VolB(x,R0)). On the other hand, Lemma 5.1 (ii) provides:

VolB(y, δ) �
(

δ

2π

)n[
1
2

(
δ

2π

) 2n
2p′−1

−C(p,n)ε
p′

2p′−1

]2p′−1

A(R0)

by taking B(p,n) small enough (still setting p′ = max(p,n)).
At this stage, we can distinguish two cases:
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• either ( δ
2π )

2n
2p′−1 � 4C(p,n)εβ , where β = 2np(n−1)

(2p−1)(2p′−1)(3n−1) ,

• or the above inequality becomes (since β � p′

2p′−1 )

VolB(y, δ) � C(p,n)
(

δ

2π

)n

A(R0)ε(2p′−1)β .

These two estimates on VolB(y, δ) imply a bound on δ:

π + δ � π + C(p,n)εβ 2p′−1
2n � π + C(p,n)ε

1
10 < R0.

We infer that M ⊂ B(x,R0). Let z be any point of M . We have ρp
B(z,R0)

= ( R2p
0

VolB(z,R0)
×∫

B(z,R0)
(Ric − (n − 1))p

−)
1
p � (VolB(x,R0)

VolB(z,R0)
)

1
p ε. But B(x,R0 − π − C(p,n)ε

1
10 ) ⊂ B(z,R0)

and so Lemma 5.1 (i) implies:

VolB(z,R0)
VolB(x,R0)

�
(
R0 − π −C(p,n)ε

1
10

)n

2(2π)n
� (R0 − π)n

4(2π)n
.

What is done above for x can be done for any z ∈ M (just replace ε by 4(2π)n/p

(R0−π)n/p ε, for

ρp
B(z,R0)

� 4(2π)n/p

(R0−π)n/p ε), which completes the proof.

6.2. Proof of the geometric inequalities of Theorem 1.2

Let (Mn, g) be a complete manifold such that
∫

M

(
Ric − (n − 1)

)p

− is finite and let
(B(xi,2π))i∈I be a maximal family of disjoint balls in M . The Dirichlet domains Ti =
{y | d(xi, y) < d(xj , y), ∀j 
=i} satisfy the three following classical facts:

1) B(xi,4π)⊃ Ti ⊃ B(xi,2π),
2) Ti is star-shaped at the xi and
3) except for a set of zero measure, M is the disjoint union of the sets Ti.

Thus, setting α = infi∈I [ 1
VolTi

∫
Ti

(Ric− (n− 1))p
−]

1
p , we have that∫

M

(
Ric− (n− 1)

)p

− =
∑
i∈I

∫
Ti

(
Ric− (n− 1)

)p

−

� αp
∑
i∈I

VolTi = αp VolM.

If α > [ B(p,n)
210116π2 ]p (where B(p,n) is the constant of Lemma 1.4), then VolM � C(p,n)ρ(p)(M)

(where C(p,n) is a universal constant). Elsewhere, there exists a star-shaped set Ti satisfying the
assumptions of Lemma 1.4. In the latter case (which is the only possible one under the stronger
assumption ρ

(p)
M � VolM

C(p,n) , with C(p,n) sufficiently large) we bound the diameter of M with
Lemma 1.4 and the volume of M using Lemma 5.1.

7. Finiteness of the fundamental group

To show the π1-finiteness of the manifolds satisfying ρp

VolM � 1
C(p,n) , we just have to show

that their universal covers are compact. To apply Lemma 1.4 to the universal Riemannian cover
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(M̃, g̃), we have to construct a good star-shaped subset of M̃ on which the Ricci curvature is
controlled by ρp

VolM .

The fundamental group acts freely and isometrically on M̃ . For all x̃ ∈ M̃ and any subset
T of M̃ , we denote by mT (x̃) the cardinality of T ∩ π1.x̃. Set x̃0 ∈ M̃ and x̃ ∈ B(x̃0,2π) that
maximizes mB(x̃0,2π). Since we can assume DiamM � 2π, we have 1 � mB(x̃0,2π)(y) � N and
mB(x̃0,6π)(y) � N for all y ∈B(x̃0,2π) (where N = mB(x̃0,2π)(x̃)). For all y in B(x̃0,2π), we
choose N distinct points y1, . . . , yN in π1.y such that for any 1 � i � N we have d(yi, x0) �
infz∈π1.y\{y1,...,yN} d(z,x0), and let T be the union of these {y1, . . . , yN} for all y ∈B(x̃0,2π).

Hence B(x̃0,6π) ⊃ T ⊃ B(x̃0,2π) and mT ≡ N on M̃ . We infer

1
VolT

∫
T

(
Ric− (n− 1)

)p

− dvg̃ =
1

VolM

∫
M

(
Ric− (n− 1)

)p

− dvg.

It only remains to show that T is a star-shaped subset of (M̃, g̃). Set y ∈ T and let γ be a
minimizing geodesic from y to x̃0. Assume there exists z ∈ γ \ T . Since mT (z) = N , there
exist (σ1, . . . , σN ) in π1(M) \ {id} such that σi.z ∈ T for all 1 � i � N . But every element of
π1(M) \ {id} acts without fixed point on M̃ , thus there exists 1 � i0 � N such that σi0 .y /∈ T .
Since σi0 acts isometrically, we have

d(x̃0, y) � d(x̃0, σi0 .y), d(x̃0, z) � d(x̃0, σi0 .z),

d(z, y) = d(σi0 .z, σi0 .y).

The relations above combined with d(x̃0, y) = d(x̃0, z) + d(z, y) and the triangle inequality
provide

d(x̃0, y) = d(x̃0, σi0y) = d(x̃0, σi0z) + d(σi0z,σi0y).

We infer that there exists a minimizing geodesic segment from σi0 .y to x̃0 which contains
σi0 .z. But d(σi0 .z, σi0 .y) = d(z, y) < d(x̃0, y) � d(x̃0, σi0 .y), so there is only one geodesic
minimizing the distance between σi0 .z and σi0 .y, which implies that the geodesic σi0(γ)
contains x̃0. Since d(z, x̃0) = d(σi0 .z, x̃0), we have σi0 .x0 = x0, contradicting the fact that σi0

has no fixed point.

8. Spectral lower bounds

To prove Proposition 1.5 we need bounds on some Sobolev constants. In [8], S. Gallot provides
such bounds under the control Diam(M)2( 1

VolM

∫
M

(Ric)p
−)

1
p � ε(p,n), where p > n/2 and

ε(p,n) > 0 is a universal constant. Combined with Theorem 1.2 this yields

PROPOSITION 8.1. – Let (Mn, g) be a complete Riemannian manifold. If ρp

VolM � 1
C(p,q,n)

(for p > n/2 and q > n), then we have that
(i) for all u ∈H1,2(M), ‖u‖ 2q

q−2
� Diam(M)C(p, q,n)‖du‖2 + ‖u‖2.

(ii) for all u ∈H1,q(M), supu− inf u � Diam(M)C(p, q,n)‖du‖q.

We now prove Proposition 1.5. Let α be a 1-form on M such that ‖α‖2
2 = 1 and Δα = λα.

The Bochner formula (see [18]) yields∫
g(Δα,α)
VolM

= ‖Dα‖2
2 +

∫
(Ric−(n− 1))(α,α)

VolM
+ (n− 1).
M M
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Combined with Hölder’s inequality, this implies:

λ � ‖Dα‖2
2 −

(
ρp

VolM

) 1
p

‖α‖2
2p

p−1
+ (n− 1).

Since we may assume DiamM � 2π, Proposition 8.1 gives that

‖α‖2
2p

p−1
� C(p,n)‖Dα‖2

2 + 2‖α‖2
2.

We infer (
λ− (n− 1) + 2ε

)
�

(
1−C(p,n)

(
ρp

VolM

) 1
p
)
‖Dα‖2

2.(5)

Splitting orthogonally the 2-tensor Dα into antisymmetric part dα
2 , traceless symmetric part

and scalar part − δα
n g, we obtain ‖Dα‖2

2 � 1
n‖δα‖2

2 + 1
2‖dα‖2

2. Combining the splitting with
inequality (5), and distinguishing the cases dα = 0 (where ‖δα‖2

2 = λ) and δα = 0 (where
‖dα‖2

2 = λ), we easily get Proposition 1.5.

9. L
n
2 -pinching on the Ricci curvature

In the case n = 2 and p = 1, the π1-finiteness follows readily from the Gauss–Bonnet theorem.
The proofs of Theorems 1.1 and 1.2, Lemma 1.4, and Propositions 1.5 and 1.6 may be easily
adapted. For instance, to prove Lemma 1.4 we just use Lemma 5.2 in place of Lemma 5.1.
To prove Proposition 1.5, we may assume λ � 2n and use the Sobolev inequality ‖u‖4 �
C‖du‖2 + ‖u‖2 to show by Moser’s iteration that ‖α‖∞ � C ′; this implies that inequality (5)
still holds and then we finish the proof as in the case p > 1.

We now focus on counter-examples announced in the introduction. Let σ (resp. σ(x)) stand
for the sectional curvature (resp. the smallest sectional curvature of tangent planes at x).

PROPOSITION 9.1. – Set n � 3. For any p, ε > 0, the n-Riemannian manifolds with∫
M

|σ|p � ε and Vol(M) � ε are dense in (pointed) Gromov–Hausdorff distance among all the
(noncompact) length spaces.

Proof. – The (n − 1)-Riemannian manifolds are obviously GH-dense among all the finite
graphs (perform some connected sums of spheres S

n−1 to get slightly thickened graphs). Then,
just take Riemannian product of these manifolds with a sufficiently small S

1 factor. �
The next density results are more interesting since we want to keep a control on the volume of

our family of manifolds.

PROPOSITION 9.2. – For any reals K and V0 > 0, any integer n � 3 and real any ε > 0 the
compact Riemannian n-manifolds (Mn, g) that satisfy∫

M

(σ −K)
n
2
− < ε and VolM = V0

are dense in (pointed) Gromov–Hausdorff distance among all the (noncompact) length spaces.

We can also replace
∫

M

(
σ −K

)n
2

− by
∫

M
|σ|n

2 or by
∫

M
|σ|p for any p < n/2.

With the same kind of gluing techniques, it is not difficult to construct complete n-manifolds
with infinite volume which satisfy ρn/2 � ε (for any n � 3 and any ε > 0).
4e SÉRIE – TOME 40 – 2007 – N◦ 4
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PROPOSITION 9.3. – Let (Mn, g) be any compact Riemannian n-manifold (n � 3). There
exists a sequence of complete Riemannian metrics (gm) that converge to g in the Gromov–
Hausdorff distance and such that

ρn/2(gm)
Volgm

→ 0, Vol(gm)→∞, ∀l ∈ N, λl(gm)→ 0

where λl denotes the l-th eigenvalue of the Laplacian on functions.

Proof. – We define five families of warped-product metrics dt2 + b(t)2gSn−1 on I × S
n−1

• C−1
ν = [0,

√
ν] × S

n−1 with b(t) = η(t2 + ν2)α/2, where α = 1 + 1√
−Log(ν)

and η =
√

1+ν

α(ν+ν2)
α−1

2
for all ν > 0.

• Fν = [θ − π
2 ,0] × S

n−1 with b(t) = η′ cos t, θ = tan−1(
√

ν
α (1 + ν)) and η′ =√

α2+ν(1+ν)2

α = 1
cosθ .

• Fν = [0, η′π
2 ]× S

n−1 with b(t) = η′ cos t
η′ .

• C0
ν = [0,

√
ν(1+ν)
2α ]× S

n−1 with b(t) = t +
√

ν(1+ν)
2α .

• C
0

ν,L = [0,L]× S
n−1 with b(t) = ν

α+1
2

α(1+ν)
α
2 −1 .

If (X,Y ) is an orthonormal family of tangent vectors to S
n−1, then the sectional curvatures

σ(X,Y ) of the manifolds Fν , Fν , C−1
ν and C0

ν are equal to

1
b2

−
(

b′

b

)2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 on C0
ν or C

0

ν,L,

ν2α2

(t2 + ν2)2
− α2

t2 + ν2

(
1− 1

1 + ν

(
ν + ν2

t2 + ν2

)α−1)
on C−1

ν ,

1− sin2 θ

cos2 t
on Fν ,

1
η′2 on Fν .

If X is a unit vector tangent to S
n−1, then

σ

(
X,

∂

∂r

)
=−b′′

b
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 on C0
ν or C

0

ν,L,

−α(2− α)ν2

(t2 + ν2)2
− α(α− 1)

t2 + ν2
on C−1

ν ,

1 on Fν ,
1

η′2 on Fν .

We now obtain readily the following upper bounds (∀ν � 1
C(n) )

∫
F

(σ − 1)
n
2
− � C(n)

π
2 −θ∫
0

sinn θ

cos t
dt � C(n) sinn θ � C(n)(

− lnν
)n−2

4

,

ν
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∫
Fν

(σ − 1)
n
2
− � C(n)

η′π
2∫

0

sinn θ

cosn θ
cosn−1 t

η′ dt

� C(n) sinn θ � C(n)(
− lnν

)n−2
4

,

∫
C0

ν

(σ − 1)
n
2
− � C(n)ν

n
2 � C(n)

(− lnν)
n−2

4

.

Concerning C−1
ν , first note that σ(X,Y ) is decreasing on [0,

√
ν ] and so σ(X,Y ) � 0 for ν

small enough. Hence, using
√

a
2 +

√
b
2 �

√
a + b �√

a +
√

b, we have

∫
C−1

ν

(σ − 1)
n
2
− � C(n)ηn−1

[
νn

√
ν∫

0

(t2 + ν2)
α(n−1)

2 −n dt +

√
ν∫

0

(t2 + ν2)
α(n−1)

2 dt

+ (α− 1)n/2

√
ν∫

0

(
t2 + ν2

)α(n−1)
2 −n

2 dt

]

� C(n)ηn−1
[
ν(α−1)(n−1) + (ν +

√
ν)(n−1)α+1

+ (α− 1)
n
2 −1(ν +

√
ν)(α−1)(n−1)

]
� C(n)

(− lnν)
n−2

4

.

The metrics of these cylinders are normalized to yield a C1 metric when the small (resp. the large)
connected component of the boundary of Fν is identified with the large connected component
of the boundary of C0

ν (resp. with the boundary of Fν ). Similarly, note that for any ν > 0 small
enough, there exists β < 1 such that we get a C1 metric by identifying a connected component
of the boundary of C−1

βν with the small connected component of C0
ν . Let Bν be the manifold

C0
ν#C−1

βν #C−1
βν #C0

ν#Fν#Fν (Fig. 1)

We then have
∫
Bν

(σ − 1)
n
2
− � C(n)

(− lnν)
n−2

4
, and DiamBν � 2π and VolBν � 1

C(n) for any ν

small enough. For all N ∈ N, there exists a ν′ > 0 small enough to have C0
ν containing at least N

disjoint balls of radius
√

ν′(1+ν′)
α(ν′) . Excise these balls from one of the C0

ν part of Bν and glue the

resulting manifold to N manifolds Bν′ along the spheres of radius
√

ν′(1+ν′)
α(ν′) of their boundaries.

Taking N = (− lnν)
n−2

8 and multiplying the metric by 1

(− lnν)
n−2
8n

, we get a manifold Bν

Fig. 1.
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which is diffeomorphic to Bn and satisfies DiamBν � 4π

(− lnν)
n−2
16n

, VolBν � (− lnν)
n−2
16

C(n) and∫
Bν

(σ − 1)
n
2
− � C(n)

(− lnν)
n−2

8
.

To prove Proposition 9.3, fix a point x0 in the compact manifold M . For any m ∈ N, there
exists r ∈ ]0, inj(M,g)[ and a metric g′ on M which is equal to g on M \ B(x0,2r), is
flat on B(x0, r) and is at Gromov–Hausdorff distance from g bounded from above by 1

2m .

For any ν > 0 such that
√

ν(1+ν)
α < r we obtain a new metric g′ν on M by replacing the

flat metric on B(x0,
√

ν(1+ν)
α ) by the metric of Bν . We can find νm small enough to have a

Gromov–Hausdorff distance between g and g′νm
less than 1

m , and also Vol(g′νm
) � mC(n) and

1
Volg′

νm

∫
(M,g′

νm
)
(σ−1)

n
2
− � 1

m . We then set gm = g′νm
. It only remains to show the collapsing of

the eigenvalues of the metrics gm. In that purpose, first consider on Bν the continuous function
f that is equal to 1 on the part C0

ν#Fν#Fν , equal to 0 on the part C0
ν#C−1

ν and equal to
f(t) = t√

βν
on the remaining part C−1

βν . For this function f , we have that

∫
Bν

|∇f |2∫
Bν

|f |2 � ηn−1

C(n)η′n−1

√
ν∫

0

∣∣∣∣∂f

∂t

∣∣∣∣2(t2 + ν2)
α(n−1)

2 dt � C(n)ν
n−2

2 .

Now, (Mn, gm) contains (− lnνm)
n−2

8 manifolds Bν′
m

(with metric multiplied by 1

(− lnνm)
n−2
8n

)

and so, if we extend by zero to M the function f corresponding to each of these Bν′
m

, we obtain

(− lnνm)
n−2

8 L2-orthogonal functions on (Mn, gm), whose Rayleigh quotients are bounded

from above by C(n)ν
n−2

2
m (ln 1

νm
)

n−2
8n . As we can suppose that νm tends to 0, the min-max

principle implies the collapsing of all eigenvalues to 0 (this collapsing implies that the gm do
not tend to g in the C0 sense and that the Sobolev constants are not bounded under L

n
2 control,

otherwise the proof of Proposition 1.5 would hold).
We now adapt the above construction to prove Proposition 9.2. Note that on C−1

ν we have

−α(2−α)ν2

(t2+ν2)2 − α(α−1)
t2+ν2 � σ(t) � ν2α2

(t2+ν2)2 + α2να−1

(1+ν)2−α(t2+ν2)α , and so we have, for any p < n/2,∫
C−1

ν
|σ|p � C(n,p)ν

n
2 −p. There exists β < 1 such that a connected component of the boundary

of C−1
βν glue metrically in a C1-way with the small connected component of C0

ν . Let B2
ν,L be

the manifold Fν#Fν#C0
ν#C−1

βν #C
0

βν,L#C−1
βν #C0

ν#Fν#Fν (Fig. 2), we set also B1
ν,L =

C0
ν#C−1

βν #C
0

βν,L#C−1
βν #C0

ν#Fν#Fν (Fig. 3) and B0
ν,L = C0

ν#C−1
βν #C

0

βν,L#C−1
βν #C0

ν

(Fig. 4).
It is now easy to see that for any L > 0, ε > 0 and K ∈ R we can choose two sequences

(Ll) and λl such that the sequence B
0,L

l,ε = (λnB0
1/l,Ll

) (resp. B
1,L

n,ε = (λlB
1
1/l,Ll

) or B
2,L

l,ε =
(λlB

2
1/l,Ll

)) is at Gromov–Hausdorff distance from the segment [0,L] less than ε and the

Fig. 2.
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Fig. 3. Fig. 4.

integrals
∫

B
i,L

l,ε

(σ − K)
n
2
− tend to 0 (resp. and the volume of B

i,L

l,ε tends to any given real in

]0,C(ε,K,L)]). Note also that, if we take m large enough, we can glue a number as large as

needed of manifolds B
1,L

m,ε or B
0,L

m,ε to one of the C0 part of B
i,L

l,ε . We deduce that, for any finite

graph, we can glue a family B
ik,Lk

lk,ε2 (with the np large enough) to get a manifold which is at

Gromov–Hausdorff distance from the graph less than ε/2 and which satisfies
∫

(σ −K)
n
2
− � ε/2

and with volume less than V0/2. To get a volume equal to V0 we glue enough copies of B
1,ε2

l,ε4

(for K = 1
ε8 ): the small change on the distance to the graph does not depend on the number of

these copies and we can choose the volume of each copy of these B
1,ε2

l,ε4 equal to any number in
]0,C(ε2, 1

ε8 ,L)[. Since the finite graphs are dense in Gromov–Hausdorff distance, this ends the
proof of Theorem 9.2.

To prove the version of Theorem 9.2 with the control on
∫

M
|σ|n

2 or
∫

M
|σ|p (p < n/2) we just

have to replace the parts Fν#Fν in the above definition of the B
i,L

l,ε by some small flat n-torus
and remark that the metrics constructed this way satisfy σ � 0. �

Note that in the proof of Proposition 9.3, we only need that VolM and
∫

M
(σ − 1)

n
2
− are

finite. It is classical that any manifold supports a complete metric with finite volume but we do
not know if both finitenesses above are always fulfilled for at least one complete metric on any
(noncompact) manifold. Note also that the finiteness of

∫
M

(σ−1)
n
2
− does not imply VolM < ∞

since, for any ε > 0, we can start from B2
ν,1 and then iteratively glue some B1

νk,1 to the remaining

free C
0

βνk−1
element with a sequence νk chosen so as to get a complete manifold with infinite

volume and
∫

M
(σ − 1)

n
2
− � ε.
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