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EXTENSIONS OF STRICT POLYNOMIAL FUNCTORS

BY MARCIN CHAŁUPNIK 1

ABSTRACT. – We computeExt-groups between Frobenius twists of strict polynomial functors.
main result concerns the groupsExt∗P(Dd(i), F (i)) whereDd is the divided power functor, andF is an
arbitrary functor. These groups are shown to be isomorphic toF (Ai) for certain explicitly described grade
spaceAi. We also calculate the groupsExt∗P(W

(i)
µ , S

(i)
λ ) whereWµ andSλ are respectively the Weyl an

Schur functors associated to diagramsµ, λ of the same weight.
 2005 Elsevier SAS

RÉSUMÉ. – Nous considérons les modules sur l’algèbre de Schur sur un corps fini sous la fo
foncteurs polynomiaux, et calculons leurs groupes d’extensions, qui sont aussi la valeur génériq
cohomologie des groupes linéaires. Les résultats principaux concernent les groupesExt∗P(Dd(i), F (i)),
extensions entre le twist de Frobenius d’un foncteurF quelconque et le twist d’une puissance divisée
les groupesExt∗P(W

(i)
µ , S

(i)
λ ), extensions entre le twist d’un foncteur de Schur et d’un foncteur de W

 2005 Elsevier SAS

1. Introduction

ComputingExt-groups between discrete or rationalGLn-modules over a fieldk of positive
characteristic had been known to be a very difficult problem for a long time. Only rec
introducing a suitable category of functorsF in [14] has changed the situation significantly.
it was demonstrated in [11–13], it is possible to make effective computations ofExt-groups in
the categoryF (and even more effective in its algebrogeometric modificationP ). In a meantime
in a series of papers [2,16–18,13,11] there was established a close connection betw
functor categoriesF , P and various module categories. More specifically, it was shown in
Corollary 3.13] that for any strict polynomial functorsF,G of degreed andn � d

Ext∗P (F,G) � Ext∗GLn-mod

(
F

(
kn

)
,G

(
kn

))
,

where theExt-groups at the right-hand side are taken in the category of rational represen
of an algebraic groupGLn. In the present paper we focus our attention on quite specific
polynomial functors: on Frobenius twists (cf. [13, Section 1]). The reason is that in this ca
Ext-groups inP are also related to theExt-groups between discrete modules. Namely, a re
of Betley [2] and Suslin [11, Appendix] implies that for any strict polynomial functorsF , G of
degreed over a fieldk with at leastd elements, and for any integerk,

Extk
P

(
F (i),G(i)

)
� Extk

GLn(k)-mod

(
F

(
kn

)
,G

(
kn

))
,

1 The author was partially supported by Białynicki–Birula Subsydium of Foundation of Polish Science and the
scientific Grant (KBN) 1 P03A 005 26.
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for large enough integersi, n (F (i) stands here for thei-th Frobenius twist of a functorF ).
Thus we see that theExt-groups in the category of strict polynomial functors are closely rel
to Ext-groups in some important categories. But the main point is that the calculationsP
are drastically easier than those in module categories. Such calculations were started
where (adapting ideas of [12] to the context of the categoryP ) the groupsExt∗P(I(i), I(i)) were
computed. Already this result has a valuable application toGLn(k)-modules, for after som
additional work [13, Section 7] it leads to a computation ofH∗(GLn(Fp),Mn(Fp)) for largen
(with action ofGLn(Fp) on matrices by conjugation), which is equivalent to the difficult res
of Bökstedt [4] and Breen [5]. These computations were extended in [10,11,21].

The aim of the present paper is to generalize and systematize computations ofExt-groups
in the functor categoryP by using methods of representation theory. We obtain a com
description of theExt-groups for a large class of functors which strongly generalizes and
into a uniform context known computations.

A direct inspiration for this work was the computation ofExt∗P(Dd(i), Sd(i)) obtained in [11].
Since the tensor products of divided powers form a family of projective generators ofP and the
products of symmetric powers—of injective ones, one can hope for computations ofExt-groups
for the Frobenius twists of functors of a more general form.

The main results are computations ofExt∗(Dd(i), F (i)) for an arbitraryF (Theorem 4.3
Corollary 5.3) andExt∗(F (i),G(i)) for F,G satisfying certain simple abstract conditi
(Theorem 4.4). The most important instance of Theorem 4.4 is for functorsF = Wµ andG = Sλ

(respectively Weyl and Schur functors) for diagramsµ,λ of the same weight (Theorem 6.1
The language in which results of computations are given utilizes a concept of “symmetri
of functor” (see Section 3). This notion exploits a strong interplay between representati
the general linear group and the symmetric group coming from the action of these gro
the tensor power of a space, and may be thought of as generalization of a classic no
symmetrization of representation.

This paper is a first part of my work on homological algebra in the category of func
In the next article [7] I partially expand computations ofExt-groups between twisted We
and Schur functors to the case of diagrams of different weights. As it is not surprisin
a reader of [11–13], an essential role in that work is played by the de Rham comple
appropriate generalization to the case of an arbitrary Young diagram has turned out to
object complicated and interesting for its own. I investigate it in detail in a separate artic
The ideas of the present article are also a starting point of [8] where a complete descrip
Ext-groups between exponential functors is given.

2. Recollections

We start by collecting some basic facts concerning Young diagrams and functors o
associate to them.

2.1. Diagrams

A Young diagramλ of weight d is just a weakly decreasing sequence of positive inte
(λ1, . . . , λl) with

∑l
j=1 λj = d =: |λ|. We can associate to a Young diagramλ the conjugate

diagramλ̃ whose rows are columns ofλ (formally: λ̃k = #{j: λj � k}). We shall conside
the partial ordering of dominance on the set of Young diagrams. We say thatλ dominatesµ
(µ � λ) if for all j we have

∑
i�j λi �

∑
i�j µi. This partial ordering may be enriched to t

total lexicographic ordering:µ � λ if for the leasti such thatµi �= λi, we haveµi > λi. The
4e SÉRIE– TOME 38 – 2005 –N◦ 5
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direction of dominance and lexicographic relations looks strange, since the lesser diagram
longer rows it has. The reason is that the terminology in our two main references: [1,9]
consistent. I decided to follow the conventions of [1] when dealing with Schur functors etc
I follow [9] with respect to the direction of orderings.

Given two diagramsµ ⊆ λ (i.e. µj � λj for all j), we may form a skew diagramλ/µ which
should be imagined as a diagramλ with deleted boxes belonging toµ. Here is a picture fo
(4,3,1)/(2,1)

2.2. Polynomial functors

Throughout this paperk is a field of positive characteristicp andPd denotes the categor
of homogeneous strict polynomial functors of degreed over k [13, Section 2]. All Ext-
groups are computed inPd for appropriated. We now recall certain important objects inPd.
The most fundamental are: thed-th tensor powerId(V ) := V ⊗d, the d-th symmetric powe
Sd(V ) := (V ⊗d)Σd

, the d-th divided powerDd(V ) := (V ⊗d)Σd , (the last two functors ar
not isomorphic ford � p) and thed-th exterior powerΛd(V ) := (V ⊗d)Σd � (V ⊗d)Σd

for the
alternating action ofΣd on the tensor power (this definition needs a modification forp = 2, we
will discuss it in detail in the next section). There are also well-known transformations be
these functors e.g. the inclusioncd :Λd → Id and the epimorphismmd : Id → Sd.

Given a diagramλ of weight d, we put Λλ := Λλ1 ⊗ · · · ⊗ Λλl and cλ := cλ1 ⊗ · · · ⊗
cλl

:Λλ → Id. In the same fashion we defineSλ̃ andm
λ̃
: Id → Sλ̃, but one should remembe

thatm
λ̃

acts in a “conjugate manner” i.e. we gather the elements which have indices belo
to the same column (see [1, Section II.1]). We are now in a position to introduce a
complicated object. The Schur functorSλ is defined as the image of the compositionm

λ̃
◦ cλ. It

comes with two structural transformations: the epimorphismφλ :Λλ → Sλ and monomorphism

ψλ :Sλ → Sλ̃, which in extreme cases give isomorphismsS(d) � Λd, S(1d) � Sd.
There is a useful contravariant duality in the categoryPd called the Kuhn duality:F#(V ) =

(F (V ∗))∗ whereV ∗ means thek-dual space. It is easy to verify that(Dd)# � Sd while Λd is
selfdual. We will also consider the Kuhn duals of Schur functors which are called Weyl fun
and denoted byWλ. The independent definition of Weyl functor is, of course, as the image o

compositionDλ̃ → Id → Λλ.
All these constructions may be applied to skew diagrams as well. Although skew Sch

Weyl functorsSλ/µ, Wλ/µ play less important roles in the theory (in fact the Littlewoo
Richardson rule [3] says that any skew Schur (respectively Weyl) functor has a filtration
a graded object being a sum of Schur (respectively Weyl) functors), they are often us
inductive arguments.

The categoryPd is endowed with certain abstract structure introduced in [9] called
structure ofhighest weight category(it follows from the fact thatPd is equivalent to the categor
of finitely generated modules over the Schur algebraS(n,d) for anyn � d [13, Theorem 3.2]
for which the structure of highest weight category was studied in detail e.g. in [19, Chapt
We shall need two formal consequences of the fact thatPd is a highest weight category.

FACT 2.1. –For any skew diagramsµ/µ′, λ/λ′, Extn(Wλ/λ′ , Sµ/µ′) = 0, for n > 0.
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. –It is shown at the beginning of the proof of [9, Theorem 3.11] thatExt1(Wλ, Sµ) = 0
(the Schur and Weyl functorsSµ, Wλ correspond respectively toA(µ) andV (λ) in the abstrac
context considered in [9]) for allλ, µ, but the authors point out that their argument also wo
for Extn for n > 1. In order to extend our result to the case of skew diagrams it suffices to
the Littlewood–Richardson rule [3] to both variables.�

FACT 2.2. –If for somen > 0, Extn(Sµ, Sλ) �= 0, thenµ � λ.

Proof. –Again, this is shown in [9, Lemma 3.2(b)] only forn = 1 but the proof carries over t
all n � 1. �

We finish this section by introducing the main technical tool, which will be used repeate
the next sections. This tool is the Decomposition Formula. LetPn denote the category of stri
polynomial functors inn variables. The Decomposition Formula [1, Theorem II.4.11] prov
an extremely useful filtration of a functor in two variablesSλ/µ(V ⊕W ).

FACT 2.3 (Decomposition formula). –The bifunctorSλ/µ(V ⊕W ) has a filtrationMα(V,W )
(for α satisfyingµ⊆ α ⊆ λ). The ordering in the filtration comes from the lexicographic order
amongα. Its associated graded object is

⊕
µ⊆α⊆λ

Sα/µ(V )⊗ Sλ/α(W ).

Iterating this procedure we get a filtration of then-functorSλ/µ(V1 ⊕ · · · ⊕ Vn).

COROLLARY 2.4. –The functor in n variables Sλ/µ(V1 ⊕ · · · ⊕ Vn) has a filtration
Mµ⊆α1⊆···⊆αn−1⊆λ, with ordering coming from then-fold lexicographic ordering(i.e. to
compare sequences(α1, . . . , αn−1) i(α′1, . . . , α′n−1) we pick the smallesti such thatαi �= α′ i

and compare lexicographicallyαi andα′ i). Its graded object is

⊕
µ⊆α1⊆···⊆αn−1⊆λ

Sα1/µ(V1)⊗ · · · ⊗ Sαn−1/αn−2(Vn−1)⊗ Sλ/αn−1(Vn).

Of course, we get an analogous decomposition for twisted Schur functors and for
functors. This filtration is a powerful tool in computations ofExt-groups, since as it was observ
in [11, pp. 671–672], the evident adjoint functors betweenP andPn yield an isomorphism

Ext∗P
(
F1 ⊗ · · · ⊗ Fn, S

(i)
λ/µ

)
= Ext∗Pn

(
F1(V1)⊗ · · · ⊗ Fn(Vn), S(i)

λ/µ(V1 ⊕ · · · ⊕ Vn)
)
;

I wrote down spacesV1, . . . , Vn in the right-hand side of the formula to emphasize
dependence of the functor onn variables. We recall from [11, p. 672], that the “Kunneth formu
gives an isomorphism

Ext∗Pn

(
F1(V1)⊗ · · · ⊗ Fn(Vn), S(i)

α1/µ(V1)⊗ · · · ⊗ S
(i)
λ/αn−1(Vn)

)

= Ext∗P
(
F1, S

(i)
α1/µ

)
⊗ · · · ⊗Ext∗P

(
Fn, S

(i)
λ/αn−1

)
.

Thus the Decomposition Formula leads to a spectral sequence, which we will ca
Decomposition Spectral Sequence.
4e SÉRIE– TOME 38 – 2005 –N◦ 5
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COROLLARY 2.5. –There exists a spectral sequence converging toExt∗P(F1⊗· · ·⊗Fn, S
(i)
λ/µ),

whoseE1-term has the form

E1
ij =

⊕
i1+···+in=i+j

Exti1
P

(
F1, S

(i)
α1/µ

)
⊗ · · · ⊗Extin

P
(
Fn, S

(i)
λ/αn−1

)
,

wherej stands for a place of(α1, . . . , αn−1) in the(n− 1)-fold lexicographic ordering.

Analogous sequences also exist forExt∗P(F1 ⊗ · · · ⊗Fn,W
(i)
λ/µ), Ext∗P(S(i)

λ/µ, F1 ⊗ · · · ⊗Fn)
etc.

In the present paper we shall mainly deal with a very special case of the Decomp
Formula (already considered in [11]), namely the one for the diagram(1d). The Decomposition
Formula in this case splits and takes the form of the well-known formula

Sd(i)(V ⊕W ) =
⊕

j+k=d

Sj(i)(V )⊗ Sk(i)(W ).

Hence the Decomposition Spectral Sequence also splits and gives the formula:

Ext∗P
(
F1 ⊗ · · · ⊗ Fn, Sd(i)

)
= Ext∗P

(
F1, S

|F1|/pi(i)
)
⊗ · · · ⊗Ext∗P

(
Fn, S|Fn|/pi(i)

)
,

for any homogeneous functorsF1, . . . , Fn. We get analogous formulae for the divided a
exterior powers and for products of homogeneous functors on the second variable ins
the first. The Schur functors for which the Decomposition Formula takes that simplest
were investigated in detail in [11] where they were called “exponential functors” (see
p. 670]). These particular instances of the Decomposition Formula and Decomposition S
Sequence will be referred to as the Exponential Formula. Some more advanced applica
the Decomposition Formula and Decomposition Spectral Sequence will appear in [6,7].

3. Symmetrization of functor

Let Σgr
d -mod denote the category of graded (by nonnegative integers) finitely genera

each degreek[Σd]-modules and letkgr-mod denote the category of graded finite dimensiona
each degree vector spaces overk.

DEFINITION 3.1. – A functorf :Σgr
d -mod→ kgr-mod is called aΣd-functor if it satisfies two

conditions:
(1) f is k-linear. By this we mean that the structural mapHomk[Σd](M,N)→ Homk(f(M),

f(N)) is k-linear.
(2) f commutes with forgetting the grading. This condition means that there exists a fu

f̃ :Σd-mod→ k-mod such thatZ ◦ f = f̃ ◦ZΣ whereZ,ZΣ are the functors of forgettin

about grading in respective categories (suchf̃ , if exists, is unique).
Let f, g beΣd-functors. We call a transformationφ :f → g a Σd-transformation if there exists
transformatioñφ : f̃ → g̃ such thatZ ◦ φ = φ̃ ◦ZΣ.

We shall denote byFΣd
the category whose objects areΣd-functors and morphisms areΣd-

transformations.
Observe that for anyΣd-functorf , an assignmentV �→ f(V ⊗d) (we regardV as concentrate

in degree0) defines a homogeneous strict polynomial functor of degreed (we use here th
first condition in the definition ofΣd-functor). If so happens, we say that ourΣd-functor f
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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is a symmetrization of the respective strict polynomial functor. In fact, we often define
polynomial functors just giving their symmetrizations, e.g.Sd = f(V ⊗d), for the Σd-functor
f(M) = (M)Σd

. Usually (if it causes no confusion) we will denote a symmetrization of a fun
by the same letter but lower case. For example it is clear what we mean bysλ, dλ, sλ,wλ, e.g.
sλ(M) := im((Malt)Σλ → M → (M)Σλ̃

) (for anyΣd-moduleM , Malt stands forM ⊗ sgn).
It is also self-evident how these functors behave with respect to the grading (degree of a
product is just a sum of degrees of factors) and that they commute with forgetting. One sho
more cautious in the case of the exterior power for two reasons. The first is that the invaria
coinvariants of the alternating action are not isomorphicΣd-functors in general. So we shou
distinct betweenλd

inv(M) = (Malt)Σd , andλd
coinv(M) = (Malt)Σd

, although bothΣd-functors
are symmetrizations of the strict polynomial functorΛd. The second reason is a patholo
which happens forp = 2, when we cannot define the exterior power as the (co)invariants o
alternating action. We will briefly discuss a modification which is needed in definition ofλd

inv

(the argument forλd
coinv is similar). We start withd = 2. Then we may defineλ2

inv as the kerne
of theΣ2-epimorphismid→ s2. For an arbitraryd we defineλd

inv to be
⋂

Σ2⊂Σd
ker(id→ idΣ2).

The definition meets our expectations becauseΣd is generated by the set of transpositions.
main advantage is that it refers only to a given action of the symmetric group. Therefore
now on we shall not consider the casep = 2 separately.

It is worth mentioning that the idea of symmetrization is present in many constructio
representation theory. For example, applying certainΣd-functors to theΣd-bimodulek[Σd] we
obtain some importantΣd-modules (e.g.sλ(k[Σd]) is the Specht moduleSpλ). Finally, observe
that we still have the Kuhn duality. Namely, for aΣd-functorf , we putf#(M) := (f(M∗))∗,
where∗ at the right-hand side means thek-linear duality. Now it is easy to see that(sλ)# = wλ

and in particular(λd
inv)# = λd

coinv.

DEFINITION 3.2. – A Σd-functor f in is called an injective symmetrization of a funct
F ∈ Pd if f in(V ⊗d) = F (V ), and there exists aΣd-transformationψ :f in →

⊕
k sλk

such that
ψ(V ⊗d) is a monomorphism.

Similarly, we say that a symmetrizationfpr is a projective symmetrization if there exists
Σd-transformationφ :

⊕
k dλk → fpr whose evaluation onV ⊗d is onto.

The importance of this class of symmetrizations comes from the fact that the f
{Sλ} (respectively{Dλ}) forms a set of injective (respectively projective) generators ofPd

[13, Theorem 2.10]. In order to express concisely another important property of inj
symmetrizations we need the following definition.

DEFINITION 3.3. – We say that aΣd-module M is a Y -permutative module ifM �⊕n
i=1 Mi, where Mi = (k ⊗k[Hi] k[Σd])[ji] ([ji] stands here for the shift of grading in

module which was originally placed in degree0) for some Young subgroupsHi in Σd (cf. [15,
Section 1.3]).

The most important example of aY -permutative module is theΣd-moduleV ⊗d for any graded
spaceV .

PROPOSITION 3.1. –
(1) Any strict polynomial functor has an injective and a projective symmetrization.

(2) Let f in ψ0→ sλ0
be an injective symmetrization ofF (I adopt the convention:sλ0

:=⊕
k sλ0k

). Thenψ0 may be extended to a sequence ofΣd-transformations

f in ψ0−→ sλ0 ψ1−→ sλ1 ψ2−→ · · · ψl−→ sλl

,

4e SÉRIE– TOME 38 – 2005 –N◦ 5
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such that for anyY -permutativeΣd-moduleM , the sequence

0 → f in(M)
ψ0−→ sλ0

(M)
ψ1−→ sλ1

(M)
ψ2−→ · · · ψl−→ sλl

(M) → 0

is exact.
An analogous fact holds for a projective symmetrization.

Proof. –We start with comparing transformations andΣd-transformations in a very speci
case.

LEMMA 3.2. –For any diagramsλ,λ′ of weightd

HomPd

(
Sλ, Sλ′)

= HomFΣd

(
sλ, sλ′)

.

Proof. –SinceHomP(Sk, Sk) = k, applying the Exponential Formula to both variables
get some description ofHom(Sλ, Sλ′

). From a purely combinatorial point of view we ma
describe it as a space having basis labeled by matrices consisting of positive integers sa
the following conditions: each row is weakly decreasing, the sum of numbers in thei-th row
equalsλi, the sum of numbers in thei-th column equalsλ′

j (cf. [11, Corollary 1.8]). Looking a
the construction of the Decomposition Formula it is easy to find the transformation corresp
to a given element of the basis. Namely, to a matrix[aij ] we associate a composition

Sλ →
⊗
ij

Saij �
⊗
ij

Saji → Sλ′
,

where the first and third arrows are respectively tensor products of iterated comultiplicatio
multiplication in the symmetric power, while the second arrow interchanges factors which
left-hand side are ordered with respect to rows and on the right-hand side with respect to c
(cf. [11, pp. 673–676]). Thus we see that any transformation is a composition of transform
of three simple types (possibly tensored with identities): the multiplicationSa ⊗ Sb → Sa+b,
the comultiplicationSa+b → Sa ⊗ Sb, and the transpositionSa ⊗ Sb → Sb ⊗ Sa. These
transformations, of course, come fromΣd-transformations, respectively from the induction,
restriction and the homomorphism of the groups. Thus we have shown that any transfor
comes from someΣd-transformation.

It remains to show that a nontrivialΣd-transformationψ :sλ → sλ′
has the nontrivia

evaluationψ(V ⊗d) :Sλ → Sλ′
. It will be more convenient to work with the Kuhn dual ofψ,

which is theΣd-transformationψ# :dλ′ → dλ. Suppose thatim(ψ#)(V ⊗d) = 0. Thenim(ψ#)
is a left exact functor vanishing on allΣd-modulesV ⊗d. But if dim(V ) = d thenV ⊗d contains
k[Σd] as a direct summand. Thusim(ψ#)(k[Σd]) = 0. But since any finitely generatedΣd-
module embeds into a free module andim(ψ#) preserves monomorphisms, it must be the triv
functor. �

In order to construct an injective symmetrization of a strict polynomial functorF we consider
the beginning of a finite injective resolution ofF by the sums of products of symmetric powe

0 → F
ψ′

0−→ Sλ0 ψ′
1−→ Sλ1 → · · · .

The existence of such a finite resolution follows easily from the axioms for highest w
category [9, Definition 3.1] and the Littlewood–Richardson rule [3]. Of courseF = ker(ψ′

1).
Thanks to Lemma 3.5 we know that the transformationψ′

1 comes from theΣd-transformation
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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ψ1 :sλ0 → sλ1
. Therefore theΣd-functor f in := ker(ψ1) is an injective symmetrization ofF ,

since it is obviouslyk-linear and commutes with forgetting. This finishes the proof of the
part of Proposition 3.4.

To obtain the second part we take the whole resolution

0 → F
ψ′

0−→ Sλ0 ψ′
1−→ Sλ1 ψ′

2−→ · · · ψ′
l−→ Sλl → 0.

According to Lemma 3.5 it lifts to the sequence ofΣd-transformations

0 → f in ψ0−→ sλ0 ψ1−→ sλ1 ψ2−→ · · · ψl−→ sλl → 0,

whose evaluation onV ⊗d is exact. The exactness of evaluation on an arbitraryY -permutative
module follows from the fact, that any such a module is a direct summand in a finite sum oV ⊗d

for a spaceV of dimensiond. �
Of course, an injective symmetrization is not unique. The exterior power provides the e

example of this, since bothλd
inv → id andλd

coinv → id are injective symmetrizations ofΛd. The
point is that although the arrowλd

coinv → id (“averaging to invariants”) is not monomorphic,
evaluation onV ⊗d is, which is sufficient. For a similar reasonsλ is not only injective but also
projective symmetrization ofSλ (an analogous fact holds for Weyl functors).

We finish this section with one more tricky example of an injective symmetrization. We
find an injective symmetrization ofSd(1). To do this we consider the beginning of the de Rh
complex (cf. [13, Theorem 4.1]) augmented by its0-th cohomology

0 → Sd(1) → Spd δ−→ Spd−1 ⊗Λ1

and we putsd(1) to be the kernel of theΣpd-transformation corresponding to the de Rh
differential δ. Note thatsd(1)(V ⊗pd) = Sd(1)(V ) regarded as a graded space has degree
nontrivial components multiplied byp (we recall that the mapSd(1) → Spd is given by the
formulav1 · . . . · vd �→ vp

1 · . . . · v
p
d).

It is also possible to describe explicitly an injective symmetrization ofSd(i) for i > 1, for
Troesch [22] constructed a resolution ofSd(i) by symmetric powers. We do not reproduce t
resolution here, because it is quite complicated. We only warn the reader again that si

resolution extends the mapv1 · . . . · vd �→ vpi

1 · . . . · vpi

d , the associated symmetrization multipli
degrees of nontrivial components bypi. Taking into account these phenomena it is conven
to say that the Frobenius twist regarded as a functor on the graded spaces multiplies
by p (i.e. we putV (1)

pi := Vi and0 elsewhere). Taking this convention we may say that ifsd(i)

is an arbitrary injective symmetrization ofSd(i) thensd(i)(V ⊗dpi

) = Sd(i)(V ) for any graded
spaceV .

4. The main theorems

Let Ai = Ext∗(I(i), I(i)), Bi = (Ai)⊗d⊗k[Σd] with a grading inAi coming from the grading
on Ext-groups and the group algebra placed in degree0. We endowBi with a structure ofΣd-
bimodule given by the formula

σ.a1 ⊗ · · · ⊗ ad ⊗ eτ .λ := aσ(1) ⊗ · · · ⊗ aσ(d) ⊗ eσ·τ ·λ.
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Sometimes it will be more convenient to look atBi as a bimodule with the action:

σ.a1 ⊗ · · · ⊗ ad ⊗ eτ .λ = aλ−1(1) ⊗ · · · ⊗ aλ−1(d) ⊗ eσ·τ ·λ.

An isomorphism between these two structures is given by the map

a1 ⊗ · · · ⊗ ad ⊗ eτ �→ aτ−1(1) ⊗ · · · ⊗ aτ−1(d) ⊗ eτ .

The main computational result of [13] was determination ofAi. It is a graded space which
one-dimensional in even degrees smaller than2pi and trivial elsewhere. Now it follows easi
from the Exponential Formula that

Ext∗
(
Id(i), Id(i)

)
= Bi,

as a gradedΣd-bimodule. It is also easy to see that the most important computations o
Section V] may be expressed in the form

Ext∗
(
F (i),G(i)

)
=

(
gin

(
fpr#

(
Bi

)))
,

(i.e. we first applyfpr# to Bi as a leftΣd-module and then we applygin to the resulting righ
Σd-module). The main result of this section is determination of a class of functors for whic
description holds.

We start with a slight generalization of the results of [11].

PROPOSITION 4.1. –
(1) For any diagramsµ,µ′, λ,λ′ of weightd we have

Ext∗
(
Dµ(i), Sλ(i)

)
= sµ

(
sλ(Bi)

)
= sλ

(
sµ(Bi)

)
,

where we applysµ to the leftΣd-structure andsλ to the right one.
(2) Moreover, for any transformationψ :Sλ → Sλ′

the induced map

ψ
(i)
∗ :Ext∗

(
Dµ(i), Sλ(i)

)
→ Ext∗

(
Dµ(i), Sλ′(i)

)

under the above isomorphisms, may be described in two ways: either asψ(sµ(Bi)) or as
sµ(ψ(Bi)). Similarly, for any transformationφ :Dµ → Dµ′

the induced mapφ(i)∗ may
be described either asφ#(sλ(Bi)) or assλ(φ#(Bi)).

Proof. –The second description in the first part of the proposition forλ = µ = (1d) is just [11,
Theorem 4.5]. The general case follows from the Exponential Formula. The first descrip
the Kuhn dual of the second.

We now turn to the proof of the second part of Proposition 4.1 To get the first descripti
lift ψ to someψ̃ : Id → Id (the existence of such a lift follows from the projectivity ofId) and
consider the commutative diagram

Ext∗(Dµ(i), Id(i))
ψ̃

(i)
∗

m
(i)
λ∗

Ext∗(Dµ(i), Id(i))

m
(i)
λ′∗

Ext∗(Dµ(i), Sλ(i))
ψ

(i)
∗

Ext∗(Dµ(i), Sλ′(i))
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We recall from [11, Section V], that the vertical arrows are epimorphic and, according to th
part of the proposition, they may be identified respectively withmλ(sµ(Bi)) andmλ′(sµ(Bi)).
Moreover, sinceψ̃ is just multiplication by an element ofk[Σd], we haveψ̃

(i)
∗ = ψ̃(sµ(Bi)).

Hence if we replaceψ(i)
∗ by ψ(sµ(Bi)), the diagram remains commutative. But since the

vertical arrow is onto, there is at most one bottom arrow making the diagram commutative
ψ

(i)
∗ = ψ(sµ(Bi)).
In order to obtain the second description we consider the diagram

Ext∗(Id(i), Sλ(i))
ψ

(i)
∗

η(i)∗

Ext∗(Id(i), Sλ′(i))

η(i)∗

Ext∗(Dµ(i), Sλ(i))
ψ

(i)
∗

Ext∗(Dµ(i), Sλ′(i))

whereηµ :Dµ → Id is the natural inclusion. After identifying known arrows we get

Ext∗(Id(i), Sλ(i))
ψ(Bi)

η#
µ (sλ(Bi))

Ext∗(Id(i), Sλ′(i))

η#
µ (sλ′

(Bi))

Ext∗(Dµ(i), Sλ(i))
ψ

(i)
∗

Ext∗(Dµ(i), Sλ′(i))

(for the vertical arrows we use a description which is Kuhn dual to that from [11] while
the top arrow we use the previous description forµ = (1d)). By the epimorphicity of the lef
vertical arrow it suffices to observe thatsµ(ψ(Bi)) makes the diagram commutative. The cas
a transformation between divided powers follows from the Kuhn duality.�

As it was seen in the proof, all the assertions of Proposition 4.1 were quite fo
consequences of [11, Theorem 4.5] where the groupsExt∗(Dd(i), Sd(i)) were computed. Bu
this generalization, technically rather straightforward, will turn out to be extremely usefu
{Dλ} (respectively{Sλ}) form a set of projective (respectively injective) generators ofPd.
Therefore our strategy for computingExt-groups will be, roughly speaking, as follows.
computeExt∗(F (i),G(i)) we take a resolution ofF by (sums of products of) divided powe
and a resolution ofG by symmetric powers, then we twist themi times and we computeExt-
groups between the (twisted) resolutions. By Proposition 4.1 we know theseExt-groups and also
the arrows between them. This, under some additional hypotheses, will enable us to calcu
originalExt-groups.

For reasons apparent in the proof of Theorem 4.4, we also need an “additive analogue
last proposition. PutA′

j = Hom(jI, I), B′
j = (A′

j)
⊗d ⊗ k[Σd], wherejI denotesI⊕j . Thus,A′

j

is justj-dimensional space concentrated in degree0.

PROPOSITION 4.2. –
(1) For any diagramsµ,µ′, λ,λ′ of weightd we have

Ext∗
(
Dµ ◦ jI,Sλ

)
= sµ

(
sλ(B′

j)
)

= sλ
(
sµ(B′

j)
)
,

where we applysµ to the leftΣd-structure andsλ to the right one.
(2) Moreover, for any transformationψ :Sλ → Sλ′

the induced map

ψ∗ :Ext∗
(
Dµ ◦ jI,Sλ

)
→ Ext∗

(
Dµ ◦ jI,Sλ′)
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under the above isomorphisms, may be described in two ways: either asψ(sµ(B′
j)) or as

sµ(ψ(B′
j)). Similarly, for any transformationφ :Dµ → Dµ′

the induced map(φ ◦ jI)∗

may be described either asφ#(sλ(B′
j)) or assλ(φ#(B′

j)).

Proof. –First, observe that by the projectivity ofDµ ◦ jI and the injectivity ofSλ the map
sµ(sλ(B′

j)) → Hom(Dµ ◦ jI,Sλ) is an epimorphism. Hence, it suffices to show that both
spaces have the same dimensions. According to the Exponential Formula it suffices to do
µ = λ = (1d). Thensd(sd(B′

j)) = Sd(A′
j), while

Hom
(
Dd ◦ jI,Sd

)
=

⊕
i1+···+ij=d

Hom
(
Di1 , Si1

)
⊗ · · · ⊗Hom

(
Dij , Sij

)

=
⊕

i1+···+ij=d

Si1(A′
1)⊗ · · · ⊗ Sij (A′

1).

The dimensions of these spaces are clearly equal.
The proof of the second part goes in a similar fashion to that of the second p

Proposition 4.1. The only difference is that the epimorphicity of vertical arrows in the diag

Ext∗(Dµ ◦ jI, Id)
ψ̃∗

mλ∗

Ext∗(Dµ ◦ jI, Id)

mλ′
∗

Ext∗(Dµ ◦ jI,Sλ)
ψ∗

Ext∗(Dµ ◦ jI,Sλ′
)

immediately follows from the projectivity ofDµ ◦ jI . This concludes the proof of Propos
tion 4.2. �

We are now in a position to state our first main result.

THEOREM 4.3. –
(1) For anyF ∈ Pd and any diagramµ of weightd:

Ext∗
(
Dµ(i), F (i)

)
= f in

(
sµ(Bi)

)
,

wheref in is an arbitrary injective symmetrization ofF .
(2) For any transformationφ :Dµ → Dµ′

, the induced map(φ(i)∗) :Ext∗(Dµ′(i), F (i)) →
Ext∗(Dµ(i), F (i)), under the above isomorphisms takes the formf in(φ#(Bi)).

Also “additive analogues” of these formulae hold, i.e.

Hom
(
Dµ ◦ jI,F

)
= f in

(
sµ(B′

j)
)
,

and(φ ◦ jI)∗ = f in(φ#(B′
j)).

Proof. –We start by proving the additive version of the theorem. In order to get

Hom
(
Dµ ◦ jI,F

)
= f in

(
sµ(B′

j)
)
,

we extend the mapψ0(V ⊗d) :f in(V ⊗d) → sλ0
(V ⊗d) to a resolution

0 → F
ψ0−→ Sλ0 ψ1−→ Sλ1 ψ2−→ · · · ψl−→ Sλl → 0
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(from now on we will slightly abuse notation denoting by the same letter aΣd-transformation
and its evaluation onV ⊗d). SinceExtn(Dµ ◦ jI,F ) = 0 for n > 0, this complex remains exa
after applyingHom(Dµ ◦ jI,−). We consider the diagram

0 f in(sµ(B′
j))

ψ0(s
µ(B′

j))

sλ0
(sµ(B′

j))
ψ1(s

µ(B′
j))

sλ1
(sµ(B′

j))
ψ2(s

µ(B′
j)) · · ·

0 Hom(Dµ ◦ jI,F )
ψ0∗

Hom(Dµ ◦ jI,Sλ0
)

ψ1∗
Hom(Dµ ◦ jI,Sλ1

)
ψ2∗ · · ·

whose bottom row is exact. Note moreover, that thanks to Proposition 4.2, the vertical

(exist and) are isomorphisms and that the top row is exact by Proposition 3.4.2 (sµ(B′
j) is a

Y -permutative module because it is a tensor product of twoY -permutative modules). Thus, w
get an isomorphismf in(sµ(B′

j))� Hom(Dµ ◦ jI,F ) by an easy diagram chasing. We notice
future use that under this identification we have(ψ0)∗ = ψ0(sµ(B′

j)). This is important becaus
this time it need not to be true thatψ0(sµ(B′

j)) = sµ(ψ0(B′
j)). The easiest example of this

provided by the arrowHom(Dp,Dp) → Hom(Dp, Ip) induced by the inclusionψ0 :Dp → Ip

which may be thought of as the beginning of an injective resolution ofDp. Indeed: in this cas
sp(ψ0(B′

1)) is trivial. The existence of such phenomena will make us to be very careful i
further arguing.

We now turn to the second part of the additive version of the theorem. A transform
φ :Dµ →Dµ′

induces a commutative diagram with exact rows

0 f in(sµ′
(B′

j))
ψ0(s

µ′
(B′

j))

φ(jI)∗

sλ0
(sµ′

(B′
j))

ψ1(s
µ′

(B′
j))

sλ0
(φ#(B′

j))

sλ1
(sµ′

(B′
j))

sλ1
(φ#(B′

j))

0 f in(sµ(B′
j))

ψ0(s
µ(B′

j))

sλ0
(sµ(B′

j))
ψ1(s

µ(B′
j))

sλ1
(sµ(B′

j))

Now it suffices to observe that replacingφ(jI)∗ by f in(φ#(B′
j)) does not destroy th

commutativity of the diagram. It means thatφ(jI)∗ = f in(φ#(B′
j)). Again it turns out tha

we could not takeφ#(f in(B′
j)) instead off in(φ#(B′

j)). A simple example of the arrow
Hom(Ip,Dp) → Hom(Dp,Dp) induced by the inclusionφ :Dp → Ip shows, that the map
f in(φ#(B′

j)) andφ#(f in(B′
j)) need not to coincide. It looks strange because, as we reme

from Proposition 4.2, in all further vertical arrows they do coincide. But we recall that one c
change the order of applyingΣd-functors also on the left horizontal arrows.

We now turn to the proper version of Theorem 4.3. This time we first twisti times an injective
resolution ofF and then we apply to itExt∗(Dµ(i),−). According to Proposition 4.1 we get th
commutative diagram

0 f in(sµ(Bi))
ψ0(s

µ(Bi))
sλ0

(sµ(Bi))
ψ1(s

µ(Bi))
sλ1

(sµ(Bi))
ψ2(s

µ(Bi)) . . .

0 Ext∗(Dµ(i), F (i))
(ψ

(i)
0 )∗

Ext∗(Dµ(i), Sλ0(i))
(ψ

(i)
1 )∗

Ext∗(Dµ(i), Sλ1(i))
(ψ

(i)
2 )∗ . . .
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in which all vertical arrows are isomorphisms. In order to finish the proof like in the add
version it is sufficient to show that the bottom row is exact. But we know that it is exact at
starting from the third term, because the top row is exact. It means that in the first hyp
spectral sequence converging to

hExt∗
(
Dµ(i),C

)
= 0

(whereC stands for the twisted resolution ofF ), theE2-term may be nontrivial only at the firs
two columns. Therefore, by dimension argument, it must be trivial (this argument gene
C and may be easily derived from) a well known fact that if every third arrow in a long e
sequence is epimorphic then the sequence splits).

The proof of the second part is analogous to the proof of the additive counterpart
completes the proof of Theorem 4.3�

In order to repeat the argument with respect to the first variable we shall need an assu
guaranteeing the exactness of a complex in the situation when Proposition 3.4.2 is not app
Moreover, problems with functoriality make the formulation of the result more complicate

make us introduce another bit of notation. Let0 → G
ψ0−→ Sλ0

be the beginning of an injectiv

resolution ofG and Dµ0 φ0−→ F → 0 be the beginning of a projective resolution ofF . We
consider the commutative diagram

Ext∗(F (i),G(i))
(ψ

(i)
0 )∗

(φ
(i)
0 )∗

Ext∗(F (i), Sλ0
)

(φ
(i)
0 )∗

Ext∗(Dµ0
,G(i))

(ψ
(i)
0 )∗

Ext∗(Dµ0(i), Sλ0(i))

According to Theorem 4.3 we may rewrite it as

Ext∗(F (i),G(i))
(ψ

(i)
0 )∗

(φ
(i)
0 )∗

fpr#(sλ0
(Bi))

φ#
0 (sλ0

(Bi))

gin(sµ0
(Bi))

ψ0(s
µ0

(Bi))
sλ0

(sµ0
(Bi)) = sµ0

(sλ0
(Bi))

We put (fpr#, gin)(Bi) to be im(ψ0(sµ0
(Bi))) ∩ im(φ#

0 (sλ0
(Bi))). The point of this defi-

nition is that in general we cannot identify this space neither withfpr#(gin(Bi)) nor with
gin(fpr#(Bi)). Nevertheless, this is certain explicitly defined space which is determined b
symmetrizationsf in, gpr. Quite naturally, this space will be our candidate for Ext∗(F (i),G(i)) in
general.

THEOREM 4.4. –Assume thatExt∗(F ◦ piI,G) = 0 for ∗ > 0 (we call this assumption th
“ Ext-condition”). Then

Ext∗
(
F (i),G(i)

)
=

(
fpr#, gin

)
(Bi).

Proof. –We take an injective resolution ofF , a projective resolution ofG and consider the
diagram
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0 Ext∗(F (i),G(i))
(ψ

(i)
0 )∗

(φ
(i)
0 )∗

Ext∗(F (i), Sλ0(i))
(ψ

(i)
1 )∗

(φ
(i)
0 )∗

Ext∗(F (i), Sλ1(i))

(φ
(i)
0 )∗

0 Ext∗(Dµ0(i),G(i))
(ψ

(i)
0 )∗

(φ
(i)
1 )∗

Ext∗(Dµ0(i), Sλ0(i))
(ψ

(i)
1 )∗

(φ
(i)
1 )∗

Ext∗(Dµ0(i), Sλ1(i))

(φ
(i)
1 )∗

0 Ext∗(Dµ1(i),G(i))
(ψ

(i)
0 )∗

Ext∗(Dµ1(i), Sλ0(i))
(ψ

(i)
1 )∗

Ext∗(Dµ1(i), Sλ1(i))

According to Theorem 4.3 all the rows except perhaps the first and all the columns except p
the first are exact. Hence, the proof will be finished by a diagram chasing if we show that th
column is exact. By Theorem 4.3 we have in the first column the sequence

0 → Ext∗
(
F (i),G(i)

) (φ
(i)
0 )∗−−−→ gin

(
sµ0

(Bi)
) φ#

1 (gin(Bi))−−−−−−→ gin
(
sµ1

(Bi)
) φ#

2 (gin(Bi))−−−−−−→ . (∗)

Now we consider the sequence

· · · φ2−→Dµ1 ◦ piI
φ1(p

iI)−−−→Dµ0 ◦ piI
φ0(p

iI)−−−→ F ◦ piI → 0.

Since it is a projective resolution ofF ◦ piI andExtn(F ◦ piI,G) = 0 for n > 0, the sequence

0 →Hom
(
F ◦ piI,G

) (φ0(p
iI))∗−−−−−→ Hom

(
Dµ0 ◦ piI,G

) (φ#
1 (piI))∗−−−−−−→ Hom

(
Dµ1 ◦ piI,G

) (φ#
2 (piI))∗−−−−−−→

is exact. But thanks to Theorem 4.3 we may rewrite it as

0 → Hom
(
F ◦ piI,G

) (φ0(p
iI))∗−−−−−→ gin

(
sµ0

(B′
pi)

) φ#
1 (gin(B′

pi ))−−−−−−−→ gin
(
sµ1

(B′
pi)

) φ#
2 (gin(B′

pi ))−−−−−−−→ .

Let us now compare the above sequence with the sequence(∗). We see that, starting from th
second term, the sameΣd-functors andΣd-transformations appear in both sequences. The
difference is that in the first sequence we apply them to the gradedΣd bimoduleBi while in the
second toB′

pi . But sincedim(Ai) = dim(A′
pi), Bi andB′

pi become isomorphic after forgettin
about grading. Hence, sinceΣd-functors andΣd-transformations commute with forgetting, t
exactness of(∗) gives us the exactness of our first column starting from the third term (in o
to use this argument we have introduced all these “additive analogues”). Then we ap
hyperExt-argument which we used at the end of the proof of Theorem 4.3 to conclude th
whole column is exact. This completes the proof of Theorem 4.4.�

5. Reformulation and some special cases of Theorem 4.3

All proofs in the previous section depended heavily on the notion of injective symmetriz
But finding an injective symmetrization of a given functor may be difficult. For this reason in
section we shall restate Theorem 4.3 in a way which does not refer to symmetrizations.
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For a functorF ∈ Pd and a Young diagramλ = (λ1, . . . , λk) we defineF̃λ to be the summan
of multidegree(λ1, . . . , λk) in the d-functor (V1, . . . , Vk) �→ F (V1 ⊕ · · · ⊕ Vk). Then we put
Fλ(V ) := F̃λ(V, . . . , V ).

COROLLARY 5.1. –For anyF ∈ Pd and any diagramλ of weightd, there is a vector spac
isomorphism:

Ext∗
(
Dλ(i), F (i)

)
� Fλ(Ai).

Proof. –Our reformulation follows easily from the lemma which allows us to express theΣd-
modulesλ(Bi) in terms of weight spaces.

LEMMA 5.2. –There is aΣd-invariant isomorphism of functors:

Id ⊗Σλ
k[Σd]�

(
Id

)λ
.

Proof. –We identify (Id)λ(V ) with a subspace of(
⊕k

j=1 Vj)⊗d spanned by elementa
tensors havingλj factors belonging toVj . Let vj for v ∈ V indicate that we regardv as an
element ofVj . Then the map:

v1 ⊗ · · · ⊗ vd ⊗ σ �→ v1
σ(1) ⊗ · · · ⊗ v1

σ(λ1)
⊗ v2

σ(λ1+1) ⊗ · · · ⊗ vk
σ(d)

is the required isomorphism.�
Therefore, puttingV = Ai in Lemma 5.2 we get an isomorphism ofΣd-modules:

sλ(Bi) = A⊗d
i ⊗Σλ

k[Σd]�
(
Id

)λ(Ai).

Therefore we have:

Ext∗
(
Dλ(i), F (i)

)
= f in

(
sλ(Bi)

)
� f in

((
Id

)λ(Ai)
)

=
(
f in ◦ Id

)λ(Ai) = Fλ(Ai). �
Remark. – The above formula is of course much more explicit than that appearin

Theorem 4.3. The only problem is that it, as stated, does not tell us anything aboutExt-grading.
If we want to derive information about grading from this formula, then some additional
is required. Namely, we should extendF to a functor on graded spaces in a way which
compatible with a symmetrization. By this we mean that the isomorphismF (V ) � f in(V ⊗d)
preserves grading.

Let us now look at our formula in some special cases. Forλ = (d) it simplifies to the form

COROLLARY 5.3. –For anyF ∈ Pd, there is a vector space isomorphism:

Ext∗
(
Dd(i), F (i)

)
� F (Ai).

We shall illustrate the above formula and our remark concerning grading by a simple ex
For F = I(j) we getExt∗(Dpj(i), I(i+j)) � A

(j)
i . But we recall that the functorI(j) extended

to the graded spaces multiplies degrees of nontrivial components bypj (see the discussion at th
end of Section 3). Taking this into account we get the result predicted by [13, Theorem 4.

For the diagramλ = (1d), our formula:

Ext∗
(
Id(i), F (i)

)
� F (1d)(Ai)
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can also be obtained directly by using the Decomposition Formula. But this time it is inter
to compare the formulae from Theorem 4.3 and Corollary 5.1 fori = 0. Sincedim(A0) = 1, we
get an isomorphism ofΣd-modules:

f in
(
k[Σd]

)
� F (1d)(k).

The right-hand side regarded as a functor inF can be used to compare strict polynomial funct
andk[Σd]-modules. For example it was shown in [20, Section A4] that fork of characteristic 0
the assignmentF �→ F (1d)(k) provides an equivalence betweenPd and the category of finitel
generatedk[Σd]-modules. Our formula offers some explanation of this equivalence, for it
that the functorF and theΣd-moduleF (1d)(k) are obtained by applying the sameΣd-functor
f in to the rightΣd-structure of:V ⊗d in the first case, andk[Σd] in the second.

We finish this section by considering Corollary 5.1 fori = 0 and an arbitraryλ. Then, forDλ

is projective, we obtain:

Hom
(
Dλ, F

)
� Fλ(A0),

which is nothing but [13, Corollary 2.12] expressed in a slightly more invariant way.

6. Some special cases of Theorem 4.4

The aim of this section is to find some functors which satisfy the assumptions of Theore
The most important example is provided byF = Wµ/µ′ andG = Sλ/λ′ . Indeed, Fact 2.1 togethe
with the Decomposition Formula show that they satisfy theExt-condition. Moreover, in this
particular case the statement of the theorem may be formulated in a much simpler way.

THEOREM 6.1. –For any skew diagramsµ/µ′, λ/λ′ of weightd we have

Ext∗
(
W

(i)
µ/µ′ , S

(i)
λ/λ′

)
= sµ/µ′

(
sλ/λ′(Bi)

)
= sλ/λ′

(
sµ/µ′(Bi)

)
.

Moreover, for any transformationψ :sλ/λ′ → sλ1/λ1′ the induced map

ψ∗ : Ext∗
(
W

(i)
µ/µ′ , S

(i)
λ/λ′

)
→ Ext∗

(
W

(i)
µ/µ′ , S

(i)

λ1/λ1′
)

takes the formψ(sµ/µ′(Bi)) = sµ/µ′(ψ(Bi)). An analogous fact also holds for transformatio
of the first variable.

Proof. –When we look once again at the proof of Theorem 4.4, we see that the reas
which we could not obtain a simpler description of theExt-groups was that in general the m
ψ :sλ → sλ′

induces onExt∗(F (i),−) the mapf in#(ψ(Bi)) which may be different from th
mapψ(f in#(Bi)). We will show that forF = Wµ/µ′ andG = Sλ/λ′ these two maps coincide
By arguments used in the proof of the second part of Proposition 4.1 it suffices to sho
lemma (which is very specific to Weyl and Schur functors):

LEMMA 6.2. –For any diagramsµ/µ′ andλ, the mapmλ : id→ sλ induces an epimorphism

Ext∗(W (i)
µ/µ′ , I

d(i)) → Ext∗(W (i)
µ/µ′ , S

λ(i)).

Proof. –Of course, it suffices to show the additive version of the lemma. Applying
Decomposition Formula toWµ/µ′ ◦ piI , we reduce the proof to showing that there
an epimorphismHom(Wµ/µ′ , Id) → Hom(Wµ/µ′ , Sλ). To do this it suffices to show tha
4e SÉRIE– TOME 38 – 2005 –N◦ 5
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Ext1(Wµ/µ′ ,ker(mλ)) = 0. By the Littlewood–Richardson rule [3], any skew Schur func
has a filtration with a graded object being a sum of Schur functors. Thus it suffices to es
the last formula forµ′ = ∅. Using the Littlewood–Richardson rule again, we observe tha
structural inclusionWµ → Λµ has a cokernel with a graded object being a sum of S
functors for diagrams lexicographically smaller thanµ (the reason is thatµ is the larges
diagram appearing in the Littlewood–Richardson decomposition ofΛµ). Thus using induction
on the lexicographic ordering we reduce our task to showing thatExt1(Λµ,ker(mλ)) = 0. By
the Decomposition Formula, the last statement is equivalent to the fact thatmλ induces an
epimorphismHom(Λd, Id) → Hom(Λd, Sλ), which is clear by Fact 2.1. This completes t
proof of the lemma. �

Therefore we may choose the more convenient order of applyingΣd-functors in the
main diagram in the proof of Theorem 4.4. In particular, we may identify the morp

(ψ(i)
λ/λ′)∗ :Ext∗(W (i)

µ/µ′ , S
(i)
λ/λ′) → Ext∗(W (i)

µ/µ′ , S
λ̃/λ′(i)) with the map ψλ/λ′(sµ/µ′(Bi)) =

sµ/µ′(ψλ/λ′(Bi)). This enables us to identify theExt-groups with sµ/µ′(sλ/λ′(Bi)) or
sλ/λ′(sµ/µ′(Bi)). In a similar fashion we obtain the desired description of induced maps
second description ofExt-groups is the Kuhn dual of the first.�

In particular forµ = (1d) andµ = (d) we get respectively

Ext∗
(
Dd(i), S

(i)
λ/λ′

)
= sλ/λ′

(
sd(Bi)

)
= sλ/λ′

(
A⊗d

i

)
= Sλ/λ′(Ai),

and

Ext∗
(
Λd(i), S

(i)
λ/λ′

)
= sλ/λ′

(
λd

coinv(Bi)
)

= sλ/λ′
((

A⊗d
i

)alt) = W
λ̃/λ′(Ai),

which generalizes computations of [11, Section V]. The only computation in [11] among
concerning diagrams of the same weight (we deal with diagrams of different weights i
which does not fit this scheme is a computation ofExt∗(Dd(i),Dd(i)). But these (and mor
general) groups may be computed directly from our Corollary 5.1. Indeed, it yields the for

Ext∗
(
Dd(i),W

(i)
λ/λ′

)
= Wλ/λ′(Ai).

On the other hand, one should be cautious using Theorem 6.1. For example, it is e
see that the epimorphismψ : Ip → Λp induces the trivial mapHom(Λp, Ip) → Hom(Λp,Λp)
which seems to contradict Theorem 6.1 which says that it should be an epimorphism
point is that we should consider the second variable as a Schur functor so its appr
symmetrization isλp

inv (we cannot take an arbitrary injective symmetrization in Theorem
Thus the correspondingΣd-transformationψ̃ : id → λp

inv is the averaging to invariants which
not an epimorphism in general.

Let us now try and look for other functors satisfying the assumption of Theorem 4.4. T
into account Fact 2.2, it is tempting to consider Schur functorsSµ, Sλ satisfying λ ��µ,
since we haveExt∗(Sµ, Sλ) = 0 for ∗ > 0. But in fact, we need the stronger conditio
Ext∗(Sµ ◦ jI,Sλ) = 0 for j = pi. When we apply the Decomposition Formula toSµ ◦ jI we
see that our lexicographic assumption is quickly weakening. A counterexample is very s
already forµ = λ = (22), p = 2 we getExt2(Sµ ◦ 2I,Sλ) �= 0. A pathological element come
from the decomposition ofµ into (12), (12) andλ into (2), (2). Also as small lexicographicall
diagram as(2k − 1,1) and as large as(2k) may be decomposed to give a nontrivial elemen
Ext∗(S(2k−1,1) ◦ 2I,S(2k)) for p = 2. Slightly more complicated examples can be constru
for p > 2, and also for diagrams of very special shapes e.g. for “hooks”. The only quite ge
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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class of Schur functors satisfying the assumption of Theorem 4.4 is provided by the diagr
weightp.

COROLLARY 6.3. –If λ ��µ are diagrams of weightp then

Ext∗
(
S(i)

µ , S
(i)
λ

)
= (wµ, sλ)(Bi).

Proof. –Observe that when we decomposeµ into smaller diagrams we get diagrams of wei
smaller thanp for which Schur functors are projective. This together with the lexicogra
assumption gives theExt-condition. �

In the above case there is no reason for expecting that the formula will simplify to a
similar to that of Theorem 6.1. The general formula from Theorem 4.4 is not very conven
practice. In order to rephrase the result in a more explicite form, we shall need one easy
fact.

LEMMA 6.4. –Let 0 → F1 → · · · → Fk → 0 be an exact sequence whose all obje
satisfy theExt-condition with someG. Then the sequence0 → Ext∗(F (i)

k ,G(i)) → · · · →
Ext∗(F (i)

1 ,G(i)) → 0 is exact.

Proof. –The assertion follows immediately from the fact that, according to Theorem 4.
Ext-groups under consideration are concentrated in even degrees.�

Again it seems that the last result is in conflict with the fact thatψ : Ip → Λp induces the
trivial map Hom(Λp, Ip) → Hom(Λp,Λp). But the point is thatψ cannot be extended to a
exact sequence satisfying theExt-condition withDd.

Now we would like to obtain a more explicit description ofExt-groups appearing i
Corollary 6.3. To this end, we shall need a resolution ofSµ by exterior powers starting wit
the structural arrowφµ. The existence of such a resolution may be derived from some coro
of Theorem 6.1 and Lemma 6.4.

COROLLARY 6.5. –For any resolution0 → Sλ
ψλ−→ Sλ̃ → · · ·, there exists a “Koszul dua

complex”0 → W
λ̃

φ#
λ̃−→Λλ̃ → · · ·, which is exact(for explanation of this phenomenon see[8]).

Proof. –We apply the functorExt∗(Λd(i),−) to the complex0 → S
(i)
λ

ψλ−→ Sλ̃(i) → · · ·.

According to Theorem 6.1 we get the complex0 → W
λ̃
(Ai)

φ#
λ̃

(Ai)
−→ Λλ̃(Ai) → · · ·, whose

exactness follows from Lemma 6.4. Since the dimension ofAi may be arbitrarily large, th
whole complex of functors must be exact.�

To obtain the desired resolution ofSµ by exterior powers, we take the Kuhn dual of t

complex0 → Wµ

φ#
µ−→ Λµ → · · · constructed in Corollary 6.5 (forλ := µ̃). Thus we get the

resolution

· · · → Λµ1 φ1−→ Λµ φµ−→ Sµ → 0.

Now observe that since exterior powers are also Weyl functors, they satisfy theExt-condition
with Sλ. SinceSµ satisfies it too, the sequence

0 → Ext∗
(
S(i)

µ , S
(i)
λ

) (φµ)∗−→ Ext∗
(
Λµ(i), S

(i)
λ

) (φ1)
∗

−→ · · ·
4e SÉRIE– TOME 38 – 2005 –N◦ 5



EXTENSIONS OF STRICT POLYNOMIAL FUNCTORS 791

l
second

rue).

m
n

r the
titude
grateful

.

i-

ries,

r

nis,

bras

ia of

I,
is exact by Lemma 6.4. HenceExt∗(Λµ(i), S
(i)
λ ) = ker((φ1)∗). In order to compute this kerne

we observe that all groups and arrows appearing in the above sequence starting from the
term are known by Theorem 6.1:Ext∗(Λµ(i), S

(i)
λ ) = λµ

i (sλ(Bi)) etc. Letφ̃1 :λµ1

c → λµ
c be the

Σd-functor such that̃φ1(V ⊗d) = φ1 (the existence and uniqueness of such aΣd-transformation
follows from the counterpart of Lemma 3.5 for exterior powers which is obviously t
Therefore, when we putγ := coker(φ̃1), we get

Ext∗
(
S(i)

µ , S
(i)
λ

)
= γ#

(
sλ(Bi)

)
.

Thus we have obtained the description of theExt’s in terms similar to those used in Theore
6.1. One should remember however, that althoughγ is a quite explicitly defined symmetrizatio
of Wµ, one cannot expect thatγ � wµ and even thatγ#(sλ(Bi)) � wµ(sλ(Bi)), for sλ(Bi) is
not aY -permutative module.
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