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ON THE PYTHAGORAS NUMBERS
OF REAL ANALYTIC SURFACES✩
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Dedicated to Professor Enrique Outerelo, on the occasion of his 65th annive

ABSTRACT. – We show that (i) every positive semidefinite meromorphic function germ on a su
is a sum of 4 squares of meromorphic function germs, and that (ii) every positive semidefinite
meromorphic function on a normal surface is a sum of 5 squares of global meromorphic functions.

 2005 Elsevier SAS

RÉSUMÉ. – Nous montrons que : (i) tout germe de fonction méromorphe semi-définie positive s
surface réelle est une somme de quatre carrés de germes de fonctions méromorphes, et que :
fonction méromorphe globale semi-définie positive sur une surface normale est une somme de cin
de fonctions méromorphes globales.

 2005 Elsevier SAS

1. Introduction

The famous 17th Hilbert Problem asks whether positive semidefinite (= psd) functions are
always sums of squares, and in that case of how many. The two parts of this quest
distinguished as the qualitative and the quantitative aspects of the problem. The specialis
studied them for different types of functions: polynomial, regular, Nash, analytic and sm
and found full or partial solutions in most cases (see [5,3] or [17]). But of them all, ana
functions remain by far the most defying type. Indeed, although the qualitative aspect ha
solved locally, i.e. for analytic germs, it is still open globally: the solution is only known
global analytic functionson normal surfaces([2], see also [9]). Even worse is our quantitat
information. Recall that thePythagoras numberof a ring A is the smallest integerp � 1 such
that every sum of squares ofA is a sum ofp squares, or infinity if such an integer does not ex
In our setting,A is the ringM(Xx) of meromorphic function germs on a real analytic surf
germXx, or the ringM(X) of global meromorphic functions on a normal real analytic surf
X ; we shorten the notation to

p(Xx) = p
(
M(Xx)

)
, p(X) = p

(
M(X)

)
.

✩ All authors supported by European RAAG HPRN-CT-2001-00271; first and second named authors also b
GNSAGA of INdAM and MIUR, third and fourth by Spanish GAAR BFM-2002-04797.
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With this terminology, the quantitative problem is to estimate the Pythagoras numbersp(Xx)
andp(X). We recall here that both Pythagoras numbers are always> 1.

Concerning germs, we have readily thatp(Xx) � 8. To get this, one embedsXx in R
3 through

a birational model. Then, any sum of squares onXx is the restriction of one onR3, which is a
sum of8 squares of meromorphic function germs by [10]. Finally this sum of8 squares restrict
well to Xx: the equation ofXx in R

3 is real, hence it can be factored out from the poles o
8 addends. Thus we have a universal bound forp(Xx), but it is not sharp. In fact, we will her
prove the following result:

THEOREM 1.1. – The Pythagoras number of the ring of meromorphic function germ
a real analytic surface germXx is p(Xx) � 4.

In the global case, the situation is rather worse. As far, we only knew that the Pytha
number is finite. The bound comes from the qualitative solution itself, and it is some non e
function of the embedding dimension (see [2]). Unfortunately, the only true interest of s
bound is to confirm finiteness. In this paper we will improve much on this finiteness inform
as follows:

THEOREM 1.2. – The Pythagoras number of the ring of global meromorphic function
a normal real analytic surfaceX is p(X) � 5.

This second theorem relies heavily on the way we prove the first. In fact, the easy
8 for p(Xx) described earlier is of little use to deduce anything like 1.2: one needs the
delicate description of the sums of squares constructed for 1.1. Indeed, when a psd fun
represented as a sum of squares of meromorphic functions, these meromorphic functio
have poles. Then, some of these poles can be eliminated by combining different represen
but others always remain: these form the so-calledbad set. However new representations m
require additional squares, which is not at all convenient when bounding Pythagoras nu
What we will do here is keep bad setsunder control, which means thatthe poles of the summan
of the sum of squares are among the zeros of the represented psd function. And we should recal
here that the standard control through the Positivstellensatzgives no information on the numb
of squares.

Thus, we will prove the following stronger theorems:

THEOREM 1.3. – Let X be a real analytic surface germ, andf :X → R a positive
semidefinite analytic function germ. Then, there are analytic function germsg,h1, h2, h3, h4 ∈
O(X) such that

g2f = h2
1 + h2

2 + h2
3 + h2

4

andg is a sum of squares with{g = 0} ⊂ {f = 0}.

THEOREM 1.4. – Let X be a normal real analytic surface, andf :X → R a positive
semidefinite analytic function. Then, there are analytic functionsg,h1, h2, h3, h4, h5 ∈ O(X)
such that

g2f = h2
1 + h2

2 + h2
3 + h2

4 + h2
5

andg is a sum of squares whose zero set{g = 0} is a discrete subset of the zero set{f = 0} of f .

In caseX is non singular, one can get rid of the denominator [9], and in general, one c
rid of non singular points in the bad set. To do it, one finds two different representations
bad sets only share singular points ofX , and add them both. This is quite technically demand
but no new idea is behind. Furthermore, the number of squares worsen to the double, he
will not dive here into more details.
4e SÉRIE– TOME 38 – 2005 –N◦ 5
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Anyway, our proofs require a careful preparatory job. In Section 2 we discuss sums of s
of totally positive elements, much inspired by Mahe’s results in [14]. Section 3 is devoted
proof of Theorem 1.3, which besides Section 2 needs a relative algebrization lemma in the
classification of singularities, based on Tougeron’s Implicit Function Theorem. The global
for normal surfaces is given in Section 4, as a globalization of the local one. This involv
the one hand, some techniques that will be further developed in [1], and, on the other, rem
real analytic divisors as in [2].

One final word is in order concerning the most general application of our arguments. I
and to discard a little the technical toll of some of them, we have restricted our global stat
to normal surfaces, in accordance with [2]. But while in that paper the restriction was re
to prove the Artin–Lang property, here we could quite straightforwardly obtain Theorem 1for
real coherent surfaces with isolated singularities.

2. Totally positive sums of squares

The purpose here is to study the representation of totally positive elements as sums of
in certain relative polynomial rings. This will be used later to control bad sets. The idea is
(i) a psd elementf ∈ A is totally positive inA[1/f ], (ii) a sum of squares inA[1/f ] becomes a
sum of squares inA after multiplying by an even power off , and (iii) this multiplication does
not add zeros other than those off . This is inspired in [13, 7.3], and we follow the notation a
terminology introduced there.

Consider the ring of power seriesR{t} in one variablet and its field of fractionsR({t}),
as well as the ringC{t} and the fieldC({t}). We are interested in ringsA which are finitely
generated algebras overR{t}, that is,A = R{t}[z]/a for some ideala ⊂ R{t}[z], with additional
variablesz = (z1, . . . , zm). Given such a presentation ofA, let us denote bypi the minimal
primes ofa in R{t}[z], so that

√
a =
⋂

i pi. Then, the minimal primes of(0) in A areai = pi/a,
that is:

√
(0) =

⋂
i ai. Let K be the total ring of fractions of the reductionA/

√
(0), and

for eachi, let Ki be the field of fractions ofAi = A/ai = R{t}[z]/pi. We have:

ht(a) = min
i

ht(pi), dim(A) = max
i

dim(Ai), K =
∏

i

Ki.

We call theAi’s the reduced branches ofA, and use systematically the notations above.

COHEIGHT 2.1. – LetA be a finitely generated algebra overR{t}, sayA = R{t}[z]/a. We
define thecoheight ofA by

δ(A) = m + 1− ht(a).

In terms of the reduced branchesAi of A we have:

δ(A) = m + 1− ht(a) = max
i

{
m + 1− ht(pi)

}
= max

i
δ(Ai).

For instance,δ(R({t})) = δ(R({t})[z]/(zt− 1)) = 1.

This invariantδ(A) will be essential to deal with sums of squares with controlled bad sets
first of all we must check thatδ does not depend on the chosen presentationR{t}[z]/a of A. For
this we need the following:

LEMMA 2.2. – Letm ⊂ R{t}[z] be a maximal ideal.
(1) If t ∈ m, thenht(m) = m + 1 andR{t}[z]/m is isomorphic toR or C.
(2) If t /∈ m, thenht(m) = m andR{t}[z]/m is isomorphic toR({t}) or C({t}).
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. –(1) If t ∈m thenR{t}[z]/m = R[z]/m∩R[z], which is a field isomorphic toR or C.
Moreover, since all maximal ideals ofR[z] have heightm, we conclude:

m = ht
(
m∩R[z]

)
= ht
(
m/t ·R{t}[z]

)
= ht(m)− ht

(
t ·R{t}[z]

)
= ht(m)− 1.

(2) Supposet /∈m. Thent is a unit inR{t}[z]/m, and

R{t}[z]/m = R
(
{t}
)
[z]/mR

(
{t}
)
[z].

Now, the fieldR{t}[z]/m is a finitely generated algebraic extension ofR({t}), and there exist
an integerp � 1 such thatR{t}[z]/m ∼= K({t1/p}) ∼= K({s}), where K = R or C. Since
mR({t})[z] is a maximal ideal ofR({t})[z], it has heightm. Moreover, sinceR{t}[z]m =
R({t})[z]mR({t})[x] we conclude thatht(m) = ht(mR({t})[x]) = m. �

This leads to the following computation, which shows the coheight does not depend
presentation:

PROPOSITION 2.3. – Consider the algebraA = R{t}[z]/a and its reduced branchesAi.
Then:

δ(Ai) =
{

dim(Ai), if t is not a unit inAi,
dim(Ai) + 1, otherwise.

=
{

dim(Ai), if some residue field ofAi is R or C,
dim(Ai) + 1, otherwise.

In particular, δ(A) = maxi δ(Ai) does not depend on the presentation ofA.

Proof. –First suppose thatt is not a unit modpi. This means that some maximal idealm of
R{t}[z] containingpi must containt, and, by 2.2, have heightm + 1 and residue fieldR or C.
Hence,

ht(m/pi) = ht(m)− ht(pi) = m + 1− ht(pi) = δ(Ai).

As the height of all maximal ideals is� m + 1, we conclude:

dim
(
R{t}[z]/pi

)
= sup

m⊃pi

ht(m/pi) = δ(Ai).

Contrarily, if t is a unit modpi, then no maximal idealm ⊃ pi containst, hence all have
heightm, and, by 2.2, residue fieldR({t}) or C({t}). Thus,dim(R{t}[z]/pi) = m− ht(pi) =
δ(Ai)− 1. �

Once presentations can be disregarded, the elementary properties ofδ follow readily from the
definition. We will need these two bounds:

PROPOSITION 2.4. – LetA be as above. We have:
(i) If v ∈A is neither a unit inA nor a zero divisor inA/

√
(0), thenδ(A/vA) � δ(A)− 1.

(ii) δ(A[T ]) � δ(A) + 1.

Proof. –By the hypotheses in (i)v generates a proper ideal, andht((v) + a) > ht(a), and the
assertion is clear. On the other hand, (ii) follows readily from the good dimension proper
the extensionA ⊂ A[T ]. �

We come now to the crucial link between coheight and sums of squares:
4e SÉRIE– TOME 38 – 2005 –N◦ 5
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PROPOSITION 2.5. – LetA be a finitely generated algebra overR{t} andK the total ring of
fractions of its reductionA/

√
(0). Then

p(K) � 2δ(A).

Proof. –We consider the reduced branchesAi of A and their fields of quotientsKi. As
p(K) = maxi p(Ki) andδ(A) = maxi δ(Ai), it suffices to see that

p(Ki) � 2δ(Ai).

Firstly, supposet ∈ pi. Then Ai = R{t}[z]/pi = R[z]/pi ∩ R[z] is a finitely generated
R-algebra, and as is well known,p(Ki) � 2di , wheredi = dim(Ai). Moreover, in this case
t is not a unit inAi, hencedim(Ai) = δ(Ai) by 2.3, and we are done.

Next, supposet /∈ pi. In this case,Ki contains the fieldR({t}), and we can easily compu
the transcendence degreedi of this extension. Indeed, note thatKi is also the quotient field o
R({t})[z]/piR({t})[z], andpiR({t})[z] is a proper prime ideal ofR({t})[z] of heightht(pi).
Consequently

di = dim
(
R
(
{t}
)
[z]/piR

(
{t}
)
[z]
)

= m− ht
(
piR
(
{t}
)
[z]
)

= m− ht(pi) = δ(Ai)− 1.

Hence,Li = Ki[
√
−1 ] has transcendence degreedi = δ(Ai)− 1 overC({t}).

Recall now that a fieldL is Ck if every homogeneous polynomial overL of degreed in more
thandk variables has some non trivial solution inL [7, 1.4]. For instance,C({t}) is aC1 field
(this is a straightforward consequence of [7, 4.8] and M. Artin’s Approximation Theorem, [
Furthermore, this implies, by [7, 3.6], thatLi is aCdi+1 field. Once we know this, we conclud
by Pfister’s theorem ([16], [12, XI.1.9]) that any sum of squares ofKi can be represented as
sum of2di+1 squares ofKi. But di + 1 = δ(Ai), which completes the proof.�

After the preceding preparation, consider thereal spectrumSpecr(A) of A, and say as usua
that an elementf ∈ A is positive semidefiniteif f(α) � 0 (respectivelytotally positive if
f(α) > 0) for every prime coneα ∈ Specr(A). Thus we are ready to obtain the main res
of this section:

THEOREM 2.6. – Let A be a finitely generated algebra overR{t}. Let f ∈ A be totally
positive. Then there exist a sum of squaresa = a2

1 + · · · + a2
r in A such that(1 + a)2f is a

sum of2δ squares inA, whereδ = δ(A).

In order to ease the writing of what follows we will use the standard notation due to P
f = r means thatf is a sum ofr squares inA; when severalr ’s appear in the same formul
they need not be the same. For instance, the well-known fact that in a field a product of s
2d squares is again a sum of2d squares can be formulated as

2d 2d = 2d .

Theorem 2.6 will follow from the following variation:

PROPOSITION 2.7. – Letf ∈A andδ = δ(A) be as above. Then there exists a totally posi
elementu ∈A such that

2δ f = u2 + 2δ−1 .
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. –We first show that the assertion follows forA if it holds for A/
√

(0). Notice here tha
since the real spectrum does not changemod

√
(0), h ∈ A is totally positive if and only if it is

totally positivemod
√

(0). Also recall thatδ(A) = δ(A/
√

(0) ). Now suppose that

2δ f = u2 + 2δ−1 mod
√

(0).

for some totally positive elementu ∈A. Then

2δ f = u2 + 2δ−1 − θ

for some nilpotent elementθ ∈ A.
Now, we have the following identity:

(x + y)2(x + y/4) = x3 + y

(
3x + y

2

)2

(just expand both sides), which settingx = u2 andy = 2δ−1 − 2δ f gives

θ2h = u6 +
(

2δ−1 − 2δ f
)
g2 = u6 + 2δ−1 − 2δ f,

hence

2δ f = v2 + 2δ−1 − θ2h,

wherev = u3 is totally positive andh ∈ A. Sinceθ is nilpotent, after several applications of t
same trick, theθ addend becomes0, and we get the required inequality inA.

After this, we can supposeA reduced, and will prove the statement by induction onδ. We use
the usual notations:pi, Ai, Ki, and recall thatδ = maxi δ(Ai).

If δ = 0, by 2.3dim(Ai) = 0 andAi = Ki is eitherR or C. As A is reduced,A =
∏

i Ki,
hencef is in fact a square inA.

Suppose nowδ � 1. By [14, 2.3], there exists a nonzero divisorg ∈A such that

A[1/g]∼=
∏

i

Bi, Bi = Ai[1/g].

Note that the quotient field of the domainBi = Ai[1/g] is the sameKi, and by 2.5f is a sum of

2δ squares inKi. Hence we can writef = 2δ−1 + 2δ−1 , and multiplying by the first sum o
squares

2δ−1 f = v2
i + 2δ−1 , 0 �= vi ∈ Ki

(recall that inKi it holds 2d 2d = 2d ). Clearing denominators we can suppose the ab
equation holds inBi. Consequently, inA[1/g] =

∏
i Bi we have

2δ−1 f = v2 + 2δ−1 ,

wherev ∈ A[1/g] is not a zero divisor. Multiplying by a big enough even power ofg, we obtain
a similar formula inA

2δ−1
1f = v2 + 2δ−1

2,(•)
4e SÉRIE– TOME 38 – 2005 –N◦ 5
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wherev ∈A is not a zero divisor.
Now, if v is a unit inA, dividing by v2 the equation becomes2δ−1

1f = 1 + 2δ−1
2, and

we are done. Hence, we may assume thatv is not a unit inA, and by 2.4(i),δ(A/vA) � δ − 1.
Then, by induction,

2δ−1 f = w2 + 2δ−2 mod v,(••)

wherew ∈ A is totally positive modv. This can be arranged forw to be totally positive inA.
Indeed, asw is totally positive inA/vA, the Positivstellensatz gives an expression

p w = 1 + q mod v,

and multiplying(••) by the square ofp we can replacew by 1 + q , which is clearly totally
positive inA.

Once this is settled, we have:

λv = w2 + 2δ−2 − 2δ−1 f = a− bf,

for someλ ∈ A, a = w2 + 2δ−2 totally positive,b = 2δ−1 . Multiplying (•) by λ2 and
substitutingλv by its value we get

2δ−1
1f = (a− bf)2 + 2δ−1

2 = (a + bf)2 − 4abf + 2δ−1
2.

Modifying a little this equation we get:(
2δ−1

1 + 4ab
)
f = u2 + 2δ−1

2,

whereu = a + bf is totally positive. In order to complete the argument we must still modify

term 2δ−1
1 +4ab to have a sum of2δ squares. To that end, it is enough to show the follow

there is a totally positive elementγ ∈ A such thatγ2ab = 2δ−1 .

This is in turn a statement about matrices. Indeed, asb = 2δ−1 , we can write:

γ2ab = (b1, . . . , br)
(
γ2aI

) b1
...
br

 wherer = 2δ−1

and we only need thatγ2aI = M tM for somer × r matrix M with coefficients inA. This we
prove by induction ond = δ − 1.

If d = 1, a = w2 + θ2, and the solution isγ = 1 andM =
(

w −θ
θ w

)
.

Assumed � 2, and leta1 = (3
5w)2 + 2d−2 anda2 = (4

5w)2 + 2d−2 such thata = a1 +a2.
Note that sincew is totally positive,a1 and a2 are totally positive too. By induction, the
exist totally positive elementsγ1, γ2 and matricesM1 and M2 (of suitable order) such tha
M t

i Mi = γ2
i aiI . Take

M =
(

γ2
2a2M1 −γ1γ2a2M2

γ1γ2a2M2 M2M
tM2

)

1

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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2a2 which is a totally positive element ofA. A straightforward computation show

these are theM andγ we sought. �
Now, we are ready for the

Proof of Theorem 2.6. –We must find a formula of the type

(
1 + r

)
f = 2δ ,

and what we have by Proposition 2.7 is

2δ f = u2 + 2δ−1 .

We write

af = 2δ
1,

wherea = 2δ is totally positive, as so aref andu. Now, arguing as at the end of the latter pro
we find a totally positive elementγ, such thatγ2aI = M tM for a suitable2δ × 2δ matrix M .
Hence

γ2a 2δ
1 = 2δ and γ2a2f = γ2a(af) = γ2a 2δ

1 = 2δ .

Here the elementγa is totally positive, and by the Positivstellensatz, we can write

r γa = 1 + r .

Consequently,

(
1 + r

)2
f =
(

r γa
)2

f = r 2γ2a2f = r 2 2δ = 2δ ,

as wanted. �

3. Analytic surface germs

The purpose of this section is to prove Theorem 1.3, crucial for the proof of Theorem 1.
arguments, somehow inspired in [10], rely heavily on the previous section.

We denote byR{x} the ring of convergent power series inx = (x1, . . . , xn) with real
coefficients, seen also as the ring of analytic function germs at the origin inR

n; its maximal
ideal is(x) = (x1, . . . , xn)R{x}. Let X ⊂ R

n be an analytic set germ (at the origin always), a
consider the ringO(X) of analytic function germs onX . Explicitly, O(X) = R{x}/J , where
J is the ideal of (all analytic function germs vanishing on)X . Of course,positive semidefinit
on X means� 0 on X . Any ideal I ⊂ R{x} defines azero set germX = Z(I), and the rea
Nullstellensatz says that the idealJ of X is thereal radical r

√
I of I ; in particular,J is a radical

ideal. Similarly, the ringC{x} of convergent complex power series with complex coefficie
is seen as the ring of holomorphic function germs at the origin inC

n. As above, every idea
I ⊂ C{x} defines a complex analytic set germZ ⊂ C

n, but here the Nullstellensatz is simple
the ringC{x}/J of germs of holomorphic functions onZ is defined by the radicalJ =

√
I .

We will resource tocomplexificationvia the canonical inclusionR{x} ⊂ C{x}. Any element
h ∈ C{x} can be uniquely written ash = f +

√
−1g, with f, g ∈ R{x}, and itsconjugateis
4e SÉRIE– TOME 38 – 2005 –N◦ 5
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h̄ = f −
√
−1g; f andg are respectively thereal and theimaginarypart of h. Given an idea

I ⊂ R{x}, we denotẽI = IC{x}; these extended ideals areinvariant by conjugation. Given an
analytic set germX , we denoteX̃ = Z(J̃), whereJ is the ideal ofX . Note that sinceJ is a
radical, so isJ̃ , and this is essential: ifX = Z(I), it may well happen thatZ = Z(Ĩ) is notX̃ .
For generalities concerning all of this, we refer to [15,11,18].

After this standard introduction to fix notations and terminology, we come to our fundam
algebrization result:

PROPOSITION 3.1. – Let X ⊂ R
n be a singular surface germ at the origin whose ideal

denote byJ . Let f ∈ R{x} be positive semidefinite on the germ ofR
n at the origin and such

that f(0) = 0. Suppose furthermore thatf does not vanish on any irreducible component oX
of dimension2. Then after an analytic change of coordinates there are:

(i) A sum of squares of analytic function germsh ∈ J ,
(ii) f ′ ∈ R{x1}[x2, . . . , xn], and

(iii) Q3, . . . ,Qn ∈ R{x1}[x2, . . . , xn]∩ J ,
such that

(1) ht((Q3, . . . ,Qn)R{x}) = n− 2, and
(2) (f + h)− f ′ ∈ (Q3, . . . ,Qn)R{x} (hence,f ′ = f mod J ).

Proof. –Let X1, . . . ,Xs be the irreducible components of dimension2 of X , so thatX =
X1 ∪ · · · ∪ Xs ∪ Y , whereY is an analytic curve germ. The idealJ has heightn − 2, and its
associated primes of heightn− 2 are the ideals of theXi’s. Then,J̃ = JC{x} is the ideal of the
complexificationX̃ of X , andX̃ = X̃1 ∪ · · · ∪ X̃s ∪ Ỹ .

Step I. First of all, after a linear change of coordinates, we find square free Weier
polynomialsPk ∈ R{x1, x2}[xk]∩J , k = 3, . . . , n, such thatht(P3, . . . , Pn) = n− 2 (Rückert’s
Parametrization, [18, II.2.3]). In particular, the discriminant∆k ∈ R{x1, x2} is not zero. We
denoteJ ′ = (P3, . . . , Pn)R{x} and consider the extensioñJ ′ = J ′

C{x}. The idealJ ′ needs no
be real, but we look at its complex zero set germZ = Z(J̃ ′) ⊂ C

n; clearlyZ ⊃ X̃ , but these two
complex germs need not coincide. Sinceht(J ′) = n− 2, alsoht(J̃ ′) = n− 2, anddim(Z) = 2.
Consequently, the complexifications̃Xi are irreducible components ofZ, but Z may very well
have other irreducible componentsZ� of dimension2. What we know is that no suchZ� is
contained inX̃ , so that there isg� ∈ J̃ which does not vanish onZ�. As J̃ is an extended idea
we can chooseg� ∈ J .

On the other hand, as thePk ’s are monic polynomials, the holomorphic map germ

πk :Dk =
{

∂Pk

∂xk
= P3 = · · ·= Pn = 0

}
→ C

2

induced by the linear projectionx 
→ (x1, x2) is a finite map germ, so thatdim(Dk) =
dim(πk(Dk)). But πk(Dk)⊂ {∆k = 0}; note that{∆k = 0} may be empty. We conclude

dim
({

∂Pk

∂xk
= 0
}
∩Z

)
� 1 (this set may be empty).

Step II. Now we construct a sum of squaresh ∈ J such thatg = f + h does not vanish o
any irreducible componentZ�. Note that sincef is psd and does not vanish on anyXi, the
germg = f + h cannot vanish on anỹXi either. We proceed by induction and construct a s
of squaresh2

1 + · · · + h2
� with hi ∈ J such thatf� = f + h2

1 + · · · + h2
� does not vanish o

any irreducible componentZ1, . . . ,Z�. Of coursef0 = f . Assume� � 1 and thatf�−1 has been
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constructed. Iff�−1 does not vanish onZ�, let h� = 0. Otherwise, we takeg� ∈ J which does no
vanish onZ� (step I) and seth� = gm�

� . We can choosem� large enough so thatf� = f�−1 + h2
�

does not vanish onZ1, . . . ,Z�−1. Indeed, by Krull’s theorem

J̃ ′
i =
⋂
m

J̃ ′
i + (g�)2m, whereJ̃ ′

i is the ideal of the complex germZi.

Step III. In order to apply Tougeron’s Implicit Functions Theorem, consider the matrix

λ =



∂g
∂x1

. . . ∂g
∂xn

P3 . . . Pn 0 . . . 0 . . . 0 . . . 0
∂P3
∂x1

. . . ∂P3
∂xn

0 . . . 0 P3 . . . Pn . . . 0 . . . 0
...

...
...

...
...

...
...

...
∂Pn

∂x1
. . . ∂Pn

∂xn
0 . . . 0 0 . . . 0 . . . P3 . . . Pn


and let I ⊂ R{x} be the ideal generated by the(n − 1) × (n − 1) minors of λ. We claim
that ht(I) � n − 1. Since heights do not change by complexification, it is enough to see
ht(Ĩ) � n − 1, or that the complex analytic set germZ ′ = Z(Ĩ) has dimension� 1. We argue
by way of contradiction.

Since Pn−1
3 , . . . , Pn−1

n ∈ I , we haveZ = {P3 = · · · = Pn = 0} ⊃ Z ′, and dim(Z ′) �
dim(Z) = 2. Supposedim(Z ′) = 2. ThenZ andZ ′ share some irreducible componentT of
dimension2 (either oneX̃i or oneZ�). By step II, we know thatg does not vanish onT ; since
g(0) = 0, g is not constant onT . But T is irreducible, henceg is not constant on any nonemp
open subsetU of the regular locusT 0 of T , and we conclude that

dg =
∂g

∂x1
dx1 + · · ·+ ∂g

∂xn
dxn

cannot vanish on the tangent bundleτU . Contrarily, since allPk ’s vanish onT ,

dPk =
∂Pk

∂x1
dx1 + · · ·+ ∂Pk

∂xn
dxn

do vanish onτU . We know from step I thatdim({∂Pk

∂xk
= 0} ∩Z) � 1, so that

U = T 0
∖{∏

k

∂Pk

∂xk
= 0
}

is open and nonempty. AsPk only has the variablesx1, x2 andxk, it holds

∏
k

∂Pk

∂xk
= det


∂P3
∂x3

. . . ∂P3
∂xn

...
...

∂Pn . . . ∂Pn



∂x3 ∂xn
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and, consequently, thedPk ’s are independent onU . On the other hand, onZ ′ ⊃ U all
(n− 1)× (n− 1) minors of the matrixλ vanish, so that in particular its submatrix


∂g
∂x1

. . . ∂g
∂xn

∂P3
∂x1

. . . ∂P3
∂xn

...
...

∂Pn

∂x1
. . . ∂Pn

∂xn


has rankn−2. But onU thedPk ’s are independent, hencedg depends on them, and must van
where they do, namely onτU .

This contradiction shows thatZ ′ must have dimension� 1, as wanted.
Step IV. Consider the ideal(x)I2. Sinceg is psd andg(0) = 0, its derivatives∂g/∂xi vanish

all at 0, and so does the first row of the matrixλ. HenceI ⊂ (x), and we haveI3 ⊂ (x)I2 ⊂ I ,
so thatht((x)I2) � n − 1. Furthermore, sincePn−1

k ∈ I , we haveP
3(n−1)
k ∈ (x)I2, and we

see that the homomorphismR{x1, x2} → R{x}/(x)I2 is finite. Sinceht((x)I2) � n − 1, the
homomorphism cannot be injective, anda = (x)I2 ∩ R{x1, x2} �= 0. Next, we look at the
ring R{x1, x2}/a, and after a linear change of the variablesx1, x2 (which does not modify al
preceding constructions), the homomorphismR{x1} → R{x1, x2}/a is finite. By composition
also the homomorphismR{x1} → R{x}/(x)I2 is finite, and each classxj mod (x)I2, j � 2,
verifies a monic equation with coefficients inR{x1}. Thus we find monic polynomials

Φk(x1, xj) ∈ R{x1}[xj ]∩ (x)I2.

EachΦj is a regular power series of some order with respect toxj , hence after successive Weie
strass divisions ofg andP3, . . . , Pn by theΦj ’s, we find f ′,Q3, . . . ,Qn ∈ R{x1}[x2, . . . , x3]
such that

g ≡ f ′ mod (Φ2, . . . ,Φn),

Pk ≡Qk mod (Φ2, . . . ,Φn), k = 3, . . . , n.

Now add to thexi’s new variablesyi, tk andzjk, and consider the system of equations


0 = F0(xi, yi, tk, zjk) = g(x + y) +

∑n
k=3 tk

(
Pk(x + y) +

∑n
j=3 zjkPj(x + y)

)
− f ′(x),

0 = F3(xi, yi, tk, zjk) = P3(x + y) +
∑n

j=3 zj3Pj(x + y)−Q3(x),
...

0 = Fn(xi, yi, tj , zkj) = Pn(x + y) +
∑n

j=3 zjnPj(x + y)−Qn(x).

One sees immediately that the Jacobian matrix of this system atyi = tk = zjk = 0 is the matrix
λ in step III, and it holds

F0(x,0) = g − f ′ ∈ (Φ2, . . . ,Φn) ⊂ (x)I2

Fk(x,0) = Pk −Qk ∈ (Φ2, . . . ,Φn) ⊂ (x)I2, k = 3, . . . , n.
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Whence, we can apply Tougeron’s Implicit Functions Theorem ([19], [18, V.1]) to find a sol
yi(x), tj(x), zkj(x) ∈ (x)I of the systemF0 = F3 = · · ·= Fn = 0. This gives:

f ′(x) = g
(
x + y(x)

)
+
∑n

k=3 tk(x)
(
Pk

(
x + y(x)

)
+
∑n

j=3 zjk(x)Pj

(
x + y(x)

))
,

Q3(x) = P3

(
x + y(x)

)
+
∑n

j=3 zjk(x)Pj

(
x + y(x)

)
,

...
Qn(x) = Pn

(
x + y(x)

)
+
∑n

j=3 zjk(x)Pj

(
x + y(x)

)
.

Now, sinceyi(x) ∈ (x)I ⊂ (x)2, the seriesxi + yi(x) define a change of variables, after whi
we have

g − f ′ ∈ (Q3, . . . ,Qn).

Furthermore, since thezkj(x)’s are in(x)I ⊂ (x), after the change we also have:

(Q3, . . . ,Qn) + (x)(P3, . . . , Pn) = (P3, . . . , Pn).

Hence, by Nakayama’s Lemma, the ideals(Q3, . . . ,Qn) and (P3, . . . , Pn) coincide, and
ht(Q3, . . . ,Qn) = n− 2.

This completes Step IV and the proof of the proposition.�
Now we are ready for Theorem 1.3, but we prove first a more technical statement. T

obtained combining the previous algebrization procedure with the quantitative refineme
Section 2.

PROPOSITION 3.2. – Let X ⊂ R
n be a surface germ at the origin and letJ denote its ideal

Let f ∈ R{x} be positive semidefinite on the germ ofR
n at the origin and suppose it does n

vanish on any irreducible component of dimension2 of X . Then there exist analytic functio
germsg,h1, h2, h3, h4 ∈ R{x} such that

g2f ≡ h2
1 + h2

2 + h2
3 + h2

4 mod J

andg is a sum of squares with{g = 0} ⊂ {f = 0}.

Proof. –The casef(0) > 0 is clear, so we supposef(0) = 0. After a change of coordinate
we find the germsh, f ′ andQ3, . . . ,Qn as in Proposition 3.1. We are to move the problem
suitable finitely generated algebra overR{x1}, but this requires some work.

First of all, consider the ideala = (Q3, . . . ,Qn)R{x1}[x2, . . . , xn] and the algebraA =
R{x1}[x2, . . . , xn]/a. Its minimal primes split into somepi contained in the maximal idea
m = (x) mod a, and some othersqj not contained: choosef0 ∈

⋂
j qj \m, which is not nilpotent

in A. Then, in the localizationA0 = A[1/f0] only thepi’s remain, and by 2.3 and 2.2 and flatne
we get:

δ(A0) = dim(A0) = dim(Am) = dim
(
R{x}/(Q3, . . . ,Qn)

)
= 2.

Next, considerf ′. We claim it is not nilpotent inA0. Indeed, otherwise, it would belong
all thepi’s, and since the ideals(Q3, . . . ,Qn)R{x} ⊂ J have the same heightn − 2, f ′ would
belong to some minimal prime of heightn− 2 of J . Thus,f ′ would vanish on some irreducib
component of dimension2 of X . Sincef ′ = f +h mod (Q3, . . . ,Qn), andf,h are both psd, we
would conclude thatf vanishes on that same component, which is not the case by hypothe

Thus, we can properly consider the localizationA′ = A0[1/f ′] = A0[T ]/(1 − f ′T ), and by
2.4,δ(A′) � δ(A0) = 2.
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Next, sincef ′ is psd on the germY = {Q3 = · · · = Qn = 0}, we can chooseε > 0 such that
f ′,Q3, . . . ,Qn converge onU = {|x1| < 2ε, . . . , |xn| < 2ε} andf ′ � 0 on U ∩ Y . Consider the
algebra

B = A′[T2, . . . , Tn]/
(
T 2

2 −
(
ε2 − x2

2

)
, . . . , T 2

n −
(
ε2 − x2

n

))
,

which is finitely generated overR{x1}. As, by 2.4,δ(C[T ]/(T 2 − c)) � δ(C), we see tha
δ(B) � δ(A′) � 2. We claim that

(•) The elementf ′ is totally positive inB.
If not, there existsβ ∈ Specr(B) such thatf ′(β) � 0; in fact,f ′(β) < 0 sincef ′ is a unit inB.

As is well known,β can be seen as a homomorphismβ :B → R into a real closed fieldR such
that β(f ′) < 0. Immediately, we get a homomorphismα :R{x1}[x2, . . . , xn, T2, . . . , Tn] → R
such that

α(f ′) < 0, α(Qk) = 0, α
(
T 2

j −
(
ε2 − x2

j

))
= 0.

We setα(xi) = αi, α(Tj) = τj , and distinguish two cases:
(1) If α1 = 0, thenα|R{x1} is evaluation atx1 = 0, and we get:

f ′(0, α2, . . . , αn) < 0, Qk(0, α2, . . . , αn) = 0, τ2
j = ε2 − α2

j .

Thus we can apply Tarski’s principle, and supposeαi, τj ∈ R. Now note that the conditio
τ2
j = ε2 −α2

j impliesα2
j � ε2, so that(0, α2, . . . , αn) ∈ U , and this is in fact a point ofU ∩Y at

whichf ′ is < 0. Contradiction.
(2) If α1 �= 0, thenα|R{x1} is injective, and we may assumeR containsR({x1}). Then we

have:

f ′(x1, α2, . . . , αn) < 0, Qk(x1, α2, . . . , αn) = 0, τ2
j = ε2 − α2

j .

We can again apply Tarski’s principle, and get theαi’s and theτj ’s in the real closure ofR({x1}).
This real closure is the field of convergent Puiseux series on the variablet = ±x1 according to
the sign ofx1 = α1, so thatx1 
→ (x1, α2, . . . , αn) is a well defined analytic map at least f
x1 �= 0 small enough. But again the conditionτ2

j = ε2 − α2
j guarantees that the image of th

map is contained inU , and thus, we get points inY ∩U at whichf ′ is negative. Impossible.
Thus we have proved our claim (•) that f ′ is a totally positive element inB. Then, since

δ(B) � 2, by Theorem 2.6 we can write inB:(
1 + a2

1 + · · ·+ a2
r

)2
f ′ = b2

1 + b2
2 + b2

3 + b2
4.

Now we remark that the inclusionR{x1}[x2, . . . , xn] ⊂ R{x} induces a homomorphismA =
R{x1}[x2, . . . , xn]/a → R{x}/J , which extends to anotherB → (R{x}/J)[1/f ′] (recall that
f0 /∈ m, hencef0 is a unit in R{x}, and all theε2

j − x2
j ’s have square roots inR{x}).

Consequently, we can suppose the above formula holds in(R{x}/J)[1/f ′], and clearing
denominators we get a similar formula inR{x}/J :(

f ′2m + a2
1 + · · ·+ a2

r

)2
f ′ = b2

1 + b2
2 + b2

3 + b2
4.

Finally, sincef = f ′ mod J , we get(
f2m + g2

1 + · · ·+ g2
r

)2
f = h2

1 + h2
2 + h2

3 + h2
4 mod J

with gk, h� ∈ R{x}. Clearly, the denominatorg = f2m +g2
1 + · · ·+g2

r cannot vanish off{f = 0},
and we have finished.�
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As said before, Theorem 1.3 follows from the latter result.

Proof of Theorem 1.3. –We are given a psd analytic function germf :X → R on the surface
germX ⊂ R

n. By the Positivstellensatzg′2f is a sum of squares for a suitable denomina
g′ such that{g′ = 0} ⊂ {f = 0}. In particular,g′2f can be extended to a psd analytic funct
germf ′ : R

n → R. Consequently, after substitutingf ′ for f , we simply suppose thatf is defined
and psd onRn. Now, decomposeX = X ′ ∪ X ′′, so thatf does not vanish on any irreducib
component ofX ′ andf |X ′′ ≡ 0. By Proposition 3.2 we findg,h1, h2, h3, h4 ∈ R{x} such that
g2f = h2

1 + h2
2 + h2

3 + h2
4 on X ′, andg is a sum of squares with{g = 0} ⊂ {f = 0}. We are

done, because on the whole ofX we can write(
gf2
)2

f =
(
h1f

2
)2 +

(
h2f

2
)2 +

(
h3f

2
)2 +

(
h4f

2
)2

(we use the factorf2 to preserve the fact thatg is a sum of squares).�
4. Normal real analytic surfaces

In this last section we are to prove Theorem 1.4. To that end, we will use a particular ca
result further extended in [1]. We include here this particular case with a direct condensed
for the convenience of the reader:

LEMMA 4.1. – Let θ :Rn → R be a fixed analytic function. Letξ :Rn → R be an analytic
function with isolated zeros. Suppose that at every zerox, the germξx is a sum ofq squares
of analytic function germs, one of them divisible byθ. Then there are analytic function
f1, . . . , fq :Rn → R, one of them divisible byθ, such that(

f2
1 + · · ·+ f2

q

)
ORn,x = ξORn,x

at every zerox of ξ.

Proof. –We will resource to complexification and holomorphic functions, for which we r
the reader to the classical [8]. Take coordinatesz = (z1, . . . , zn) in C

n, with zi = xi +
√
−1yi,

xi, yi ∈ R. Consider then the conjugationσ :z 
→ z = (z1, . . . , zn), whose fixed points areRn.
A subsetY ⊂ C

n is invariant if σ(Y ) = Y . We will denote byInt andCl topological interiors
and closures, respectively.

An holomorphic functionF :U → C defined on an invariant open setU ⊂ C
n is invariant if

F (z) = F (z). This implies thatF restricts to a real analytic function onU ∩R
n. In general, we

have thereal and theimaginaryparts ofF

�(F )(z) =
1
2
(
F (z) + F (z)

)
, (F )(z) =

1
2
√
−1

(
F (z)− F (z)

)
which satisfyF = �(F ) +

√
−1(F ); both are invariant holomorphic functions.

Now, we split the proof of the lemma into several steps.
Step I: Globalization of the sums of squares.Let xk, k � 1, be the zeros ofξ, and conside

an open neighborhoodV of R
n in C

n on whichξ andθ have invariant holomorphic extensio
Ξ and Θ. By hypothesis, for eachk there are invariant holomorphic functionsFki :Vk → C,
1 � i � q, defined on an open neighborhoodVk ⊂ V of xk in C

n, such thatΞ|Vk
=
∑

k F 2
ki, and

Θ|Vk
dividesFkq , say

Fkq = F ∗
kqΘ,
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for a suitable invariant holomorphic functionF ∗
kq :Vk → C. Clearly, theVk ’s may be chosen

disjoint each other. The open set

V ′ =
(
V \ {Ξ = 0}

)
∪
⋃
k

Vk

is a neighborhood ofRn in C
n, and we can choose an invariant open Stein neighborhoodU ⊂ V ′

of R
n in C

n, such thatRn is a deformation retract ofU [4]. We restrict all functions toU ,
and shrinkVk insideU so that the connected componentSk of {Ξ = 0} that containsxk is the
only one that meetsVk, and it is in fact contained inVk. Now, by the condition onVk and the
connected components of{Ξ = 0}, each functionζ = F ∗

kq, Fki,1 � i < q, defines a global cros
section of the sheafOU/Ξ2 as follows:{

ζ mod Ξ2OCn,x if x ∈ Vk

0 if x ∈ U \ Sk.

By Cartan’s Theorem B, these sections are just holomorphic functionsΦ∗
kq,Φki :U → C,

1 � i < q, such thatΞ2 dividesΦ∗
kq −F ∗

kq andΦki −Fki, 1 � i < q; setΦkq = Φ∗
kqΘ. Replacing

them by their real parts, we may assume that they all are invariant.
OnVk we have:∑

i

Φ2
ki −Ξ =

∑
i

Φ2
ki −
∑

i

F 2
ki =
∑

i

(Φki + Fki)(Φki − Fki) = ΨkΞ2,

for some holomorphic functionΨk :Vk → C. Hence∑
i

Φ2
ki = Ξ + ΨkΞ2 = (1 + ΨkΞ)Ξ.

Step II: Auxiliary construction.Let {Lk}k�1 be a family of invariant compact subsets ofU
such thatL1 ∩ Rn �= ∅, L1 �⊂

⋃
� V�, Lk ⊂ IntCn(Lk+1) for all k, and

⋃
k Lk = U ; we replace

eachLk by Lk \
⋃

��k V� to have in additionSk ∩Lk = ∅.
We are to construct invariant holomorphic functionsΛk :U → C such that

(i) Sk = {Λk = 0} is the connected component of{Ξ + Λ2
k = 0} that containsxk,

(ii) the meromorphic functionwk = Ξ/(Ξ + Λ2
k) is a holomorphic unit on a neighborhood

Sk, which we may suppose to beVk, and
(iii) Ξ + Λ2

k has no zero inLk.
Indeed, fixk, and letJ be the sheaf of ideals of holomorphic function germs onU defined by

Jx =
{

ΞxOCn,x if x ∈ Sk,
OCn,x if x ∈ U \ Sk.

The open setU is a Stein manifold, henceH1(U ,O∗
C
) = H2(U ,Z), and this group is trivia

becauseRn is a deformation retract ofU . Consequently, all locally principal coherent shea
of ideals onU are in fact globally principal. In particular,J is generated by a holomorph
function H :U → C. We can writeH = A +

√
−1B, whereA = �(H) andB = (H); note

thatxk ∈ {A = B = 0} ⊂ {H = 0} = Sk.
Let Λk = µ(A2 + B2) for a certain positive real numberµ > 0 that we will choose later; thi

is clearly an invariant holomorphic function. SinceΛk(z) = µH(z)H(z) for all z ∈ U , we have
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Λk(z) = 0 if and only if H(z) = 0 or H(z) = 0, that is,z ∈ Sk or z ∈ Sk. But Sk is invariant
(becauseΞ andU are so), hencez ∈ Sk. Thus,{Λk = 0} = Sk.

Now, by construction, we haveΞ = CH for some holomorphic unitC on an open
neighborhood ofSk, hence:

Ξ + Λ2
k = Ξ + µ2H2H2 ◦ σ =

(
1 +

µ2HH2 ◦ σ

C

)
Ξ.

Obviouslyvk = 1 + (µ2HH2 ◦ σ)/C is a well defined holomorphic unit in a neighborhood
Sk, sayVk after shrinking, andwk = 1/vk is a unit too.

Next, we chooseµ. Since the zeros of the holomorphic functionA2 + B2 are all inSk and
Lk ∩ Sk = ∅, we can take

µ =

√
1 + maxLk

|Ξ|
minLk

|A2 + B2|2 > 0

so that|Ξ|< µ2|A2 + B2|2 onLk. Hence,Ξ + Λ2
k has no zero inLk.

Let us check that the connected componentT of {Ξ + Λ2
k = 0} that containsxk is Sk.

Clearly xk ∈ Sk ⊂ T . Suppose thatSk �= T , saya ∈ T \ Sk. SinceT is connected there is
pathγ : [0,1] → T such thatγ(0) = a andγ(1) = xk. Let 0 < s = min{t ∈ [0,1]: γ(t) ∈ Sk}.
Sincez = γ(s) ∈ Sk ⊂ Vk, the germs atz of Ξ + Λ2

k andΞ differ by a unit, hence the set germ
Tz andSk,z coincide. But this is impossible becauseγ[0, s)⊂ T \ Sk.

Step III: Gluing of sums of squares.As far, we have thatxk is the unique real zero ofΞ + Λ2
k,

hence the connected components of{Ξ + Λ2
k = 0} other thanSk do not meetRn, and dropping

them, we get an open neighborhoodWk of Lk ∪R
n on which

wk =
Ξ

Ξ + Λ2
k

is holomorphic, and{Ξ + Λ2
k = 0} ∩ Wk = Sk. As a matter of fact,there is a common

open neighborhoodW ⊂ U of R
n on which all the above quotientswk are holomorphic, and

{Ξ + Λ2
k = 0} ∩W ⊂ Sk.

Indeed, it is enough to find for eachx ∈ R
n an open neighborhoodWx in C

n, on which the
required properties hold true, and the union of theseWx’s will be the W we seek. Butx ∈
IntCn(Lk0) for somek0, hencex ∈ Lk for all k � k0. Consequently, allwk ’s are holomorphic in
Wx = W1 ∩ · · · ∩Wk0−1 ∩ IntCn(Lk0), and ifz ∈Wx is a zero ofΞ + Λ2

k, thenk < k0, hence
z ∈Wk andz ∈ Sk.

Once we have thisW , we can paste the sums of squares
∑

i Φ2
ki to get a single one. Define

for eachk:

Mk = max
i

max
Lk

∣∣w2
kΦki

∣∣, γk =
1

2kMk
.

OnLk we have|γkw2
kΦki|� 1

2k for all i.
Now, let L be a compact subset of theW found above, where all the functionsγkw2

kΦki are
holomorphic. AsW ⊂

⋃
k�1 IntCn(Lk), L is contained in someLk0 , hence in allLk for k � k0,

and so: ∑
k

sup
L

∣∣γkw2
kΦki

∣∣= k0−1∑
k=1

sup
L

∣∣γkw2
kΦki

∣∣+ ∑
k�k

sup
Lk

∣∣γkw2
kΦki

∣∣

0
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n

ucible
ssume

ies
g

at

l
k

�
k0−1∑
k=1

sup
L

∣∣γkw2
kΦki

∣∣+ ∑
k�k0

1
2k

< +∞.

Consequently, each infinite sum

Fi =
∑

k

γkw2
kΦki, i = 1, . . . , q,

converges uniformly on compact sets, hence defines a holomorphic function onW . Notice also
that sinceΘ divides eachΦkq , it divides Fq . Fix now k. As eachΞ + Λ2

� , � �= k, is a unit on
W ∩Vk, we can write there

γ�w
2
� Φ�i = γ�

(
Ξ

Ξ + Λ2
�

)2

Φ�i = ∆k�iΞ2

so that

Fi = γkw2
kΦki +

∑
��=k

γ�w
2
� Φ�i = γkw2

kΦki + ∆kiΞ2

where∆ki =
∑

��=k ∆k�i is a holomorphic function. From this and step II, we get

∑
i

F 2
i = γ2

kw4
k

∑
i

Φ2
ki + ∆Ξ2 =

(
γ2

kw4
k(1 + ΨkΞ) + ∆Ξ

)
Ξ,

where∆ is holomorphic. Butwk is a unit atxk, and we deduce:∑
i

F 2
i OCn,xk

= ΞOCn,xk
.

After restriction toRn we get
∑

i f
2
i OCn,xk

= ξORn,xk
, where eachfi = Fi|Rn is a real analytic

function. AsΘ dividesFq , θ dividesfq. �
Once the preceding result is available, we can turn to the

Proof of Theorem 1.4. –We have a normal real analytic surfaceX and a psd analytic functio
f :X → R, which we must represent as a sum of squares.

First of all, we recall thatX can be embedded as a closed subset ofR
n, which we suppose

henceforth. On the other hand, since a normal surface is locally irreducible, the irred
components ofX are its connected components, and working separately on each we may a
X is irreducible; thus the ringO(X) is a normal domain. Also, we know that all singularit
of X are isolated. For a pointx ∈ X , we denoteO(X)x the localization at its correspondin
maximal idealmx: x is a regular point if and only ifO(X)x is a regular ring. Recall as well th
normal surfaces are coherent, and we can use sheaf theory onX without restrictions.

After this, we split our argument in several steps.
Step I: Construction of suitable equations for the codimension1 part of the zero set{f = 0}.
We split {f = 0} = D ∪ Y , whereD is a discrete set andY =

⋃
i Yi is the union of the

irreducible components of dimension1. Then, the idealpi ⊂ O(X) of all functions vanishing
on Yi is a prime ideal of height1, and,O(X) being normal, the localizationVi = O(X)pi is a
discrete valuation ring. We will use freely the so-called multiplicity alongYi, which is the rea
valuationmYi associated to the discrete valuation ringVi (see [2, §§1,2] for full details). Pic
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any uniformizergi ∈ pi of Vi, so thatmYi(gi) = 1. Sincef is psd, and the valuation is rea
mYi(f) = 2mi, andf/g2mi

i is a unit inVi. From this it follows thatat all points ofYi off a
discrete setthe following three properties hold true:

(i) f/g2mi
i is analytic,

(ii) f/g2mi
i > 0, and

(iii) gi generates the ideal ofYi.
We are to modifygi still a little, keeping these properties. To that end, consider any p

c /∈ Y , and denotedi = dist(Yi, c) > 0. Let θi be an equation forYi, that is{θi = 0} = Yi.
Scalingθi we may assume that

∥∥gi(x)
∥∥<
∥∥θ2

i (x)
∥∥ on‖x− c‖ � 1

2
di.

Now, sinceθi ∈ pi,

mYi(θ
2
i ) = 2mYi(θi) � 2 > mYi(gi),

andgi + θ2
i is also a uniformizer ofVi with the same three properties above. But in addition,

zero setsZi = {gi + θ2
i = 0} form a locally finite family.

Indeed, it is enough to show that for every radiusρ > 0, only finitely manyZi’s meet the bal
{‖x− c‖< ρ}. To see this, notice that, theYi’s being the irreducible components of the analy
curveY , they form a locally finite family, hence fori large,Yi ∩ {‖x − c‖ < 2ρ} = ∅, so that
1
2di � ρ and ∥∥gi(x)

∥∥<
∥∥θ2

i (x)
∥∥, hencegi(x) + θ2

i (x) �= 0,

for ‖x− c‖< ρ, as wanted.
Finally, we replace eachgi by gi + θ2

i , but keep the notationgi.
Step II: Reduction to the case of a discrete zero set.
SetZ =

⋃
i Zi, and consider the analytic sheaf of ideals given by

Ix =
{∏

i|x∈Zi
gmi

i OX,x for x ∈ Z,
OX,x otherwise.

This is well defined and coherent at anya ∈ Z: on a neighborhoodU of a where all the finitely
manyZi’s that meetU pass througha, the idealI is generated by

∏
i|x∈Zi

gmi
i . By [6], sinceI

is locally principal,I is globally generated by three sectionsh1, h2, h3 ∈O(X).
In this situation, onYi off a discrete set,I = (h1, h2, h3)OX is generated bygmi

i , which
readily implies that all the quotientshj/gmi

i for j = 1,2,3, are analytic there and at least one
a unit. Denoteh4 = f . As f/g2mi

i = h4/g2mi
i is a unit onYi off another discrete set, we dedu

that

f

h2
1 + h2

2 + h2
3 + h2

4

=
f

g2mi

/h2
1 + h2

2 + h2
3 + h2

4

g2mi

is an analytic unit onYi off a (bigger) discrete setDi ⊂ Y ⊂ {f = 0}. As theYi’s form a locally
finite family, we conclude that the zeros and poles of this meromorphic function form a di
subset of{f = 0}.

Write h = h2
1 + h2

2 + h2
3 + h2

4 and consider the coherent sheaf(h : f)OX . This sheaf is
generated in a neighborhood of each polex of f/h by finitely many sectionsδ1, . . . , δr. By
the standard sum of squares trick,fx/hx = g/δ for δ =

∑
k δ2

k and someg. Furthermore,x is
an isolated zero ofδ. For that, suppose that there isy′ �= x arbitrarily close tox with δ(y) = 0.
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Then, allδk ’s vanish aty, and since the ideal(h : f)OX,y is generated by them, it contains
unit. This means thatf/h is not analytic aty, a contradiction. Adding the square of an equat
of X in R

n, we extendδ to a sum of squares̃δ of analytic functions in a neighborhood ofx in R
n

that vanishes only atx; denoteIx = δ̃OX,x. These idealsIx glue to define a locally principa
sheaf of idealsI on R

n, whose zero set consists of the poles off/h. SinceH1(Rn,Z2) = 0,
all locally principal sheaves are globally principal, andI has a global generator∆. This∆ is a
non-negative analytic function onRn whose zeros are the polesx of f/h. In fact, we have jus
glued the local denominatorsδ to get a global denominator:∆f/h is an analytic function. The
∆2f/h is also analytic, and its zeros are either poles or zeros off/h, hence a discrete subset
{f = 0}. Summing up,f ′ = ∆2f/h is psd with discrete zero set{xk: k � 1} ⊂ {f = 0}.

Step III. Construction of analytic functionsg, f1, f2, f3, f4 ∈O(X) such that

g2f ′OX,x =
(
f2
1 + f2

2 + f2
3 + f2

4

)
OX,x

at every zerox ∈ {f ′ = 0} = {g = 0}.
To start with, by Theorem 1.3, in a small enough neighborhoodUk of every zeroxk of f ′ we

have a formula

g2
kf ′ = f ′2

k1 + f ′2
k2 + f ′2

k3 + f ′2
k4 onUk ∩X,

wheregk, f ′
ki :Uk → R are analytic functions, andgk is a sum of squares whose single zero

Uk ∩X is xk; in fact, replacinggk by gk +θ2 for some equationθ of X , we can supposexk is the
unique zero ofgk in Uk. Then the idealsgkORn |Uk

define a locally principal sheaf of ideals o
R

n, which is globally principal, say generated byg :Rn → R. Thusg is a psd analytic function
that vanishes exactly at thexk ’s, and on eachUk the functiongk/g is an analytic unit. Hence, w
can replacegk in all the above formulas byg. In other words, we have already found the glo
denominatorg.

Next, consider again the above equationθ :Rn → R of X in Rn. Then,ξk = f ′2
k1 + f ′2

k2 +
f ′2

k3 + f ′2
k4 + θ2 only vanishes atxk, and the idealsξkORn |Uk

define a locally principal shea
of idealsIi on R

n, which as usual is globally generated by some analytic functionξ :Rn → R.
Clearly,{xk: k � 1} is the zero set ofξ, andξ is a sum of five squares of analytic functions o
neighborhood of that zero set, with the condition that the fifth function is always (divisible bθ.
We thus can apply Lemma 4.1, and find a sumf2

1 + f2
2 + f2

3 + f2
4 + f2

5 of 5 squares of analyti
functions onRn, such thatf5 is divisible byθ, and

ξkORn,x = ξORn,x =
(
f2
1 + f2

2 + f2
3 + f2

4 + f2
5

)
ORn,x

at every zerox = xk. Sincef5 is divisible byθ, which vanishes onX , we conclude:(
f2
1 + f2

2 + f2
3 + f2

4

)
OX,x = ξkOX,x =

(
f ′2

k1 + f ′2
k2 + f ′2

k3 + f ′2
k4

)
OX,x = g2f ′OX,x.

Step IV: Further control on the zero set.
Recall that{xk: k � 1} = {f ′ = 0} = {g = 0} ⊂ {f = 0} = D ∪

⋃
i Yi. Pick a real numbera

such thath′
1 = f1 + ag4f ′2 does not vanish identically on anyYi, so that the set{f = 0, h′

1 = 0}
is discrete. Then, letτ be an analytic function whose zero set is{f = 0, h′

1 = 0, f2 �= 0}, and put

h′
2 = f2 + τg4f ′2, h′

3 = f3, h′
4 = f4.

We claim that the sum of squaresh′2
1 + h′2

2 + h′2
3 + h′2

4 does not vanish on{f = 0, f ′ �= 0}.
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In fact, supposef(y) = h′
1(y) = h′

2(y) = 0 for somey with f ′(y) �= 0, henceg(y) �= 0. Since

0 = h′
2(y) = f2(y) + τ(y)g(y)4f ′(y)2,

we deduce thatf2(y) = 0 if and only if τ(y) = 0, against the definition ofτ .
The final remark is now that at every zerox of f , the ideals

Ix =
(
h2

1 + h2
2 + h2

3 + h2
4

)(
h′2

1 + h′2
2 + h′2

3 + h′2
4

)
OX,x and

Jx = g2∆2fOX,x

coincide.
Indeed, we consider firstx ∈ {f = 0, f ′ �= 0}. By the discussion above, the sum of squa

h′2
1 + h′2

2 + h′2
3 + h′2

4 is a unit atx, andIx is generated byh = h2
1 + h2

2 + h2
3 + h2

4. But on the
other hand,x ∈ {f ′ �= 0} = {g �= 0}, henceg is a unit atx, andJx is generated by∆2f . Finally,
f ′ = ∆2f/h is a unit atx, again becausef ′(x) �= 0, so thatIx = Jx.

Next, we pick a zerox = xk of f ′, and compute inOX,x. By step III there is a unitux such
thatf2

1 + f2
2 + f2

3 + f2
4 = uxg2f ′, and by definition of theh′

i’s we have:

∑
i

h2
i

∑
i

h′2
i = h

(∑
i

f2
i + µg4f ′2

)
= hg2f ′(ux + µg2f ′)= g2∆2fvx,

wherevx = ux + µg2f ′ is a unit, always inOX,x. Once again,Ix = Jx.
Step V: Conclusion.
From the preceding step we see that the function

u =
(h2

1 + h2
2 + h2

3 + h2
4)(h

′2
1 + h′2

2 + h′2
3 + h′2

4 )
g2∆2f

is analytic and a unit in a neighborhood of{f = 0}. Then, the function

v =
g2∆2f2 + (h2

1 + h2
2 + h2

3 + h2
4)(h

′2
1 + h′2

2 + h′2
3 + h′2

4 )
g2∆2f

= f + u

is a well defined strictly positive analytic function onX : both addends in the right-hand side a
� 0, and the second one does not vanish on the zero set of the first. Thus,v has a strictly positive
analytic square rootw, and onX we get:

w2g2∆2f = g2∆2f2 +
(
h2

1 + h2
2 + h2

3 + h2
4

)(
h′2

1 + h′2
2 + h′2

3 + h′2
4

)
.

Since products of sums of four squares are again sums of four squares, the right-hand
sum of five squares. We are done.

One final remark is that Theorem 1.4 also asks forwg∆ to be a sum of squares. This can
amended easily. By our construction,wg∆ is psd with discrete zero set contained in{f = 0}.
Thus it can be represented by a sum of squares with controlled bad set, and multiplying
denominator of that representation we obtain a new representation off whose denominator i
indeed a sum of squares.�
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