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STARK-HEEGNER POINTS ON MODULAR JACOBIANS

By SamiT DASGUPTA

ABSTRACT. — We present a construction which lifts Darmon’s Stark—Heegner points from elliptic curves
to certain modular Jacobians. Ltbe a positive integer and Igtbe a prime not dividingV. Our essential
idea is to replace the modular symbol attached to an elliptic cBreé conductorNp with the universal
modular symbol fol'g (Np). We then construct a certain torlisoverQ,, and latticeL C T', and prove that
the quotientl’/ L is isogenous to the maximal toric quotieht Np)? ™" of the Jacobian oK, (Np). This
theorem generalizes a conjecture of Mazur, Tate, and Teitelbaum gnattiie periods of elliptic curves,
which was proven by Greenberg and Stevens. As a by-product of our theorem, we obtain an efficient method
of calculating thep-adic periods offo (Np)? ™",
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RESUME. — Nous donnons une construction qui reléve celle des points de Stark—Heegner de Darmon des
courbes elliptiques a certaines variétés jacobiennes de courbes modulaires. Bointier strictement
positif et p un nombre premier ne divisant p@é. Notre idée principale est de remplacer le symbole
modulaire attaché a une courbe elliptigede conducteutNp par le symbole modulaire universel de
I'o(Np). Nous construisons alors un certain taresur Q, et un résau. C 7', et nous montrons que le
quotientT’/ L est isogéne au quotient torique maxinda(Np)? ™" de la variété jacobienne d€,(Np).
Ce théoréme généralise une conjecture de Mazur, Tate et Teitelbaum sur les péadapses des courbes
elliptiques, qui a été démontré par Greenberg et Stevens. En a-coté de notre théoreme, nous obtenons une
méthode efficace de calcul des périogesdiques defo (Np)? Y.
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1. Introduction

The theory of complex multiplication allows the construction of a collection of points
on arithmetic curves ove®, defined over Abelian extensions of quadratic imaginary fields.
Foremost among these are Heegner points on modular curves, as described for example in [20].
By embedding a modular curve in its Jacobian (typically by sending a rational cusp to the
origin), one may transfer Heegner points on the curve to each factor of its Jacobian. A study
of the arithmetic properties of the points constructed in this fashion has yielded many striking
results, most notably, the theorems of Gross and Zagier [21], Kolyvagin [26], and Kolyvagin and
Logachév [27].

The goal of [6] was to define certain points on elliptic curves analogous to Heegner points,
except that they would be defined over Abelian extensions of real quadratic fields instead of
imaginary quadratic fields. In the setting considered, the existence of such points is predicted by
the conjecture of Birch and Swinnerton-Dyer. Darmon constructs these “Stark—Heegner points”
analytically by replacing complex integration with a certaiadic integral. The conjecture that
Stark—Heegner points are defined over global number fields remains open.

The goal of the present article is to lift the construction of Stark—Heegner points from elliptic
curves to certain modular Jacobians. Létbe a positive integer and let be a prime not
dividing N. Our essential idea is to replace the modular symbol attached to an elliptic curve
E of conductorNp (a key tool in [6]) with the universal modular symbol fog(Np). We
then construct a certain tor@Sover Q, and latticeL C T, and prove that the quotiefit/L is
isogenous to the maximal toric quotieff(Np)?™¥ of the Jacobian oK, (Np). This theorem
generalizes a conjecture of Mazur, Tate, and Teitelbaum [32] op-tidic periods of elliptic
curves, which was proven by Greenberg and Stevens [16,17]. Indeed, our proof borrows greatly
from theirs.

Our isogeny theorem allows us to define Stark—Heegner points on the Abelian variety
Jo(Np)P™%, The points we define map to the Stark—Heegner point& amder the projection
Jo(Np)P™e™ — E. We conjecture that they satisfy the same algebraicity properties. One
interesting difference from the case of classical Heegner points is that our points, while lying
on modular Jacobians, do not appear to arise from points on the modular curves themselves.

Although the construction of Stark—Heegner points is the most significant arithmetic applica-
tion of our isogeny theorem, the result is interesting in its own right because it allows the practical
computation of the-adic periods offy (N p)P ™.

In Section 2 we summarize known uniformization results, beginning with the complex analytic
construction ofJy(N) and classical Heegner points. We then discusalic uniformization
of Mumford curves via Schottky groups, and present the Manin—Drinfeld theorem on the
uniformization of the Jacobian of a Mumford curve in the language-aflic integration. In
Section 3 we construct our analytic spaf@L and state the isogeny theorem. We then use
the isogeny theorem to define Stark—Heegner points/@@p)P™¢". The remainder of the
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article is devoted to proving the isogeny theorem. Section 5.1 describes precisely how our result
generalizes the Mazur-Tate—Teitelbaum conjecture.

There are some differences to note between our presentation and that of [16]. First, by dealing
with the entire Jacobian rather than a component associated to a particular newform, we avoid
some technicalities arising in Hida theory. Furthermore, the role2af (2) in [16] is played by

%, :=the “derivative” ofl — U7,

as defined in Section 5.2; accordingly we treat the cases of split and non-split reduction
simultaneously. The proof that th&’-invariant of T'/L is equal to.Z, is somewhat different

from (though certainly bears commonalities with) what appears in [16]. Indeed, the’Bpace

is constructed from the group

r:= { (Z Z) € PSLy(Z[1/p]) such thatN|c}

and a study of its cohomology. The construction of Stark—Heegner points is contingent on the
splitting of a certain 2-cocycle fdr, which is proven by lifting measures @' (Q,) to theZ -
bundleX = (Z, x Z,)’ of primitive vectors over this space. The connection between integrals
on X andp-adic L-functions is described in [2,7].

In Section 6, we give some computational data to demonstrate how the isogeny theorem may
be used to calculate theadic periods offy(Np)P™e".

2. Previous uniformization results

The classical theory of Abel-Jacobi gives a complex analytic uniformization of the Jacobian
of a nonsingular proper curve ov€t. We begin this section by recalling this construction for
Xo(N) and giving the definition of Heegner points dp(N) using this uniformization. Manin
and Drinfeld have also givenaadic uniformization for the Jacobians of Mumford curves. We
give a restatement of their result in the languagg-atiic integration, which may thus be viewed
as ap-adic Abel-Jacobi theory. Unfortunately, theadic uniformization of/y(p) that arises in
this fashion does not allow the natural construction of Heegner-type points in an obvious manner.
The constructions which occupy the remainder of this paper remedy this problem by finding an
alternatep-adic uniformization ofJo(Np)P ™V, This section is entirely expository and only
provides motivation for what follows.

2.1. Archimedean uniformization

The Abel-Jacobi theorem states that the Jacobian of a nonsingular propeXcomes C is
analytically isomorphic to the quotient of the dual of its space of 1-forms by the image of the
natural integration map froff; (X (C), Z). To execute this uniformization in practice, one often
wants to understand the space of 1-forms and the first homology groXigrplicitly. A general
approach to this problem is given by Schottky uniformization. (See [37] for the original work and
[23] for a modern summary and generalization.) The “retrosection” theorem of [25] states that
there exists a Schottky grodpc PGL,(C) and an open sétir C P!(C) such thatX (C) is
analytically isomorphic ta"\’Hr. Among its other properties, the grolipis free of rankg, the
genus of the curvéX. Under certain convergence conditions, one may describe the Jacobian of
X as the quotient of a split tor€*)¢ by the image of an explicit homomorphism frdm
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While Schottky uniformization is useful as a general theory, it does not necessarily provide
a method of constructing rational points 6 or its Jacobian in cases of arithmetic interest.
Furthermore, if the parameterizing groligannot be found explicitly, one may not even be able
to calculate the periods of in practice.

In our case of study, namely the modular cun&g(N), it is essential to exploit the
“arithmeticity” given by modularity. By its moduli description, the set of complex points of
Xo(NN) can be identified with the quotient of the extended upper half pline- H U P1(Q)
by the discrete group, (V) acting on the left via linear fractional transformations:

1) Xo(N)(C) =To(N)\H".

Denote byg the genus ofXy(V), and letS, (V) denote the space of cusp forms of lep&l For
anyr,m € H*, we can define a homomorphism deno_tféld from Sz(NV) to C via a complex

line integral:
T2 T2
/:f»—>27ri/f(z)dz.

Since f is a modular form of levelV, this value is unchanged i, andr, are replaced by,
and~y7,, respectively, fory € I'o (V). Thus if Divy H* denotes the group of degree-zero divisors
on the points of the extended upper half plane, we obtain a homomorphism

2 (Divo H*)ry () — Hom(S2(N), C)
[11] = [r2] = <f > 2mi / f(z)dz>.

0— DivgH* = DivH* - Z —0

gives rise to a boundary map in homology:

The short exact sequence

(3) 5:H1<F0(N),Z) H(DiVOH*)I‘O(N)-
Denote the composition of the maps in (2) and (3) by
®1:Hy(To(N),Z) — Hom(S2(N),C),

and letL denote the image ob,. The groupL is free Abelian of ranRg and is Hecke-stable.
Forx € H*, let Z represent the image afin X, (V)(C) =T'o(N)\H*. Under these notations,
the Abel-Jacobi theorem may be stated as follows:

THEOREM 2.1. — The mapz] — [§] — f; induces a complex analytic uniformization of the
Jacobian ofXy(N):

Jo(N)(C) = Hom(S3(N),C)/L.
Let 7 € H* lie in an imaginary quadratic subfield of C. Then

P, ::/eHom(Sg(N),C)/L:JO(N)(C)

oo
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STARK-HEEGNER POINTS ON MODULAR JACOBIANS 431

is aHeegner poinbn Jy(N). The theory of complex multiplication shows that this analytically
defined point is actually defined over an Abelian extensiofpaind it furthermore prescribes
the action of the Galois group @ on this point.

The goal of the remainder of this section is to present the theopyaafic uniformization of
Jacobians of degenerating curves via Schottky groups, as studied by Tate, Mumford, Manin, and
Drinfeld, in the language qgf-adic integration. The standard presentation of this subject (see [15],
for example) involves certain theta functions that often have no direct analogue in the complex
analytic situation because of convergence issues. Thus our new notation, inspired by [1], allows
one to draw a more direct parallel between the complex analytipadic settings. (The ideas
we have drawn from in [1] appear in the construction of certaadic L-functions.)

2.2. Non-Archimedean uniformization

Let K be a local field (a locally compact field, complete with respect to a discrete valuation).
Denote byC' the completion of an algebraic closure &f, and byk the residue field of.

A discrete subgroup’ of PGL4(K) is called a Schottky group if it is finitely generated and
has no nontrivial elements of finite order; such a group is necessarily free. Thelgamip on
P!(K) by linear fractional transformations. The set of limit poifitef I is defined to be the set
of P € P1(K) such that there exigp € P'(K) and distincty,, € T" with ~,,Q converging toP.
For any extensiod’ C C of K, defineHr(F) =P (F) — L.

A curveX overK is called a Mumford curve if the stable reduction’¢fcontains only rational
curves that intersect at normal crossings defined avéthe curveX,(p) over the quadratic
unramified extension a),, is such a curve. Mumford has proven that for every Mumford curve
X, there exists a Schottky grodpC PGLy(K) and aGal(C/K)-equivariant rigid analytic
isomorphism

4) X(C)=T\Hr(C).

Furthermore, the Schottky grodipsatisfying (4) is unique up to conjugation®GL.(K). Itis
free of rankg, the genus ofX.

To proceed onwards to @adic uniformization of the Jacobian of, we must first present
an analogue of the complex line integrals appearing in Theorem 2.1Z lhatve the induced
topology fromP!(K).

DEFINITION 2.1. —LetH be a free Abelian group of finite rank. The grodfeas(L, H) of
additive measures ofi with values inH is the group of mapg which assign to each compact
open subsel/ of £ an elemeni(U) of H, such that

— w(U) 4+ (V) =p(U UV) for disjoint open compacts andV, and

— (L) =0.

The groupMeas(£, H) has a natural’ action, given by(yu)(U) := u(y~1U). Let u denote
al-invariant element oMeas(L, H).

DEFINITION 2.2.— Letd € Divo Hr(C) be a degree-zero divisor. Choose a rational function
fa onP1(C) with divisor d, and define thenultiplicative integra

(5) wy =% fa(t)du(t)
f+f

= lim H fatv) @ pu(U) e C* ®z H.
=0 75,
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Here the limit is taken over uniformly finer disjoint cove#sof £ by nonempty open compact
subsetd/, andty is an arbitrarily chosen point @f .

Remark2.2. — The products in (5) are finite sin€eis compact. The limit converges sinpe
is a measure. Also, singg £) = 0, the multiplicative integral orC of a constant (with respect
to u) vanishes, so Definition 2.2 is independent of the choicg;of

For a complete field extensidn of K lying in C, denote byHr(F) the spac@!(F) — L. It
is clear that ifd € Divy Hr(F), then

][wueFX@)H.
d

TheT-invariance ofu implies:

PrRoPOSITION 2.3. —The multiplicative integral i§ -invariant

][a)u:][w“ eC*®H
d vd

ford € Hr(C)andy eT.

Thus the multiplicative integral defines a map

(6) ][O.)MZ(DiVo HF)F -G, @ H.

Here we viewHr and G,, as functors on the category of complete field extension# of
contained inC'. Let T denote the toru&,, ® H.

Remark2.4. — If 1,5 € Hr(C) andr; # co, we write

fore f - f(E)ae

T1 [2]—[m1]

asin [6].

As we saw in (3) above, there is a canonical map
(7) H1 (F, Z) — (DiVO Hr)r‘,

which composed witli6) yields
(I)l ZHl(F,Z) —T.

Let L denote the image cb; .

As we will describe, there is a universal groudp admitting al'-invariant measureu, in
the sense that i’ € Meas(£, H')", then there exists a homomorphismH — H’ such that
1w (U) = f(u(U)) for all compact open& C L. To properly express this fact, we introduce the
Bruhat-Tits tree associated th We then analyze the rigid analytic spaEgL in the universal
setting.
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2.3. Generalities onp-adic measures

We begin by recalling the Bruhat-Tits tréeof PGL. (K ) (see [15] for a general reference).
Denote byO the ring of integers of{, by 7 a uniformizer of©®, and byk = O/ O the residue
field of K. The vertices off are equivalence classes of free rank tssubmodules o @ K,
where two such modules are considered equivalent if they are homothetic by an eledent of
Two vertices are connected by an edge if they can be represented by moflded N with
N C M and M/N £ k; this is clearly a symmetric relation. The unoriented grdplwhich
results from these definitions is a regular tree of degtd®! (k). The groupPGL2(K) acts
naturally on the tree.

Let v* denote the vertex correspondingd@o® O and letw* denote the vertex corresponding
to O ® 7O. The stabilizer ofv* in PGLy(K) is PGLy(0). The matrixP = () sendsw*
to v*, and hence the stabilizer of* is P~!PGLy(O)P. Lete* denote the oriented edge from
w* to v*. The stabilizer ok* in PGL4(K) is the intersection of the stabilizers of andw*,
namely, the set of matrices BfGL,(O) that are upper triangular moduto This group equals
the stabilizer of0 in PGL2(K) under linear fractional transformations. Thus if we associate to
the oriented edge* the compact open sét.- := O C P!(K), this extends to an assignment of
a compact open subset Bft (K) to each oriented edge of the tree W& L, (K )-invariance:

Uyer : =70 forally e PGLy(K).

We note some essential properties of this assignment:
— For an oriented edge the oppositely oriented edgesatisfied/z = P! (K) — U..
— For each vertex, the setd/, ase ranges over the edges emanating frofiorm a disjoint
cover of P!(K).
— The setdJ, form a basis of compact open subset®of K ).
Let us now return to our Schottky grouip

DEFINITION 2.3. — TheBruhat-Tits tree of" is the subtre@r C 7 spanned by all edges such
that both open sets corresponding to the two possible orientations of the edge contain an element
of L.

The groupl” acts on the tre€r. To each oriented edgeof 7r we associate the compact open
setU.(I') = U. N L. The setd/, (") satisfy the properties above with' (K) replaced byC.

An endof a tree is a path without backtracking that is infinite in exactly one direction, modulo
the relation that two such paths are equivalent if they are eventually édliaé ends off- are
naturally in bijection withL, by sending an end to the unique point in the intersection of all
U.(T") for the oriented edgesof the end.

The spacé{r may be viewed as a thickening of the trBeby means of the reduction map

red: Hr — Tr.

We will define the reduction map only on the points Hf- defined over finite unramified
extensiong” of K. In this case, the tre& of PGL.(K) is naturally a subtree of the Bruhat—
Tits tree 7 of PGLy(F), and hence the tre®- may be viewed as a subtree Bf as well.

A pointu € Hr(F) corresponds to an end 8§ ; this end may be represented by a unique path
originating from a vertex,, in 7r and intersectingr only atv,. The vertexv,, is defined to be
the reduction ofs.

1Rigorously, an end is an infinite sequenggu1 , . . . of distinct vertices of the tree such th@at;, v;+1) is an oriented
edge, modulo the relation th@t; } ~ {w;} if there existn, m such that,,+; = w4, forall i > 0.
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434 S. DASGUPTA

The Bruhat-Tits tree df allows one to understand measurestocombinatorially. Denote by
Er (respectivelyVT) the set of all oriented edges (respectively vertices) of theZre®enote
by Cg the groupDiv Er /(e +€), the Abelian group generated freely by the oriented edg&s of
modulo the relation that oppositely oriented edges add to zero. Dendte ltlye groupDiv Vr.
Define a trace mafir: Cy, — Cg by sending each vertexto the sum of the edges Gt with
source vertex. The trace map is injective. The correspondenee U, (I") shows that for each
H, the groupMeas(L, H) is the kernel of the dual of the trace map:

(8) Meas(£, H)" = ker(Hom(Cpg, H) 2 Hom(Cy, H))"
©) — ker (Hom((C)r, H) =5 Hom ((Cy)r, H)).

The right-hand side of (8) is called the groupltfnvariant harmonic cocycles df- with values
in H. Now (Cg)r =2 Cg and(Cy )r = Cy» whereCg andCy are the corresponding groups
for the finite quotient grapl\ 7r. Thus from basic topology, one identifies (9) with

Hy(I\7Tr,H) =Hom(H"(I'\7r,Z),H).
Since I' acts freely on the contractible spa@ the cohomology groupd!(T'\7r,Z) is
canonically identified with
HY(T,Z) =Hom(T,Z).

Hence the universal free Abelian group admittingf-énvariant measure o4 is precisely the
rankg groupH = Hom(I', Z). The associated univerdgalinvariant measurg may be described
explicitly as follows. Lete be an oriented edge G, and lety € I". Choose any vertex of 71
and consider the unique pathfrom v to vv in 7r. For each oriented edge in the pdthcount
+1 if the edge isI'-equivalent toe, count—1 if the edge isI'-equivalent tog, and count0
otherwise. The total sum of these counts is independemtofl equals the valye(U,)(v) € Z.

2.4. The Manin-Drinfeld theorem

Let H = Hom(T', Z) be as above and lgtbe the associated univerdainvariant measure on
L. In Section 2.2 we associated to the gdif, 1) a torusT” and subgroug. of T via the technique
of p-adic integration. Fox € Hr(C), let z represent the image ofin X (C) = Hr(C)/T.

THEOREM 2.5 (Manin—Drinfeld). —The map

x

1~ a1~ fn

Y

induces aGal(C'/K)-equivariant rigid analytic isomorphism between the rigid analytic space
associated to thé€’-valued points of the Jacobian of the cutieandT'(C)/L.

Proof. —The original statement of the Manin—Drinfeld theorem is given in terms of auto-
morphic functions for the group. Recall from [15, 8l1.2] the definition of the theta function
O(a,b; z) for a,b,z € Hr(C), andz ¢ T'a, T'b:

O(a,b;z) = H —

(One must assume that is not a limit point ofT" to ensure convergence of the product above.)

4® SERIE— TOME 38 — 2005 N° 3



STARK-HEEGNER POINTS ON MODULAR JACOBIANS 435

The following result relates our multiplicative integral to values of theta functions, and allows
one to derive our version of Theorem 2.5 from the original statement [15,29].

PROPOSITION 2.6. — Let a,b be elements of{r(F). Viewing the universal multiplicative
integral as a homomorphism frofmto F*, we have

[ _ O(a,b;6z)
o (f “’ﬂ> RCIE)
b

for any z € Hr(C) — (Ta UTb) and § € T'. (The automorphy properties & imply that the
right-hand side is independent of)

The proof of this proposition is given in [10, Proposition 2.3.1], but the ideas of the proof are
present already in [1].

Theorem 2.5 is the-adic analogue of the Abel-Jacobi theorem. However, it does not allow
for the obvious construction of any Heegner-type points in the éase X (p). In fact, since
Mumford’s groupI is not given in an explicit way and is probably not an arithmetic group, it
appears unclear how to calculate the period$,¢p) (i.e. calculatel) using this uniformization.

(See [14] for the calculation af modulop using this theory, however.) Accordingly, one needs
to find an alternative uniformization for modular Jacobians which uses arithmetic groups in a
crucial way; this is taken up in the next section.

3. An arithmetic uniformization and Stark—Heegner points

Let p be a prime number and/ > 1 an integer not divisible by. Write M = Np. In this
section we will present @-adic uniformization of the maximal quotient df (M) with toric
reduction atp. A key idea, suggested by the definitions of [6], is that phadic arithmetic of
Jo(M) is intimately linked with the group

(11) r— { (‘C‘ Z) € PSL,(Z[1/p]) such thatN|c}

and its homology. The group is not discrete as a subgroupBfGL2(Q,) and hence acts with
dense orbits of?*. In this setting, withK = Q,,, the limit point set equal§ := P!(Q,). (Since
T is not discrete, if the ground fiel&t is enlarged then the limit point s&(K) = P1(K) is
enlarged as well; thus our definition 6f= P'(Q,) is slightly ad hoc.) We also have

Hr(C,) =H, :=P*(C,) - PY(Q,),

whereC,, is the completion of an algebraic closure@jf.

A measure orP!(Q,) is given by a harmonic cocycle on the entire Bruhat-Tits tfee
of PGL2(Q,). Repeating the analysis of Section 2.3, one finds that there are no non-trivial
[-invariant measures oR*(Q,). This problem can be remedied by introducing-énvariant
measure-valuethodular symboés follows.

Let M := Divo P}(Q) be the group of degree-zero divisors BA(Q), viewed as cusps of
the complex upper half plane. The groy is defined by the exact sequence

(12) 0— M —DivP(Q) - Z — 0.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



436 S. DASGUPTA

The groupl acts onM via its action onP!(Q) by linear fractional transformations. For a free
Abelian groupH, aMeas(P*(Q,), H)-valued modular symbol is a homomorphism

M —Meas(P1(Q,),H), m fin,.

The group of modular symbojs has al"-action given by

(v"'1),, (U) = ptym(VU).

Motivated by Sections 2.3 and 2.4, we will explore the universaivariant modular symbol of
measures o' (Q,,).

3.1. The universal modular symbol

One can interpret the group of co-invariants
Mro )y = Ho (Do (M), M)

geometrically as follows. Given a divis@t] — [y] € M, consider a path from to y in H*. If we

make the identificatiod’s (M)\H* = X, (M)(C), the image of this path gives a well defined
element ofH; (Xo (M), cusps, Z), the singular homology of the Riemann surfakg(M)(C)
relative to the cusps. Manin [28] proves that this map induces an isomorphism between
H1(Xo(M),cusps, Z) and the maximal torsion-free quotient® 5. This maximal torsion-

free quotient will be denotedy(T'y(M), M)r. The torsion ofHy(Ty(M), M) is finite and
supported at 2 and 3. The projection

M — Mrg vy — Hi (XO(M)7cusps,Z)

is called theuniversal modular symbol fdr,(M).

The points of Xo(M) over C correspond to isomorphism classes of pdifs Cy,) of
generalized elliptic curveE'/C equipped with a cyclic subgrou@,, C E of order M. To such
a pair we can associate two points &f(/V), namely the points corresponding to the pairs
(E,Cn) and(E/C,,Cy/C,), whereC),, andCy are the subgroups df,, of orderp and N,
respectively. This defines two morphisms of curves

(13) f1:Xo(M) — Xo(N) and fy:Xo(M)— Xo(N),

each of which is defined ove. The mapf> is the composition off; with the Atkin—Lehner
involution W, on X, (M). Write f. = f1, ® f2, andf* = fI & f5 (respectivelyf, andf*) for
the induced maps on (relative) singular homology:

f*1H1(X0(M)7Z) —>H1(X0(N)7Z)2,
[ Hi(Xo ) — Hy(Xo(M),Z),
foH (Xo ),cusps, Z) — Hy (XO(N),cusps,Z)z,
f*H (X ), cusps, Z) —>H1(X0(M),cusps,Z).

Via the universal modular symbol, the last two maps are identified with faps

21In purely homological termsf;, is corestriction, andfz, is the compositionf, o W,; similarly for f* and
restriction.
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fi:Ho(To(M), M) — Ho(Fo(N),M)Q,
T : Ho(To(N), M) — Hy(To(M), M).

Define
(14) H := (Hy(Xo(M),cusps,Z)/f*(Hi (Xo(N),cusps, Z)2))T
(15) = (Ho(To(M), M) /f*(Ho(To(N), M)?))
(16) H:= (Hl(XO(M)7Z)/f*(H1(XO(N)vZ)Z))T'

PROPOSITION 3.1. — Let H be as in(15). There is a uniqu@—invariantMeas(Pl(Qp),_ﬁ)—

valued modular symbat such thatg,, (Z,) = m for all m € M. Furthermore, the pai(H, )
is universal.

Proof. —Let Cg denote the free Abelian group on the oriented edgés wfodulo the relation
e + ¢ =0 for all edges, and lef’y, denote the free Abelian group on the verticesZofLet
Tr:Cy — Cg denote the trace map which sends a vertewn the sum of the oriented edges
with source vertex. The correspondence between harmonic cocycles and measures shows that
aT-invariant modular symbol of measures Bri(Q,) with values in a group! is equivalent to
an element of

ker (Hom(Cr @ M, A) , Hom(Cy ® /VLA))F.

Hence there is a universal such modular symbol taking values in
(7) (Cp ® M)r/ Tr(Cy @ M)r.

The action ofl” on the tree7 is particularly easy to describe [38, 8ll]. Each oriented edge of
7 is equivalent to eithee* or e*; each vertex is equivalent to eithet or w*. The stabilizers
of v* andw* in T arel'o(N) and P~1T'o(V) P, respectively, wheré is the matrix(g ‘1)) The
stabilizer ofe* is the intersection of these, namdly(1); also,U.~ = Z,. Shapiro’s Lemma
identifies (17) with

(18) Mroany/ Tr(Mrg vy © Mp-ipy(nyp)-
Noting that the mapn — Pm defines an isomorphism
H,(P7'To(N)P,M) — H,(To(N),M)
and that the mafir in (18) is nothing but the map denotgd in (15) proves the result. O
3.2. Statement of the uniformization

The Abelian variety.Jo(M)P™¥ is defined to be the quotient ok (M) by the sum of the
images of the Picard maps on Jacobians associated to the finapsl /> of (13). This is the
Abelian variety with purely toric reduction atfor which we will provide a uniformization (up
to isogeny).

PROPOSITION 3.2. — If we write g for the dimension of, (M )P™"<¥, the free Abelian groups
H and H have rankg and2g + 1 respectively, and the natural mdp — H is an injection.
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Proof. —It is well known thatf* is injective and thafd has rank2g. Consider the following
commutative diagram of relative homology sequences:

0 —— Hi(Xo(N),Z)* —— Hi(Xo(N),cusps, Z)> —— C(N)* —=0

o .

00— Hy(Xo(M),Z) — Hy(Xo(M),cusps, Z) C(M) 0

HereC'(N) andC(M) denote the groups of degree-zero divisors on the set of cusfis(d¥)
and X (M), respectively. Ifc denotes the number of cusps &f(V), these are free Abelian
groups of rankc — 1 and2c¢ — 1, respectively. Above each cusp &} (N) (under the mayy;)

lie two cusps ofX, (M), one of which has ramification indexand the other one of which is
unramified. The mapV,, on X,(M) interchanges these two cusps. This implies that the map
C(N)? — C(M) of (19) is injective and that the torsion subgroup of its cokernel has exponent
dividing p?> — 1. Since H and H are the cokernels of* and f*, the snake lemma vyields the
proposition. (Note that we have also shown tfiais injective.) O

To define a modular symbol that takes value&fimather thand, we choose a map
v:H — H.

We will require two properties of the mafs, whose uses will later become evident:
— The groupsd and H have natural Hecke actions described in Section 4.2. We assume that
the mapy is Hecke-equivariant.
— We assume that the compositionyofvith the inclusiond ¢ H is an endomorphism off
with finite cokernel.
Let  be the universal-invariant modular symbol of measures B1(Q,,) from Proposi-
tion 3.1, and defing: := + o 7. Theny is a T-invariant Meas(P'(Q,), H)-valued modular
symbol.

DEFINITION 3.1.— Letd € Divo’H,, be a degree-zero divisor, and let € M. Choose
a rational functionf, onP*(C,) with divisor d, and define thenultiplicative double integral

(20) f / wp = f Falt) (1)

PI(Q,)

HM”*}O H fd tU ®/L77L(U) E C; ®Z H,
veu

with the notation as in Definition 2.2.

TheT-invariance ofu implies that this integral i§'-invariant:

f/w“ ][/Wu foryeT.

~yd ym

Letting 7" denote the toru%’ = G,,, ®z H, we obtain a homomorphism
(21) ((DivoHp) @ M) — T

4® SERIE— TOME 38 — 2005 N° 3



STARK-HEEGNER POINTS ON MODULAR JACOBIANS 439

Consider the short exact sequencé& ahodules definindivy H,:
0 — Divo'H, — DivH, —Z — 0.
After tensoring withM, the long exact sequence in homology gives a boundary map
(22) §:Hy(T', M) — ((Divo Hp) @ M) .

The long exact sequence in homology associated to the sequence (12) défingiges a
boundary map

(23) §:Hy(T,Z) — Hy(T, M).

Denote the composition of the homomorphisms in (21) and (22) by
O, H(I'M) —=T(Cp),

and the further composition with (23) by
®y: Hy(T,Z) — T(C,).

Each element in the image @f, may be expressed in terms of double integrals involving divisors
d supported ort{r (F’) for any nontrivial extensiot” of Q,,. By the independence of the integral
from the choice of", it follows that the image of,, and hence, as well, lies inI'(Q,,).

Denote byL the image ofb,. The torusl’ inherits a Hecke action frorl. We may now state
our main result.

THEOREM 3.3. — Let K, denote the quadratic unramified extensionf. The groupL is
a discrete, Hecke-stable subgroupBf{Q,) of rank 2¢g. The quotientl’/L admits a Hecke-
equivariant isogeny ovek), to the rigid analytic space associated to the product of two copies
of Jo(M )P mew,

During the course of proving Theorem 3.3, we will give some control over the set of primes
appearing in the degree of this isogeny. Also, we will see that if one lets the nontrivial element
of Gal(K,/Q,) act onT'/L by the Hecke operatdy, (defined in Section 4.2), this isogeny is
defined oveQ,.

Remark3.4. — If we had not used the auxiliary projectign H — H and continued our
construction with integrals valued i, ® H, the corresponding quotieAt/L would be
isogenous to two copies df (M )P™¥, with one copy of&,,, arising from the rank one quotient
H/H. However, as the projections to thi,, of the Stark—Heegner points we will define later
bear little arithmetic interest (see [10, Chapter 8]), we lose little in employing the projegtion
in exchange for the technical simplicity gained. The Eisenstein quokeii{ has eigenvalue
+1 for complex conjugation. In [7], partial modular symbols are used to construct Eisenstein
guotients where complex conjugation acts-ak and the resulting projections of the Stark—
Heegner points t€x,,, are related to thg-units arising in Gross’s variant of Stark's Conjectures
[19].

Remark3.5. — The moduléd can be expressed up to finite index as a dilim® H—, where
the modulesf ™ and H ~ are the subgroups on which complex conjugation (dentited acts
as1 or —1, respectively; these each have ran&verZ. This decomposition off explains the
two components of '/ L described in Theorem 3.3.
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Remark3.6. — In Section 5.1, we will show how Theorem 3.3 is a generalization of the Mazur—
Tate—Teitelbaum conjecture [32, Conjecture 11.13.1] proven by Greenberg and Stevens [16,17].

Granting Theorem 3.3, we next describe the construction of Stark—Heegner points on
Jo(M)Pmew,

3.3. Stark—Heegner points

Fix T € H, andz € P*(Q). Consider the 2-cocycle i#?(T, T(C,)) given by

V1T Y1722 T
(24) drx(Y1,72) = 7[ / Wy = ][ / W
T Mz T [nz]=[v1727]

where here as alwayB acts trivially onT. It is an easy verification that the imagk of

dr . in H?(I',T(C,)) is independent of the choice efandz. SinceT(C,) is divisible and
H, (T, Z) is finite (see Proposition 3.7 below), the universal coefficient theorem identifiéts

a homomorphism

Hy(T',Z) - T(C,);

this homomorphism is preciselyy,. Thus L, which was defined to be the image ®§, is the
minimal subgroup of (C,) such that the image ofin H*(T",T(C,)/L) is trivial.
Thus there exists a maf . :I' — T'/ L such that

YT Y17Y2%

(25) BT,$(71'72) - B‘r,m (71) - B‘r,m (72) = ][ / Wy (mod L)

T 71T

The 1-cochaing; ., is defined uniquely up to an element Hom(I',7/L). The following
proposition allows us to deal with this ambiguity.

PrROPOSITION 3.7. — The abelianization df is finite, and every prime dividing its size divides
Gp(N)(p? — 1).

Proof. —This is a result of Ihara [24]; we provide a quick sketch. In (33) we described an exact
sequence that identifig$, (T', Z) with the cokernel of the natural map

Hy (To(M),Z) — Hy (To(N), Z).

SinceT'g(N) acts on the complex upper half plafé with isotropy groups supported at the

primes 2 and 3, the groufl;(I'o(N),Z) may be identified with the corresponding singular
homology of Yy(IV)(C) = I'y(N)\H outside of a finite torsion group supported at 2 and 3.
Hence we must show that

(26) Y Hy (Yo(M),Z) — Hy(Yo(N), Z)?

has finite cokernel.

Poincaré duality identifiedd; (Yo(NV),Z) with the Z-dual of the relative homology group
Hy(Xo(N),cusps,Z). We are thus led to reconsider the diagram (19) of Proposition 3.2.
The injectivity of f* implies that the cokernel of (26) is finite; furthermore, this cokernel is
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isomorphic to a subgroup of the cokernel of. A result of Ribet [36] implies that the torsion
subgroup of the cokernel gf* is supported on the set of primes dividigg/N). We saw in
the proof of Proposition 3.2 that the torsion subgroup of the cokernél(df)?> — C(M) has
exponenp? — 1. The snake lemma completes the proof:

We may now define Stark—Heegner points.iiiM )?™*%. Define the ring

27) R:= { (Z‘ Z) € My (Z[1/p]) such thatV divideSC}.

Let K be areal quadratic field such thais inert in K'; choose an embeddirgof K into R, and
also an embedding ok into C,,. For eachr € H,, N K, consider the collectio®, of matrices
g € R satisfying

(28) g (I) =g G) for some), € K.

The ring O is isomorphic to &[1/p]-order in K, via the mapg — A\, = c¢7 + d. The group
of units in O of norm 1 is a free Abelian group of rank 1. Let be the generator such that
o(MNy,) > 1if o(r) > o(r’), and such that(\,,) < 1 if o(7) < o(7’). Here7’ denotes the
conjugate ofr over Q; the definition ofy, is independent of choice ef. Finally, choose an
r € P1(Q), and lett denote the exponent of the abelianizatiod of

DEFINITION 3.2.— The Stark—Heegner point associateditas given by
O(7):=t-Bro(vr) €T(Kp)/L.

Multiplication by ¢ ensures that this definition is independent of choicg.of satisfying (25),
and one also checks th&tr) is independent of. Furthermore, the poir(7) depends only on
theI'-orbit of 7, so we obtain a map

®:T\(H,NK) —T(K,)/L.

Let us now denote by, the two mapsl'/L — Jo(M)P™" of Theorem 3.3, where the sign
denotes the corresponding eigenvalue of complex conjugatiof o@omposing® with the
mapsv., we obtain

O :T\(H, NK) — Jo(M)PV(Ky).

The images ofb .. are the Stark—Heegner points gg( M )P™°v.

As in [6,7], we conjecture that the images®f satisfy explicit algebraicity properties. Fix a
Z[1/p]-order© in K; let us assume that the discriminant@fis prime to)M. Let K denote
the multiplicative group of elements df of positive norm. Define th@arrow Picard group
Pict(0) to be the group of projective rank od&submodules of¢ modulo homothety by< .
Class field theory canonically identifi@ic™ (©O) with the Galois group of an extensidii™ of
K called the narrow ring class fielcf K attached ta):

rec: Pic* (0) — Gal(H" /K).

Denote bw{f the set ofr € H, N K such thatO. = O. The basic conjecture regarding Stark—
Heegner points is:

CONJECTURE 3.8. —If 7 € HY, thend.. (1) € Jo(M )™ (HT).
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We now proceed to refine this statement into a “Shimura reciprocity law” for Stark—Heegner
points. AZ[1/p]-lattice in K is aZ[1/p]-submodule ofK" that is free of rank. Define

A; aZ[1/p]-lattice in K,

QN(K):{(A17A2)7 with Ay /Ay ~ Z/NZ.

b
There is a natural bijection from Qn (K) to I'\(H,, N K), which toz = (A1, A2) assigns
T(7) = w1 /wa,
where(w;,ws) is aZ[1/p]-basis ofA; satisfying
wiwy —wiws >0,  ordy(wiwh — wiws) =0 (mod 2),
andA; = (Nwj,ws). Here we have writtew — w’ for the action of the nontrivial automorphism
of Gal(K/Q). Denote by (O) the set of pairg§A;, Az) € Qn(K) such thatO is the largest
Z[1/p]-order of K preserving bothA; and A,. Note thatz(Qx(0)) = T\HS. The group
Pict(0O) acts naturally o2y (O) by translation:
a: (Al,Ag) = (aAl, CLAQ),
and hence it also acts otfQ2x (O)) = I'\'HS . Denote this latter action by
(a,7)—ax7, foraePict(0), rel\HYS.
Our conjectural reciprocity law then states:
CONJECTURE3.9.—If 7 € Hf, then® (1) € Jo(M)P™¥(H™"), and
Oy (axT1)=rec(a) ' dy(7)

for all a € Pict(0).

Remark3.10. - SinceH™ is a ring class field, the complex conjugation associated to
either real place ofx is the same inGal(H*/K). Let a,, denote an element dic™ (0)
corresponding to this complex conjugation. Then for either choice ofesigr-, we have

D (a0 *x7) = €D (7).

The proof of this fact is identical to Proposition 5.13 of [6], since the mafactors through
a torus on which the Hecke operaldf,, (see Definition 4.3) acts as

The general conjecture that Stark—Heegner points are defined over global fields, and certainly
the full Conjecture 3.9, are very much open. However, theoretical evidence is provided in [2,7].
Computational evidence is provided in [8,9,11]. Theorem 3.3 is proven over the course of
the next two sections. We start with some combinatorial observations that lead to a complete
understanding of thg-adic valuation of the integration map.
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4. Combinatorial observations

We now review the exact sequence in homology which arises when a group acts without
inversion on a tree (see [38, Chapter II, §82.8]), and apply these observations in our context.
Define homomorphisms

(29) 0:Cp—Cy, (W) =[t)] - [s(v)].
e:Cy —1Z, e([z]) =1.

Since7 is a tree, the sequence
(30) 0—Cp-LCy -~Z—0,

is exact. LetA be anyI’-module. SinceZ is free, we may tensor (30) witd without losing
exactness, and then taking homology gives the long exact sequence

As we saw from the description of the action &f on 7 described in the proof of
Proposition 3.1 (namely, that acts onl” with 2 orbits and transitively o, with stabilizers
isomorphic tal'o (V) andI'y (M) respectively), Shapiro’s Lemma gives natural identifications:

(32) H,(T,Cg® A)=H;(To(M), A),

Hy(T,Cy ® A) = H;(To(N), A)*.
The long exact sequence (31) in conjunction with (32) yields the exact sequence:
(33) - — H;(To(M),A) — H(To(N), A)* = H;(T, A) — H; 1 (To(M), A) — -
4.1. Thep-adic valuation of the integration map

Let the valuatiorord,, of Q, be normalized so that the valuationfs 1. In this section we
will analyze the composite map

ord, ®Id
_—

ord, ®;: Hi(T,M) 25 QX @ H Z®H=H.

By definition (see (15))H is a quotient ofH,(I'o(M), M), so we have natural maps

(34) Hy (T, M) % Hy(To(M), M) —H,

whereg is the last arrow of (33) witli= 1 and A = M. Denote by. the composition of the map
H{(Dy,M) — H in (34) withy: H — H.

PROPOSITION 4.1. — The mapord, ®; is equal toc.

We first prove a lemma.

LEMMA 4.2. - Letr, > € H, reduce to vertices connected by an oriented edgk7:
d(e) = [red(Tg)] - [red(ﬁ)].
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Extend the valuationrd, to the maximal unramified extension@f. Then we have

i Jfo)ema

T m

Proof. —The groupPGL4(Q,) acts transitively on the edges of its Bruhat-Tits tree, and the
reduction map i GLy(Q,)-equivariant. Thus it suffices to consider the case whereduces
to the standard vertex correspondingp® Z,, andr, reduces to the vertex corresponding to
Z,®pZ,. Inthis case, we hawé, = P'(Q,) — Z,. Let; € P!(F) for an unramified extension
F of Q,. The fact that; reduces ta, implies that the image of; in P*(kr) does not equal
the image of any pointe P'(Q,) in P! (kr), wherek is the residue field of". In particular,
71 € Op. Thus fort € P1(Q,), we have

0 if t € Zy,
ordy(m —t) = {ordp(t) otherwise.

Similarly,

-1 if t € Zy,
ordy(r2 —t) = {ordp(t) otherwise.

Without loss of generality, in the definition of the multiplicative integral, we need consider only
open covering$é{ that refine the open coveringd/z, U, }. For eachU in such a covering, the
previous calculation shows thaitd,,((tiy — 72)/(tv — 71)) equals—1 or 0 according to whether

U c Uz or not. Thus the valuation of each product inside the limit defining the multiplicative
integral equals-ii,,,(Uz) =11, (Ue). O

Lemma 4.2 explains thg-adic valuation of the double integral in terms of the combinatorics
of 7', and allows us to prove Proposition 4.1.

Proof. —We give a quick sketch; see [10] for a more detailed expositionnLée a 1-cycle
representing a class iff; (I', M); this is a formal linear combinatiop_. .. m, [7] such that all
but finitely many of then, € M are zero, an@W (ym~y —my) = 0. Choose any € H,; then

By(m) = Hf [ener@,).

T My

Chooser such that it reduces to the standard vertextor eachy let c, be the unique element of
Cg suchthad(c,) = [y~ 'v*]—[v*]. Then Lemma 4.2 implies thatd,, ®; (m) equalsy applied

to the image of __ ¢, ® m, in H, with H viewed as in (17). Understanding the sequence (31)
ati =1 shows that this is exactlym). O

4.2. Hecke actions

Let Aq = PGL,(Q), and letA denote one of the grougs I'¢(V), or 'y (M), considered
as a subgroup ahq. Fora € Aq, let

(35) AaA=| oA, ai€lq
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be a decomposition of the indicated double coset into left cosets.

DEFINITION 4.1.— LetA be aAg-module, and letv € Aq. Define the Hecke operator
T(a) on the group ofA-co-invariants ofA as follows. Letm € A represent the element
m € Hy(A, A), and let

T(a)m := Za;lm € Ho(AA).

This definition is clearly independent of the choicengf Also, for eachy € A and eachy;,
there exist uniqug and~; € A such that

(36) v =
For ~ fixed, the correspondence- j is a permutation. This implies that the definitionf«)

is independent of choice of representativdor m.

DEFINITION 4.2.— Define the Hecke operatorl’'(«)) on Hy (A, A) as follows. Letm =
> m,[y] be a 1-cycle representing a clagss H;(A, A).

T(a)im:=3 a7 (my)l;

where then; and~; are as in (36).
Once again one may check that this definition is independent of all choices.

Remark4.3. — It is more natural to define Hecke operators on all the homology groups
H;(A, A) for ¢ > 0 by “dimension shifting” with Definition 4.1 as the base case. Proceeding
in this fashion gives a definition which is consistent with Definition 4.2; see [10] for details.

WhenA =Ty(M) or T and/{ is prime, we writeT; or U, for T'( g (1)), according to whetheft
divides M or not. For these two groups, the situation for Hecke operatgrssasubtle. Let\,
denote the normalizer dfy(Np) in

(37) [:=RX/U= { (‘CL Z) € PGL3(Z[1/p]) such thatV diVideSC},

where U = Z[1/p]* is embedded ink* via scalar matrices. The determinant Bnmaps
to U/U?, which is a Klein 4-group. When restricted 1d, the determinant map induces an
isomorphism

N/To(Np)=U/U* = Z/2Z x Z./2Z.

Let o, denote any matrix i which maps to the image gfunder the determinant map, and let
o be any matrix which maps to the image-ef. To be explicit, we may take

-1 0
(38) a,,:(]f;p p%;> and ozoc=<0 1),

wherepz — Ny = 1.

DEFINITION 4.3. - LetA be aAg-module. TheAtkin—Lehner involution ap acting on the
homology groups of'((M) is given byW,, := T'(«y,). The Atkin—Lehner involution at infinity
is defined by, := T ().
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Remark4.4. —If Hy(T'o (M), M) is identified with H (Xo(M), cusps, C), then the action
of W coincides with that induced by complex conjugation on the manifgjd)/)(C).

LEMMA 4.5.— The operatorsiy, Uy, Up, Wy, and Woo preserve the kernel of* and the
image off*. In the induced actions oker f* andcoker f,, we havel, + W, =0.

In particular, Lemma 4.5 provides a Hecke action8n The subgroupdd C H is Hecke-
stable. For the groujp, the double coset oP is the right coset of any one matrix @t* of
determinanp. Thus the operatdy, = IV, is an involution on the homology groups Bf Also,
U, = —W, is an involution onH . We write IV for the involutionsU,, on H and the homology
groups ofT".

We relegate the proof of the following proposition to Appendix A:

PrROPOSITION 4.6. — EndowT" with a Hecke action via the action oH. The integration
map(21)

7[/%; (DivoH,) ® M), — T

is equivariant for all the Hecke operator¥) for ¢ 1 M, U, for ¢|N, W, and W ..
4.3. The lattice L

From (33) we have

(39)  Hy(To(N),M)? — Hy(T, M) 5 Hy(To(M), M) L5 Ho(To(N), M)?.

The sequence (39) combined with Proposition 4.1 implies that the imafe @k (), M)? in
H,(T", M) under the integration map; has trivialp-adic valuation. Thus, for the image of the
integration map to be discrete i, it must be the case that the imageff(I'o(N), M)? in T

is finite. We will prove this by exploiting Hecke actions. We exclude the proof of the following
Lemma (see [10, Section 5.3]).

LEMMA 4.7.— The groupsH;(Ty(N), M) and H,(To(M), M) are isomorphic tdz, and
are Eisenstein as Hecke modul&$ acts as? + 1 for £{ M (and for¢ =p on Hy(T'g(N), M)),
W acts as—1, andW acts asl on Hy (I'o(M ), M).

Define a modified Eisenstein idealof the (abstract) Hecke algebra by lettifidoe generated
byT,— ({+1)forét M, (p+1)W — (p+1),andW, + 1.

LEMMA 4.8.— The idealZ annihilates the image aff; (I'q(N), M)? under the integration
map®; .

Proof. —The mapH; (I'o(N), M)? — H; (', M) is Hecke-equivariant fofy, £ M, andW,
by basic computation; the boundary mAp(T", M) — ((Divo H,) ® M)r is Hecke-equivariant
by a formal computation (see [10, Lemma 5.1.3]). Thus Proposition 4.6 impliesbthad
Hecke-equivariant. Also, the action @, on H;(I'q(N), M) is given byp + 1 matricesc;
of determinant, hence the action df, on H,(I'¢(IN), M) becomes that ofp + 1) on its
image inH; (I, M). The result now follows from Proposition 4.7 0

Let H* = Hom(H, Z) denote the dual off, soT(Q,,) = Hom(H*, Q). Itis a standard fact
that H*/ZH* is finite: after tensoring witlC, one obtains the space of holomorphic Eisenstein
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series that are cusp forms (of which there are non&hus Lemma 4.8 implies that the image
of H1(To(N), M)? under the integration map; is finite.

PrROPOSITION 4.9. — The group of periodd, C T'(Q,) is a Hecke-stable lattice of rartlg.

Proof. —As already mentioned, a formal calculation (see [10, Lemma 5.1.3]) implies the
Hecke-equivariance of the boundary maps

Hy(I',Z) — Hy (I, M) and H;(T',M)— Hy(L, (Divo H,) @ M).

Hence Proposition 4.6 implies thét, is Hecke-equivariant, and thus thiais Hecke-stable.
From (39), the kernel of the map

Hy(T',M) — H' :=ker f,

is the image ofH;(I'(V), M)?, which has finite image under the integration map. Thus it
remains to show that the image &% (T",Z) in H' has rank2g and injects intoH C H. The
groupH,(T", Z) may be understood using the sequence (33) again:

(40) H,(To(N),Z)* — Hy(T, Z) — Hy (To(M), Z) — Hy (To(N),Z)".

As in the proof of Proposition 3.7, the homology Bf(/NV) may be identified with that of
Yo(NN) outside of 2 and 3-torsion. Sind§(NN) is a noncompact Riemann surface, the group
H,(Yy(N),Z) vanishes. And the right-hand arrow of (40) may be identified with

Y Hy (Yo(M),Z) — Hy (Yo(N), Z)°

Thus the image offfy(I",Z) in H' = ker f, is precisely H' := ker f,. We need to show
that H' injects into H = coker f* and has finite cokernel. Yet the endomorphigpo f* of
H1(Xo(N),Z)? can be given explicitly by the matrix

«_(p+1 T,
Jeo 7= ( 7, p+1)°
Since the eigenvalues @f, are bounded bg,/p, this endomorphism is injective and has finite

cokernel; the result follows. O

Remark4.10. — The finite grougi/H' reflects congruences between modular forms of level
N and M. In [3], the images of Stark—Heegner points in this finite Hecke-module under the
p-adic valuation map is related to special values of certain Rahigeries.

5. Proof of Theorem 3.3

Let .7 denote the Hecke algebra &f (that is, the subring of the ring of endomorphisms of
the groupH generated oveZ by T, for ¢+ M, U, for ¢|N, andW). In Proposition 4.1 we gave

31n the case wheréV = 1, Mazur [30] has conducted a detailed analysis of the giitigZ H*. WhenZ includes
the element¥ — 1 rather than justp + 1)(W — 1) as in our setting, Mazur finds th&t* /ZH* is cyclic of sizen,
wheren is the numerator of the fractiofp — 1) /12.
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a combinatorial description of the mapd, : L — H ® Z,, given by

LcT(Q) B HoZ— HaZ,.

Consider now the logarithiog,, : L — H ® Z,, given by

lo,
L CT(QP) ﬁ) H®ZP7

where now and throughout this article we choose the branch of the logarithm for whj¢h) =
0.

PROPOSITION 5.1. — There exists an elemerft, € .7 ® Z,, such that
(41) Zpord, A=log, A forall A e L.

Proposition 5.1 will be proved in Section 5.3.
DEFINITION 5.1. — The elemeng, is called theZ-invariant of '/ L.

Remark5.2. — LetHy = H/(W. F 1) be the maximal quotients dff on which complex
conjugation acts as a scalat. The fact that there is an elemeff, in .7 ® Q,, satisfying (41)
for each of the factorél_ ® Q,, and . ® Q,, follows from the fact that each of these modules
is free of rank one ovef ® Q,, and thaibrd,,: L ® Q, — Hy ® Q, is surjective. The fact that
the sameZ, works on each factor, and that this element is integral, follows from our specific
construction and proof in Section 5.3.

Our goal is to connect’/ L with the Abelian varietyJ = Jy(M)P™°¥. This Abelian variety
has purely toric reduction at, and itsp-adic uniformization can be described as follows. Let
S denote the set of supersingular points in characterjstim X,(NV), and letX := Divg S
denote the group of degree-zero divisors $inThe groupX has a natural Hecke action: by
T, for ¢4 M (U, for ¢|N, andU,) by sending a supersingular point (V) to the formal
sum of thel + 1 (respectively2¢ + 1 and 1) ¢-isogenous supersingular points, counted with
multiplicity; the operatofV’ = U,, has order two and is also given by the actiorGel(F 2 /F,,)
on the supersingular points. It is well known that the Hecke algebrd efjuals that offf; in
other words, there is a ring homomorphisth — End(X) sendingT, — T}, etc.* Thus we

may considetX as a module for7. Let G, = Gal(Q,,/Q,) act onX (via the Gal(F:/F))-

action onS) and onHom (X, 6;) byo(h)(z) =o(h(ct(z))). Thereis arigid analyticZ’ [G,, |-
equivariant isomorphism

J(Q,) = Hom(X,Q,)/X,
where the inclusion
Q:X —>Hom(X,Q;) =X ®Q;
is given by a symmetric pairing
(42) X xX—Qr.

(Here we have writtetl * = Hom(X, Z).) The Hecke operators are self-adjoint for this pairing.

4This is because after tensoring witly the spectrum of; on X consists of theth Fourier coefficients of a basis of
p-new forms of levelM/; the spectrum of; on H consists of each of these eigenvalues repeated twice.
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Remark5.3. — Although this description Q!(Qp) seems to be well known to the experts,
we could not find this description in the literature except for the case Wienl and X,(p)
is a Mumford curve [13,14]. For the general case, [12, Chap VI, Theorem 6.9] describes
a regular proper model foX,(Np) over Z, whose special fiber consists of two copies of
Xo(N) intersecting transversely at the supersingular points. From [5, Example 8] (see also [5,
Corollary 9.7.2] and the comments following), this implies that the character group of the toric
part of the reduction of the Néron model &f(Np) is canonically identified withX. Sections
1 and 2 of [4] (in particular Theorems 1.2 and 2.1) combined with the self-dualitfy yiéld
our given description; the functoriality of these constructions under correspondences yields the
Hecke-equivariance.

Composing (42) with the-adic valuation gives &-valued pairing (the “monodromy pairing”)
on X which is nondegenerat®,and hence yields an injection
ord, Q: X — X™.
Similarly, composing with log,, yields
log,Q: X — X" ®Z,.
PROPOSITION 5.4. — Let %), be as in Propositios.1 We have

Zyord, Q(z) =log, Q(x) forall z € X.

Proposition 5.4 will be proved in Section 5.4. Propositions 5.1 and 5.4 imply Theorem 3.3
as follows. For a set of primeB, we say that two analytic spaces &eisogenous if there is
an isogeny between them whose degree is supported on the eleménttetfr, : H — H_
denote the natural projections. Sinkeis equivariant foiV,, andH — H_ @& H has cokernel
supported a2, it follows thatT'/ L is {2}-isogenous to

(T/L)- & (T/L)+ 1= (G ® H_) 7L & (G ® H) /1 L.

We will show that each ofT'/L) 1 is isogenous td.

Recall the Hecke-equivariant majp: H — H from Section 3.2 used to define our modular
symbol valued inf, and denote by)_ : H_ — H_ the induced map obtained by modding out
by W, + 1. Recall thatH’ = ker f,. and letH’ be its corresponding quotient.

Since all of the groups below are free of rank 1 ovEr® Q after tensoring withQ, it is
possible to find Hecke-equivariant mafpsandé¢’ fitting into a commutative diagram

o -7

(43) 9 l ig_
ord, Q
X X+

where the horizontal arrold’ — H _ is the natural inclusion. Recall that

5The monodromy pairing is given simply as follows: define a pairingn .S by requiring that distincs, ¢ € S are
orthogonal, while an elementpaired with itself equald /2 the number of automorphisms efthis pairing restricted to
X =Divg Sisord, Q.
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(1) The mapd,: Ho(T', Z) — T factors throughb, : H; (', M) — T.
(2) The composite

Hy (To(N), M) = Hy(T, M) 2T

has finite image.
(38) The image off»(T', Z) in H,(T', M)/H;(To(N), M)? is canonically identified with’
(see the proof of Proposition 4.9).
The identification of (43) implies thag’ induces a mapH,(T',Z)_ — X, also denoted” .
Consider the diagram

71'7‘1)2

Hy(1,Z)_ =22 QX @ H_
(a4) s_l i”t
X ¢ -Qrex

Proposition 4.1 implies that the composition of the top row of (44) witl, is equal to
the composition ofH,(T',Z)_ — H' with the top row of (43). Thus the commutativity of
(43) implies the commutativity of the-adic valuation of (44). Since all the maps in (44)
are Hecke-equivariant, Propositions 5.1 and 5.4 show that the commutativity ofdheof
(44) automatically impliethe commutativity of théog, of (44). Thus the diagram (44) itself
commutes, up to elements in the kernel of blot}), andord,,; these elements are torsion of order
dividingp — 1 (or 2 if p=2).

Hence the map

¢ Gn@H_ —GpoX*

induces an isogen{I’/A)_ — J. Furthermore, the kernel of this isogeny is identified with the
cokernel of

& H —X.

A similar argument forH, then proves Theorem 3.3 and furthermore bounds the primes
dividing the degree of the isogeny to lie in

P = {¢: ¢divides2(p — 1) or the size of either coket, : H}, — X }.
5.1. Connection with the Mazur—Tate—Teitelbaum conjecture

Let E be an elliptic curve with conductaVp and split multiplicative reduction at. In this
section, we show that Theorem 3.3 implies the Mazur-Tate—Teitelbaum conjecture Toe
conjecture, stated below in Theorem 5.5, was proven by Greenberg and Stevens in [16].

Let Z;; denote the ideal of the Hecke algebra @f corresponding toE and the “plus”
modular symbol (that is, the ideal generatedy— a, for £{ Np, W, — 1, and W, — 1,
wherea, = + 1 — #E(F,)). The quotientd /Z;; has rank 1 oveZ; the projection

vhH — HY = (H/TE), 2 Z

is the plus modular symbattached tar,. We retain the notation of [32] and write

awla M) =05 (|57 | = 1)
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THEOREM 5.5 (Greenberg and Stevens [16], conjectured by Mazur—Tate—Teitelbaum in
Conjecture 11.13.1 of [32]). —Let ¢ be a Dirichlet character of conductaf prime top such
that(p) = 1. Then

1
nh%rr;Q Z Y(a)log,(a) g (a P c) ng Z Y(a)Ag(a,c)
a mod pmc a mod ¢

whereqr € Q,; is the Tate period of.

After tensoring withG.,,,, the projection¥}, yields a mapy:T — G,,. According to
Theorem 3.3, the quotiert,,, /¢ (L) is an analytic space isogenous to the elliptic cube
This implies that every element @f(L) is commensurable with the Tate perigg of E. By
evaluating a particular element ¢f L), we will deduce the MTT conjecture. In what follows,

we denote
T2 Y T2 Y
w(f/%) oy | [wiecy

Consider the classe H, (I', M) represented by the 1-cyalf] — [oc])[( '/” )] The element

¢ is in the image of the boundary map fraly (T, Z), since a simple calculation shows that the
image ofc in the next term of the exact sequence

(45) H,(T',Z) — H;(I',M) — H, (I,DivP(Q)) =T%

vanishes (this is true for any class representedby— [y])[7], for v stabilizingz andy). Here
I'. denotes the stabilizer ak in T", and the equality of (45) follows from Shapiro’s Lemma.
Thus the double integral

p’T oo
q ::][ /wg €Q,
T 0

lies in (L), and in particular does not depend on the choice.dh fact, sinceW, = W, =
on H7, it follows (see [6, Proposition 5.13]) that the multiplicative double integral is invariant

under the full grougf“ (defined in (37)). In particular, one finds that
q:= 7[ /wg €Q,
T/p 0
is independent of and thaty’ = ¢2. Thusq is commensurable withz as well, so

logp(q) _ logp(qE)
ordy(q)  ordy(gm)’

(46)

To evaluatey, chooser to reduce to the standard vertexof the tree7 . Since the matrix?—!
sendw* to w*, Lemma 4.2 implies that

(47) ordy(g) = 5 ([0] — [o0]) = Ag(0,1).
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Letn > 1;fora=0,...,p" — 1 definel, := a + p"Z,. To evaluatdog,, ¢ € Z,, modulop”,
it suffices to take a cover @*(Q) by the sets

(48) Uso :={t € P (Qp): ord,(t) < —n},
1 1 1
(49) —nUa,FUa,...,z—?Ua fOfa;éO (modp),

andU, foralla=0,...,p" — 1. The contributions to the integral definingz,, ¢ from each of
these terms are as follows:

(50) Us: 0,
1 a/p* —1 a—phr
—U,: log, | ———— ") =1 _ "
pkUa ng(a/pk_T/p>)\E(a7p ) ng<a_pk17_ AE(a’72) )7
a—T n a—T n
(51) U,: 10gp(a—r/p>)\E<a’p )_Ing(pa—T))\E(a7p )

Summing these values (the terms of (50)fc£ 1, ..., n telescope, and the distribution relation

)\E (a/ap"_l) = Z )‘E (aapn)

a mod p"
a=a’ mod p"

allows one to cancel terms in the denominator of (51) forallith the terms in the numerator
for p|a) one obtains

p"—1
(52) log,(q) = Z log,(a)A\g (a,p”) (Inod p").
=1
(alylp):l
Egs. (46), (47), and (52) yield Theorem 5.5 for the trivial character. The more general statement
for a character of conducter> 1 may be obtained by repeating our analysis above for each
(v, c) = 1 with the 1-cycle

([v/c] = [oa]) [,
with v € T stabilizingv/c andoo. We omit the details (see [6, §2.3]).

5.2. Hida families and the definition of.Z,

In this section we define the elemefff, € 7 ® Z,,. Let X, = X,(Np), and define a tower
of curvesX, aboveX, corresponding to the congruence subgrollps=T"s(N) N T'1(p"), for
r>1:

X, (C)=T,\H".

The points ofX,. classify triples(E, C, P), whereE is an elliptic curve (' a cyclic subgroup of
sizeN, andP a point of ordep”. The natural mapx,; — X, send(E,C, P) — (E,C,pP)
for r > 1, and the mapX; — X, sends(E,C, P) — (E,(C, P)). ComposingX, — X, with
the two mapsXy — Xo(N) from (13), we obtain two degeneracy malis — Xy (V) for each
r > 0 (there are actually + 1 natural degeneracy maps for eack 1, but we will be interested
in only these two). Lef;* denote the pullback on homology from the two copieXg{N) to X,
and define

H, = [H1(X,, Z,)/ £7 (H1 (Xo(N), Z,)*)] .
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sothatd, = H ® Z,,. Let 7, denote the Hecke algebra &f., generated ovet,, by T, for £ M,
U, for ¢|M, and the diamond operatof8) for d € (Z/p"Z)*. Here 7y = 7 ® Z,. Define the
Hida Hecke algebra

T :=1lim 7,
which has the structure of := Z,[[Z]]-module, where the group elementsZf act via the

diamond operators. Let denote the augmentation ideal &f If T° denotes the image d¢f
under Hida’s ordinary projector, Hida has shown:

THEOREM 5.6 (Hida [22, Corollary 3.2]). -The A-moduleT? is free of finite rank and
T°/IT° = 5.
Remark5.7. — The mafI® — % of Theorem 5.6 is the natural projection. Itis clear tH&P
lies in the kernel; Hida’s “control theorem” 5.6 is th8T'° is the entire kernel.
The standard identificatiofil) — 1 — d yields an isomorphism

1/ =1imZ}/(Z2))",

since the groufZ, is Abelian. Composing witlog,, : Z* — Z,,, we obtain a map also denoted
log,:1/1? — Z,,.

Lett be an element o' whose image g, vanishes. By Hida’s Theorem 5.8, lies in I'T?
(wheret? is the image of under the ordinary projector). Consider the image’dh

IT°/I*T° =1/I? @5 T°.
Using the map
log, ®1d:1/I* @ T° — Z, @5 T°
we further map our elemento

Zp [N TO:A/I®A TOZTO/ITOZ %.

The image oft under this series of maps is denotéde 9, to reflect the intuition that it
represents the derivative ofin the direction of the level (i.e., the fact th&t € I'T° means
that the “value” of the “function’ is 0 at the base of the tower, so its imagdh° /12T is its
“derivative”).

Sincel, = —W,, on H, andW,, is an involution, the elemerit— U2 vanishes in7 .

DEFINITION 5.2. — We define the element
L= (1-U2) € .
5.3. Proof of Proposition 5.1

Let 7 € H,, lie in the quadratic unramified extensidn, of Q,, and assume further that
reduces to the central vertex of the tree7 . Consider the map

B, K)@OH—K,@H, k@hw—log,(k)®h—2,(ord,(k)®h).
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Composing the 2-cocyclé, , € Z*(I', T(K,)) from Section 3.3 with3» yields

V1T Y172%
A% € 221, K, © H), dfg’;(%ﬁz)i:ﬁz’p(][ /wu)

T 7T

As in Section 3.3, the lattic8», (L) is the smallest subgroup &f, ® H such that the cocycle

d;sjpg splits in the quotient; thus to prove equation Proposition 5.1, it suffices to provd‘;ﬁaat
splits.
We will in fact show a stronger result. Define a 1-cocycle

¢, € Z'(T, Hom(M, T(K,)))

by the rule

e (1)(m) =f/ i

Composing:; with 3, , we obtain a 1-cocycle

¢?» € Z' (T, Hom(M, K, ® H)).

It is a basic calculatiof that the splitting ofcZ” implies the splitting ofdffé; the splitting of
c‘?” is in fact what we will show.
The main idea for splitting the cocyclé?" is to lift the modular symbo}. of measures
on P'(Q,) to a modular symbol of measur@son aZx-bundleX over P'(Q,). The space
X :=(Z, x Z,)" is defined to be the set of pai(s,b) € Z, x Z, such thatz andb are not
both divisible byp; this set of “primitive vectors” makes an appearance in the earlier work of

Greenberg and Stevens [17]. The spXcadmits a map
m: X — PI(QP)7
(a,b) —a/b.

The fibers ofr are principal homogeneous spaces Zgy. If we consider the elements &
as column vectors and |€&Ly(Z,) act on the left, the map is GL3(Z,)-equivariant. In this
section, we will consider the groups (V), T, T, etc. as subgroups @&L, (rather tharPGLo
as in previous sections).

Remark5.8. — If the functionf () = ¢t — 7 were integrable o' (Q,,), a formal calculation
would show that
petm) = [ g, (¢ = ) dpn(0)
P (Q,)

is an explicit splitting of the cocycleg,, c., i.e. thatdp, = log, c,. However, this is not the case
sincef(t) has a pole at= co. This explains the role of the spaXe the functionf (a,b) = a—br
is integrable orX, has a zero along the fiber overand no poles.

61f the 0-chainp, split5cf”, then the 1-chaim- . defined byn- . (v) = pr([z] — [y]) splitsdf}}.
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PROPOSITION 5.9. —There exists al'o(N)-invariant Meas(X, H ® Z,)-valued modular
symboliz such that

(53) ljm(Z; X pr) = Um(Pl(Qp) - Zp) = _¢(m)

for all m € M.

(Recall that the map was defined in Section 3.2 to create a modular symbol valudd in
rather thanH .)

Remark5.10. — Since théy(N)-translates of?'(Q,) — Z, form a disjoint open cover of
P1(Q,), the Ty(N)-invariance ofzz combined with (53) implies tha has the same total
measure ag, hamely O:

Im(X)=0 forallme M.

Proof. —Our methods follow those of Greenberg and Stevens [17, p. 203} ldetnote a free
Z,-module of finite rank, viewed as a trividlly (/V)-module. AT'(N)-invariantMeas(X, A)-
valued modular symbol is an element of
(54) M(A) := H°(To(N), Hom (M, Meas(X, A))).

Foreachr > 1, letT", =Tz(N)NT(p") as in Section 5.2. Th€y(N)-moduleMeas(X, A)
is isomorphic to an inverse limit of induced modules from the grolipsas follows. Let
X, :=(Z/p"Z x Z/p"Z)', the set of primitive vectors ifiZ/p"Z)?. Then we have

Meas(X, A) =limMeas(X,., A),
where the mapdleas(X, 1, 4) — Meas(X,., A) are given by, 11 — u,-, where

pe@) = > pea(y):

y=z (mod p7)

(¢ 4)~ ()

is a bijection and hence induces an isomorphism

The mapl'y(N) /T, — X, given by

Meas(X,., A) = Indll:‘:(N) (A).
Thus by Shapiro’s Lemma and the universal coefficient theorem, (54) can be identified with

(55) EiinHom(Ho(FT,M),A).

Concretely, an element of (55) is a sequence of mapsH, (T, M) — A, compatible in the
sense that

or(m) = Z‘Pr+l(7i_lm) €A,
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for all m € M, where they; range over a set of coset representative§foil",.. ;. The sequence
{¢r} defines &' (V)-invariantMeas(X, A)-valued modular symbol by the rule:

o frex o= () ) st

wherey is a matrix in['g () that is equivalent t¢’ ) modulop”.

For an element of (55) representing an element®df(A), the measure of the compact open
setZ, x pZ, (the inverse image under of PY(Q,) — Z,) is given by the image ofi in
Hom(Ho(I'o(Np), M), A).

Extending our maps vid,-linearity, and identifying Hy(I',, M)r geometrically with
Hy(X,,cusps,Z), we may write

M(A) = lim Homg,, (H (X, cusps, Z,), A).

In relating the modul@vI(A) to the work of Hida, it will be convenient to dualize the description
above. Denote byA the Z,-dual Homz (A,Z,); then for two finite freeZ,-modules A
and B, it is clear thatHomgz, (A, B) = Homz, (B, A); we write the map corresponding to
f € Homz, (A, B) as f € Homg, (B, A), so f(g)(a) := g o f(a). Identifying the dual of
H,(X,,cusps, Z,) with H,(Y,,Z,) (whereY, = X, — cusps) via Poincaré duality, we then
have

M(A) =limHomg, (A, Hi(Y,,Z,)).

The statement of the proposition is that there exists an elemeM (@7 ® Z,) such that
its image inHomz, (H,H:(Yo,Z,)) is preciselys). Such an element exists since the maps
H.(Y,,Z,)— H1(Y,-1,Z,) are surjective. O

In the course of the above proof, we shovddd A) = Homz, (M, A), where
M =lim Hy (X, cusps, Zy,).

As usualM has a Hecke algebra generated dégtby the diamond operators and the operators
T,, etc.

Remark5.11. — A point of caution is in order: since the tower definiMgs (essentially) dual
to the tower of Section 5.2, one must correspondingly take the dual Hecke operators. In other
words, Ty is given byT((l) 2) in the notation of Section 4.2, since these are the operators that are
compatible with the maps in trairect limit defining M. In particular, the action o/, is given
by 7'(, ). for which thea; in (35) can be chosen to be

()

Define the ordinary patvI(A)° C M(A) to be the set of homomorphisms that factor through
the ordinary projectoM — M° C M. In order to havdJ, invertible, we will always assume
that the modular symba@l arises fromivI°.

for the groupA =T,
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Let the modular symbqi correspond to &,-module homomorphisnfi: M° — A. For each
elementt € End(M?) of the Hecke algebra aM?®, the mapf o t:M° — A yields another
measure-valued modular symbol, which we denotg@hy

We also extend all measures &nto the larger spac” := Qf, — 0 by imposing invariance
under multiplication byp:

ﬂm (pU) = ,am (U)

for all compact opend/ C Y; this extension is well defined becauXeforms a fundamental
domain for the action of multiplication by on Y. The purpose of this extension is th#t
(considered as column vectors) has a natural actidhlof left multiplication, whereaX does
not. Recall that” denotes the matrik? ).

PROPOSITION 5.12. — Let U be a compact open subsetX¥fand lety be as above. We have

it (U) iU CZX x pZy,

-1
fint (U) U CZ,xZX.

fPm (PU) =

Proof. —Let U (a, ¢; r, s) denote the basic compact open set

U(a,c;r,s)_{@) eX: z=a (modp"), y_c(modps)}.

We will demonstrate the first case of the proposition by considérirgU (a, ¢; r,r) with Np|c
and(a,p) =1. Then

where thex’s are chosen so that the resulting matrices li€{§(V). This proves the first case of
the proposition. Similarly, one shows that

fip=1m (P7'V) = e (V)

forV CpZ, x Z;; lettingU = P~V proves the second case of the propositior.

COROLLARY 5.13. —The push forward under of the modular symbagl is preciselyy, i.e.,

fin (171 (U)) = ki (U)
for all m € M and all compact opety C P}(Q,).
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Proof. —The fact thafi is 'y (V)-invariant means that
(56) fym(YU) = i (U)

for all v € I'y (V). Furthermore, we showed in Proposition 5.12 that we can chodsstable
basis of compact operi$ of X satisfying

_ ~Uil
(57) fipm(PU) = fin (U).
Combining (56) and (57) we find
- _ _Us
(58) /U'P_l'me (P IFYPU) = :ump (U)

for v € T'o(N), wheree denotes some even power dependingyorSinceT is generated by

its subgroupd’o(N) and P~T'4(N)P (our description of the action df on the treeT in
Section 3.1 shows thatis the amalgam of these two subgroups with respect to their intersection
T'o(M), cf. [38, 8l1.1.4]), Egs. (56) and (58) imply that

e

(59) iy (YU) = fint (U)

forally € I'. Let us apply this rule with/ = Z7 x pZ,:

e

ﬂm(’YU) = rasflm(U)
(60) = —Us (¢(v " m))
(61) = Um (’Y(Pl(Qp) - ZP))'

Here (60) follows from property (53) defining; (61) uses the fact thdfg =1 on H, and the
definition of x. Since thel translates ofP'(Q,) — Z, and its complement form a basis of
compact opens faP!(Q,), the result follows. O

The modular symbofi can be used to split the cocch:e%P explicitly. Define a 0-chain
pr € C°(T',Hom(M, K, @ H)) by the rule

pr(m):= /logp(a —b7)dfim(a,b)
X

= lim Y log,(av — buT) @ fim(U),
=0 5=,

where the limit is over uniformly finer covet$ of X by disjoint compact opens, and(ay, by)
is an arbitrary point ot/. We will show in stages thatp.. = .

PROPOSITION 5.14. —If v € T'4(NV), then

pr (v~ 'm) = pr(m) =log, (;[/ wu>
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Proof. —Recall our assumption thatreduces to the distinguished vertexof the Bruhat-Tits
tree of PGL2(Q,). Sincel'( (V) preserves this vertex, Lemma 4.2 shows that

YT
ord, <][/ wu> =0,

and hence the first equality of the proposition implies the second. Wr:tte(‘z 2) Using the
['o(NV) invariance ofi we calculateo, (y~1m) — p,(m):

/ log, (z — y7) dfim ((,)) — / log, (z — y7) djim (. )

X X
= /[logp((dfc —by) = (—cx + ay)7) —log, (z — y7)] dfim (2, y)
X
_ (1o (e —by) —(—extay)T o
!1 gp( T —yr >d,um( 7y)'

Since the integrand depends onlytoa x /y and the push forward ¢f is 1, the above expression
equals

1ng((dt —b) — (—t+ a)7'> dn(®

t—T1
P1(Qp)

_ / logp(t(cH-cr)— (ar—l—b)) Qa8

t—T1
PH(Qp)

_ / 1ogp(tt_7:) djim () + / log, (d + ¢7) djim(2)

P1(Qp) P1(Qp)

where the last equality follows singehas total measure zerox

For the matrixP ¢ T'o(NN), the situation is somewhat different.

ProPOSITION 5.15. —

(62) / log, (¢ — y) A%, (x,) - / log, (¢ — y7) dfim(, )

X X
P 1r
= (log, =%}, ord,) ( ][ /Wu> .

Proof. —~We use the change of variables y) — (px,y) and the decomposition

-1
P'X =(Z, xZ}) U <€ 2) (2 x pZy)
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to break up the first integral (note alke, (pr — y7) = log, (z — %)):

/ log, (¢ — yr) A%, (z,1)

X
YT\ -0 ' YT\ -1,
= / logp <I’ - p) d#gﬁn(vay) + / logp <I - p) d:u“gin(xay/p)

Zp X2y Z) XpZyp
T N T U2
= / log,, (w - %) dfim (2, y) + / log, <x - ‘%) djin’ (2, y),
Zyp, X Z) Z) XpZy

by Proposition 5.12. Thus the left-hand side of (62) becomes

z—L _ T _1-U?
(63) !/k%p<x_;;>dﬂm0%y)_ / k%pr—%;>dum  (@,y).
X

Z; XpZy

The first integral of (63) can be pushed forward®d(Q,,) as in the proof of Proposition 5.14

and equals
P 'r
logp< ][ /Wu>~

The second integral of (63) may be further decomposed:

CON (x - %) a7 % (@)

Z;f XpZy,

2 1-U2

_1-U. T -
= [ eg@an e+ [ 1og,,(1—§j—x)dum Yy).

Z; XpZy, Z;,( XpZy
The second integral of (64) is again a push forwar®tdQ,) — Z,; since the push forward of

772
[ﬁn U is evidently the zero measure, this integral vanishes. Thus the proposition results from the
lemma below (and Lemma 4.2).00

Recall the notation of Section 5.2.

LEMMA 5.16. —Lett be an element df' whose image i, vanishes. We have
/ log,,(z) dfiy, (z,y) = —t" -9 (m).
Z; XpZy

Proof. —By Hida’s Theorem 5.6, we need only consider elements of the feeni(d) — 1)h,
with 4 € T. Modulop",

(65) / log, (x) dfiy, (2,y) = Z log,,(a)er (h((d) — 1)y~ 'm),

Z;; xpZi y€Lo(Np)/Ty
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wherea represents the upper left entry of the matyixThe action of(d) is given by a matrix
v4 € To(N) such that

d-! o« -
"yd< 0 d) (mod p"),
so (65) becomes

(66) > logla)er(hyg 'y im) = > log(a)e, (hy T m).

y€Lo(Np)/T ~Y€ETo(Np)/Tr

As ~ ranges through coset representativesIfp(/Np) /T, the matricesyy,; do as well; the
change of variables — ~, in the first sum of (66) simplifies the entire expression to

Y. (log,(ad) —log,(a))or (hy'm) =log,(d) > ¢r(hy 'm)
Y€To(Np)/Tr Y€To(Np)/Tr
= log,, (d)fuy, (Z x pZy)
= —log,(d) - h-y(m).
This proves the desired resultc

Propositions 5.14 and 5.15 together imply thatfat I'o(N), we have
(67) pr(P~'yPm) — p,(m) = 2 (P~'yP)(m).

Since the groupo(N) and P~1T'y(NV) P generatd’, Propositions 5.14 and Eq. (67) yield
the following proposition, which implies Proposition 5.1:

PROPOSITION 5.17. —The chainp. splits thel—cocyclec;fj” for the groupl’, i.e.,dp, = c;(f”.

5.4. Proof of Proposition 5.4

The methods of this section follow very closely those of [16], but we include the argument for
completeness. The ma&pyields an exact sequence 6f[G,,]-modules:

(68) 0— X — Hom(X,Q, ) — J(Q,) — 0.

The image of the first nontrivial map above liesom (X, Q).
DEFINITION 5.3. — The Z-invariant of J is the element oEnd(X ® Q,) such that

log, Q(z) =ord, Q(Zx) forallze X,

wherelog,, @ andord,,  have been extended V@, -linearity.

Following Greenberg and Stevens, we will interpret teinvariant of J as arising from the
deformation theory of the Galois action on its Tate modi¥g J. Letrec: Q¥ — Ga" be the
Artin reciprocity map. WriteFrob,, for rec(p)~?; this is a lifting toGgb of the Frobenius map
on the maximal unramified extension @f,.

From (68) one finds (by connecting (68) with itself via the multiplication gy map,
employing the snake lemma, and taking the inverse limit over)all

0 — Hom (X, Ta, Q, ) — Ta, J — X ® Z, — 0.
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Twist the above sequence by the unramified charact€¥, — 7 * that send$rob, to U, (o
the moduleX (¢) has trivial G,-action), and tensor witQ,,. We then have

(69) 0 — Hom(X(9),V,Q, ) — V, J() — X () ® Q, — 0,

whereV, denotesQ, ® Ta,. We will denote the three terms in this sequenceAy3, and

C, respectively. As noted by Greenberg and Stevens, #hivariant of J can be deduced
from knowledge about deformations of the sequence (69). A deformation of the mddsle
aT°[Gp]-moduleA such thatA /TA = A as(T°/IT°)[Gp] = Ty |Gp]-modules, wherd is the
augmentation ideal of as in Section 5.2. Suppose we have a deformation of the sequence (69),
that is, a commutative diagram

0 If 113 T 0
(70) 0 1& T T 0
0 A B C 0

where we have omitted the 0 terms on both ends of the vertical short exact sequences. Suppose
further thatA is a trivial deformation, in the sense that the actiorGgfon A is given by the
cyclotomic character (as it is af). Let ¥ : G, — End(C) define the Galois action o@'. Since
G, acts trivially onC, for eachc € C we haves(c) — ¢ € IC. Consider the image ef(c) — ¢

in

(71) IC/I*C=1/I? ®, C.

As in Section 5.2, we map this vlag, ® Id to

(72) Z,,C=A/IeyC=C/IC=C.

Thus to eacly € G, andc € C, we have associated an element dendtéd)(c). Furthermore
U'(0)(IC) =0, so¥'(c0) factors through the quotie®/IC = C, and may thus be viewed as
an element ofind(C). It is trivial to check that¥’(o) depends only on the image afe G2".

We now relate theZ-invariant of J to ¥’.

PROPOSITION 5.18. — Letu € 1 + pZ, be a nontrivial unit. Then we have

(73) U’ (Frob,) =%

!
o Iog, U\If (rec(u))

as elements dind(C') =End(X ® Q,).

Proof. —Denote byAs : IC — C the composition of the maps in (71) and (72). Defikg
similarly, and use the same notation for the induced maps on cohomology. A basic calculation
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verifies the commutativity of the following diagram 6%,-cohomology groups:

HO(C) 25> HY(1C) 2%~ H'(0)

(74) —d1 \L b2 03

oA

H'(A) 2~ H2(IA) 22~ H?(A)

All of the maps labelled arise from coboundary maps in (70). N&W, acts trivially onC, so
H°(C) = CandH'(C) = Homcont (G3”, C). Furthermore, for each nontrivial unite 1+pZ,,
the mapH!(C) — C @ C given by

(75) m:€— (g(Frobp)7 10gLuf(rec(u))>
p

is an isomorphism independentof
By definition, ¥’ (o) (c) = Ac o dc(c) (o). Also, sinceA is a trivial deformationy 4 = 0. Thus
from the commutativity of (74), we have

(76) 53 (W’(Frobp)(c), %

pu

W’(rec(u))(c)) 0

for all ¢ € C'. We will determine the kernel a¥; via the perfect pairings of Tate duality (see [40,
8§3] for a general reference and [16, p. 422 of §3] for the present application):

H'(C)x H*"(A) — H*(Q,(1)) =Q,, i=0,1,2.

This pairing may be described explicitly for = 1 as follows. For each element €
Hom(X,QY), we define an element € H'(A); choose @"th rooté!/?" of ¢in Hom(X,Q;)
for eachn, compatible in the sense thi@t/?" ™" )P = ¢1/?"  The assignment

o (0 — 1)(61/10”) c Hom(X,TapQ:)

is a cocycle representing a class denoted H'(A). The definition ofy; is independent of the
choice ofp™th roots of¢. If

¢=) f®qe X" ®Q) =Hom(X,Q))

and¢ € H(C), the Tate duality pairing is given by

(€ve) = f(&(rec(q))) € Qp.

From this description, it one verifies that the duélof the isomorphismr from (75) satisfies
(77) (")~ HY(A) — C* @ C*,
Ye = (—ord,(é),log,(é)).
By the self-duality of (69), the kernel af; is dual to the image of,. Yet ¢, is the map

¢ Yqg(e)- Thus (77) implies that the kernel ¢f consists of elements of the for(ia, a);
hence (76) yields the result.c
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The following theorem of Mazur and Wiles is the main arithmetic ingredient towards proving
L=,

THEOREM 5.19 (Mazur and Wiles [34]). -There exists a deformation sequence a$7ih)
with the Galois action or€ given by¥ : G, — T° — End(C) satisfying

U (Frob,) = Ug €T’ and ¥(rec(u)) = (u)

foruel+pZ,.

Proof. —This is Proposition 2 of Chapter 8 in [34]; see the comments at the end of that chapter
for a description of the Galois action. Although [34] deals only whth= 1, the constructions of
[33] from which the result is derived are carried out for higher |eVeds well. O

We may now verify Proposition 5.4:
PrROPOSITION 5.20. —The.Z-invariant of J is equal to.Z,,.

Proof. —With ¥ as in Theorem 5.19, itis clear thét(Frob,,) = ., and¥’ (rec(u)) = log,, u.
Thus the proposition follows from Proposition 5.183

6. Computational examples

Definition 3.1 of the multiplicative double integral is explicitly calculable on a computer. For
fixed p, this definition allows one to calculate a given double integral to an accuradypfidic
digits in time exponential il/. Darmon and Pollack [9] have devised an algorithm to calculate
these double integrals in time polynomialif, but we use only the naive definition in the present
article. The computations of this section were done in PARI/GPdignificantp-adic digits.

In this section we restrict to the cagé = 1. As noted by Manin [28], the groupl =
Hy(To(p), M) has a presentation with generataréor i € P!(F,) subject to the relations

i+ Si=0andi+Ti+T% = 0, where the matrice§ = (¥ ') andT'= ("~} }) act onP" (F,,)
by linear fractional transformations. Here the generatmrresponds to the elemeiiiy/i] — [0]
for an arbitrary lift ofi in Z, and the generatax corresponds tf0] — [oco].

For simplicity, we will only consider the minus quotieit_, and takey)_ to be the natural
projectionH — H_.

Recall sequence (45):

(78) H,(T,Z) — Hy (I, M) — H,(I',DivP!(Q)) =T2.

There is an explicit isomorphisifi = Z x Z/(p* — 1)Z given by (¢ aﬁl) — (ord,(a),ab).
We identify the image of»(T', Z) in H;(T', M) as those elements whose imageEif vanish.

As discussed in the proof of Proposition 4.9, the grélypl’, Z) is isomorphic taH (Yo (p), Z)
(perhaps modulo some 2- and 3-torsion, which we will ignore). The kerngl 6¥;(p), Z) —
Hy(Xo(p),cusps, Z) is generated by a small lodparound one of the cusps. By sequence (33),
the image of in H,(I", M) lies in the image off, (PSL»(Z), M)?2. But an explicit calculation
shows that a generatgrof H,(PSLy(Z), M) maps to(0,6) in T'2>; thus the image of in
Hy (T, M) is precisely((p* — 1)/6)g. But this multiple ofg vanishes under the integration map
®, (we saw already thab, (g¢) is torsion, and hence of order dividipg- 1; in fact by Mazur's
work on the Eisenstein ideal it follows thathas order dividing the numerator gf — 1) /12).
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Thus, we may calculatés (y) for an elemeny € Hx(I', Z) as follows. We find the image of
yin H, calculate a pre-image iH; (I', M), and modify this pre-image by a multiple gfo that
its image inl2> vanishes; this defines an elemght H, (T, M), and we have

vyl
%(y)z@(y’):f /w,terX@H_?

where) " m.[v] is a 1-cycle representing.
6.1. Genusone

Consider the casg = 11. The groupH is generated by, 2, and4. The subgroup* on
which complex conjugation acts asl is generated by and2, so the quotienti_ = Z is
generated by the image &f We calculate a lift oft from H to H, (I, M) whose image i
vanishes, and find that its image under the integration map is

q®4, whereg=10-11+4-1124+9-113 + O(11%).

This ¢ is the Tate period of the elliptic curve labelled 11A2 in Cremona’s tables, with minimal
Weierstrass equation

Eiiag:y? +y =2 — 2% — 78202 — 263580.

This elliptic curve is 5-isogenous tB1141 = Xo(11) = Jo(11). The Tate period o114 is
q°, and an explicit isogen¥; 142 = G, /q — E11a1 = G, /¢° is given byx — 2°. Thus the
conjecture that the Stark—Heegner points we defin&'gn > are global implies that the Stark—
Heegner points which Darmon defines&p(11) should be images of global points frafiy; 5.
Computationally, Darmon and Green [8] found even more to be true: their results suggest that the
Stark—Heegner points o, (11) constructed from the minus modular symbol are all globally
multiples of 5.

The casep = 17 andp = 19 are similar.

6.2. Genus two

For the cases wher#)(p) has genus two and is simple € 23,29, 31), Teitelbaum [39] has
provided an explicit power series expression for theta series which can be used to compute the
p-adic expansions of the periods. We now compare our results to those which he obtains.

Forp = 23, the groupH is generated by, 2,5, 7, and16. The subgrou|dLIJr is generated by
0 2, and7 + 16. The quotientH _ is generated by the images ®and7. Lifting the elements
5 and7 to elements ofH, (I', M) in the image ofH(T", Z), we find the following periods in
Q®H :

=23(5+13-23+19-23%+0(23%)) @5+ (1+18-23+12-232 + 0(23%)) @7,
7= (18402348237 +0(23%)) ®5+23(19+22-23+19-23° + 0(23%)) @ 7.

The supersingulag-invariants in characteristi23 are —4, 1728, and0; the corresponding
elliptic curves have automorphism groups of size4, and 6, respectively. The elements
Y1 = e1728 — €9 and -y = ¢y — e_4 form a basis forX. There is an isomorphism of Hecke
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modulest’ : H_ — X given by¢’ (5) =, and¢’ (7) = 1 + .. Letting&_ be the composition

ord,

H_ £, X = X*
the commutativity of (44) implies that the pairidg: X x X — Q' is given by the matrix

Qi) = 235(20+11 23 +13-232 4+ 0(23%)) 2373(7+17-23+20-23% + 0(23%))
TN T 93=3(7T+17-23 420232 + 0(233))  234(4+3-23 45232 + 0(233))

This agrees with Teitelbaum’s matrix for the periods.fgf23) with respect to this basis; the
casep = 29 andp = 31 are similar.

6.3. Genus three

Forp =41, the groupH is generated by, 2, 3, 4, 14, and16 The subgroupHJr is generated
by 0, 2, 3 — 14, and4; the quotientH_ is generated by, 6, and16. To an accuracy of three
41- ad|c digits, we calculate the periods:

g5 =141(23782+ 0(41%)) ® 3+ (59512 + O(41%)) ® 6+ (25675 + O(41%)) ® 16,
== (12226 + O(41%)) ® 3+ 41(32593 + O(41%)) ® 6 + (23174 + O(41%)) ® 16,
g = (62438 + O(41%)) @ 3 + (25675 + O(41%)) ® 6 + 41 (4828 + O(41%)) ® 16.

The supersingulag-invariants in characteristi¢l are0,3,28, and32. The groupX has a
basis given byy; = eg — e3, 72 = e3 — eas, andys = ez — e32, and there is a Hecke-equivariant
isomorphismH_ — X given by3 — vz, 6 — 71 + 372 — 3 and16 — —v; — 2y,. We then find
the following period matrix fot/y (41):

414(44694 + O(41%))  4171(584 + O(413)) 44659 + O(413)
Q(vi,vj) = | 4171(584 4+ O(41%))  41%(33290 4+ O(413))  4171(61525 + O(41%))
44659 + O(413) 4171(61525 + O(413))  412(37136 + O(413))

Appendix A. Hecke equivariance of the integration map

In Section 3.2 we defined an integration map:
(A1) ][/wﬁ:((DivoHp)®M)FHT:Gm®F.

In Section 4.2 we defined a Hecke action(@Piv, H,,) ® M)r and also ol
PROPOSITION A.1. — The integration maA.1) is equivariant forly, U, for £ # p, andW ..

Proof. —The first observation is that sinée# p, we may take the same set®f in defining
the Hecke operators fdr and H. Also, we haven;e* = e* for the distinguished edge’. We
now show that this implies

14

(A2) D ot (05 1U) = Te(f,, (U)).

=0
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Forvy €T, writey la; = O‘w(iﬂfl for some indexy(i) andy; € I". Then

14 4 4
Zﬁaflm(a;lU’Ye’*) = Zﬁa:lm(fy'LUe*) = ZV;la;lm = Zagl’y_lm'
i i =0 7=0

This proves Eq. (A.2).
We now calculate, fok = ([r2] — [11]) ® m € ((Divo H,) @ M)r,

(A.3) (][ / wﬁ>(Tgk):1:[ a][ / o

Huoltlunio H (tU o ) @ Tt (U)

ty —a; T
— lim H (M) @71, (a7'0)
i HUHHOUGZ/{ tU — 17-1 a; Tm A\
ty — 7 1
A.4 _ - -
(A.4) HHUHHO H < tu _T1> Ho 1 m( )
. ty — Ty _
A.5 -1 o To(@. (1),
- IUIIIIEOUI;{{(tU—Tl> 2 (11, (U))

Eq. (A.4) uses the fact that,,(P'(Q,)) =0, and (A.5) uses (A.2). The right-hand side of (A.5)

((f1-0)

PROPOSITION A.2. —The integration mayA.1) is W -equivariant.

as desired. O

Proof. —The key to this proposition is that the matriz definingl¥,, on H interchanges the
verticesv* andw*, and hence sends the edgeto its opposite. The action d¥ on theI'-co-
invariants of 8P GL2(Q)-module is given by the action of a matrix R of determinanp. Thus
for eachy €T, if we let 3 = o, 'yoy, € T, we find that

ﬂu;lm (04;1(]"/6*) :ﬁaglm (agl,yzp) :ﬁofl (ﬁoz_lzp)
1o, (02) =~
= —a;l,y—lm = W(ﬁm(U'ye*))-

The proof of the proposition now follows along the proof of Proposition A.d.
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