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TWISTEDK-THEORY OF DIFFERENTIABLE STACKS

BY JEAN-LOUIS TU, PING XU 1 AND CAMILLE LAURENT-GENGOUX1

ABSTRACT. – In this paper, we develop twistedK-theory for stacks, where the twisted class is given b
S1-gerbe over the stack. General properties, including the Mayer–Vietoris property, Bott periodicity, a
product structureKi

α⊗Kj
β → Ki+j

α+β are derived. Our approach provides a uniform framework for stud
various twistedK-theories including the usual twistedK-theory of topological spaces, twisted equivari
K-theory, and the twistedK-theory of orbifolds. We also present a Fredholm picture, and discus
conditions under which twistedK-groups can be expressed by so-called “twisted vector bundles”.

Our approach is to work on presentations of stacks, namelygroupoids, and relies heavily on the machine
of K-theory (KK-theory) ofC∗-algebras.

 2004 Elsevier SAS

RÉSUMÉ. – Dans cet article, nous développons laK-théorie tordue pour les champs différentiables, o
torsion s’effectue par uneS1-gerbe sur le champ en question. Nous en établissons les propriétés gé
telles que les suites exactes de Mayer–Vietoris, la périodicité de Bott, et le produitKi

α ⊗ Kj
β → Ki+j

α+β .
Notre approche fournit un cadre général permettant d’étudier diversesK-théories tordues, en particulier
K-théorie tordue usuelle des espaces topologiques, laK-théorie tordue équivariante, et laK-théorie tordue
des orbifolds. Nous donnons également une définition équivalente utilisant des opérateurs de Fred
nous discutons les conditions sous lesquelles les groupes deK-théorie tordue peuvent être réalisés à pa
de “fibrés vectoriels tordus”.

Notre approche consiste à travailler sur les réalisations concrètes des champs, à savoir lesgroupoïdes, et
s’appuie de façon importante sur les techniques deK-théorie (KK-théorie) desC∗-algèbres.

 2004 Elsevier SAS
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1. Introduction

Recently, motivated byD-branes in string theory, there has been a great deal of interest
study of twistedK-theory [15,49,48,75]. TheK-theory of a topological spaceM twisted by a
torsion class inH3(M,Z) was first studied by Donovan–Karoubi [23] in the early 1970s, a
in the 1980s, Rosenberg [63] introducedK-theory twisted by a general element ofH3(M,Z).
More recently, twistedK-theory has enjoyed renewed vigor due to the discovery of its c
connection with string theory [75,76]. See also [4,65,16] and references therein.

A very natural problem which arises is the development of other types of tw
K-theory. In particular, twisted equivariantK-theory and twistedK-theory for orbifolds should
be developed. Indeed, various definitions of such theories have been offered. For instance
Ruan introduced a version of twistedK-theory of an orbifold by a discrete torsion element [
Others, for example [45,46], offer various related (but unsupported) definitions. We also r
that Freed–Hopkins–Teleman announced [27] the amazing result that the twisted equ
K-theory of a compact Lie group is related to the Verlinde algebra.

It is important that twistedK-theory is a cohomology theory and, in particular, satisfies
Mayer–Vietoris property. One also expects that, like ordinaryK-theory, it should satisfy Bot
periodicity. The purpose of this paper is to develop a twistedK-theory for stacks, the idea bein
that this is general enough to include all the above cases, including twisted equivariantK-theory
and twistedK-theory of orbifolds. As far as we know, except for the special case of manif
there has been no twistedK-theory for general stacks for which all such properties have b
established (as far as we know, this is the case even for twisted equivariantK-theory).

Rather than working directly with stacks, we will work on presentations of stacks, na
groupoids. Indeed there is a dictionary in which a stack corresponds to aMorita equivalence
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classof groupoids [9,10]. In this paper, we will deal with differentiable stacks which are more
relevant to string theory. They correspond to Lie groupoids.

An advantage of working with Lie groupoids, for a differential geometer, is that one can
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still do differential geometry even though the spaces they represent do not usually allow
a possibility.

The notion of agroupoidis a standard generalization of the concepts ofspacesandgroups. In
the theory of groupoids, spaces and groups are treated on equal footing. Simplifying som
one could say that a groupoid is a mixture of a space and a group; it has space-like and
like properties that interact in a delicate way. In a certain sense, groupoids provide a u
framework for many different geometric objects. For instance, when a Lie group acts
manifold properly, the corresponding equivariant cohomology theories, includingK-theory, can
be treated using the transformation groupoidG × M ⇒ M . On the other hand, an orbifold ca
be represented by an étale groupoid [54,52].

The problem of computing theK-theory of groupoids has been studied by many authors
instance, given a locally compact groupoidΓ, the Baum–Connes map

µr :Ktop
∗ (Γ) → K∗

(
C∗

r (Γ)
)

can be used to study theK-theory groups ofC∗
r (Γ). The above map generalizes both

assembly map for groups [7] and the coarse assembly map [67]. Of course, many tec
used to study the Baum–Connes conjecture for groups [35] can be extended to groupoi
as foliation groupoids [68,69]. However, recent counterexamples [36] show that other
of attacking the problem need to be discovered. Applications of theK-theory of groupoids
include: tilings and gap labeling (see for instance [40]), index theorems, and pseudodiffe
calculi [50,57].

By twistedK-theory, in this paper we meanK-theory twisted by anS1-gerbe. AllS1-gerbes
over a groupoidΓ (or more precisely a stackXΓ) form an abelian group which can be identifi
with H2(XΓ,S1) [9,10]. Unlike the manifold case, this is not always isomorphic to the t
integer cohomology groupH3(XΓ,Z). Indeed, this fails to be the case even whenΓ is a
non-compact group. Not enough attention seems to have been paid to this in the lite
However, for a proper Lie groupoidΓ, these two groups are always isomorphic, and it there
makes sense to talk about itsK-theory twisted by an integer class inH3(XΓ,Z). In particular,
when a Lie groupG acts on a smooth manifoldM properly, one can define the equivaria
K-theory twisted by an element inH3

G(M,Z). The same situation applies to orbifolds sin
their corresponding groupoids are always proper.

Our approach in developing twistedK-theory is to utilize operator algebras, where ma
sophisticatedK-theoretic techniques have been developed. AnS1-central extensionS1 → R →
Γ ⇒ M of groupoids gives rise to anS1-gerbeR over the differentiable stackXΓ associated
to the groupoidΓ [9], and Morita equivalentS1-central extensions correspond to isomorp
gerbes. Therefore, given a Lie groupoidΓ ⇒ M , one may identify anS1-gerbe over the stac
XΓ as a Morita equivalence class ofS1-central extensionsS1 → R′ → Γ′ ⇒ M ′, whereΓ′ ⇒ M ′

is a Lie groupoid Morita equivalent toΓ ⇒ M . Given anS1-central extension of Lie groupoid
S1 → R → Γ ⇒ M , its associated complex line bundleL = R ×S1 C can be considered as
Fell bundle ofC∗-algebras over the groupoidΓ ⇒ M . Therefore, from this one can constru
the reducedC∗-algebraC∗

r (Γ,R). TheK-groups are simply defined to be theK-groups of this
C∗-algebra.

This definition yields several advantages. First, since it is standard that Morita equ
central extensions yield Morita equivalentC∗-algebras, theK-groups indeed only depend o
the stack and theS1-gerbe, instead of on any particular groupoidS1-central extension. Suc

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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a viewpoint is quite interesting already, even when dealing with untwistedK-theory. For
instance, some classical results of Segal on equivariantK-theory [65] may be reinterpreted as
a consequence of the fact that equivariantK-theory only depends on the stackM/G, i.e. the
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Morita equivalence class of the transformation groupoidG × M ⇒ M . Secondly, importan
properties ofK-theory, such as the Mayer–Vietoris property and Bott periodicity, are imme
consequences of this definition.

A drawback of this definition, however, is that it is too abstract and algebraic. Our s
goal in this paper is to connect it with the usual topological approach ofK-theory in terms
of Fredholm bundles [3,66]. As in the manifold case, anS1-central extension of a groupo
naturally gives rise to a canonical principalPU(H)-bundle over the groupoid, which in tu
induces associated Fredholm bundles over the groupoid. We show that theK-groups can be
interpreted as homotopy classes of invariant sections of these Fredholm bundles (ass
certain appropriate continuity). This picture fits with the usual definition of twistedK-theory [4]
when the groupoid reduces to a space.

Geometrically, it is always desirable to describeK-groups in terms of vector bundles. F
twistedK-groups, a natural candidate is to use twisted vector bundles over the groupoid. T
natural generalization, in the context of groupoids, of projective representations of a group
precisely, given anS1-central extension of Lie groupoidsS1 → R

π→ Γ ⇒ M , a twisted vector
bundle is a vector bundleE over the groupoidR wherekerπ ∼= M × S1 acts onE by scalar
multiplication. WhenΓ is a groupoid Morita equivalent to a manifold, they correspond to
so-called bundle gerbe modules in [16]. However, note that twisted vector bundles do not
exist. In fact, a necessary condition for their existence is that the twisted classα ∈ H2(Γ•,S1)
must be a torsion. Another main theme of this paper is to explore the conditions under wh
twistedK0-group is isomorphic to the Grothendieck group of twisted vector bundles.

As is already the case for manifolds, twistedK-groups no longer admit a ring structure [
It is expected, however, that there exists a bilinear productKi

α ⊗ Kj
β → Ki+j

α+β . For twisted
vector bundles, such a product is obvious and corresponds to the tensor product of
bundles. However, in general, twistedK-groups cannot be expressed by twisted vector bun
as discussed above. The main difficulty in constructing such a product using the Fredholm
of twisted K-theory is obtaining a Fredholm operatorT out of two Fredholm operatorsT1

andT2. This is very similar to the situation of the Kasparov product inKK-theory where a
non-constructive method must be used. Motivated byKK-theory, our approach is to develo
a generalized version of Le Gall’s groupoid equivariantKK-theory and interpret our twiste
K-groups as suchKK-groups, which allows us to obtain such a product.

The paper is organized as follows. Section 2 is devoted to the basic theory ofS1-gerbes ove
stacks in terms of the groupoid picture; related cohomology theory and characteristic
are reviewed briefly. In Section 3, we introduce the definition of twistedK-groups and outline
some basic properties. Section 4 is devoted to the study of theK-groups of theC∗-algebra of
a Fell bundle over a proper groupoid, which includes ourC∗-algebras of groupoidS1-central
extensions as a special case. In particular, we give the Fredholm picture of theK-groups. In
Section 5, we investigate the conditions under which the twistedK0-group can be expressed
terms of twisted vector bundles. In Section 6, we discuss the construction of theK-group product
as outlined above. In Appendix A, we review some basic material concerning Fell bundle
groupoids which we use frequently in the paper.

We would like to point out that there are many interesting and important questions th
are not able to address in this paper. One of them is the study of the Chern character in
K-theory, in which Connes’ noncommutative differential geometry [17] will play a promi
role due to the nature of our algebraic definition. This subject will be discussed in a se
paper.

4e SÉRIE– TOME 37 – 2004 –N◦ 6
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Finally, we note that after our paper was submitted a paper by Atiyah and Segal [5] appeared,
in which twisted equivariantK-theory (for a compact group acting on a space) was introduced
independently using a different method. It is not hard to check that at least in our case of interest,
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that of a compact Lie group acting on a manifold, our twistedK-theory coincides with their
(using the remark in Appendix A.1 of [5] that, in the metrizable case, the compact-open top
is the same as the strong topology).

Notations. Finally, we list the notation used throughout the paper.Γ will denote a groupoid
(all groupoids considered are Hausdorff, locally compact, and second countable). We de
s andt the source and target maps ofΓ, respectively.Γ(0) will denote the unit space ofΓ, and
Γ(n) will denote the set of strings of lengthn

g1 ← g2 ← · · · ← gn,

i.e., the set ofn-tuples(g1, . . . , gn) ∈ Γ×· · ·×Γ such thats(gi) = t(gi+1) for all i = 1, . . . , n−1.
We will commonly use the expression “LetΓ ⇒ M be a Lie groupoid. . . ” to indicate thatΓ

is a Lie groupoid andΓ(0) = M .
For all K, L ⊂ Γ(0), we letΓK = s−1(K), ΓL = t−1(L), andΓL

K = ΓK ∩ ΓL. If K = {x}
andL = {y}, we will use the notationΓx, Γy , andΓy

x, respectively.
If Y is a space, thenY ×Y will be endowed with the pair groupoid structure:(Y ×Y )(0) = Y ,

s(y1, y2) = y2, t(y1, y2) = y1, and(y1, y2)(y2, y3) = (y1, y3).
If Y is a space andf :Y → Γ(0) is a map, we denote byΓ[Y ] the subgroupoid of(Y ×Y )×Γ

consisting of{(y1, y2, γ) | γ ∈ Γf(y1)
f(y2)

}. ThenΓ[Y ] is called the pullback of the groupoidΓ by f .

In particular, ifU = (Ui) is an open cover ofΓ(0), then the pullback ofΓ by the canonical ma∐
Ui → Γ(0) is denoted either byΓ[U ] or byΓ[Ui].
If Γ ⇒ M is a locally compact groupoid (resp., a Lie groupoid), a Haar system forΓ will

usually be denoted byλ = (λx)x∈M , whereλx is a measure with supportΓx such that for all
f ∈Cc(Γ) (resp.,C∞

c (Γ)), x �→
∫

g∈Γx f(g)λx(dg) is continuous (resp., smooth).
Let H be the separable Hilbert space. We denote byK(H), or evenK, the algebra of compac

operators onH; we denote byL(H) the algebra of linear bounded operators.
For aC∗-algebraA, M(A) denotes its multiplier algebra [58, Section 3.12]. Recall thatM(A)

is a unitalC∗-algebra containingA as an essential ideal, and, moreover, if aC∗-algebraB also
containsA as an essential ideal, thenA ⊂ B ⊂ M(A). For instance, ifX is a locally compac
space andA = C0(X), thenM(A) = Cb(X) is the space of continuous bounded functions
X . On the other hand, ifA = K, thenM(A) = L(H).

For a HilbertC∗-moduleE over A (see [72]), we denote byL(E) the algebra of (A-linear
bounded) adjointable operators onE . For allξ, η ∈ E , let Tξ,η be the operatorTξ,η(ζ) = ξ〈η, ζ〉.
ThenTξ,η is called a rank-one operator. The closed linear span of rank-one operators is
the algebra of compact operators onE and will be denoted byK(E); this is an ideal ofL(E).

We gather below the most frequently used notations and terminology:

C(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (3
C∗

r (Γ) [reducedC∗-algebra of a groupoid] . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ref. [6
C∗

r (Γ;E) [reducedC∗-algebra of a Fell bundle] . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Section A
C∗

r (Γ;R) [C∗-algebra of anS1-central extension] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 3.1

C∗
r (R)S1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2
S1-Central extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 2.7
G-bundle over a groupoid . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 2.33
Γ-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 2.32
Generalized homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 2.1
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Esm(Γ), Extsm(Γ, S1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 2.2
F i

α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Theorem 3.14
Fell bundle over a groupoidΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition A.7

2)
A.3

)

hisms.
e easily
].

s

ap

m

hisms.

gory
ralized
Ki
α(Γ•) [twistedK-theory] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 3.4

KΓ(E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Eq. (3
L1(Γ;E), L2(Γ;E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section
Morita equivalent extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 2.11
Strictly trivial extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 2.8
TΓ [“average” ofT ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (30
Trivial central extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition 2.13
Twisted vector bundle . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition 5.2

2. S1-gerbes and central extensions of groupoids

2.1. Generalized homomorphisms

In this subsection, we will review some basic facts concerning generalized homomorp
Here groupoids are assumed to be Lie groupoids although most of the discussions can b
adapted to general locally compact groupoids. Let us recall the definition below [33,38,51

DEFINITION 2.1. – A generalized groupoid homomorphism fromΓ to G is given by a
manifoldZ, two smooth maps

Γ(0) τ← Z
σ→ G(0),

a left action ofΓ with respect toτ , a right action ofG with respect toσ, such that the two action
commute, andZ is a locally trivialG-principal bundle overΓ(0) τ← Z.

To explain the terminology, iff : Γ → G is a strict homomorphism (i.e. a smooth m
satisfyingf(gh) = f(g)f(h)) thenZf = Γ(0) ×f,G(0),t G, with τ(x, g) = x, σ(x, g) = s(g), and
the actionsγ · (x, g) = (t(γ), f(γ)g) and(x, g) · g′ = (x, gg′), is a generalized homomorphis
from Γ to G.

Generalized homomorphisms can be composed just like the usual groupoid homomorp

PROPOSITION 2.2. – Let Z and Z ′ be generalized homomorphisms fromΓ ⇒ Γ(0) to
G ⇒ G(0), and fromG ⇒ G(0) to H ⇒ H(0) respectively. Then

Z ′′ = Z ×G Z ′ := (Z ×σ,G(0),τ ′ Z ′)/(z,z′)∼(zg,g−1z′)

is a generalized groupoid homomorphism fromΓ ⇒ Γ(0) to H ⇒ H(0). Moreover, the
composition of generalized homomorphisms is associative, and thus there is a cateG
whose objects are Lie groupoids and morphisms are isomorphism classes of gene
homomorphisms.2 There is a functor

Gs →G
whereGs is the category of Lie groupoids with strict homomorphisms given byf �→ Zf as
described above.

Proof. –All the assertions are easy to check. For instance, to show thatΓ(0) ← Z ′′ is a locally
trivial H-principal bundle, note thatZ andZ ′ are locally of the formY ×G(0) G andY ′×H(0) H
respectively. ThereforeZ ′′ is locally of the formY ′′ ×G(0) H whereY ′′ = Y ×H(0) Y ′. �

2 Two generalized homomorphismsZ1 andZ2 are isomorphic whenever they areΓ, G-equivariantly diffeomorphic.
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Note that isomorphism in the categoryG is just Morita equivalence [56,77].

PROPOSITION 2.3 (see [38, Definition 1.1]). –Any generalized homomorphism

en

cover

[29]).

e

e

Γ(0) τ← Z
σ→ G(0)

is obtained by composition of the canonical Morita equivalence betweenΓ and Γ[Ui], where
(Ui) is an open cover ofΓ(0), with a strict homomorphismΓ[Ui]→ G.

Consequently, giving a generalized homomorphismΓ → G is equivalent to giving a Morita
equivalenceΓ ∼morita Γ′ together with a strict homomorphismΓ′ → G.

Proof. –Denoting byΓ[Z] the pull-back ofΓ via the surjective submersionZ
τ→ Γ(0), i.e. the

groupoidZ ×Γ(0),t Γ×Γ(0),s Z with multiplication law(z1, g, z2)(z2, h, z3) = (z1, gh, z3). Then
the canonical strict homomorphismΓ[Z]→ Γ is a Morita equivalence.

Moreover, it is not hard to check that

Γ[Z]∼=
{
(z, z′, γ, g) ∈ (Z ×Z)× Γ×G | γz′ = zg

}
.

Thus there is a strict homomorphismf : Γ[Z] → G given by the fourth projection. One can th
verify that the following diagram is commutative (in the categoryG):

Γ

Z

Γ[Z]
∼=

f

G

Now, sinceZ → Γ(0) is a submersion, it admits local sections. Hence there exists an open
(Ui) of Γ(0) and mapssi :Ui → Z such thatτ ◦ si = Id, and therefore a map̃s : Γ[Ui] → Γ[Z]
such that the compositionΓ[Ui] → Γ[Z] → Γ is the canonical map. Then,f ◦ s̃ : Γ[Ui] → G is
the desired strict homomorphism.�

LEMMA 2.4. – Let f1, f2 : Γ → G be two strict homomorphisms. Thenf1 andf2 define the
isomorphic generalized homomorphisms if and only if there exists a smooth mapϕ : Γ(0) → G
such thatf2(γ) = ϕ(t(γ))f1(γ)ϕ(s(γ))−1.

Proof. –Suppose that there exists a smoothΓ, G-equivariant mapZf1 → Zf2 . Then it is
necessarily of the form(x, g) �→ (x,ϕ(x)g). UsingΓ-equivariance, we get

(
t(γ),ϕ

(
t(γ)

)
f1(γ)

)
=

(
t(γ), f2(γ)ϕ

(
s(γ)

))
.

The converse is proved by working backwards.�
The following result is useful when dealing with generalized homomorphisms (see also

PROPOSITION 2.5. – Let C be a category, andΦ:Gs → C be a functor. The following ar
equivalent:

(i) For every smooth groupoidΓ and every open cover(Ui), Φ(π) is an isomorphism, wher
π is the canonical mapΓ[Ui] → Γ.

(ii) The functorΦ factors through the categoryG (and thusΦ(G) ∼= Φ(H) if G and H are
Morita equivalent).
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Proof. –The only non-trivial implication is (i)⇒ (ii). Let Γ(0) ← Z → G(0) be a generalized
homomorphism. From Proposition 2.3, there exists a strict homomorphismf : Γ[Ui]→ G which
is the same morphism in the categoryG. We defineΦ(Z) :Φ(Γ)→Φ(G) to be the composition

m

tacks
ponds
ks

s

,

Φ(Γ)
∼=← Φ

(
Γ[Ui]

) Φ(f)→ Φ(G).

To check that this is well-defined, suppose thatf1 : Γ[Ui] → G andf2 : Γ[Vj ] → G define the
same generalized homomorphism. We need to show thatΦ(f1) = Φ(f2) via the identification
Φ(Γ[Ui]) = Φ(Γ[Vj ]). Using the cover(Ui ∩ Vj), we may assume that(Ui) = (Vj), andf1, f2

are strict homomorphisms fromΓ to G.
From Lemma 2.4, there existsϕ : Γ(0) → Γ such that

f2(γ) = ϕ
(
t(γ)

)
f1(γ)ϕ

(
s(γ)

)−1
.

Let Γ̃ = {1,2}2 × Γ and letf̃ : Γ̃→ G be the morphism

(1,1, γ) �→ f1(γ),

(1,2, γ) �→ f1(γ)ϕ
(
s(γ)

)−1
,

(2,1, γ) �→ ϕ
(
t(γ)

)
f1(γ),

(2,2, γ) �→ ϕ
(
t(γ)

)
f1(γ)ϕ

(
s(γ)

)−1
.

Let ij : Γ → Γ̃ be defined byij(γ) = (j, j, γ) andπ : Γ̃ → Γ be the mapπ(i, j, γ) = γ. Since
Γ̃ = Γ[Wk] with W1 = W2 = Γ(0), Φ(π) is an isomorphism. Now, fromπ ◦ i1 = π ◦ i2, we get
Φ(i1) = Φ(π)−1 = Φ(i2), and thereforeΦ(f1) = Φ(f̃ ◦ i1) = Φ(f̃ ◦ i2) = Φ(f2). �

Remark2.6. – Given two Lie groupoidsΓi ⇒ Γ(0)
i , i = 1,2, a generalized homomorphis

from Γ1 ⇒ Γ(0)
1 to Γ2 ⇒ Γ(0)

2 induces a morphism between their associated differential s
X1 → X2, and vice versa. And a generalized isomorphism, i.e. a Morita equivalence, corres
to an isomorphism of stacks. Therefore the categoryG and the category of differentiable stac
are equivalent categories (see [10] for details).

2.2. S1-central extensions of groupoids

DEFINITION 2.7. – LetΓ ⇒ M be a Lie groupoid. AnS1-central extension(or “twist” ) of
Γ ⇒ M consists of

(1) a Lie groupoidR ⇒ M , together with a morphism of Lie groupoids

(π, id) : [R ⇒ M ]→ [Γ ⇒ M ]

which restricts to the identity onM ,
(2) a leftS1-action onR, makingπ :R → Γ a (left) principalS1-bundle. These two structure

are compatible in the sense that(λ1 · x)(λ2 · y) = λ1λ2 · (xy), for all λ1, λ2 ∈ S1 and
(x, y) ∈R(2) = R×s,M,t R.

We denote byTwsm(Γ) the set ofS1-central extensions ofΓ (the superscript “sm” stands for
“smooth”).

Note thatR being restricted toε0(M) is a trivial S1-bundle, whereε0 :M → Γ is the
unit map. In fact, it admits a canonical trivialization sinceR|ε0(M) admits a smooth section
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namely, the base space of the groupoidR. By kerπ, we denote this trivial bundleR|ε0(M), i.e.,
kerπ ∼= M ×S1. It is clear thatkerπ, as a bundle of groups, is a normal subgroupoid ofR ⇒ M ,
and lies in the center. Indeed its quotient groupoid is isomorphic toΓ ⇒ M . This coincides with

2nd
y a

d),
up of
, so we

wing

re

ne
the usual definition of Lie groupS1-central extensions.
When π :R → Γ is topologically trivial (for instance, this is true if as a space the

cohomology ofΓ vanishes), thenR ∼= Γ × S1 and the central extension is determined b
groupoid2-cocycle ofΓ valued inS1, i.e., a smooth map

c : Γ(2) =
{
(x, y) | s(x) = t(y), x, y ∈ Γ

}
→ S1

satisfying the cocycle condition:

c(x, y)c(xy, z)c(x, yz)−1c(y, z)−1 = 1, ∀(x, y, z) ∈ Γ(3).(1)

The groupoid structure onR is given by

(x,λ1) · (y,λ2) =
(
xy,λ1λ2c(x, y)

)
, ∀(x, y) ∈ Γ(2).(2)

For every locally compact groupoidΓ with a Haar system (thus for every Lie groupoi
Kumjian, Muhly, Renault and Williams [43] constructed a group, called the Brauer gro
Γ. Some of the constructions below is an easy adaptation of their results to our context
will omit most of proofs.

Note thatTwsm(Γ) admits an abelian group structure in a canonical way: ifS1 → R
π→ Γ ⇒

M andS1 → R′ π′
→ Γ ⇒ M areS1-central extensions, then the addition ofR andR′, called the

tensor ofR andR′ and denoted byR⊗R′, is

(R×Γ R′)/S1 :=
{
(r, r′) ∈R×Γ R′}/(r,r′)∼(λr,λ−1r′)(3)

(λ ∈ S1), and the inverse ofR is R̄ (where the action ofS1 on R̄ is λr̄ = λr andr̄ ∈ R̄ denotes
the same elementr ∈R).

The zero element is the strictly trivial extension, i.e., the extension satisfying the follo
equivalent conditions.

PROPOSITION 2.8. – Let S1 → R
π→ Γ ⇒ M be anS1-central extension. The following a

equivalent:
(i) there exists a groupoid homomorphismσ : Γ→ R such thatπ ◦ σ = Id;

(ii) there exists anS1-equivariant groupoid homomorphismϕ :R → S1;
(iii) R ∼= Γ× S1 (as a product of groupoids).

Proof. –(i) ⇒ (ii): takeϕ(r) = r(σ ◦ π(r))−1.
(ii) ⇒ (iii): the mapr �→ (π(r),ϕ(r)) is a groupoid isomorphism fromR to Γ× S1.
(iii) ⇒ (i): obvious. �
The set ofS1-central extensions ofΓ of the formR = (t∗Λ × s∗Λ)/S1 ⇒ M , whereΛ is

an S1-principal bundle onM , is a subgroup ofTwsm(Γ). The quotient ofTwsm(Γ) by this
subgroup is denoted byEsm(Γ).

We now introduce the definition of Morita equivalence ofS1-central extensions, and defi
an abelian group structure on the set of Morita equivalence classes of extensionsS1 → R′ ⇒ Γ′,
with Γ′ Morita equivalent toΓ.
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DEFINITION 2.9. – Let S1 → R → Γ ⇒ M and S1 → R′ → Γ′ ⇒ M ′ be S1-central
extensions. We say that a generalized homomorphismM ← Z → M ′ from R to R′ is
S1-equivariant ifZ is endowed with an action ofS1 such that

,

the

m,
er

s

,

(λr) · z · r′ = r · (λz) · r′ = r · z · (λr′)

whenever(λ, r, r′, z) ∈ S1 ×R×R′ ×Z and the products make sense.

LEMMA 2.10. – LetS1 → R → Γ ⇒ M andS1 → R′ → Γ′ ⇒ M ′ beS1-central extensions
and M ← Z → M ′ an S1-equivariant generalized homomorphism fromR to R′. Then the
S1-action onZ is free andM ← Z/S1 → M ′ defines a generalized homomorphism fromΓ
to Γ′.

Proof. –Assume thatλz = z for λ ∈ S1 and z ∈ Z. From the compatibility condition
(λz) · r′ = z · (λr′) and the fact that theR′-action onZ is free, we obtain thatλr′ = r′. Hence
λ = 1 since theS1-action onR′ is free. The rest of the assertion follows immediately from
compatibility condition again. �

DEFINITION 2.11. – TwoS1-central extensionsS1 → R → Γ ⇒ M andS1 → R′ → Γ′ ⇒
M ′ are calledMorita equivalentif there is a generalizedS1-equivariant isomorphismM ← Z →
M ′. In this case,Z is called anequivalence bimodule.

As an immediate consequence of Lemma 2.10, in particular, ifS1 → R → Γ ⇒ M and
S1 →R′ → Γ′ ⇒ M ′ are Morita equivalentS1-central extensions, thenΓ andΓ′ must be Morita
equivalent groupoids.

The following result gives a useful construction ofS1-equivariant generalized homomorphis
and in particular shows that for two Morita equivalentS1-central extensions, one may recov
one from the other in terms of the equivalence bimodule.

Let S1 → R → Γ ⇒ M be anS1-central extension, andτ :Z → M a left principalR-bundle
over M ′ := Z/R. ThenZ admits anS1-action defined as follows: for allλ ∈ S1 andz ∈ Z,
denote byλz ∈ R the elementλτ(z), whereτ(z) ∈ R(0) is considered as an element ofR. We
let

λ · z = λz · z.

It follows from the properties ofS1-central extensions that this indeed defines anS1-action.
Moreover, by assumption, this action is free and thereforeZ/S1 is a smooth manifold, which i
denoted byX . It is simple to see that the following identity holds:

(λr) · z = r · (λz) ∀(λ, r, z) ∈ S1 ×R×Z with s(r) = τ(z).

PROPOSITION 2.12. –As above, assume thatS1 → R → Γ ⇒ M is anS1-central extension
and τ :Z → M a principal R-bundle overM ′ := Z/R ∼= X/Γ, where X = Z/S1. Let
Γ′ = X ×Γ X andR′ = Z ×R Z. Then

(i) R′ → Γ′ ⇒ M ′ is an S1-central extension of groupoids, andM ′ ← Z → M with the
natural actions defines anS1-equivariant generalized homomorphism fromR′ to R.

(ii) If moreoverτ :Z → M is a surjective submersion, thenR′ andR are Morita equivalent
S1-central extensions.

As a consequence, ifZ is anS1-equivariant Morita equivalence bimodule fromR to R′′, then
R′′ ∼= R′.
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Proof. –The proof is a straightforward verification, and is similar to [77, Theorem 3.2-
3.3]. �

t of
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verse

le
tral

to be

.

t

tions
Given a Lie groupoidΓ ⇒ M , there is a natural abelian group structure on the se
Morita equivalence classes ofS1-central extensionsS1 → R′ → Γ′ ⇒ M ′, whereΓ′ ⇒ M ′ is
a Lie groupoid Morita equivalent toΓ ⇒ M . To see this, assume thatS1 → Ri → Γi ⇒ Mi,
i = 1,2, are two such extensions. SinceΓi ⇒ Mi, i = 1,2, are Morita equivalent, there exists
generalized isomorphismM1 ← X → M2. By pulling back using the above maps, one obta
two S1-central extensions over the groupoidΓ1[X] ∼= Γ2[X] ⇒ X , namelyR1[X] ⇒ X and
R2[X] ⇒ X . Thus one may define[R1] + [R2] to be the class of theS1-central extension
R1[X]⊗R2[X] (see Eq. (3)). It is simple to check that this operation is well-defined. The in
is defined by[R] = [R̄]. Let us denote byExtsm(Γ, S1) the group thus obtained.

The zero element inExtsm(Γ, S1) is characterized by the following

PROPOSITION 2.13. – Consider anS1-central extension of Lie groupoidsS1 → R → Γ ⇒
M . The following are equivalent:

(i) there exists anS1-equivariant generalized homomorphismR → S1;
(ii) there exists a cover(Ui) of M such that the extensionS1 → R[Ui] → Γ[Ui] ⇒

∐
Ui is

strictly trivial;
(iii) the extension is Morita equivalent to a strictly trivialS1-central extension0 → S1 →

Γ′ × S1 → Γ′ ⇒ M ′;
(iii) ′ the class of the extension inExtsm(Γ, S1) is 0;
(iv) the extension is Morita equivalent to the strictly trivialS1-central extension0 → S1 →

Γ× S1 → Γ ⇒ M ;
(iv)′ the class of the extension inEsm(Γ) is 0.

Proof. –(ii) ⇒ (iii) ⇒ (iii) ′ ⇒ (i) and (iv)′ ⇒ (iv) ⇒ (iii) are obvious. (i)⇒ (ii) is a
consequence of Propositions 2.8 and 2.3. To show (iii)⇒ (iv), let Z be an equivalence bimodu
betweenΓ andΓ′, thenZ ×S1 is obviously an equivalence bimodule between the trivial cen
extensionsS1 → Γ× S1 → Γ ⇒ M andS1 → Γ′ × S1 → Γ′ ⇒ M ′. �

S1-extensions which satisfy any of the conditions in the previous proposition are said
trivial. Therefore,Esm(Γ) is the quotientTwsm(Γ) by trivial extensions. Thus twoS1-central
extensionsS1 → Ri → Γ ⇒ M are equal inEsm(Γ) if and only if they are Morita equivalent.

The groupsEsm(Γ′), whereΓ′ is a groupoid Morita equivalent toΓ, form an inductive system
It follows from Proposition 2.13 that

Extsm(Γ, S1)∼= lim
Γ′∼Γ

Esm(Γ′) ∼= lim
U

Esm
(
Γ[U ]

)
,

whereU runs over open covers ofM .

Remark2.14. – AnS1-central extensionS1 → R → Γ ⇒ M gives rise to anS1-gerbeR

over the differentiable stackXΓ associated to the groupoidΓ ⇒ M [9,10], and Morita equivalen
S1-central extensions correspond to isomorphic gerbes.

Conversely, given anS1-gerbeR
π→ X over a differential stackX, if R ⇒ M andR′ ⇒ M ′ are

the Lie groupoids corresponding to the presentationsM → R andM ′ → R of R respectively,
and Γ ⇒ M and Γ′ ⇒ M ′ are the Lie groupoids corresponding to the induced presenta
M → X andM ′ → X of X respectively, then theS1-central extensionsS1 → R → Γ ⇒ M and
S1 →R′ → Γ′ ⇒ M ′ are Morita equivalent [9,10]. The equivalence bimodule isZ = M ×R M ′,
which is a principalS1-bundle overM ×X M ′.
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Therefore, given a Lie groupoidΓ ⇒ M , one may identify anS1-gerbe over the stack
XΓ as an element inExtsm(Γ, S1), i.e. a Morita equivalence class ofS1-central extensions
S1 → R′ → Γ′ ⇒ M ′, whereΓ′ ⇒ M ′ is a Lie groupoid Morita equivalent toΓ ⇒ M . We will

s.
on

h will

a Lie
ifold
cisely,

oups
dy
f
e

y of
ons,
e

n
y

er the
call such a Morita equivalence class an isomorphism class ofS1-gerbes by abuse of notation
Moreover, the group structure onExtsm(Γ, S1) corresponds to the abelian group structure
theS1-gerbes overXΓ. Therefore, one may simply identify these two groups.

2.3. Cohomology and characteristic classes

In this subsection, we briefly review some basic cohomology theory of groupoids, whic
be needed later in the paper.

There exist many equivalent ways of introducing cohomology groups associated to
groupoidΓ ⇒ Γ(0) [9,10,20]. A simple and geometric way is to consider the simplicial man
canonically associated to the groupoid and apply the usual cohomology theory. More pre
let Γ ⇒ Γ(0) be a Lie groupoid. Define for allp � 0

Γ(p) = Γ×Γ(0) · · · ×Γ(0) Γ︸ ︷︷ ︸
p times

,

i.e., Γ(p) is the manifold of composable sequences ofp arrows in the groupoidΓ ⇒ Γ(0). We
havep + 1 canonical mapsΓ(p) → Γ(p−1) giving rise to a diagram

· · ·Γ(2) Γ(1) Γ(0).(4)

In fact, Γ• is a simplicial manifold, so one can introduce (singular) cohomology gr
Hk(Γ•,Z), Hk(Γ•,R) and Hk(Γ•,R/Z). We refer the reader to [24] for the detailed stu
of cohomology of simplicial manifolds. In fact, for any abelian sheafF on the category o
differentiable manifolds, we have the cohomology groupsHk(Γ•, F ) [2,8,10]. One way to defin
them is by choosing for everyp an injective resolutionF p → Ip• of sheaves onΓ(p), where
F p is the small sheaf induced byF on Γ(p); then choosing homomorphismsf∗Ip−1• → Ip•

for every mapf : Γ(p) → Γ(p−1) in (4). This gives rise to a double complexI•(Γ•), whose
total cohomology groups are theHk(Γ•, F ). Examples of abelian sheaves on the categor
manifolds are:Z, R, R/Z, Ωk,R andS1. The first three are sheaves of locally constant functi
R andS1 are the sheaves of differentiableR-valued andS1-valued functions, respectively (se
[8–10]). With respect to the first three, the notationHk(Γ•, F ) does not conflict with the notatio
introduced before. Note that the cohomology groupsHk(Γ•, F ) satisfy the functorial propert
with respect to generalized homomorphisms according to Proposition 2.5.

Another cohomology, which is relevant to us, is the De Rham cohomology. Consid
double complexΩ•(Γ•):

· · · · · · · · ·

Ω1(Γ(0))

d

∂
Ω1(Γ(1))

d

∂
Ω1(Γ(2))

d

∂ · · ·

Ω0(Γ(0))

d

∂
Ω0(Γ(1))

d

∂
Ω0(Γ(2))

d

∂ · · ·

(5)
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Its boundary maps ared :Ωk(Γ(p)) → Ωk+1(Γ(p)), the usual exterior derivative of differen-
tiable forms and∂ :Ωk(Γ(p)) → Ωk(Γ(p+1)), the alternating sum of the pull-back maps of (4).
We denote the total differential byδ = (−1)pd+∂. The cohomology groups of the total complex

ology

e

),
].

odel

nd

e

C•(Γ•):

Hk
DR(Γ•) = Hk

(
Ω•(Γ•)

)
are called theDe Rham cohomologygroups ofΓ ⇒ Γ(0).

The following proposition lists some well-known properties regarding De Rham cohom
groups of a Lie groupoid.

PROPOSITION 2.15 [8–10,20,33]. –
(1) For any Lie groupoidΓ ⇒ Γ(0), we have

Hk
DR(Γ•) ∼−→Hk(Γ•,R);(6)

(2) if Γ ⇒ Γ(0) andG ⇒ G(0) are Morita equivalent, then

Hk
DR(Γ•) ∼−→ Hk

DR(G•), and Hk(Γ•,S1) ∼−→ Hk(G•,S1).

We call a De Rhamk-cocycle aninteger cocycle, if it maps under (6) into the image of th
canonical mapHk(Γ•,Z)→ Hk(Γ•,R).

Example2.16. – (1) WhenΓ is a manifoldM , it is clear thatHk(Γ•,Z) (or Hk(Γ•,R))
reduces to the usual cohomologyHk(M,Z) (or Hk(M,R) respectively). If{Ui} is an open
covering of M and X =

∐
i Ui → M is the étale map, thenΓ := X ×M X ⇒ X , which

is
∐

ij Ui ∩ Uj ⇒
∐

i Ui, is Morita equivalent toM ⇒ M . HenceHk(Γ•,Z) (or Hk(Γ•,R)
respectively) is isomorphic toHk(M,Z) (or Hk(M,R) respectively). The double complex (5
when{Ui} is a nice covering, is the one used by Weil in his proof of De Rham theorem [73

(2) When Γ is a transformation groupoidG × M ⇒ M , Hk(Γ•,Z) (or Hk(Γ•,R)
respectively) is theG-equivariant cohomology groupHk

G(M,Z) (or Hk
G(M,R) respectively). If

G is compact,Hk
G(M,R) can be alternatively computed by either Cartan model or Weil m

(see [32] for more details).
(3) On the other hand, ifΓ ⇒ M is an étale groupoid representing an orbifold [52] a

Λ(Γ) ⇒ Γ its associated inertia groupoid, thenHk(Λ(Γ)•,R) is the orbifold cohomology.

It is known thatH2(Γ•,S1) classifiesS1-gerbes over the stackXΓ [30]. As a consequenc
(see Remark 2.14), we have

PROPOSITION 2.17. – For a Lie groupoidΓ ⇒ M , we have

Extsm(Γ, S1) ∼= H2(Γ•,S1).

For instance, whenΓ is a manifoldM , by Example 2.26.1 below,Extsm(M,S1) is isomorphic
to theČech cohomology group̌H2(M,S1) = H2(M,S1).

The exponential sequence0 → Z →R→S1 → 0 gives rise to a long exact sequence:

· · · →H2(Γ•,Z)
ψ2→ H2(Γ•,R) →H2(Γ•,S1)

φ→H3(Γ•,Z)
ψ3→H3(Γ•,R)→ · · · .(7)

LEMMA 2.18. –

Hk(Γ•,R)∼= Hk(Γ,R),
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whereHk(Γ,R) denotes the(smooth) groupoid cohomology with the trivial coefficientsR, i.e.
the cohomology of the complex(C∞(Γ(n),R))n∈N with the differential

n

ex

of

ration.
ermine
on

r

(dc)(g1, . . . , gn+1) = c(g2, . . . , gn+1) +
∑
k=1

(−1)kc(g1, . . . , gkgk+1, . . . , gn+1)

+ (−1)n+1c(g1, . . . , gn).

Proof. –There is a spectral sequence

Ep,q
1 = Hq(Γ(p),R)⇒ Hp+q(Γ•,R).

SinceΓ(p) is a manifold and the sheafR|Γ(p) is soft,Hq(Γ(p),R) = 0 for q > 0. Therefore the
spectral sequence degenerates. It follows thatH∗(Γ•,R) can be calculated using the compl
H0(Γ(p),R) = C∞(Γ(p)). �

By identifying the groupsHk(Γ•,R) with Hk(Γ,R), the homomorphism

ψk :Hk(Γ•,Z)→ Hk(Γ•,R)

in the exact sequence (7) is the composition of the following sequences of morphisms:

Hk(Γ•,Z)→ Hk(Γ•,R) ∼−→ Hk
DR(Γ•)

pr→ Hk(Γ,R) ∼−→Hk(Γ•,R),

wherepr :Hk
DR(Γ•) → Hk(Γ,R) is given, on the cochain level, by the projection

⊕
i+j=k

Ωi(Γj) → Ω0(Γk).

See [19,74] for details on (smooth) groupoid cohomology.
Note that in generalφ : H2(Γ•,S1) → H3(Γ•,Z) is neither surjective nor injective. Write

H3
gerbe(Γ

•,Z) = φ
(
H2(Γ•,S1)

)
.

PROPOSITION 2.19. – (i) H3
gerbe(Γ

•,Z) is a subgroup ofH3(Γ•,Z) consisting of those
elements whose image inH3

DR(Γ•) projects to zero underpr :H3
DR(Γ•) →H3(Γ,R).

(ii) The kernel ofφ is isomorphic toH2(Γ,R)/ψ2(H2(Γ•,Z)).

For anS1-central extensionR → Γ ⇒ M , let [R] ∈H2(Γ•,S1) denote its class. The image
[R] in H3(Γ•,Z) under the homomorphismφ is called theDixmier–Douady classof R [9,10].
The Dixmier–Douady class behaves well with respect to the pull-back and the tensor ope
Unlike the manifold case, in general the Dixmier–Douady class does not completely det
anS1-gerbe. However this is true whenΓ ⇒ M is a proper groupoid. Let us recall its definiti
below.

DEFINITION 2.20. – LetΓ ⇒ M be a locally compact groupoid. ThenΓ is said to be prope
if any of the following equivalent conditions is satisfied:

(i) the map(s, t) :Γ→ M ×M is proper;
(ii) for everyK ⊂ M compact,ΓK

K is compact.

For instance, compact groupoids are of course proper; a transformation groupoidG×M ⇒ M
is proper if and only if the action is proper.
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LEMMA 2.21. – (1)The notion of properness is invariant by Morita equivalence;
(2) For a proper groupoidΓ ⇒ M , the orbit spaceM/Γ is a Hausdorff topological space, and

is invariant by Morita equivalence.

y
t.

ct

d one,
m

etrically
a

tely

ra
the
al as

f

in the
Proof. –Suppose thatf :Y → M is a surjective submersion. IfΓ is proper, then for ever
K ⊂ Y compact,(Γ[Y ])K

K is a closed subset ofK × K × Γf(K)
f(K), and therefore it is compac

Hence,Γ[Y ] is proper.
Conversely, ifΓ[Y ] is proper, then for everyL ⊂ M compact, there existsK ⊂ Y compact

such thatf(K) = L (sincef is open surjective). Now,ΓL
L is a continuous image of the compa

set(Γ[Y ])K
K , and thus is compact. It follows thatΓ is proper. This proves (1).

The first assertion in (2) is proved for instance in [68, Proposition 6.3]. For the secon
it is clear that if f :Y → M is a surjective submersion, thenf induces a homeomorphis
Y/(Γ[Y ]) ∼= M/Γ. �

WhenΓ ⇒ M is a proper Lie groupoid, since the smooth groupoid cohomologyHk(Γ,R)
vanishes whenk � 1 according to Crainic [19], we see thatφ is an isomorphism.

PROPOSITION 2.22. – If Γ ⇒ M is a proper Lie groupoid, then

φ :H2(Γ•,S1)→ H3(Γ•,Z)

is an isomorphism.

As a consequence, we have

COROLLARY 2.23. – (1)If a Lie groupG acts on a smooth manifoldM properly, then the
equivariant cohomologyH3

G(M,Z) is isomorphic to the abelian group ofS1-gerbes over the
stackM/G associated to the transformation groupoidG×M ⇒ M .

(2) If Γ ⇒ M is an étale groupoid corresponding to an orbifoldX, then H3(Γ•,Z) is
isomorphic to the abelian group ofS1-gerbes over the orbifoldX.

In other words, in both cases above, the third integer cohomology classes can be geom
described by Morita equivalent classes of groupoidS1-central extensions. In particular, for
smooth manifoldM , sinceM ⇒ M is a special case whenG = 1, thenH3(M,Z) characterizes
S1-gerbes over the manifoldM [14]. However the Dixmier–Douady class does not comple
characterizeS1-gerbes even whenΓ is a non-compact group as we see below.

Example2.24 [70]. – Consider the abelian groupR2 as a groupoidR2 ⇒ ·. It is clear that
Hk(R2•,Z)∼= Hk(BR2,Z) = 0 sinceR2 is contractible. Therefore the kernel ofφ is isomorphic
to the 2nd group cohomology ofR2, which is in turn isomorphic to the 2nd Lie algeb
cohomology with trivial coefficients sinceR2 is simply connected. The latter is isomorphic to
invariant De Rham cohomology ofR2 under the translation, and therefore is one-dimension
a R-vector space. More explicitly, the group2-cocycle is given by

σ
(
(x, y), (x′, y′)

)
=

1
2
(x′y − xy′).

In other words, the group2-cocycleexp(2πiσ) defines a non-trivialS1-central extension o
R2 (hence a non-trivialS1-gerbe overXR2 ) with the trivial Dixmier–Douady class.

It is often useful to use differential forms to describe the Dixmier–Douady class as
manifold case. Recall that a pseudo-connection isθ + B ∈ Ω1(R) ⊕ Ω2(M) such thatθ is a
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connection one-form of the principalS1-bundleR
π→ Γ [9]. Its pseudo-curvature

η + ω + Ω ∈Ω1(Γ(2))⊕Ω2(Γ)⊕Ω3(M) ⊂ C3(Γ•)

s an

g

n
eger

,

oids.
in the

tion

ts
s in

See

s

n

is defined by

δ(θ + B) = π∗(η + ω + Ω).

Then we have the following [9]:

THEOREM 2.25. – (1)[η + ω + Ω] is independent of the pseudo-connection and define
integer class inH3

DR(Γ•). Under the canonical homomorphismH3(Γ•,Z) → H3
DR(Γ•), the

Dixmier–Douady class ofR maps to[η + ω + Ω].
(2) Assume thatΓ ⇒ M is proper. Given any integer3-cocycleη +ω +Ω as above, by passin

to a Morita equivalent groupoidΓ′ ⇒ M ′ if necessary, there is anS1-central extensionR → Γ
with a pseudo-connection whose pseudo-curvature equalsη + ω + Ω.

In conclusion, for a proper Lie groupoidΓ ⇒ M , if H3(Γ•,Z) has no torsion, the
H3(Γ•,Z) → H3(Γ•,R) is injective by the universal coefficient theorem. Hence any int
class inH3

DR(Γ•) can be represented uniquely by anS1-gerbe overXΓ and vice-versa. In
this case, one can defineK-theory twisted by such a class[η + ω + Ω]. However, in general
our twistedK-theory is only defined for twisting a class inH2(Γ•,S1) not for an integer 3rd
De Rham class[η +ω +Ω]. This is an essential difference when dealing with general group

Let us end this subsection by some examples, which have been studied extensively
literature.

Example2.26. – (1) LetM be a manifold andα ∈ H3(M,Z), and let{Ui} be a good
covering ofM . Then the groupoid

∐
ij Uij ⇒

∐
i Ui, whereUij = Ui ∩Uj is Morita equivalent

to M ⇒ M . See Example 2.16. Then theS1-gerbe corresponding to the classα can be
realized as anS1-central extension of groupoids

∐
ij Rij →

∐
ij Uij ⇒

∐
i Ui, whereRij are

S1-bundles overUij , and the groupoid multiplication is defined as follows: taking a trivializa
Rij

∼= Uij × S1, then

(xij , λ1)(xjk, λ2) = (xik, λ1λ2cijk),(8)

wherexij , xjk, xik are the same pointx in the three-intersectionUijk considered as elemen
in the two-intersections, andcijk : Uijk → S1 is a2-cocycle which represents the Cech clas
H2(M,S1) corresponding toα. Note thatcijk can also be considered as anS1-valued groupoid
2-cocycle of the groupoid

∐
ij Uij ⇒

∐
i Ui, and Eq. (8) above is a special case of Eq. (2).

[14,39] for details.
(2) Let Γ be a transformation groupoidG × M ⇒ M , whereG acts onM properly. By

Corollary 2.23, we haveH3
G(M,Z) ∼= H2(Γ•,S1). Assume that there exists aG-invariant good

cover{Ui}, thenΓ ⇒ M is Morita equivalent to
∐

ij G × Uij ⇒
∐

i Ui, where the groupoid
structure is given bys(g,xij) = xj , t(g,xij) = gxi, and

(g,xij) · (h, yjk) = (gh, zik)

wherex = hy andy = z. Then theS1-gerbe corresponding to the classα can be realized a
an S1-central extension of groupoidsS1 →

∐
ij Rij →

∐
ij G × Uij ⇒

∐
i Ui, whereRij are

S1-bundles overG×Uij . For alli, j, take an open cover(Vα)α∈Iij of G such that the restrictio
Rijα of Rij overVα ×Uij is isomorphic to the trivial bundleVα ×Uij × S1. The product

Rijα ×Uj Rjkβ → Rikγ
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has the form

(i, j,α, g, x,λ)(j, k, β,h, y,µ) =
(
i, k, γ, gh, y,λµcijk;αβ,γ(g,x,h, y)

)
,(9)

uce

ave an

tions
her
ot
ase of

th
c only

poids:
“lt”

red to be
wing
wherecijk;αβ,γ :{(g,x,h, y) ∈ Vα × Uij × Vβ × Ujk | x = hy, gh ∈ Vγ} → S1 satisfies the
following cocycle relation which expresses that the product is associative:

cijk;α1α2,α12(g1, x, g2, y)cikl;α12α3,α123(g1g2, y, g3, z)

= cjkl;α2α3;α23(g2, y, g3, z)cijl;α1α23,α123(g1, x, g2g3, z).

Conversely, given a cocycle as above, then one can associate to it anS1-central extension

S1 → R →
∐
i,j

G×Uij ⇒
∐

i

Ui.

The proof is elementary but tedious. We omit it here.

Remark2.27. – There is a canonical mapH3
G(M,Z) → H3(M,Z) induced by the inclusion

of M to the unit space ofG × M ⇒ M . This implies that an equivariant gerbe should ind
a gerbe overM . From the picture ofS1-central extensions, such a gerbe overM is simply the
restriction of theS1-central extensionR′ → Γ′ ⇒ M ′ to the unit space, whereR′ → Γ′ ⇒ M ′

is an S1-central extension representing this equivariant gerbe. In some cases, we h
isomorphismH3

G(M,Z) ∼= H3(M,Z). It is interesting to investigate how anS1-gerbe overM
can be made an equivariant one under this assumption.

2.4. Continuous case

The purpose of this subsection is to clarify the relation with [43]. To relate their construc
to ours, letS1

cont be the sheaf of continuousS1-valued functions. We need to determine whet
the natural mapH2(Γ•,S1) → H2(Γ•,S1

cont) is an isomorphism. Unfortunately, we do n
know the answer in general, but we can prove that it is an isomorphism in our main c
interest:

PROPOSITION 2.28. – LetΓ be a proper Lie groupoid. Then the natural map

H2(Γ•,S1) →H2(Γ•,S1
cont)(10)

is an isomorphism.

Proof. –Recall from Proposition 2.22 thatH2(Γ•,S1) is isomorphic toH3(Γ•,Z). We
claim thatH2(Γ•,S1

cont) is also isomorphic toH3(Γ•,Z). Indeed, Crainic’s proof that smoo
groupoid cohomology vanishes [19] also works for continuous cohomology since Craini
uses integration and cutoff functions, and never uses differentiation.�

Exactly the same constructions can be performed in the category of locally compact grou
let us denote byTwlt(Γ), E lt(Γ) and Extlt(Γ, S1) the groups thus obtained. The superscript
stands for “locally trivial”, since central extensions are required to be locally trivialS1-principal
bundles (in the continuous sense), and Morita equivalences between groupoids are requi
locally trivial principal bundles. An immediate consequence of Proposition 2.28 is the follo

COROLLARY 2.29. –LetΓ be a proper Lie groupoid. Then the natural map

Extsm(Γ, S1) → Extlt(Γ, S1)
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is an isomorphism.

However, in [43],S1-central extensionsS1 → R → Γ are not required to be locally trivial:
of

dule

ous

e

n

f

se
the homomorphismR → Γ is only required to be open surjective. Moreover, the notion
Morita equivalence in [43] is weaker since in their definition of an equivalence bimo
Γ(0)

1
τ← Z

σ→ Γ(0)
2 , the mapsσ and τ are just open surjective, and the actions ofΓ1 and Γ2

on Z are free and proper, butZ is not necessarily a locally trivialΓi-principal bundle. Let us
denote byTwlc(Γ), E lc(Γ) and Extlc(Γ, S1) the groups constructed in [43]. There are obvi
natural morphisms

Twsm(Γ) Twlt(Γ) Twlc(Γ)

Esm(Γ) E lt(Γ) E lc(Γ)

Extsm(Γ, S1) Extlt(Γ, S1) Extlc(Γ, S1).

Since anyS1-central extension of Lie groupoids is the pull-back of the central extension

S1 → U(H) → PU(H)

which is locally trivial (Section 2.6), the mapTwlt(Γ) → Twlc(Γ) is an isomorphism. Therefor
E lt(Γ) →E lc(Γ) andExtlt(Γ, S1) → Extlc(Γ, S1) are surjective.

From Proposition 2.13 and its analogue forE lt andE lc instead ofEsm , an extension is zero i
E lt(Γ) if and only if there exists an open cover(Ui) such that its class is zero inTwlt(Γ[Ui]),
and similarly forE lc . Therefore,

PROPOSITION 2.30. – LetΓ be a Lie groupoid. Then
(a) the natural mapsE lt(Γ)→E lc(Γ) andExtlt(Γ, S1)→ Extlc(Γ, S1) are isomorphisms.
(b) If Γ is proper, thenExtsm(Γ, S1) ∼→ Extlt(Γ, S1) ∼→ Extlc(Γ, S1).

In [43] is defined the Brauer groupBr(Γ) of Γ. It is the group of locally trivial bundles o
C∗-algebras overM endowed with an action ofΓ, with fibers isomorphic toK, divided by
Morita equivalence. LetBr0(Γ) be the subgroup ofBr(Γ) consisting of those bundles who
Dixmier–Douady class inH3(M,Z) is zero. ThenBr0(Γ) is the group of bundles of the form
M ×K with the diagonal actionγ · (s(γ), T ) = (t(γ), π(γ)(T )), where

π : Γ→ Aut(K)∼= PU(H)(11)

is a “projective representation” ofΓ. The group structure is given by tensor product:

[π][π′] = [π ⊗ π′],

where(π ⊗ π′)(γ) ∈Aut(K(H⊗H)) ∼= Aut(K).
Recall [43] that

Br0(Γ)∼= E lc(Γ).(12)

Indeed, from the data(M ×K→ M,π), one obtains anS1-central extension as follows:

S1 →
{
(γ,U) ∈ Γ×U(H)| π(γ) = Ad(U)

}
→ Γ.
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For the construction of a bundle ofC∗-algebras obtained from a central extension, see [43] or
Section 2.6.

If {Ui} is a cover ofM by contractible open subspaces and ifΓ′ denotesΓ[Ui], then

l

y

ld

t

from

ty

l

Extlc(Γ, S1) ∼= Br(Γ) ∼= Br(Γ′)∼= E lc(Γ′). To summarize,

PROPOSITION 2.31. –If Γ is a proper Lie groupoid, then we have

Br(Γ) ∼= Extsm(Γ, S1)∼= H2(Γ•,S1) ∼= H3(Γ•,Z).

2.5. S1-gerbes via principalG-bundles over groupoids

The purpose of this subsection is to present another construction ofS1-gerbes using principa
G-bundles over groupoids together with anS1-central extension ofG. In fact, we show, in the
next subsection, that everyS1-gerbe arises in this way whenG is taken the projective unitar
groupPU(H) of a separable Hilbert spaceH. Let us recall the definition of principalG-bundles.

DEFINITION 2.32. – LetΓ ⇒ M be a Lie groupoid. AΓ-space consists of a smooth manifo
P together with a smooth mapJ :P → M such that

(i) there is a mapσ :Q → P , whereQ is the fibered productQ = Γ ×s,M,J P . We write
σ(γ,x) = γ · x.

This map is subject to the constraints
(ii) for all x ∈ P we have

J(x) · x = x;

(iii) for all x ∈ P and allγ, δ ∈ Γ such thatJ(x) = s(γ) andt(γ) = s(δ) we have

(δ · γ) · x = δ · (γ · x).

Note that, as a consequence of the above definition, for anyr ∈ Γ, the map

lr :J−1(u)→ J−1(v), x → r · x(13)

must be a diffeomorphism, whereu = s(r) andv = t(r).
Associated to anyΓ-spaceJ :P → M , there is a natural groupoidQ ⇒ P , called the

transformation groupoid, which is defined as followsQ = Γ ×s,M,J P , the source and targe
maps are, respectively,s(γ,x) = x, t(γ,x) = γ · x, and the multiplication

(γ, y) · (δ,x) = (γ · δ,x), wherey = δ · x.(14)

It is simple to check that the first projection defines a (strict) homomorphism of groupoids
Q ⇒ P to Γ ⇒ M .

DEFINITION 2.33. – A principalG-bundle overΓ ⇒ M is a principal rightG-bundle

P
J→ M , which, at the same time, is also aΓ-space such that the following compatibili

condition is satisfied: for allx ∈ P andγ ∈ Γ, s(γ) = J(x)

(γ · x) · g = γ · (x · g).(15)

In this caseQ → Γ also becomes a principal (right)G-bundle.

Example2.34. – LetΓ be the transformation groupoidH × M ⇒ M . Then a principa
G-bundle overΓ corresponds exactly to anH-equivariant principal (right)G-bundle overM .
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A principal G-bundle over a groupoidΓ ⇒ M can also be equivalently considered as a
generalized homomorphism fromΓ ⇒ M to G ⇒ ·. As a consequence of Proposition 2.2, we
see that principal bundles behave well under the “generalized homomorphisms” in the following

.
n
s

he
s,

us.
sense.

PROPOSITION 2.35. – Let f be a generalized homomorphism fromΓ1 ⇒ M1 to Γ2 ⇒ M2

given by

M1
τ← X

σ→ M2.

Then for any principalG-bundleP → M2 overΓ2 ⇒ M2,

f∗P
def
= X ×M2 P →M1

is a principalG-bundle overΓ1 ⇒ M1. As a consequence, ifΓ1 ⇒ M1 andΓ2 ⇒ M2 are Morita
equivalent groupoids, then there is a bijection between their principalG-bundles.

Given a principalG-bundleJ :P → M overΓ ⇒ M , let P×P
G ⇒ M be the gauge groupoid

We denote by(p1, p2) an element ofP × P and by (p1, p2) the class of this element i
P×P

G . A map fromΓ to P×P
G is defined byγ �→ (γp, p) wherep is any element that satisfie

J(p) = s(γ). Thus we obtain the following groupoid homomorphism:

Γ P×P
G

M M

(16)

Since any transitive groupoid is Morita equivalent to its isotropy group,P×P
G ⇒ M is Morita

equivalent toG ⇒ ·. It is not hard to check that the homomorphism (16) and theG-principal
bundleP define the isomorphic generalized homomorphisms fromΓ to G.

From Proposition 2.5, it follows that a generalized homomorphismf from Γ1 ⇒ M1 to
Γ2 ⇒ M2 induces a natural homomorphism, called thepull-back map:

f∗ :H2(Γ•
2,S1)→ H2(Γ•

1,S1).

In what follows, we describe a construction ofS1-gerbes over a stack which is similar to t
construction in [14,16]. Assume thatS1 → G̃ → G is anS1-central extension of Lie group
P is a G-bundle overΓ ⇒ M . ThenP defines a generalized homomorphism fromΓ ⇒ M to
G ⇒ ·, and therefore induces a pull-back mapH2(G•,S1) → H2(Γ•,S1). By pulling back the
class ofS1 → G̃ → G in H2(G•,S1) via this map, one obtains an element inH2(Γ•,S1), i.e.,
anS1-gerbe over the stackXΓ associated toΓ.

Since the equivalence classes ofG-bundlesP
J→M overΓ ⇒ M are classified byH1(Γ•,G),

we have a map

Φ:H1(Γ•,G)×H2(G•,S1) → H2(Γ•,S1).(17)

Below we describe an explicit construction of the mapΦ in a special case more relevant to
Besides the above assumption, we furthermore assume that, as aG-principal bundle,P → M

can be lifted to ãG-principal bundleP̃ → M . Note that ifP̃ → M is a principalG̃-bundle, there

is a naturalS1-action onP̃ defined as follows:∀λ ∈ S1, p̃ ∈ P̃ , λ · p̃ = (λ · 1
G̃

)p̃, whereλ · 1
G̃

is
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considered as an element iñG. ThenP̃ /S1 is a principalG-bundle overM , which is isomorphic
to the reduced principal bundle induced by the group homomorphismG̃→ G. We require that as
a principalG bundleP ∼= P̃ /S1. In this case, it is simple to see that

n

ral

ys
ver,
ow that
f such

m

re:

,
t is
P̃ × P̃

G̃
→ P × P

G
⇒ M

is anS1-central extension, which is Morita equivalent to

G̃ → G ⇒ ·

Here theS1-equivalent Morita equivalence bimoduleM
τ̃← P̃

σ̃→ · is given by the compositio

of the projectionP̃ → P with M
τ← P

σ→ ·, the left action ofP̃×P̃

G̃
on P̃ is [(p̃1, p̃2)] · p̃3 = p̃1g̃

whereg̃ is the unique element iñG such that̃p3 = p̃2g̃, and the rightG̃-action is the usual one.

Let R → Γ denote the pull-backS1-bundle of P̃×P̃

G̃
→ P×P

G via the mapΓ → P×P
G as in

Eq. (16).

PROPOSITION 2.36. – Under the same hypothesis as above,R → Γ is a groupoidS1-central
extension, whose corresponding class inH2(Γ•,S1) is equal toΦ(α,β). Hereα ∈ H1(Γ•,G)
is the class defined byP → M and β ∈ H2(G•,S1) is the class corresponding to the cent
extensionS1 → G̃→ G.

2.6. Hilbert bundle and Dixmier–Douady class

The purpose of this subsection is to show that everyS1-gerbe over a differential stack alwa
arises from a principalPU(H)-bundle over the stack as in the case of manifolds [4]. Howe
unlike the manifold case, such projective bundles may not be unique. Nevertheless, we sh
there always exists a canonical one. In the following, we describe an explicit construction o
a projective bundle.

We now fix a separable Hilbert spaceH and consider the canonicalS1-central extension:

S1 → U(H) → PU(H),(18)

which is a generator ofH2(PU(H)•,S1) [14]. Thus Eq. (17) induces a group homomorphis

Φ′ :H1(Γ•, PU(H)) → H2(Γ•,S1).(19)

Note that H1(Γ•, PU(H)) can be endowed with the following abelian group structu
[π][π′] = [π ⊗ π′] if π, π′ : Γ[Ui] → PU(H) are groupoid homomorphisms and(Ui) is an open
cover ofΓ. See [14] for the case whenΓ is a manifoldM ⇒ M .

In other words, any principalPU(H)-bundle overΓ ⇒ M defines an element inH2(Γ•,S1),
or anS1-gerbe over the associated stackXΓ.

WhenΓ is a manifoldM ⇒ M , Φ′ is indeed an isomorphism [4,14]. However, in generalΦ′

may not be injective.3 We will see below thatΦ′ admits a canonical left inverse. Therefore i
always surjective.

3 For instance, letG be a compact Lie group andπ any unitary representation ofG such thatπ(g) is not a
scalar multiple of the identity for someg ∈ G. Then the associated element[π] ∈ H1(G•, PU(H)) is nonzero, but
Φ′([π]) = 0 since the compositionH1(G•,U(H)) → H1(G•, PU(H)) → H2(G•,S1) is zero.
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First of all, let us assume thatα ∈ H2(Γ•,S1) is the class defined by a groupoidS1-central
extensionR → Γ ⇒ M .

if

aces
ed
DEFINITION 2.37. – A complex-valued functionf on R is said to be equivariant
f(λγ̃) = λ−1f(γ̃) for anyλ ∈ S1 and anỹγ ∈R.

Let λ = (λx)x∈M be a Haar system onR, i.e.λx is a measure onRx such that for anỹγ ∈ R
the mapLγ̃ :Rs(γ̃) → Rt(γ̃) defined bỹγ′ �→ γ̃γ̃′ preserves the measure.

By L2
x, we denote the spaceL2(Rx)S1

consisting ofS1-equivariant functions defined onRx

which areL2 with respect to the Haar measure. Let

Hx =L2
x ⊗H, and H̃ =

∐
x

Hx.(20)

ThenH̃ → M is a countably generated continuous field of infinite dimensional Hilbert sp
over the finite dimensional spaceM , and therefore is a locally trivial Hilbert bundle (inde
globally trivial) according to Dixmier–Douady theorem [22].

For x ∈ M , let Bx be the set of orthonormal basis ofHx andB =
∐

x∈M Bx. We endowB
with the following topology: identifyBx with the spaceU(Hx,H) of unitary maps fromHx to
H. Then a sectionx �→ ux is continuous if and only if for everyξ ∈ H, x �→ u−1

x ξ is a continuous
section of the fieldH̃ → M . The fiber bundleB → M is a principalU(H)-bundle. NowS1

naturally acts onB by scalar multiplication. LetPB = B/S1 be its quotient. ThenPB is a
principalPU(H)-bundle overM .

Let U(x, y) be the set of unitary linear maps fromHx to Hy , and

U(H,H) =
{
U(x, y) | (x, y) ∈M ×M

}
.

ThenU(H,H) is naturally a groupoid overM .
Let PU(x, y) be the set of unitary projective maps fromHx to Hy , and let

PU(H,H) = {PU(x, y) | (x, y) ∈M ×M}.

ThenPU(H,H) is a groupoid overM .
The groupoidR acts naturally onH: for any element̃γ ∈ R with x = s(γ̃) andy = t(γ̃), and

any equivariant functionf ∈Hx, the action is given by:

f �→ γ̃ · f, where(γ̃ · f)(r) = f(γ̃−1r).

Since this action preserves the measureλ, it induces a homomorphism of groupoids

i :R → U(H,H).

Sincei is equivariant under theS1-actions, it induces a homomorphism of groupoidsj:

j : Γ→ PU(H,H).
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In short, we have the following diagram of groupoid homomorphisms:

i

ram

t

e
ted

same
the

r

of

It
R U(H,H)

Γ
j

PU(H,H)

(21)

It is obvious thatPB→ M is a principalPU(H)-bundle over the groupoidPU(H,H) ⇒ M .
By pushing forward the action using the above groupoid homomorphism,PB→ M is naturally
a principalPU(H)-bundle over the groupoidΓ ⇒ M .

PROPOSITION 2.38. – If α ∈ H1(Γ•, PU(H)) denotes the class defined byPB → M , then
Φ′(α) is equal to the class inH2(Γ•,S1) corresponding to theS1-central extensionR → Γ.

Proof. –Note that as groupoids,

U(H,H) ⇒ M

is isomorphic toB×B
U(H) ⇒ M , and

PU(H,H) ⇒ M

is isomorphic toPB×PB
PU(H) ⇒ M . Thus, the conclusion follows from Proposition 2.36 and diag

(21). �
Now let us return to the general case. Consider a Lie groupoidΓ ⇒ M and an elemen

α ∈ H2(Γ•,S1). There exists a Lie groupoidΓ′ ⇒ M ′ Morita equivalent toΓ such thatα is
the class of anS1-central extension

S1 → R → Γ′ ⇒ M ′.

Let PB → M ′ be the corresponding principalPU(H)-bundle overΓ′ ⇒ M ′ constructed abov
as in Proposition 2.38. SinceΓ′ ⇒ M ′ andΓ ⇒ M are Morita equivalent, there is an associa
principalPU(H)-bundlePα → M over the groupoidΓ ⇒ M . In fact,Pα = (Z ×M ′ PB)/Γ′,
where M ← Z → M ′ is an equivalence bimodule betweenΓ ⇒ M and Γ′ ⇒ M ′. By
construction,Pα andPB represent the same generalized homomorphism, thus define the
element inH1(Γ•, PU(H)). Moreover,Pα does not depend on a particular choice of
S1-central extensionS1 → R → Γ′ ⇒ M ′ realizing the classα. This follows from the following

LEMMA 2.39. –Assume thatp :Y → M is a surjective submersion. Letf : Γ[Y ] → Γ be the
projection map. Assume thatS1 → R → Γ ⇒ M is an S1-central extension, and denote byP
(resp.P ′) the associatedPU(H)-bundle overΓ (resp.Γ[Y ]). ThenP ′ is isomorphic toP ◦ f as
generalized morphismsΓ[Y ]→ PU(H).

Proof. –Let us first treat the caseY =�i∈IUi. Let Ix = {i ∈ I | x ∈ Ui} andHI = �x�2(Ix).
Then HI → M is endowed with a structure of continuous field of Hilbert spaces oveM
(associated to theC0(M)-Hilbert module

⊕
i∈I C0(Ui), see Proposition A.4).

It is easy to see thatP ′ = PU(f∗(H̃ ⊗ HI),H) (where “⊗” denotes the tensor product
continuous fields overM ). Now, H̃ ⊗ HI

∼= (H̃ ⊗ H) ⊗HI
∼= H̃ ⊗ (HI ⊗ H) ∼= H̃ ⊗ H ∼= H̃

sinceHI ⊗ H is the trivial continuous fieldM × H → M (see the argument below (20)).
follows thatP ′ = PU(f∗H̃,H) = P ◦ f .
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In the general case, i.e. for a generalY , consider a continuousp-systemµ = (µx)x∈M , i.e.µx

is a measure with supportp−1(x) such that[ ∫ ]

the
ct

s.

p

a

, a

the

of

.

∀ϕ ∈Cc(Y ), x �→ ϕ(y)dµx(y) ∈Cc(M).

A Haar system onΓ[Y ] is given by∫
Γ[Y ]y

ψ =
∫

γ∈Γp(y)

dλp(y)(γ)
∫

z∈p−1(s(γ))

dµs(γ)(y′)ψ(y, γ, y′).

Then, �x∈ML2(µx) → M is a continuous field of Hilbert spaces (associated to
C0(M)-module obtained by the completion ofCc(Y ) with respect to the scalar produ
〈ϕ,ϕ〉(x) =

∫
|ϕ|2 dµx), such that�x∈ML2(µx)⊗H is the trivial fieldM ×H → M . The proof

is almost the same as above, except that notations are more complicated. We omit detail�
Therefore we have proved the following

PROPOSITION 2.40. – Let Γ ⇒ M be a Lie groupoid. Associated to any elementα ∈
H2(Γ•,S1), there is a canonicalPU(H)-bundle overΓ ⇒ M , denoted byPα → M , whose
corresponding class inH1(Γ•, PU(H)) goes toα under the mapΦ′ in Eq. (19).

Clearly, if α can be realized as anS1-central extension over the groupoidΓ ⇒ M without
the need of passing to Morita equivariance, thenPα = PB. As a consequence, whenΓ is a
transformation groupoid, we obtain the following:

COROLLARY 2.41. – If G is a Lie group acting onM properly, then there is a grou
homomorphism:{

Isomorphism classes ofG-equivariantPU(H)-bundles
}
→ H3

G(M,Z),(22)

which admits a canonical inverse. Namely, to any element inH3
G(M,Z), there associates

canonicalG-equivariantPU(H)-bundlePα → M .

3. TwistedK-theory and Fredholm bundles

In this section, we introduce twistedK-theory groups of a Lie groupoid (or more precisely
differential stack). In the case of proper Lie groupoids, we describe theseK-groups in terms
of homotopy classes of certainΓ-invariant sections of Fredholm operators associated to
projective Hilbert bundle as constructed in Section 2.6 (Theorem 3.14).

3.1. The reducedC∗-algebra of anS1-central extension

Given anS1-central extension of Lie groupoidsS1 → R → Γ ⇒ M , let L = R ×S1 C

be its associated complex line bundle. ThenL → M can be considered as a Fell bundle
C∗-algebras over the groupoidΓ ⇒ M . Therefore one can construct aC∗-algebra out of it (see
Appendix A.3).

DEFINITION 3.1. – LetΓ be a Lie groupoid andS1 → R → Γ ⇒ M anS1-central extension
Then the reducedC∗-algebra of the central extensionC∗

r (Γ;R) is defined to beC∗
r (Γ;L), where

L = R ×S1 C is the associated complex line bundle considered as a Fell bundle ofC∗-algebras
overΓ ⇒ M .
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There is another picture for thisC∗-algebra. Consider

Cc(R)S1
=

{
ξ ∈Cc(R) | ξ(λr) = λ−1ξ(r), ∀λ ∈ S1, r ∈R

}
.

t the

sm

e

re

n
e

ion

t

One easily checks thatCc(R)S1
is stable under both the convolution and the adjoint, and tha

map

Cc(R)S1 → Cc(Γ;L),(23)

ξ �→ η, whereη(g) = [(r, ξ(r))] ∈ Lg = Rg ×S1 C, is well-defined and is indeed an isomorphi
of convolution algebras. Let us define

C∗
r (R)S1

:= Cc(R)S1 ⊂ C∗
r (R),(24)

i.e. C∗
r (R)S1

is the norm-closure ofCc(R)S1
in C∗

r (R) (see Ref. [61] for details on th
construction of the reducedC∗-algebraC∗

r (Γ) of a groupoidΓ).
The algebraC∗(S1) = C∗

r (S1) acts onC∗
r (R) by convolution operators. More precisely, the

is a *-homomorphism

Λ:C∗(S1) → M
(
C∗

r (R)
)

such that for everyf ∈C(S1) and everyξ ∈Cc(R),

(Λ(f)ξ)(r) =
∫
S1

f(λ)ξ(λ−1r)dλ

wheredλ is the normalized Haar measuredθ
2π onS1. Indeed, one only needs to check that

(Uλξ)(r) = ξ(λ−1r)

defines a unitary representation ofS1 into the unitary group ofM(C∗
r (R)).

The mapΛ is non-degenerate, for iffn is a sequence inC(S1) converging to the delta functio
at 1, thenΛ(fn)a converges toa for all a ∈ C∗

r (R). That is,Λ(fn) converges strictly to th
identity. Therefore,Λ extends to a unital strictly continuous∗-homomorphism

M
(
C∗(S1)

)
→ M

(
C∗

r (R)
)

[58, Paragraphs 3.12.10 and 3.12.12].
Let Pn ∈ C∗

r (S1) be the convolution byzn, i.e.Pn corresponds to the characteristic funct
of {n} via the Fourier transformationC∗

r (S1) ∼= C0(Z). Let Qn = Λ(Pn). Then theQn’s are
pairwise orthogonal projections. SinceΛ is non-degenerate, the sum

∑
Qn is strictly convergen

to 1. Moreover, sinceUλ is in the center ofM(C∗
r (R)), the projectionsQn also belong to the

center ofM(C∗
r (R)).

Using the formulaQn(ξ)(r) =
∫

S1 λnξ(λ−nr)dλ, one easily checks that the image ofQn is
the closure of the set of elementsξ ∈ Cc(R) such thatξ(λr) = λnξ(r) for all (λ, r) ∈ S1 × R.
In particular,C∗

r (R)S1
, the closure ofCc(R)S1

in C∗
r (R), is Q−1(C∗

r (R)).
Similarly as in Eq. (23), there is an isometric isomorphism of HilbertC0(M)-modules:

L2(R)S1 → L2(Γ;L).(25)
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If ξ ∈Cc(R)S1
andη(g) = [(r, ξ(r))], then the norm ofξ, as a convolution operator acting on

L2(R), is equal to the norm ofη, as a convolution operator acting onL2(Γ;L).
Noting thatL2(R)S1

is the image of the projectionQ−1, we have

en

o

‖ξ‖C∗
r (R) = ‖Q−1ξ‖C∗

r (R) = ‖ξQ−1‖C∗
r (R) = sup

‖ϕ‖L2(R)=1

‖ξ ∗Q−1ϕ‖

= sup
ϕ∈L2(R)S1 , ‖ϕ‖L2(R)=1

‖ξ ∗ϕ‖ = sup
‖ψ‖L2(Γ;L)=1

‖η ∗ψ‖L2(Γ;L) = ‖η‖C∗
r (Γ;L).

It follows that

C∗
r (Γ;R) ∼= C∗

r (R)S1
.(26)

We summarize the above discussion in the following:

PROPOSITION 3.2. – Let S1 → R → Γ be anS1-central extension of Lie groupoids. Th
there is a canonical isomorphism

C∗
r (R) ∼=

⊕
n∈Z

C∗
r (Γ;Rn),

whereC∗
r (Γ;Rn) is theC∗-algebra of the central extension

S1 → Rn = R⊗ · · · ⊗R → Γ

for all n �= 0, andC∗
r (Γ;R0) = C∗

r (Γ) by convention.
The image ofC∗

r (Γ;R) in C∗
r (R) consists of the closure ofCc(Γ,R)S1

defined in Eq.(24).
For f ∈Cc(R) ⊂C∗

r (R), the imagefn of f in C∗
r (Γ;Rn) is given by

fn(r) =
∫
S1

λ−nf(λnr)dλ,

wheredλ is the normalized Haar measure onS1.

For theS1-central extension
∐

ij Rij →
∐

ij Uij ⇒
∐

i Ui in Example 2.26(1), we refer t
[60,63,42] for a detailed discussion on theC∗-algebraC∗

r (Γ,R).

3.2. Definition of twistedK-theory and first properties

PROPOSITION 3.3. – Let Ri → Γi ⇒ Mi (i = 1,2) be Morita equivalentS1-central
extensions. ThenC∗

r (R1)S1
andC∗

r (R2)S1
are Morita equivalentC∗-algebras.

Proof. –This follows from [62] or from [55, Theorem 11].�
We are now ready to define twistedK-theory.

DEFINITION 3.4. – LetΓ be a Lie groupoid andα ∈ H2(Γ•,S1). We define the twisted
K-theory as

Ki
α(Γ•) = K−i(C∗

r (R)S1
),

whereS1 → R → Γ′ ⇒ M ′ is any central extension realizing the classα and Γ′ is Morita
equivalent toΓ.
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From Proposition 3.3, it follows that if twoS1-central extensions are Morita equivalent, their
twistedK-theory groups are isomorphic and therefore only depend on the corresponding stack
and theS1-gerbe over the stack. Consequently, twistedK-theory is well-defined.

g

.,
hese
e Morita

more

ow

the
Example3.5 (1). – WhenΓ is a manifoldM ⇒ M andα ∈ H3(M,Z) ∼= H2(Γ•,S1), the
above definition reduces to the one introduced by Rosenberg [63].

(2) Assume that a Lie groupG acts on a smooth manifoldM properly. According to
Corollary 2.23, the equivariant cohomologyH3

G(M,Z) is isomorphic toH2(Γ•,S1), whereΓ
denotes the transformation groupoidG × M ⇒ M . Let α ∈ H3

G(M,Z). We define the twisted
equivariantK-theory

Ki
G,α(M) := K−i

(
C∗

r (R)S1)
,

whereS1 → R → Γ′ ⇒ M ′ is anyS1-central extension realizing the classα andΓ′ is Morita
equivalent toΓ. According to the observation following Definition 3.4, we have the followin

PROPOSITION 3.6. –If G acts on a smooth manifoldM properly and freely so thatM/G is
a manifold, then

Ki
G,α(M) ∼= Ki

α′(M/G),

whereα′ is the image ofα under the isomorphismH3
G(M,Z) ∼→ H3(M/G,Z). More generally,

if H is a normal subgroup ofG which acts onM properly and freely, then

Ki
G,α(M) ∼= Ki

G/H,α′(M/H),

whereα′ is the image ofα under the isomorphismH3
G(M,Z) ∼→ H3

G/H(M/H,Z).

Note that the proposition above is a non-trivial theorem even in the non-twisted case, i.eα =
0, in the ordinary equivariantK-theory of Segal [65]. The advantage of our approach is that t
facts are encoded as a part of the definition since they are obvious consequences of th
equivalence between the transformation groupoidsG × M ⇒ M andG/H × M/H ⇒ M/H .
The hard part is to prove that this definition coincides with the topological one which is
often used by geometers.

(3) Given an orbifoldX, let Γ ⇒ M be an étale groupoid representing this orbifold. N
givenα ∈H3(X,Z) ∼= H2(Γ•,S1), we define the twisted orbifoldK-theory

Ki
α(X) := K−i

(
C∗

r (R)S1)
,

whereS1 → R → Γ′ ⇒ M ′ is anyS1-central extension realizing the classα andΓ′ is Morita
equivalent toΓ. It would be interesting to investigate the relation between our definition with
one given by Lupercio and Uribe [45].

Next let us deduce some properties that are immediate from the definition.

PROPOSITION 3.7 (Bott periodicity). –Let S1 → R → Γ ⇒ M be anS1-central extension
of Lie groupoids. Then for alli,

Ki
α(Γ•)∼= Ki+2

α (Γ•),

Ki+n
α (Γ•)∼= Ki

αn

(
(Γ×Rn)•

)
,

whereαn is the class of the extensionR×Rn → Γ×Rn ⇒ M ×Rn.
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Note also thatKi
αn

((Γ × Rn)•) is the kernel of the morphismKi
α′

n
((Γ × Sn)•) → Ki

α(Γ•)
induced by the inclusionΓ× {pt} ⊂ Γ× Sn, whereα′

n is the class of the extension

d

d

R× Sn → Γ× Sn ⇒ M × Sn.

We say that a subgroupoidΓ1 ⇒ M1 of Γ ⇒ M is saturated ifM1 is an invariant subset ofM
(i.e.ΓM1

M1
= ΓM1 ) such thatΓ1 = ΓM1

M1
.

PROPOSITION 3.8. –LetS1 → R → Γ ⇒ M be anS1-central extension of Lie groupoids an
denote byα its class inH2(Γ•,S1). Suppose thatΓ1 is an open saturated subgroupoid ofΓ and
let α1 be the class of the correspondingS1-central extension ofΓ1. Then the inclusioni : Γ1 → Γ
induces a canonical map

i∗ :Kn
α1

(Γ•
1)→ Kn

α(Γ•).

Proof. –Using the obvious notation,C∗
r (R1)S1

is an ideal of theC∗-algebraC∗
r (R)S1

.
Indeed, it is not hard to check thatCc(R1)S1 ⊂ Cc(R)S1

is stable under the convolution an
the adjoint. SinceR1 is a saturated subgroupoid ofR, we have

‖f‖C∗
r (R1) = sup

x∈R
(0)
1

sup
ξ∈Cc(Rx)

‖f ∗ ξ‖L2(Rx)

= sup
x∈R(0)

sup
ξ∈Cc(Rx)

‖f ∗ ξ‖L2(Rx)

= ‖f‖C∗
r (R),

and thusC∗
r (R1)S1

is a sub-C∗-algebra ofC∗
r (R)S1

. Moreover, for allf ∈ Cc(R1)S1
and

f ′ ∈Cc(R)S1
we havef ∗ f ′ ∈Cc(R1)S1

. ThereforeC∗
r (R1)S1

is an ideal inC∗
r (R)S1

.

Recall (see for instance [37, Section 3]) that ifI1 andI2 are two closed ideals in aC∗-algebra
A such thatA = I1 + I2, then there is a six-term exact sequence

K0(I1 ∩ I2)
(j1)∗⊕(j2)∗

K0(I1)⊕K0(I2)
(i1)∗−(i2)∗

K0(A)

∂

K1(A)

∂

K1(I1)⊕K1(I2)
(i1)∗−(i2)∗

K1(I1 ∩ I2)
(j1)∗⊕(j2)∗

wherejk : I1 ∩ I2 → Ik andik : Ik → A are the inclusions (k = 1,2). Therefore, we get

PROPOSITION 3.9 (Mayer–Vietoris sequence 1). –Let S1 → R → Γ ⇒ M be anS1-central
extension of Lie groupoids and denote byα its class inH2(Γ•,S1). Suppose thatΓ is the union
of two open saturated subgroupoidsΓ1 andΓ2. Let Γ12 = Γ1 ∩ Γ2, and letα1, α2 andα12 be

the classes of the inducedS1-central extensions and denote byΓ12
jk→ Γk

ik→ Γ (k = 1,2) the
inclusions. Then we have an hexagonal exact sequence

K0
α12

(Γ•
12)

(j1)∗⊕(j2)∗
K0

α1
(Γ•

1)⊕K0
α2

(Γ•
2)

(i1)∗−(i2)∗
K0

α(Γ•)

∂

K1
α(Γ•)

∂

K1
α1

(Γ•
1)⊕K1

α2
(Γ•

2)
(i1)∗−(i2)∗

K1
α12

(Γ•
12)

(j1)∗⊕(j2)∗
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Proof. –It is clear that bothI1 = C∗
r (R1)S1

andI2 = C∗
r (R2)S1

are ideals ofA = C∗
r (R)S1

.
To check thatI1 ∩ I2 = C∗

r (R12)S1
, note thatI1 ∩ I2 = I1I2 (this is a standard result in

C∗-algebras) and thatf ∗ f ∈C (R )S1
if f ∈C (R )S1

andf ∈ C (R )S1
.

r

s

on

-

t

of. For

nd
1 2 c 12 1 c 1 2 c 2

To check thatI1 + I2 = A, take a partition of unity(ϕ1,ϕ2) associated to the cove
(Γ(0)

i /Γ)i=1,2 of M/Γ. Let f ∈ Cc(R)S1
. Then, consideringϕi as R-invariant functions on

M , we havef = (ϕ1f) + (ϕ2f) ∈Cc(R1)S1
+ Cc(R2)S1

. �
PROPOSITION 3.10. –Let S1 → R → Γ ⇒ M be anS1-central extension of Lie groupoid

and denote byα its class inH2(Γ•,S1). Assume thatΓ1 is a closed saturated subgroupoid ofΓ.
Letα1 ∈ H2(Γ•

1,S1) be the class of the correspondingS1-central extension. Then the inclusi
i : Γ1 → Γ induces a canonical map

i∗ :Kn
α(Γ•) → Kn

α1
(Γ•

1).

Proof. –Using the obvious notation,C∗
r (R1)S1

is a quotient of theC∗-algebraC∗
r (R)S1

.
Indeed, the restriction mapCc(R)S1 → Cc(R1)S1

is a surjective∗-homomorphism of convo
lution algebras and is norm-decreasing, and therefore induces a surjective∗-homomorphism
C∗

r (R)S1 → C∗
r (R1)S1

. �
Suppose thatA1 = A/I1 and A2 = A/I2 are two quotients of aC∗-algebra such tha

I1 ∩ I2 = {0}, and letA12 = A/(I1 + I2). Denote bypk :A → Ak and byqk :Ak → A12 the
quotient maps. Then there is a six-term exact sequence

K0(A12)

∂

K0(A1)⊕K0(A2)
(q1)∗⊕(q2)∗

K0(A)
(p1)∗−(p2)∗

K1(A)
(p1)∗−(p2)∗

K1(A1)⊕K1(A2)
(q1)∗⊕(q2)∗

K1(A12)

∂

Since we cannot locate this standard fact in the literature, here is a sketch of the pro
every locally compact spaceX , we will denote byA(X) the C∗-algebraC0(X,A). Consider
theC∗-algebra

D =
{
(f−, a, f+) ∈ A1(−1,0]⊕A⊕A2[0,1) | f−(0) = p1(a) andp2(a) = f+(0)

}
.

There is an obvious exact sequence

0 → I2(−1,0]⊕ I1[0,1)→ D → A12(−1,1)→ 0.

SinceI2(−1,0] ⊕ I1[0,1) is contractible, the six-term exact sequence inK-theory yields an
isomorphismKi(D) ∼= Ki(A12(−1,1)), hence

Ki(D) ∼= Ki+1(A12).(27)

Now, the obvious exact sequence

0 → A1(−1,0)⊕A2(0,1)→ D → A→ 0

gives a six-term exact sequence inK-theory, which yields the result via Bott periodicity a
Eq. (27).
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PROPOSITION 3.11 (Mayer–Vietoris sequence 2). –LetS1 → R → Γ ⇒ M be anS1-central
extension ofproperLie groupoids and denote byα its class inH2(Γ•,S1). Suppose thatΓ is the
union of two closed saturated groupoidsΓ1 andΓ2. LetΓ12 = Γ1 ∩ Γ2. Letα1, α2 andα12 be

d,
e

t

the classes of their inducedS1-central extensions and denote byΓ12
jk→ Γk

ik→ Γ (k = 1,2) the
inclusions. Then we have an hexagonal exact sequence

K0
α12

(Γ12)

∂

K0
α1

(Γ1)⊕K0
α2

(Γ2)
(j1)

∗⊕(j2)
∗

K0
α(Γ)

(i1)
∗−(i2)

∗

K1
α(Γ)

(i1)
∗−(i2)

∗

K1
α1

(Γ1)⊕K1
α2

(Γ2)
(j1)

∗⊕(j2)
∗

K1
α12

(Γ12)

∂

Proof. –Let Γ′
k (k = 1,2 or 12) be the complementary ofΓk. SinceΓk is closed and saturate

it follows that Γ′
k is an open saturated subgroupoid ofΓ. With the obvious notations, writ

Ik = C∗
r (R′

k)S1
, A = C∗

r (R)S1
andAk = A/Ik, whereR′

k denotes the complementary ofRk.
SinceΓ = Γ1 ∪ Γ2, we haveI1 ∩ I2 = {0}. It is also clear thatI1 + I2 = I12.

To obtain the Mayer–Vietoris sequence, it suffices to show thatC∗
r (Rk)S1

= A/Ik. This is not
always true for every groupoid. I.e. the sequence

0 →C∗
r (R′

k)S1 → C∗
r (R)S1 → C∗

r (Rk)S1 → 0

is not necessarily exact. However, the analogous sequence withC∗ instead ofC∗
r is always exac

by the universal property of the fullC∗-algebra of a groupoid, and we haveC∗
r = C∗ for proper

groupoids (or even for amenable groupoids).�
Example3.12. – Assume thatΓ is a transformation groupoidG×M ⇒ M , whereG is a Lie

group acting onM properly. Assume thatU1 andU2 areG-invariant open submanifolds ofM
such thatM = U1 ∪U2. Then Proposition 3.9 yields that

K0
G,α12

(U1 ∩U2)
(j1)∗⊕(j2)∗

K0
G,α1

(U1)⊕K0
G,α2

(U2)
(i1)∗−(i2)∗

K0
G,α(M)

∂

K1
G,α(M)

∂

K1
G,α1

(U1)⊕K1
G,α2

(U2)
(i1)∗−(i2)∗

K1
G,α12

(U1 ∩U2)
(j1)∗⊕(j2)∗

Similarly, if F1 andF2 areG-invariant closed submanifolds ofM such thatF1 ∪ F2 = M ,
then Proposition 3.11 yields that

K0
G,α12

(F1 ∩ F2)

∂

K0
G,α1

(F1)⊕K0
G,α2

(F2)
(j1)

∗⊕(j2)
∗

K0
G,α(M)

(i1)
∗−(i2)

∗

K1
G,α(M)

(i1)
∗−(i2)

∗

K1
G,α1

(F1)⊕K1
G,α2

(F2)
(j1)

∗⊕(j2)
∗

K1
G,α12

(F1 ∩ F2)

∂
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3.3. The main theorem

Let S1 → R → Γ ⇒ M be anS1-central extension of groupoids, andPB→ M its associated

tors
t

those

spaces

on

on

e

,

s

f

principalPU(H)-bundle over the groupoidΓ ⇒ M as constructed in Proposition 2.38. Let

L(H̃) = PB ×PU(H) L(H) → M

and

K(H̃) = PB ×PU(H) K(H) → M

be its associated bundles ofC∗-algebras, whereL(H) denotes the algebra of bounded opera
on H endowed with the∗-strong topology, andK(H) denotes theC∗-algebra of compac
operators onH endowed with the norm-topology. The groupPU(H) acts onL(H) andK(H)
by conjugation. To justify the notation, we show that these bundles are isomorphic to
of bounded and compact operators associated to the Hilbert bundle

⋃
x∈M L2(Rx)S1 ⊗ H (see

Eq. (20)) as in Appendix A (Propositions A.5 and A.6).
Indeed it is simple to see that the fiber ofL(H̃) → M andK(H̃) → M at eachx ∈ M are,

respectively,L(Hx) andK(Hx). The map

PB ×PU(H) L(H)→
∐

x∈M

L(Hx),

(u,T ) �→ uTu−1

is clearly a bijection. To identify the topology ofPB ×PU(H) L(H), we can assume thatH is a
trivial bundle (since it is locally trivial). Then

PB ×PU(H) L(H) ∼= M × PU(H)×PU(H) L(H) ∼= M ×L(H)

is obviously the bundle of bounded operators associated to a continuous field of Hilbert
(see Proposition A.5). The proof forK(H̃) is similar (see Proposition A.6).

The groupoidΓ-action onPB→ M induces an action on theC∗-algebra bundleL(H̃) → M

(andK(H̃) →M respectively). On the other hand, the associated line bundleL = R×S1 C → M
can be considered as a Fell bundle over the groupoidΓ ⇒ M . Therefore the general constructi
of Yamagami (see Appendix A.3) gives rise to a continuous action of the groupoidΓ ⇒ M on the
C∗-bundleL(L̃2(Γ;L)) → M (andK(L̃2(Γ;L)) → M as well), which extends to an action
theC∗-bundleL(L̃2(Γ;L)⊗H) → M (andK(L̃2(Γ;L)⊗H) → M ). From Eq. (25), it follows
that the Hilbert bundles̃L2(Γ;L)⊗H → M andH̃ → M are canonically isomorphic. In fact w
have the following:

LEMMA 3.13. –The C∗-algebra bundlesL(H̃) → M (K(H̃) → M , respectively) and
L(L̃2(Γ;L)⊗H) → M (andK(L̃2(Γ;L)⊗H) → M respectively) are canonically isomorphic
and the isomorphism respects theΓ-action.

Recall that a sectionx �→ Tx ∈ L(H̃x), x ∈ M , is strongly continuous ifx �→ Txξ is norm-
continuous for all continuous sectionsξ ∈ C(M, H̃), and thatx �→ Tx is ∗-strongly continuous
if x �→ Tx andx �→ T ∗

x are strongly continuous.
By Cb(M,L(H̃)) we denote the space of norm-bounded,∗-strongly-continuous section

of bounded operators onH, and byCb(M,L(H̃))Γ we denote the subalgebra ofΓ-invariant
sections. Similarly, byC0(M,K(H̃)) we denote the space ofnorm-continuous sections o
compact operators vanishing at infinity.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



872 J.-L. TU, P. XU AND C. LAURENT-GENGOUX

Let KΓ(H) be the space of norm-continuousΓ-invariant sections{Tx | x ∈ M} of the
C∗-algebra bundleK(H̃) → M satisfying the boundary condition‖Tx‖ → 0 whenx →
∞ in M/Γ. Note that‖Tx‖ can be considered as a function on the orbit spaceM/Γ due to

g
its

s

lm
the invariance assumption.
Denote byF0

α the space ofT ∈ Cb(M,L(H̃))Γ such that there existsS ∈ Cb(M,L(H̃))Γ

satisfying1− TS, 1− ST ∈KΓ(H). In other words,
(i) Tx andSx are Fredholm for allx, and the sectionsx �→ Tx andx �→ Sx are∗-strongly

continuous andΓ-invariant;
(ii) 1 − TxSx, 1 − SxTx are compact operators for allx and the sectionsx �→ 1 − TxSx,

x �→ 1− SxTx are norm-continuous and vanish at∞ in M/Γ.
Denote byF1

α the space of self-adjoint elements inF0
α. Our main theorem is

THEOREM 3.14. – Let Γ ⇒ M be a proper Lie groupoid,S1 → R → Γ an S1-central
extension and denote byα its class inH2(Γ•,S1)(∼= H3(Γ•,Z)). Then

Ki
α(Γ•) =

{
[T ] | T ∈ F i

α

}
,

where[T ] denotes the homotopy class ofT .

The proof of (a generalization of) Theorem 3.14 is the content of the next section.
Another way to formulate Theorem 3.14 is as follows.
Let Γ ⇒ M be a proper Lie groupoid andα ∈ H3(Γ•,Z). Let Pα → M be its correspondin

canonicalPU(H)-bundle over the groupoidΓ ⇒ M as in Proposition 2.40. Consider
associated bundles:

Fred i
α(H) := Pα ×PU(H) Fred i(H) → M,(28)

Kα(H) := Pα ×PU(H) K(H) → M,(29)

where Fred i(H) is endowed with the∗-strong topology whileK(H) is endowed with the
norm-topology. ByF i

α, we denote the space of norm-bounded,Γ-invariant, continuous section
x �→ Tx of the bundleFred i

α(H) → M such that there exists a norm-bounded,Γ-invariant,
continuous sectionx �→ Sx of Fred i

α(H) → M with the property that1 − TxSx and1 − SxTx

are continuous sections ofKα(H) vanishing at infinity.4 Then we have the following

THEOREM 3.15. – LetΓ ⇒ M be a proper Lie groupoid, andα ∈H3(Γ•,Z). Then

Ki
α(Γ•) =

{
[T ] | T ∈ F i

α

}
,

where[T ] denotes the homotopy class ofT .

Remark3.16. – Note that there may exist differentPU(H)-principal bundles overΓ ⇒ M
other thanPα, which also map toα ∈ H2(Γ•,S1) under the mapΦ′. However, only the
construction using this particular principal bundlePα gives the right answer for the Fredho
picture of twistedK-theory groups.

Example3.17. – (1) WhenΓ is a compact manifoldM , the principal PU(H)-bundle
Pα → M over M is represented by a 1-cocyclegkl :Ukl → PU(H). A class[T ] in Ki

α(M)
corresponds to a section of the bundlePα ×PU(H) Fred i(H), thus to a family of∗-strongly
continuous mapsTk :Uk → Fred i(H) satisfyingTl = g−1

kl Tkgkl onUkl [4,27].

4 This definition ofFi
α obviously agrees with the previous one.
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(2) WhenΓ is a transformation groupoidG×M ⇒ M , for anyα ∈H3
G(M,Z), the associated

PU(H)-bundle Pα → M over Γ is a G-equivariantPU(H)-bundle overM . Therefore, its
associated bundlesFred i

α(H) → M andKα(H) → M areG-equivariant. ThusKi
G,α(M) can

s

m
d

o
ain

].

on a

.) field

s

the
be represented as the group of homotopy classes ofG-invariant∗-strongly continuous section
of the Fredholm bundleFred i

α(H) → M .
In terms of local charts, the principalPU(H)-bundle Pα is represented by a1-cocycle

ϕkl : (G×M)Ul

Uk
→ PU(H) (see Eqs. (11) and (12)). Then a class[T ] in Ki

G,α(M) corresponds

to a family of∗-strongly continuous mapsTk :Uk → Fred i(H) satisfying

Tl(y) = ϕlk(g,x)Tk(x)ϕkl(g−1, y)

if x ∈ Uk, y ∈ Ul andy = gx.

4. C∗-algebras of Fell bundles over proper groupoids

The goal of this section is to prove a general result inC∗-algebras, which includes Theore
3.14 as a special case. More precisely, we prove that ifΓ ⇒ M is a proper groupoid an
E =

∐
g∈Γ Eg is a u.s.c. Fell bundle overΓ (see Appendix A), then its associatedC∗-algebra

C∗
r (Γ;E) is isomorphic to the space ofΓ-equivariant continuous sections of theC∗-algebra

bundle
∐

x∈M K(L2(Γx;E)) → M that vanish at infinity inM/Γ (Proposition 4.3), and t
deduce that theK-theory groups ofC∗

r (Γ;E) are isomorphic to homotopy classes of cert
generalized Fredholm operators (Theorem 4.6).

Let us recall

DEFINITION 4.1. – Let Γ ⇒ M be a proper groupoid with Haar system{λx | x ∈ M}.
A continuous functionc :M → R+ is called a cutoff function if

(i) for all x ∈M ,
∫

γ∈Γx c(s(γ))λx(dγ) = 1; and
(ii) for all K ⊂ M compact, the support of(c ◦ s)|ΓK is compact.

The condition (ii) means that ifF ⊂ M is the saturate of a compact set, thenF ∩ supp(c) is
compact. It is known that a cutoff function exists if and only ifΓ is proper [68, Proposition 6.7

Cutoff functions allow us to make “averages”. Namely, let

TΓ
x =

∫
γ∈Γx

αγ(Ts(γ))c
(
s(γ)

)
λx(dγ) ∈ L

(
L2(Γx;E)

)
.(30)

ThenT �→ TΓ is a linear projection of norm one fromL(L2(Γ;E)) ontoL(L2(Γ;E))Γ. (If
Γ = G is a compact group thenTG is the average

∫
G

αg(T )dg.)
More generally, letΓ ⇒ M be a proper groupoid with Haar system acting continuously

u.s.c. field ofC∗-algebrasA→ M . By A = C0(M,A) we denote its correspondingC∗-algebra
of continuous sections vanishing at infinity. As in Proposition A.5, there exists a (not u.s.c
of C∗-algebrasM(A) → M with the fiber atx ∈ M beingM(Ax), such that

(a) a sectionx �→ Tx ∈ M(Ax) is a continuous section ofM(A) → M if and only if for every
continuous sectionx �→ ax of A→ M , x �→ Txax andx �→ T ∗

x ax are continuous section
of A→ M .

(b) The algebraCb(M,M(A)) of continuous, norm-bounded sections is isomorphic to
multiplier algebraM(A).

It is clear that theΓ-action onA→ M induces a naturalΓ-action onM(A) → M . By M(A)Γ,
we denote theC∗-subalgebra ofM(A) consisting ofΓ-invariant sections. For anyT ∈ A, let
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TΓ ∈M(A) be the element such that

Γ

∫ ( )
x

f

d

ct

t
ll
(T )x =
γ∈Γx

αγ(Ts(γ))c s(γ) λ (dγ) ∈M(Ax).

Of course, the averaging mapT �→ TΓ depends on the choice of the cutoff function.
Let us introduce some notations. IfE is aC0(M)-Hilbert module, let

C(E) =
{
T ∈ L(E) | ϕT ∈K(E) ∀ϕ ∈C0(M)

}
.(31)

If, moreover,E is a(Γ,E)-equivariant Hilbert module, let

KΓ(E) =
{
T ∈ C(E)Γ | ‖Tx‖→ 0 whenx →∞ in M/Γ

}
.(32)

More generally, ifΓ acts on aC0(M)-algebraA, let

AΓ = {T ∈M(A)Γ | ∀ϕ ∈C0(M),ϕT ∈A

and‖Tx‖→ 0 whenx →∞ in M/Γ
}
.(33)

For example, ifA = C0(R) andΓ = Z acts onA by translations, thenAΓ is the space o
1-periodic continuous functions onR, while the algebraAΓ, consisting ofΓ-invariant elements
in A, is {0}.

LEMMA 4.2. – With the above assumptions,AΓ is aC∗-subalgebra ofM(A) and is equal to
{TΓ | T ∈A}.

Proof. –The first assertion is easy.
To show{TΓ | T ∈ A} ⊂ AΓ, let T ∈ A. By a density argument, we may assume thatT is

supported on a compact subset ofM . That is,Tx = 0 for x outside a compact set. Letϕ ∈ Cc(M).
Then(ϕ ·TΓ)x =

∫
γ∈Γx ϕ(x)αγ(Ts(γ))c(s(γ))dγ is the integral onΓx of a compactly supporte

element oft∗A. Thusϕ ·TΓ belongs toA. Moreover, it is clear thatTΓ is zero outside a compa
subset ofM/Γ.

To show that{TΓ | T ∈A} ⊃ AΓ, let T ∈AΓ. Assume first thatTx = 0 outside a compact se
K of M/Γ. Let L = (supp(c)) ∩ π−1(K) whereπ :M → M/Γ is the projection. Then, for a
ϕ ∈C0(M) such thatϕ = 1 onL, one has

Tx = Tx

∫
g∈Γx

c
(
s(g)

)
ϕ
(
s(g)

)
λx(dg)

=
∫

g∈Γx

Txc
(
s(g)

)
ϕ
(
s(g)

)
λx(dg)

=
∫

g∈Γx

αg(Ts(g))c
(
s(g)

)
ϕ
(
s(g)

)
λx(dg).

ThusT = (ϕT )Γ.
In the general case, one hasT =

∑
n Tn whereTn is zero outside a compact subset ofM/Γ

and‖Tn‖ � 2−n for n large enough. From the previous paragraph, we haveTn = (ϕnTn)Γ, and
thereforeT = (

∑
n ϕnTn)Γ. �
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PROPOSITION 4.3. – If Γ ⇒ M is a proper groupoid with Haar system andE is a u.s.c. Fell
bundle overΓ, then

ve
ct
the

f

t
.

h

ate
C∗
r (Γ;E) =

{
TΓ | T ∈K

(
L2(Γ;E)

)}
=KΓ

(
L2(Γ;E)

)
.

Proof. –Let us explain the idea of the proof in the case thatΓ is a compact groupG. In this case
C∗

r (G) is the closure of the space of convolution operators onL2(G). Since these operators ha
a G-invariant kernelK ∈ C(G × G), they are compactG-invariant. Conversely, any compa
invariant operatorT is the limit of operators withG-invariant kernel, and such kernels are of
form a(gh−1) wherea ∈ C(G). It follows thatT is the limit of convolution operators.

Now we consider the general case of a proper groupoid. Let us first show thatC∗
r (Γ;E) ⊃

{TΓ | T ∈ K(L2(Γ;E))}. Let T ∈ K(L2(Γ;E)). We need to show thatTΓ lies in the image o
C∗

r (Γ;E). We may assume thatT = Tb,b′ := (ξ �→ b〈b′, ξ〉), whereb, b′ ∈Cc(Γ;E), i.e.

(Tξ)(g) = b(g)
∫

h∈Γs(g)

b′(h)∗ξ(h)λs(g)(dh).

Then,

(TΓξ)(g) =
∫

h∈Γs(g)

∫
γ∈Γs(h)

b(gγ)b′(hγ)∗ξ(h)c
(
s(γ)

)
λs(h)(dγ)λs(g)(dh).

Setf(g) =
∫

γ∈Γs(g) b(gγ)b′(γ)∗c(s(γ))λs(g)(dγ). Let us check thatf ∈ Cc(Γ;E). By Proposi-

tion A.10, (g,h) �→ b(g)b′(h−1)∗ can be approximated by sums of the form
∑

i fi(g,h)ζi(gh),
where fi ∈ Cc(Γ) and ζi ∈ Cc(Γ;E). Therefore(g, γ) �→ b(gγ)d(γ)∗ is approximated by∑

i fi(gγ, γ−1)ζi(g). Then, approximatingfi(gγ, γ−1) by
∑

j f1,i,j(g)f2,i,j(γ), we see tha
f(g) is approximated by

∑
i f

′
i(g)ζi(g) wheref ′

i ∈ Cc(Γ). Hencef is a continuous section
Moreover, sincef is obviously compactly supported, we havef ∈Cc(Γ;E). Now,

f(gh−1) =
∫

γ∈Γs(g)

b(gγ)b′(hγ)∗c
(
s(γ)

)
λs(g)(dγ),

andπl(f)ξ(g) =
∫

h∈Γs(g)
f(gh−1)ξ(h)λs(g)(dh), whereπl :Cc(Γ;E) →L(L2(Γ;E)) denotes

the left regular representation. Therefore,TΓ
b,b′ = πl(f).

Next we show thatC∗
r (Γ;E) ⊂ {TΓ | T ∈K(L2(Γ;E))}. Assume thata ∈ Cc(Γ;E). Let K

be a compact subset ofM such thatΓK
K contains the support ofa, andK1 a compact subset suc

that the interior ofK1 containsK. By the definition ofc, the setL = (supp(c))∩ π−1(π(K1)),
whereπ :M → M/Γ is the projection, is compact. By Proposition A.10, one may approxim
a(gh−1) on the compact setΓK1

L × ΓK1
L uniformly by elements of the form

∑
i

bi(g)b′i(h)∗,

wherebi, b′i ∈ E. Therefore(g,h) �→ a(gh−1) is approximated uniformly on

{
(g,h) ∈ ΓK1 × ΓK1 | s(g) = s(h)

}
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by elements of the form
∑

i

∫
γ∈Γs(g) bi(gγ)b′i(hγ)∗c(s(γ))dγ. Replacingbi(g) by ϕ(t(g))bi(g)

andb′i(g) by ϕ(t(g))b′i(g), whereϕ ∈ Cc(M), 0 � ϕ � 1, ϕ = 1 on K andϕ = 0 on M − K1,
we define an operator

d of

ts,

it

f

h

s.
T =
∑

Tbi,b′i
.

Thenπl(a) ∈ L(L2(Γ;E)) is approximated by the operatorTΓ.
The other inclusions are proved using Lemma 4.2 withA = K(L2(Γ;E)). �
To continue, let us introduce the following convention. For anyC∗-algebrasA andB such

that B ⊂ M(A), we say thatB contains an approximate unit forA if there existui ∈ B such
that0 � ui � 1 anduia → a for all a ∈ A. This terminology is slightly abusive sinceui may not
belong toA.

LEMMA 4.4. – LetΓ ⇒ M be a proper groupoid with Haar system acting on a u.s.c. fiel
C∗-algebrasA→M , andA = C0(M,A). Then

(a) AΓ contains an approximate unit forA;
(b) AΓA = A;
(c) M(AΓ) = M(A)Γ.

Proof. –(a) Let (ui)i∈I be an approximate unit inA (it is standard that this always exis
see [21]). Let̃ui = (ui)Γ. Thenũi ∈ AΓ by Lemma 4.2. It suffices to show that for alla ∈ AU ,
whereU is a relatively compact open subset ofM , we havẽuia → a.

Let b(g) = at(g)c(s(g)). Then b = (t∗a)(c ◦ s) ∈ t∗A. Set vi(g) = αg((ui)s(g)). Since
α :s∗A ∼→ t∗A is an isomorphism andvi = α(s∗ui), it follows that vi is an approximate un
for t∗A. Thusvib → b, i.e.,

sup
g∈Γ

∥∥at(g)c
(
s(g)

)
− αg(ui)s(g)at(g)c

(
s(g)

)∥∥ → 0.

By integration onΓx (x ∈M ), it follows easily that‖a− ũia‖→ 0.

(b) clearly follows from (a).
(c) The mapM(A)Γ → M(AΓ), a �→ µ(a), whereµ(a)b = ab, ∀a ∈ M(A)Γ, b ∈ AΓ, is

well-defined and∗-linear. To obtain its inverse, by identifyingM(A) with L(A) (the space o
A-linear adjointable operators on theA-Hilbert moduleA), the map

ν :T ∈ M(AΓ) = L(AΓ) �→ T ⊗ 1 ∈ L(AΓ ⊗A A) = L(AΓA) = L(A) = M(A)

takes its value inM(A)Γ. It is clear thatν :M(AΓ) → M(A)Γ and µ are inverse of eac
other. �

COROLLARY 4.5. – If Γ is a proper groupoid with Haar system andE is a u.s.c. Fell bundle
overΓ, then

M
(
KΓ

(
L2(Γ;E)⊗H

))
=L

(
L2(Γ;E)⊗H

)Γ
.

Proof. –For a C∗-algebraA and anA-Hilbert moduleE , we haveL(E) = M(K(E)) [11,
Theorem 13.4.1]. Hence the result follows from Lemma 4.4(c).�

Let F0(Γ,E) be the set consisting of allT ∈ L(L2(Γ;E)⊗H)Γ which are invertible modulo
KΓ(L2(Γ;E) ⊗ H), andF1(Γ,E) the subset ofF0(Γ,E) consisting of self-adjoint element
We denote by[T ] the homotopy class ofT .
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THEOREM 4.6. – LetΓ be a proper groupoid with a Haar system. Suppose thatE = (Eg)g∈Γ

is a u.s.c. Fell bundle overΓ. Then

nts
y

al
ll
cessary
of

tor

ndles

d

ns,

the
ote

d

uch a
Ki

(
C∗

r (Γ;E)
)

=
{
[T ] | T ∈F i(Γ,E)

}
.

Proof. –Recall that ifB is aC∗-algebra thenK0(B) is the set of homotopy classes of eleme
T ∈ M(B ⊗K(H)) which are invertible moduloB ⊗K(H), andK1(B) is the set of homotop
classes of elementsT ∈M(B ⊗K(H)) which are self-adjoint and invertible moduloB ⊗K(H)
([11, Corollary 12.2.3], [72, Theorem 17.3.11]).

The theorem is thus a consequence of Proposition 4.3 and Corollary 4.5, by takingB =
KΓ(L2(Γ,E)). �

5. Twisted vector bundles

In many situations, it is desirable to describe theK-theory groups in terms of geometric
objects such as vector bundles. For the twistedK-theory groupK0

α(Γ•), a natural candidate wi
be twisted vector bundles. However, these vector bundles do not always exist. In fact, a ne
condition is that the twisted classα ∈ H2(Γ•,S1) must be a torsion class. The main purpose
this section is to explore the conditions under whichK0

α(Γ•) can be expressed by twisted vec
bundles. More precisely, we prove that given anS1-central extensionS1 → R → Γ ⇒ M of
a proper Lie groupoidΓ such thatM/Γ is compact, theK-theory groupK0

α(Γ•) twisted by
the classα of the above central extension is the Grothendieck group of twisted vector bu
Kvb

α (Γ•), provided some conditions are fulfilled (see Theorem 5.28).
The proof is divided into five steps outlined as follows. LetL = R ×S1 C be the associate

line bundle overΓ.
Step 1: From the previous section, it is known thatK0

α(Γ•) is isomorphic to

K0

(
KΓ

(
L2(Γ;L)⊗H

))
.

Therefore, if KΓ(L2(Γ;L) ⊗ H) has an approximate unit consisting of projectio
then K0

α(Γ•) is the Grothendieck group of projections inKΓ(L2(Γ;L) ⊗ H) [11,
Proposition 5.5.5].

Step 2:KΓ(L2(Γ;L)⊗H) has an approximate unit consisting of projections if and only if
(Γ,L)-equivariant Hilbert moduleL2(Γ;L)⊗ H satisfies a certain property that we den
by AFGP.

Step 3: IfL2(Γ)⊗H is AFGP and if there exists a twisted vector bundle, thenL2(Γ;L)⊗H

is AFGP.
Step 4: Projections inKΓ(L2(Γ;L)⊗H) correspond to(Γ,L)-equivariant Hilbert modulesE

such thatIdE ∈KΓ(E) (see notation (32)).
Step 5: (Γ,L)-equivariant Hilbert modulesE such thatIdE ∈ KΓ(E) correspond to twiste

vector bundles, which can be considered as a generalization of Swan’s theorem.

5.1. Definition of twisted vector bundles

In this subsection, we give the definition of a twisted vector bundle and show that if s
vector bundle exists, then theS1-central extension must be a torsion.

Let us first recall the definition of aΓ-vector bundle.
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DEFINITION 5.1. – Let Γ ⇒ M be a groupoid. AΓ-vector bundle is a vector bundle
J :E → M such thatE is a Γ-space in the sense of Definition 2.32, and the map (13) is a
linear map.

s.
ty

n

s of a

ctor

oid

y
l

Note that in this case for anyr ∈ Γ, the map

lr :J−1(u) → J−1(v), x→ r · x,(34)

whereu = s(r) andv = t(r), must be a linear isomorphism.
For example, given aG-bundle P over Γ ⇒ M and a representationG → EndV , the

associated vector bundleE := (P × V )/G→ M naturally becomes aΓ-vector bundle.

DEFINITION 5.2. – LetS1 → R → Γ ⇒ M be anS1-central extension of Lie groupoid
By a (Γ,R)-twisted vector bundle, we mean anR-vector bundle satisfying the compatibili
condition:

(λ · r) · x = λ(r · x), λ ∈ S1, r ∈R andx ∈ E such thats(r) = J(x).

HereS1 is considered as the unit circle inC.

The following gives an equivalent definition of twisted vector bundles.

LEMMA 5.3. –Let S1 → R
π→ Γ ⇒ M be an S1-central extension of Lie groupoids. A

R-vector bundleE → M is a (Γ,R)-twisted vector bundle if and only ifkerπ ∼= M × S1 acts
onE by scalar multiplication, whereS1 is identified with the unit circle ofC.

WhenM is a point, the definition above reduces to the usual projective representation
group.

Example5.4. – (1) Consider theS1-central extension as in Example 2.26(1). A twisted ve
bundleE →

∐
i Ui of rankn corresponds to vector bundlesEi

∼= Ui × Cn, where the transition
functionsaij :Uij →GL(n,C) satisfy the twisted cocycle condition

aijajkaki = cijk.

Note that when the central extension is trivial, i.e.,cijk = 1, the transition functions(aij)
define an ordinary vector bundle overM . In other words, a vector bundle over the group∐

ij Uij ⇒
∐

i Ui corresponds exactly to a vector bundle overM in the usual sense.
(2) Consider theS1-central extension as in Example 2.26(2). LetE →

∐
i Ui be a twisted

vector bundle of rankn. ThenE|Ui
∼= Ui × Cn. For allx ∈ Ui andξ ∈ Cn, denote by[(i, x, ξ)]

the corresponding element ofE|Ui . Write

(α,g,x,λ) ·
[
(j, x, ξ)

]
=

[(
i, gx,λaij;α(g,x)ξ

)]
,

whereaij;α :G×Uij →GLn(C). Then we have the cocycle relation

aij;α(g,x)ajk;β(h, y) = cijk;αβ,γ(g,x,h, y)aik;γ(gh, y).

(3) Consider the case thatR is topologically trivial and theS1-central extension is given b
a groupoidS1-valued2-cocyclec(x, y) as in Eq. (2). LetE → M be a (non-equivariant) trivia
vector bundle overM , i.e.,E ∼= M ×Cn. ThenE → M defines a twisted vector bundle ofR if
and only if there is a smooth mapφ : Γ→ GL(n,C) satisfying the condition:

φ(x)φ(y) = c(x, y)φ(xy), ∀(x, y) ∈ Γ(2).
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In the proposition below, we show that twisted vector bundles exist only when theS1-central
extension defines a torsion class inH2(Γ•,S1).

s.

the

diate
PROPOSITION 5.5. – Let S1 → R → Γ ⇒ M be anS1-central extension of Lie groupoid
Consider the following properties:

(i) there exists a rankn twisted vector bundle;
(ii) there exists anS1-equivariant generalized homomorphismR →GLn(C), whereGLn(C)

is naturally considered as anS1-central extension ofPGLn(C):

S1 →GLn(C)→ PGLn(C);

(ii) ′ there exists a generalized homomorphismΓ → PGLn(C) such thatR is the pull-back of
GLn(C)→ PGLn(C);

(iii) there exists an open cover(Ui) and ψ :R[Ui] → C∗ such thatψ(λr) = λnψ(r) for all
λ ∈ S1 andr ∈R;

(iv) Rn is a trivial extension;
(v) there exists an open cover(Ui) and a Zn-central extensionZn → R′[Ui] → Γ[Ui] ⇒∐

Ui such thatR[Ui] = R′×Zn S1, whereZn is identified with the group ofn-th roots of
unity inS1 ⊂ C.

Then(i)⇔ (ii)⇒ (iii) ⇔ (iv)⇔ (v).

Proof. –(i) ⇒ (ii): let E be a rankn twisted vector bundle. SinceE is locally trivial, replacing
R by R[Ui] one may assume thatE ∼= M × Cn as a (non-equivariant) vector bundle. Hence
action ofR onM ×Cn defines anS1-equivariant homomorphism.

(ii) ⇒ (i): let (Ui) be an open cover ofM such that there exists anS1-equivariant strict
homomorphismR[Ui] → GLn(C) (see Proposition 2.3). LetZ =

∐
RUi = {(r, i) | s(r) ∈ Ui}.

Then Z is naturally endowed with a rightR[Ui]-action. LetE = Z ×R[Ui] Cn. ThenE is a
twisted vector bundle of rankn (where the mapE → M is (r, i, ξ) �→ t(r)).

(ii) ⇒ (iii): compose with the determinantGLn(C) → C∗.
(iii) ⇒ (iv): replacingψ by ψ/|ψ|, we may assume that the image ofψ lies in S1. Define

ϕ(λ[r, . . . , r]) = λψ(r). Thenϕ is a well-definedS1-equivariant homomorphism fromRn[Ui]
to S1. HenceRn is a trivial extension (see Proposition 2.13).

(iv) ⇒ (iii): If ϕ :Rn[Ui] → S1 is S1-equivariant, thenψ(r) := ϕ[(r, . . . , r)] : R[Ui] → S1 is
the function satisfying the desired property.

(iii) ⇒ (v): take R′ = ψ−1(1) ⊂ R[Ui]. Then (r,λ) ∈ R′ ×Zn S1 �→ λr ∈ R[Ui] is an
isomorphism.

(v) ⇒ (iii): the map[(r,λ)] ∈R′ ×Zn S1 �→ λn ∈ S1 is well-defined and satisfies (iii).�
Remark5.6. – It is worth noting that (v) means that the class inH2(Γ•,S1) defined by the

S1-central extensionR → Γ lies in the image of the homomorphismH2(Γ•,Zn) → H2(Γ•,S1).

By K̃0(Γ,R), we denote the Grothendieck group of twisted vector bundles. As an imme
consequence of (i)⇒ (ii), we have

COROLLARY 5.7. –Assume thatS1 → Ri → Γi ⇒ Mi, i = 1,2, are Morita equivalent
S1-central extensions of groupoids. Then

K̃0(Γ1,R1)∼= K̃0(Γ2,R2).

This allows us to introduce the following
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DEFINITION 5.8. – Let Γ ⇒ M be a Lie groupoid. For anyα ∈ H2(Γ•,S1), denote by
Kvb

α (Γ•) the Grothendieck group of(Γ′,R′)-twisted vector bundles, whereS1 → R′ → Γ′ ⇒
M ′ is anyS1-central extension realizing the classα.

e

e the
ical

ction
rank

s

le
d

dle,
ism

to
This definition coincides with the definition of twisted orbifoldK-theory in the special cas
considered by Adem and Ruan [1].

Similarly, one can also work in the category of locally compact groupoids and introduc
K-theory groupKvb,cont

α (Γ•). We will later find conditions which guarantee that the canon
morphismKvb

α (Γ•) → Kvb,cont
α (Γ•) is an isomorphism (see Theorem 5.33).

Remark5.9. – (1) In general, (iv) does not imply (i). Even more, there does not exist a fun
f :N → N such that everyS1-central extension satisfying (iv) has a twisted vector bundle of
� f(n).

Let us assume the contrary. Choose any integerN > f(n) such thatN andn are not mutually
prime, for instanceN = nf(n). We show that there exists anS1-central extension of Lie group
S1 →R → Γ ⇒ · such that any twisted vector bundle has rank� N andRn is trivial.

Let R′ = U(N), Γ = R′/Zn whereZn is identified with the group ofnth roots of unity. We
consider the central extension (of order dividingn)

S1 → R′ ×Zn S1 → Γ ⇒ ·.

Suppose that there exists a rankn′ twisted vector bundle withn′ � f(n). Then by (ii) there
exists aZn-equivariant group morphismπ :R′ → GLn′(C). SinceR′ = U(N) is compact, we
may assume thatπ is an irreducible unitary representation, and sincedimπ < N , we have
π = (det)p for somep.

Sinceπ is Zn-equivariant, forω = e2iπ/n we getπ(ωr) = ωπ(r) and thusωNp = ω. This is
impossible sinceN andn have a common factor.

(2) Consider the Lie groupSL2(R). Its fundamental group isZ. LetH be its connected doub
covering. ThenH is aZ2-central extension overSL2(R). Let R = S1 ×Z2 H be its associate
S1-central extension overSL2(R). Then clearlyR defines a torsion class of degree2.

Let us show thatR → SL2(R) does not admit any finite dimensional twisted vector bun
i.e., a projective representation. It is known (see [59, p. 13]) that any group homomorphφ
from the universal extension̂G of SL2(R) to GLn(C) satisfies the following property:

φ(z · g) = φ(g), ∀z ∈ Z, g ∈ Ĝ.(35)

Assume thatψ :R →GLn(C) is anS1-equivariant group homomorphism. Let

ψ′ :H →GLn(C)

be its restriction toH . Thenψ′ is a Z2-equivariant map. Letπ : Ĝ → H and p :Z → Z2 be
the canonical projections. Sinceψ′ ◦ π : Ĝ → GLn(C) is a group homomorphism, according
Eq. (35), we have, for anyz ∈ Z andg ∈ Ĝ,

ψ′(π(z · g)
)

= ψ′(p(z) · π(g)
)

= ψ′(π(g)
)
.

Since bothp andπ are onto, it follows that for anya ∈ Z2 and anyg ∈H

ψ′(a · g) = ψ′(g).(36)

This contradicts to the assumption thatψ′ is Z2-equivariant.
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5.2. Proof of step 2

Recall that a positive elementa in a C∗-algebraA is said to be strictly positive ifA = aA,
e

d of

ly

g,

eld

y

which is also equivalent toA = aAa, and that every separableC∗-algebra has a strictly positiv
element, i.e.,A is σ-unital [58, 3.10.6].

LEMMA 5.10. – Let Γ be a proper groupoid with Haar system acting on a u.s.c. fiel
C∗-algebras A → M , and A = C0(M,A). Let (ui) ∈ AΓ such that 0 � ui � 1 (see
notation(33)). The following are equivalent:

(i) (ui) is an approximate unit forAΓ;
(ii) (ui) is an approximate unit forA.

(Recall that in (ii) above, we mean thatuia → a for all a ∈ A, but ui does not necessari
belong toA.)

Proof. –(i) ⇒ (ii): it is clear sinceAΓA = A according to Lemma 4.4.
(ii) ⇒ (i): by assumption,uia → a for all a ∈A. Sincea �→ aΓ is linear and norm-decreasin

we have(uia)Γ → aΓ. On the other hand, it is simple to see that(uia)Γ = uia
Γ. Thus, from

Lemma 4.2,uib → b for all b ∈AΓ. �
PROPOSITION 5.11. – LetΓ be a proper groupoid with a Haar system acting on a u.s.c. fi

of C∗-algebrasA→ M , andA = C0(M,A). Then(i)–(iii) are equivalent, and(i) ⇒ (iv) if A
is σ-unital.

(i) ∃Pi ∈AΓ approximate unit ofAΓ consisting of projections;
(ii) ∃Pi ∈AΓ approximate unit ofA consisting of projections;

(iii) for all x ∈A+ andε > 0, there existsaε,x ∈ (AΓ)+ such that(aε,x) does not contain an
interval [0, δ] (δ > 0) andx � ε + aε,x;

(iv) there existsx ∈A+ strictly positive with the property that for allε > 0, there existsaε,x ∈
(AΓ)+ such thatsp(aε,x) does not contain any interval[0, δ] (δ > 0) andx � ε + aε,x.

Proof. –(i) ⇒ (ii) follows from Lemma 5.10.
(ii) ⇒ (iii): ∀ε > 0, by (ii), there existsi such that‖x− PixPi‖ < ε. Since

x = (x− PixPi) + PixPi � ‖x− PixPi‖+ Pi‖x‖Pi

= ‖x− PixPi‖+ ‖x‖Pi,

we see thataε,x = ‖x‖Pi satisfies (iii).
(iii) ⇒ (iv): obvious.
(iii) ⇒ (ii): let x1, . . . , xn ∈ A and ε > 0. We want to find a projectionP ∈ AΓ such that

‖(1− P )xi‖ � ε for all i = 1, . . . , n.
Let x =

∑
xix

∗
i . Choose a real numberη such that0 < η < ε2/2 and η does not belong

to the spectrum ofaε2/2,x. Then the spectral projectionP = 1[η,∞)(aε2/2,x) of aε2/2,x on
[η,∞) is an element ofAΓ. Since1 − P is the spectral projection ofaε2/2,x on [0, η], we have
(1− P )aε2/2,x(1− P ) � η(1− P ). Now, for anyi, we have

(1− P )xix
∗
i (1− P ) � (1− P )x(1− P )

� (1− P )(ε2/2 + aε2/2,x)(1− P )

= (1− P )(ε2/2 + η)(1− P )

� ε2(1− P ) � ε2,

so‖(1− P )xi‖ = ‖(1− P )xix
∗
i (1− P )‖1/2 � ε for all i = 1, . . . , n.
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(iv) ⇒ (ii): the same proof shows that ifx satisfies (iv), there exist projectionsPi ∈ AΓ such
that(1− Pi)x1/2 → 0, and thereforePiy → y for all y ∈ x1/2A = A. �

owing:

bly
t

d with

w we
We note that the approximate unit is not necessarily increasing. In fact, we have the foll

PROPOSITION 5.12. – LetΓ be a proper groupoid with a Haar system acting on a counta
generated u.s.c. field ofC∗-algebrasA→ M . LetA = C0(M,A). The following are equivalen:

(i) there exist projectionsP1 � P2 � · · ·� Pn in AΓ such thatPia → a for all a ∈AΓ;
(ii) there exist projectionsP1 � P2 � · · ·� Pn in AΓ such thatPia → a for all a ∈A;

(iii) there existsa ∈AΓ strictly positive with countable spectrum.

Proof. –(i) ⇒ (ii): follows from Lemma 5.10.
(ii) ⇒ (iii): take a =

∑∞
n=0 2−n(Pn+1−Pn) (with P0 = 0 by convention). Then1[2−n,1](a) =

Pn+1, and hencePn+1A ⊂ aA. It follows thatA =
⋃

n PnA ⊂ aA, soa is strictly positive with
spectrum in{0} ∪ {2−n | n ∈ N}.

(iii) ⇒ (i): take Pn = 1[αn,∞)(a), whereαn is a sequence decreasing to0 andαn /∈ sp(a).
Then clearlyPna → a. ThusPnb → b for all b ∈ aA = A. �

DEFINITION 5.13. – LetE be a u.s.c. Fell bundle over a locally compact groupoidΓ,
and letA = C0(M ;E). A (Γ,E)-equivariant Hilbert module is anA-Hilbert moduleE with
isomorphisms ofAs(g)-Hilbert modules

Et(g) ⊗At(g) Eg →Es(g)

such that(ξη)ζ = ξ(ηζ) whenever(g,h) ∈ Γ(2) and(ξ, η, ζ) ∈ Et(g) ×Eg ×Eh. The product is
required to be continuous in the following sense: for allξ ∈ E andη ∈C0(Γ;E), g �→ ξ(t(g))η(g)
belongs tos∗E .

Note thatE can be canonically identified with a field of Banach spaces overM such that
for any x ∈ M the fiber Ex at x is an Ax-Hilbert module (see Proposition A.4).E being
(Γ,E)-equivariant means, roughly speaking, that this field of Banach spaces is equippe
anE-action.

DEFINITION 5.14. – LetΓ be a locally compact groupoid with Haar system,E a u.s.c. Fell
bundle overΓ, A = C0(M ;E) andE a (Γ,E)-equivariantA-Hilbert module. ThenE is said
to be approximately finitely generated projective (AFGP) if there exist projectionsPi in KΓ(E)
such thatPiξ → ξ for all ξ ∈ E .

For the notationKΓ(E), see Eq. (32).

LEMMA 5.15. – If A is a C∗-algebra andE an A-Hilbert module, thenIdE ∈ K(E) implies
that E is finitely generated projective, and the converse holds ifA is unital. This explains the
terminology.

Proof. –This is proved in the unital case in [72, Theorem 15.4.2, Remark 15.4.3]. Belo
outline a proof for the direction “⇒ ”.

If IdE is compact, thenIdE can be approximated by finite rank operators, i.e. there existξi, ηi

such thatS =
∑n

i=1 Tξi,ηi satisfies‖Id− S‖ < 1. In particular,S is invertible, and therefore

IdE = S−1S =
n∑

i=1

TS−1ξi,ηi
.

Replacingξi by S−1ξi, we may assume thatIdE =
∑n

i=1 Tξi,ηi . Now, define
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U :E →An,

ξ �→
(
〈η1, ξ〉, . . . , 〈ηn, ξ〉

)
,

e

e

ence

tion
V :An →E ,

(a1, . . . , an) �→ ξ1a1 + · · ·+ ξnan.

ThenV U = IdE . HenceP = UV is an idempotent inL(An) = Mn(A) andE ∼= PAn as right
A-Hilbert modules. �

PROPOSITION 5.16. – LetΓ be a proper groupoid with a Haar system,E a u.s.c. Fell bundle
overΓ, A = C0(M ;E) andE a (Γ,E)-equivariantA-Hilbert module. ThenE is AFGP if and
only if KΓ(E) has an approximate unit consisting of projections.

Proof. –

∀ξ ∈ E , Pnξ → ξ ⇐⇒ ∀ξ ∈ E , (1− Pn)Tξ,ξ(1− Pn) = T(1−Pn)ξ,(1−Pn)ξ → 0

⇐⇒ ∀ξ, η ∈ E , (1− Pn)Tξ,η(1− Pn) → 0

sinceTξ,η = (1/4)
∑

ω4=1

ωTξ+ωη,ξ+ωη

⇐⇒ ∀T ∈K(E), (1− Pn)T (1− Pn)→ 0

⇐⇒ (Pn) is an approximate unit forK(E)

⇐⇒ (Pn) is an approximate unit forKΓ(E)

by Lemma 5.10.

In the second from the last equivalence, we used the fact that

‖T (1− Pn)‖ = ‖(T (1− Pn))∗T (1− Pn)‖1/2 = ‖(1− Pn)T ∗T (1− Pn)‖1/2. �
An immediate consequence is the following:

COROLLARY 5.17. – Let S1 → R → Γ ⇒ M be an S1-central extension of proper Li
groupoids, and letL = R ×S1 C be the associated complex line bundle. ThenL2(Γ;L) ⊗ H

is AFGP if and only ifC∗
r (Γ;R)⊗K(H) has an approximate unit consisting of projections.

Proof. –Apply Proposition 5.16 toE = L2(Γ;L)⊗H and use Proposition 4.3.�
COROLLARY 5.18. – LetΓ be a proper Lie groupoid, thenL2(Γ)⊗H is AFGP if and only if

C∗
r (Γ)⊗K(H) has an approximate unit consisting of projections.

Proof. –Apply Corollary 5.17 to the trivialS1-central extension. �
We end this subsection by listing some examples of AFGP modules.

PROPOSITION 5.19. – If G is a compact group andπ a unitary representation ofG on a
separable Hilbert spaceH (considered as aG-equivariantC-Hilbert module), thenH is AFGP.

Proof. –Choose a strictly positive elementa ∈ K(H)G. Sincea is a compact operator on th
Hilbert spaceH, its spectrum is countable. By Propositions 5.16 and 5.12,H is AFGP. �

The following well known result (see [21, Corollary 15.1.4] and [41]) is a direct consequ
of the above Proposition 5.19.

COROLLARY 5.20. – If G is a compact group, then every irreducible unitary representa
of G is finite dimensional.
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Proof. –Assume thatπ is an irreducible representation onHπ . Let Pn be a sequence of
compact,G-invariant projections inHπ such thatPnξ → ξ for all ξ. Since the representation
is irreducible, we have eitherPn = 0 or Pn = Id. ThereforePn = Id for n large enough. Since

s a

a
on

ity

ie

at

g

Pn is a compact projection on a Hilbert space, its rangeHπ is finite dimensional. �
COROLLARY 5.21. – If Γ is a transformation groupoidG×M ⇒ M , whereM is a compact

space andG is a compact group, thenL2(Γ)⊗H is AFGP.

Proof. –Since

L2(Γ)⊗H ∼= C(M)⊗L2(G)⊗H,

theC∗-algebraK(L2(Γ,H)) ∼= C(M) ⊗K(L2(G)) ⊗K(H) is the tensor product of threeC∗-
algebras having approximate units consisting of invariant projections.�
5.3. Proof of step 3

We need a sequence of lemmas.

LEMMA 5.22. – Let M be a locally compact space,F a Hermitian vector bundle andF =
C0(M,F ) its space of continuous sections vanishing at infinity considered a
C0(M)-Hilbert module. ThenIdF ∈ C(F) (see notation(31)).

Proof. –For every compact subspaceK of M , the restriction ofF to K, i.e. theC(K)-Hilbert
moduleFK = F ⊗C0(M) C(K), is the space of sections ofF|K , thus by Swan theorem, is
projective finitely generatedC(K)-module. Therefore, from Remark 5.15, the identity map
FK is compact.

Let us show that this impliesIdF ∈ C(F). Let ϕ, ψ ∈ Cc(M). Choose an open setU and a
compact setK such thatU ⊂ K ⊂ M andU contains the supports of bothϕ andψ. SinceIdFK

is compact, there existξi, ηi ∈ FK such thatIdFK
=

∑
i Tξi,ηi . Let ξ′i = ϕξi and η′

i = ψηi.
Then ϕψ =

∑
i Tξ′

i
,η′

i
∈ L(FK), whereϕψ denotes the multiplication operator acting onF .

However sinceϕ, ψ and allξ′i, η′
i are all supported inU , it is not hard to check that the equal

ϕψ =
∑

i Tξ′
i
,η′

i
also holds inL(F). Therefore,ϕψ is compact for allϕ, ψ ∈ Cc(M). By a

density argument,ϕ is compact for allϕ ∈ C0(M), i.e. IdF ∈ C(F). �
LEMMA 5.23. – Let S1 → Ri → Γ ⇒ M , i = 1,2, be S1-central extensions of the L

groupoidΓ, andEi, i = 1,2, (Γ,Ri)-equivariantC0(M)-Hilbert modules. Suppose thatE1 is
AFGP andIdE2 ∈ C(E2). ThenE ′ := E1 ⊗C0(M) E2 is AFGP as a(Γ,R1 ⊗ R2)-equivariant
C0(M)-Hilbert module.

Proof. –By assumption, there exists an approximate unitPn ∈ KΓ(E1) consisting of pro-
jections. LetP ′

n = Pn ⊗C0(M) IdE2 . It is clear thatP ′
n is an invariant projection, and th

‖P ′
n(x)‖ → 0 when x → 0 in M/Γ. Let us show thatP ′

n ∈ C(E ′). For all ϕ, ψ ∈ C0(M),
(ϕψ)P ′

n = (ϕPn) ⊗C0(M) ψ ∈ K(E ′). It follows that φP ′
n ∈ K(E ′) for all φ ∈ C0(M), i.e.

P ′
n ∈ C(E ′). ThereforeP ′

n ∈ KΓ(E ′), and it is clear thatP ′
n is an approximate unit consistin

of projections. �
Before we proceed, we need to introduce some notation.
Let E be a u.s.c. Fell bundle over the groupoidΓ, A = C0(M ;E), and letE be a (possibly

non-equivariant)A-Hilbert module. Consider the field of Banach spaces overΓ with fiber
Et(g)⊗At(g) Eg , determined by sections of the formη(t(g))⊗ζ(g) whereη ∈ E andζ ∈C0(Γ;E)
(see Proposition A.2). Denote byCc(Γ;E,E) the space of compactly supported sections.
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EndowCc(Γ;E,E) with anA-valued scalar product∫ 〈 〉

on

s
ilbert

h

nd
us

nd
.

r

ism
〈ξ, η〉(x) =
g∈Γx

ξ(g), η(g) λx(dg), ∀x ∈ M,

and denote byL2(Γ;E,E) its completion. SinceL2(Γ;E,E) is anA-Hilbert module, it can be
considered as a field of Banach spaces overM ; denote byL2(Γx;E,E) its fiber atx, which is
anAx-Hilbert module.

The usual action of(Γ,E) on L2(Γx;E) (see Appendix A) extends naturally to an action
L2(Γ;E,E), which is defined as follows:

L2(Γx;E,E)⊗Ax Eγ−1 ∼= L2(Γy;E,E),

ξ ⊗ η �→
(
g �→ ξ(gγ)⊗ η

)
∈ Et(g) ⊗Egγ ⊗Eγ−1 ∼= Et(g) ⊗Eg.

If moreoverE is a(Γ,E)-equivariant module, then sinceEt(g) ⊗At(g) Eg
∼= Es(g), we get

L2(Γ;E,E)∼= L2(Γ)⊗C0(M) E ,(37)

where on the left-hand side weforget the equivariant structure onE , while the right-hand side i
endowed with a “diagonal” action. The isomorphism above is well-known in the case of a H
spaceH endowed with a unitary representationg �→ Ug of a locally compact groupG. In this
case, the isomorphismL2(G,H) → L2(G) ⊗ H (whereH is endowed with thetrivial action of
G on the left-hand side butG actsdiagonallyon the right-hand side) is given by

ξ �→ η(g) = Ug

(
ξ(g)

)
.

PROPOSITION 5.24. – Assume thatΓ ⇒ M is a proper Lie groupoid such thatM/Γ is
compact andS1 →R → Γ is anS1-central extension. LetL = R×S1 C. If L2(Γ)⊗H is AFGP,
and if there exists a topological(i.e. without differentiable structure) (Γ,R)-twisted vector bundle
(of finite rank), thenL2(Γ;L)⊗H is AFGP.

Proof. –Let F be a(Γ,R)-twisted vector bundle. SinceΓ is proper,F can be endowed wit
an invariant Hermitian metric, and therefore can be considered as a(Γ,R)-equivariant Hilbert
module. As a (non-equivariant) continuous field of Hilbert spaces overM , F × H → M is
locally trivial with infinite dimensional fibers. According to the triviality theorem of Dixmier a
Douady [22],F × H → M is isomorphic toM × H → M . Moreover, the space of continuo
sectionsF = C0(M,F ) of F → M can be considered as a(Γ,R)-equivariantC0(M)-module
such thatIdF ∈KΓ(F) (see Lemma 5.22).

SinceL2(Γ) ⊗ H is AFGP as aΓ-equivariant Hilbert module, according to Lemma 5.23 a
Lemma 5.22, we see thatL2(Γ)⊗H⊗C0(M) F is AFGP as a(Γ,R)-equivariant Hilbert module
Using the isomorphism (37), we deduce thatL2(Γ;L,H ⊗ F) is AFGP. By the triviality of
the Hilbert bundleF × H, we getL2(Γ;L,H ⊗ F) ∼= L2(Γ;L,C0(M) ⊗ H) ∼= L2(Γ;L) ⊗ H.
ThereforeL2(Γ;L)⊗H is AFGP. �
5.4. Proof of step 4

PROPOSITION 5.25 (Stabilization theorem). –LetΓ ⇒ M be a proper groupoid with a Haa
system, andE a u.s.c. Fell bundle overΓ. Let A = C0(M ;E). Assume thatE is a (Γ,E)-
equivariant countably generatedA-Hilbert module. Then we have the following isomorph
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of (Γ,E)-equivariant HilbertC∗-modules:

E ⊕L2(Γ;E)⊗H ∼= L2(Γ;E)⊗H.

t

een

.

on

is
e

ith

(see
etric.
Proof. –SinceΓ is proper,C0(M) is (as aΓ-equivariantC0(M)-Hilbert module) a direc
factor ofL2(Γ) [68]. HenceE is a direct factor ofL2(Γ)⊗C0(M)E ∼= L2(Γ;E,E). By Kasparov’s
stabilization theorem for non equivariant modules ([72, Theorem 15.4.6]),E is a direct factor of
A⊗H, and thusE is a direct factor ofL2(Γ;E,A⊗H) ∼= L2(Γ;E)⊗H. That is, there existsE ′

such thatE ⊕ E ′ ∼= L2(Γ;E)⊗H. Therefore, we have

L2(Γ;E)⊗H∼= L2(Γ;E)⊗ (H⊕H⊕ · · ·) ∼= E ⊕ E ′ ⊕E ⊕ E ′ ⊕ · · ·
∼= E ⊕L2(Γ;E)⊗H. �

COROLLARY 5.26. – Let Γ ⇒ M be a proper Lie groupoid,S1 → R → Γ ⇒ M an
S1-central extension, andL = R ×S1 C. Then there is an equivalence of categories betw
the category of(Γ,R)-equivariantC0(M)-Hilbert modulesE such thatIdE ∈ KΓ(E) and the
category of projections inC∗

r (Γ;R)⊗K(H).

Proof. –As usual, let

L = R×S1 C.

Recall from Proposition 4.3 thatC∗
r (Γ;R)⊗K(H) is isomorphic toKΓ(L2(Γ;L)⊗H). Given a

projectionP ∈KΓ(L2(Γ;L)⊗H), E = P (L2(Γ;L)⊗H) is a(Γ,R)-equivariant Hilbert module
It is clear thatIdE ∈KΓ(E).

Conversely, ifE is a countably generated(Γ,R)-equivariant Hilbert module such thatIdE ∈
KΓ(E), we know, from the stabilization Theorem 5.25, that there is an invariant projectiP
such thatE = P (L2(Γ;L)⊗H). SinceIdE ∈KΓ(E), we haveP ∈KΓ(L2(Γ;L)⊗H).

A standard argument shows that two projectionsP1 andP2 ∈KΓ(L2(Γ;L)⊗H) are Murray–
Von Neumann equivalent if and only if the associated Hilbert modules are isomorphic.�
5.5. Proof of step 5

The next proposition generalizes Serre–Swan theorem: ifM is a compact space, there
an equivalence of categories between vector bundles onM and finitely generated projectiv
C(M)-modules (and thusK0(M) = K0(C(M))).

PROPOSITION 5.27. – Assume thatΓ ⇒ M is a proper Lie groupoid such thatM/Γ is
compact, andS1 →R → Γ ⇒ M is anS1-central extension.

(a) The forgetful functor from the category of topological(i.e. without differentiable structure)
(Γ,R)-twisted vector bundles endowed with anR-invariant Hermitian metric to the
category of(Γ,R)-twisted vector bundles is an equivalence of categories.

(b) The functor from the category of topological(Γ,R)-twisted vector bundles endowed w
an R-invariant metric to the category of(Γ,R)-equivariantC0(M)-Hilbert modulesE
such thatIdE ∈KΓ(E), defined by

Φ:F �→ C0(M,F ),

is an equivalence of categories.

Proof. –To prove (a), note that by an averaging procedure using cutoff functions
Definition 4.1), every twisted vector bundle can be endowed with an invariant Hermitian m
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If two HermitianR-equivariant vector bundlesF1 andF2 are isomorphic asR-equivariant vector
bundles, then by the polar decomposition, they must be isometrically isomorphic. Indeed, if
Tx :F1,x → F2,x is anR-equivariant isomorphism, thenUx := Tx(T ∗

x Tx)−1/2, ∀x ∈M , defines

e

r
very

tors

e
in

4.3

quiv-
anR-equivariant isometric isomorphism.
Let us prove (b). From Lemma 5.22 and the fact thatM/Γ is compact, it is easy to se

that E := Φ(F ) satisfiesIdE ∈ KΓ(E), and can be endowed with a(Γ,R)-action so thatΦ is
equivariant. ThereforeΦ is well-defined and functorial.

Now, for every(Γ,R)-equivariantC0(M)-Hilbert moduleE satisfying IdE ∈ KΓ(E), E is
isomorphic toC0(M,F ), whereF is a continuous field of Hilbert spaces onM with fiber
Fx = E ⊗evx C (see Appendix A). For every compactK ⊂ M , sinceEK is a finitely generated
projective module overC(K), it follows from Swan theorem thatF|K is a vector bundle ove
K (i.e., a locally trivial field of finite dimensional Hilbert spaces). Since this is true for e
compactK, it follows thatF is a vector bundle.

DefineΨ(E) = F . It is clear thatΦ andΨ are inverse from each other.�
5.6. The main theorem: continuous case

THEOREM 5.28. – Let Γ ⇒ M be a Lie groupoid, andS1 → R → Γ ⇒ M an S1-central
extension. Denote byα its corresponding class inH2(Γ•,S1). Assume that

(a) Γ ⇒ M is proper;
(b) M/Γ is compact;
(c) L2(Γ)⊗H is AFGP. In other words, there exists a sequence(Pn) such that

(i) Pn = (Pn(x))x∈M is a continuous section of the field of compact opera
K(L̃2(Γ)⊗H) → M ;

(ii) x �→ Pn(x) is Γ-equivariant;
(iii) Pn(x) is a finite rank projection for allx;
(iv) for every compactly supported continuous sectionξ of L̃2(Γ)⊗ H, (Pnξ)(x)→ξ(x)

uniformly onM whenn→∞.
(d) there exists a(Γ,R)-twisted vector bundle(of finite rank).

ThenK0
α(Γ•) is isomorphic toKvb,cont

α (Γ•).

Proof. –It is known that ifB is a stably unitalC∗-algebra, i.e.,B⊗K(H) has an approximat
identity consisting of projections, thenK0(B) is the Grothendieck group of projections
B ⊗K(H) [11, Proposition 5.5.5]. We want to apply this fact toB = C∗

r (Γ;L).
SinceL2(Γ;L) ⊗ H is AFGP according to Proposition 5.24, it follows from Proposition

and Proposition 5.16 thatC∗
r (Γ;R) is stably unital. HenceK0(C∗

r (Γ;R)) is the Grothendieck
group of projections inC∗

r (Γ;R) ⊗ K(H). Therefore it is the Grothendieck group of(Γ,R)-
twisted vector bundles according to Corollary 5.26 and Proposition 5.27.�

Remark5.29. – Note that conditions (a), (b), (c) and (d) are invariant under Morita e
alence according to Lemma 2.21, Corollary 5.18 and Proposition 5.5.

We end this subsection by describing an explicit isomorphismK0
α(Γ•) → Kvb,cont

α (Γ•). We
will use the Fredholm picture forK0

α(Γ•) (Theorem 4.6).
Let T ∈ F0

α. By definition, there existsS ∈ F0
α such thatST = 1 + K where K ∈

KΓ(L2(Γ;L) ⊗ H). By Lemma 4.2, we haveK = KΓ
0 + KΓ

1 whereK0 =
∑n

i=1 Tξi,ηi and
‖K1‖ < 1 is compact. SinceL2(Γ;L)⊗H is AFGP, we may assume thatηi ∈ P (L2(Γ;L)⊗H),
whereP ∈KΓ(L2(Γ;L)⊗H) is a projection. Then

(1 + KΓ
1 )−1ST (1− P ) = (1 + KΓ

1 )−1(1 + KΓ
1 + KΓ

0 )(1− P )

= 1− P +
(
(1 + KΓ

1 )−1K0(1− P )
)Γ
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= 1− P +
(∑

i

T(1+KΓ
1 )−1ξi,(1−P )ηi

)Γ

hold.

.

,

t the
ie

e
o a

e,
= 1− P.

ReplacingT by T (1 − P ) and S by (1 + KΓ
1 )−1S, we may assume thatST equals to the

projection1−P . ThusTS is also a projection. LetQ = 1−TS. Then the image of[T ] ∈K0
α(Γ•)

is [P ]− [Q] ∈Kvb,cont
α (Γ•).

Conversely, assume thatP is a projection inKΓ(L2(Γ;L) ⊗ H). Let E = P (L2(Γ;L) ⊗ H),
and

T :L2(Γ;L)⊗H ∼= E ⊕L2(Γ;L)⊗H → L2(Γ;L)⊗H

be the projection. More explicitly,

T :L2(Γ;L)⊗H⊗ �2(N) → L2(Γ;L)⊗H⊗ �2(N),

(ξn)n�0 �→
(
Pξn+1 + (1− P )ξn

)
n�0

.

Then the mapKvb,cont
α (Γ•)→ K0

α(Γ•) is given by[P ]→ [T ].

5.7. Discussion on the conditions in Theorem 5.28

We would like to remark that conditions (a)–(d) are all necessary for Theorem 5.28 to
Let us go over these conditions one by one.

1) Condition (a) cannot be avoided even whenΓ is a groupG. Note that theK0-group of
C∗

r (G) in general is not equal to the (finite dimensional) representation ring ofG whenG is not
compact.

2) WhenΓ is the manifoldR, K0(C∗
r (Γ)) = {0} while vector bundles onR are obviously

classified by their rank. Thus, condition (b) cannot be removed.
3) Condition (c) is not always true for every proper Lie groupoid. For instance, letG = SU (2),

and Γ be the transformation groupoidG × G ⇒ G, whereG acts on itself by conjugation
It is known thatH3(Γ•,Z) = H3

G(G,Z) = Z [47]. Let S1 → R → Γ ⇒ M be anS1-central
extension corresponding to the generator ofH3

G(G,Z). ThenR is clearly a proper Lie groupoid
and C∗

r (R) =
⊕

n∈Z
C∗

r (Γ;Rn) according to Proposition 3.2. Assume thatC∗
r (R) is stably

unital. ThenC∗
r (Γ;R) is stably unital since a quotient of a stably unitalC∗-algebra is obviously

stably unital. Therefore it follows that there exists a projection inC∗
r (Γ;R)⊗K(H), and hence

a (Γ,L)-twisted vector bundle by Corollary 5.26. This contradicts Proposition 5.5. In fac
above argument shows that (c) fails for any non-torsionS1-central extension of a proper L
groupoid.

However, note that condition (c) is fulfilled whenΓ is a transformation groupoidG×M ⇒ M ,
whereG is a compact Lie group acting on a compact manifoldM (Corollary 5.21), or whenΓ
is a compact étale groupoid (since in this caseC∗

r (Γ) is unital).
4) Condition (d) implies that the classα of theS1-central extension inH2(Γ•,S1) must be a

torsion. We conjecture that the converse holds:

CONJECTURE. – Let Γ ⇒ M be a proper Lie groupoid such thatM/Γ is compact. Assum
that S1 → R → Γ ⇒ M is an S1-central extension of Lie groupoids which corresponds t
torsion class inH2(Γ•,S1). Then there exists a(Γ,R)-twisted vector bundle.

It is known by Serre–Grothendieck theorem [23,31] that Conjecture 5.7 holds whenΓ is
Morita equivalent to a compact manifold. It also holds ifΓ is a compact group. In this cas
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R is also a compact group, soC∗
r (R) is stably unital (see, for instance, Corollary 5.17 and

Proposition 5.19). Therefore there always exists a twisted vector bundle, i.e., a finite dimensional
projective representation. However, the conjecture remains open even for orbifold groupoids (i.e.

heo-
e
ues-

p

at

to
at

d

ct of a

he

vector
étale proper groupoids).
One possibility to prove this conjecture is to generalize Grothendieck’s proof [31, T

rem 1.6] to the simplicial CW-complexΓ• corresponding to the groupoidΓ. This requires som
sophisticated study of homotopy theory of simplicial manifolds. In particular, the following q
tion arises naturally:

Question. – LetPU(∞) be the inductive limit ofPU(n), andΓ ⇒ M a proper Lie groupoid
such thatM/Γ is compact. Letγ be an element inH2(Γ•,Q/Z). Doesγ always induce a ma
from simplicial manifolds̃Γ• to PU(∞)•, whereΓ̃ is some Lie groupoid Morita equivalent toΓ?

Finally, we list some consequences of Theorem 5.28 in various special cases.

COROLLARY 5.30. –LetM be a compact manifold andα a torsion class inH3(M,Z). Then
K0

α(M) is isomorphic toKvb,cont
α (M).

Proof. –Use Remark 5.29 and the discussion following the conjecture above.�
COROLLARY 5.31. – LetM be a compact manifold andG a compact Lie group. Assume th

α ∈H3
G(M,Z) is a torsion class which admits at least one twisted vector bundle. ThenK0

G,α(M)
is isomorphic toKvb,cont

α (Γ•), whereΓ is the transformation groupoidG×M ⇒ M .

Note that in the above case whenα = 0, twisted vector bundles simply correspond
G-equivariant vector bundles overM , which always exist. Corollary 5.31 simply implies th
the original definition of equivariantK-theory of Segal [65] is equivalent to theK-theory of the
crossed productC∗-algebraC0(M) � G.

COROLLARY 5.32. –LetX be a compact orbifold. Assume thatX is reduced, or thatX can
be represented by a compact étale groupoid. Ifα ∈ H3(X,Z) is a torsion which admits a twiste
vector bundle, thenK0

α(X) is isomorphic toKvb,cont
α (X).

Proof. –Recall that if an orbifold is reduced, it can be represented by a crossed-produ
manifold by a compact group, and therefore the result follows from Corollary 5.31.

If Γ is a compact étale groupoid, thenC∗
r (Γ) is unital (the unit being represented by t

characteristic function ofΓ(0)), and therefore condition (c) is fulfilled.�
5.8. The main theorem: smooth case

Our goal in this subsection is to prove the analogue of Theorem 5.28 for smooth
bundles. The main result is the following

THEOREM 5.33. – Under the same hypothesis as in Theorem5.28, we have the following
commutative diagram of isomorphisms:

K0(C∞
c (Γ,R)) V

i

Kvb
α (Γ•)

i′

K0(C∗
r (Γ;R)) V ′

Kvb,cont
α (Γ•),

(38)
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where i and i′ are naturally defined; V and V ′ are defined as follows. For every projection
P ∈C∗

r (Γ;R)⊗K(H),
′ (

2
)

at
al

nal

sion
1.2,

f

ooth

.

V (P ) = P L̃ (Γ;L)⊗H ,

and for every projectionP ∈C∞
c (Γ;R)⊗K(Hn),

V (P ) = P
(
L̃2(Γ;L)⊗Hn

)
.

HereHn denotes then-dimensional Hilbert spaceCn ⊂ H.

It follows from Theorem 5.28 thatV ′ is well-defined and is an isomorphism. To prove thi
andi′ are isomorphisms, we will first show thatC∞

c (Γ,R) is stable under holomorphic function
calculus. Let us recall the definition below.

DEFINITION 5.34. – Assume thatB is a subalgebra of a Banach algebraB. Let B̃ andB̃ be
the unitization ofB and B respectively.B is said to be stable under holomorphic functio
calculus if for anyb ∈ B̃ and anyf holomorphic on a neighborhood ofsp(b), we havef(b) ∈ B̃.

If furthermoreB is endowed with a structure of Fréchet algebra such that the inclu
B→ B is continuous, then the following are equivalent (see [13, Appendix] or [64, Lemma
Theorem 2.1]):

(i) B is stable under holomorphic calculus;
(ii) for all n, Mn(B) is stable under holomorphic calculus;

(iii) every element inB̃ which is invertible inB̃ is actually invertible inB̃.
When any of the conditions above is satisfied, the inclusionB → B induces an isomorphism o
K-theory.

Assume now thatΓ andM are manifolds ands : Γ →M is a submersion (Γ is not necessarily
a groupoid). LetE → Γ be a Hermitian vector bundle. Assume that there exists a sm
s-systemµ = (µx)x∈M , i.e. µx is a measure onΓ whose support isΓx = s−1(x) such that
for everyf ∈ C∞

c (Γ) the functionx �→
∫

g∈Γx
f(g)µx(dg) is smooth.

Remark5.35. – We will be interested in the case thatS1 → R → Γ ⇒ M is anS1-central
extension of Lie groupoids,s is the source map,E is the associated line bundle andµ is a
smooth Haar system. It is well-known that such a Haar system exists on any Lie groupoid

Let F ⊂ Γ be a closed subset such that the restrictions|F :F → M is proper. Let

AF =
{
a ∈C∞(

Γ×s Γ, pr∗1(E)⊗ pr∗2(E∗)
)
| supp(a) ⊂ F ×s F

}
,

wherepr1,pr2 : Γ×s Γ → Γ are the projections. We endowAF with the convolution product

(a ∗ b)(g,h) =
∫

Γs(g)

a(g, k) · b(k,h)µs(g)(dk),

where· denotes the obvious productEg ⊗E∗
k ⊗Ek ⊗E∗

h → Eg ⊗E∗
h, and the adjoint

(a∗)(g,h) = a(h, g)∗.

For anyξ ∈ C∞
c (Γx;E), let

(
πx(a)(ξ)

)
(g) = (a ∗ ξ)(g) =

∫
h∈Γx

a(g,h)ξ(h)µx(dh).
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Thena �→ πx(a) defines a∗-representation ofAF in L(L2(Γx;E)). Assume now that we are
given a directed system (ordered by inclusion) of closed subsetsFi ⊂ Γ such thats|Fi

is proper
for all i. LetA = limi AFi , andA be the completion ofA under the norm

us.

e

s.

er
s

and
ive.
‖a‖= sup
x∈M

∥∥πx(a)
∥∥.

Denote byÃ andÃ the unitization ofA andA, respectively.

LEMMA 5.36. –A is a subalgebra ofA, and is stable under holomorphic functional calcul

Proof. –Let b̃ ∈ Ã be invertible inA. We need to show that̃b is invertible inÃ. SinceÃ is
dense inÃ, there existsx ∈ Ã such that‖1− b̃x‖ < 1/3. Sincẽb−1 = x(̃bx)−1, we may assum
that‖1− b̃‖ < 1/3. Let ã = 1− b̃. We havẽa = λ + b, whereλ ∈ C, |λ| < 1/3 andb ∈A. Thus
‖b‖= ‖ã−λ‖ < 2/3. Let a = (1−λ)−1b. Since(1− ã)−1 = (1−λ)−1(1− a)−1, it suffices to
prove that(1− a)−1 ∈ Ã whenevera ∈A and‖a‖ < 1.

Let an = a ∗ a ∗ · · · ∗ a (n times). We show that the sum
∑∞

n=1 an, and as well as all its
derivatives, converges uniformly on every compact set.

Sincean(g,h) = [an−1 ∗ a(·, h)](g), we have∥∥an(·, h)
∥∥

L2(Γs(h))
=

∥∥an−1 ∗ a(·, h)
∥∥ � ‖a‖n−1

∥∥a(·, h)
∥∥

L2(Γs(h))

and similarly, ∥∥am(g, ·)
∥∥

L2(Γs(g))
� ‖a‖m−1

∥∥a(g, ·)
∥∥

L2(Γs(g))
.

From the Cauchy–Schwarz inequality,∣∣am+n(g,h)
∣∣ �

∥∥am(g, ·)
∥∥

L2(Γs(g))

∥∥an(·, h)
∥∥

L2(Γs(h))

� ‖a‖m+n−2
∥∥a(g, ·)

∥∥
L2(Γs(g))

∥∥a(·, h)
∥∥

L2(Γs(h))
.

It follows that
∑

n an converges uniformly on every compact subset ofΓ×s Γ. Similarly, one
shows that all derivatives converge uniformly on any compact subset.�

PROPOSITION 5.37. – Let S1 → R → Γ ⇒ M be anS1-central extension of Lie groupoid
Assume thatΓ is proper. Then the subalgebraC∞

c (Γ;R) of C∗
r (Γ;R) is stable under

holomorphic functional calculus.

Proof. –We use the construction above, wheres : Γ → M is the source map and the fib
bundleE is L = R ×S1 C. Let K ⊂ M be a compact subset, andFK = ΓK . By the propernes
of Γ, s|FK

is a proper map. As above, defineA = limK AΓK . Denote byAΓ the subspace ofA
consisting ofΓ-invariant elements, i.e. elements satisfyinga(gγ,hγ) = a(g,h), whereLg ⊗L∗

h

andLgγ ⊗L∗
hγ are both identified withLgh−1 . Consider the map

Cc(Γ;R)→AΓ(39)

f �→ a,

given by a(g,h) = f(gh−1) ∈ Lgh−1 ∼= Lg ⊗ L∗
h. This map is well-defined. Indeed, iff is

compactly supported, then there exists a compact subsetK of Γ such that supp(f) ⊂ ΓK
K .

Therefore it follows thata ∈ AΓK ∩ AΓ. Conversely, ifF = ΓK and a ∈ AF ∩ AΓ, then
f(g) = a(g, s(g)) is supported onΓK

K , which is compact by the properness assumption,
a(g,h) = f(gh−1) sincea is Γ-invariant. Therefore, the map defined by Eq. (39) is biject
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It is not hard to check that it is an isometric∗-isomorphism which extends to an isomorphism
C∗

r (Γ;R) ∼→ A. The conclusion thus follows from Lemma 5.36.�
or the

f

o

a

l
t

h

l

of
res

an
0,

ng
in

at a

th
Remark5.38. – Proposition 5.37 was proved in [6, Lemma 7.5] in the non-twisted case f
crossed-product of a discrete group acting properly on a manifold.

As an immediate consequence, we have the following

COROLLARY 5.39. – The inclusioni :C∞
c (Γ;R) → C∗

r (Γ;R) induces an isomorphism o
K-theory.

We now return to the diagram (38), and show thatV is well-defined. We first need tw
preliminary lemmas.

LEMMA 5.40. – Let P ∈ C∗
r (Γ;R) ⊗ K be a projection andε > 0. Then there exists

projectionP ′ ∈ C∞
c (Γ;R) ⊗ K0, whereK0 denotes the algebra of finite rank operators onH

such that‖P ′ − P‖ < ε.

Proof. –Leta ∈C∞
c (Γ;R)⊗K0 such that‖a−P‖ < ε/2. Then the spectrum ofa is contained

in the open setU = B(0, ε/2) ∪ B(1, ε/2) ⊂ C. Let f :U → C be the function which is equa
to 0 onB(0, ε/2) and is equal to 1 onB(1, ε/2). ThenP ′ := f(a) is a projection such tha
‖P ′ − a‖< ε/2, andP ′ ∈C∞

c (Γ;R)⊗K0 by Proposition 5.37. �
LEMMA 5.41. – Suppose thatM is a manifold andπ :E → M a Hermitian vector bundle in

the topological sense. Assume that we are given a subspaceS ⊂C(M,E) such that
(a) S is aC∞(M)-module;
(b) for all ξ, η ∈ S , x �→ 〈ξ(x), η(x)〉 is a smooth function onM ;
(c) {ξ(x) | ξ ∈ S} is dense inEx for all x.

Then there exists a unique smooth structure on the vector bundleE such thatS consists of smoot
sections.

Proof. –By the Gram–Schmidt orthonormalization process, there exists an open cover(Ui) of
M and sectionsξi,1, . . . , ξi,n ∈ S such that for allx ∈ Ui, (ξi,1(x), . . . , ξi,n(x)) is an orthonorma
basis ofEx. Thus, we get local trivializationsϕi :π−1(Ui) ∼= Ui×Cn. Since〈ξi,k, ξj,l〉 is smooth
for all i, j, k, l, the change of coordinatesϕj ◦ϕ−1

i : (Ui∩Uj)×Cn → (Ui∩Uj)×Cn is smooth,
thus we get a smooth structure onE. From (b), it is clear that all elements ofS are smooth
sections.

Conversely, it is clear that ifE has a second smooth structure such that all elementsS
are smooth sections, thenϕi must be smooth for alli, and therefore the two smooth structu
coincide. �

Now we return to the proof of Theorem 5.33.

Proof of Theorem 5.33. –By assumption (see proof of Theorem 5.28), there exists
approximate unit(Pn) in C∗

r (Γ;R) ⊗ K consisting of projections. According to Lemma 5.4
there is a projectionP ′

n ∈ C∞
c (Γ;R) ⊗ K0 such that‖P ′

n − Pn‖ < 1/n. It is clear that
(P ′

n) is an approximate unit ofC∞
c (Γ;R) ⊗ K0 consisting of projections. Hence accordi

to [12, Proposition 5.5.5],K0(C∞
c (Γ;R) ⊗ K0) is the Grothendieck group of projections

C∞
c (Γ;R)⊗K0.
Assume now thatP ∈ C∞

c (Γ;R) ⊗ K0 ⊂ L(L2(Γ;L) ⊗ H) is a projection. LetE =
P (L̃2(Γ;R) ⊗ H). ThenE is a twisted vector bundle in the topological sense. We say th
section ofE is smooth if it is of the formx �→ Pxξx, whereξ ∈ C∞

c (Γ;L) ⊗ Hn for somen.
Since for any two smooth sectionsη andζ, x �→ 〈η(x), ζ(x)〉 is smooth, the space of smoo
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sections defines a smooth structure onE according to Lemma 5.41. It follows that the mapV in
(38) is well-defined. Also it is clear that the diagram (38) is commutative.

Finally, we prove that all maps in (38) are isomorphisms. Fori and V ′, this follows from

at

such
Theorem 5.28 and Corollary 5.39. It remains to show thati′ is injective.
Assume thatE and F are smooth twisted vector bundles such that[E] − [F ] ∈ ker i′.

Then there exists a topological twisted vector bundleG such thatE ⊕ G ∼= F ⊕ G. From the
proof of Theorem 5.28, we know that there exists a projectionP ∈ C∗

r (Γ;R) ⊗ K such that
G∼= P (L̃2(Γ;R)⊗H). According to Lemma 5.40, there exists a projectionP ′ ∈C∞

c (Γ;R)⊗K0

such that‖P ′−P‖ < 1. This implies thatG∼= P ′(L̃2(Γ;R)⊗H). Therefore we can assume th
G is a smooth vector bundle. ReplacingE by E ⊕G andF by F ⊕G, we see thatE andF are
isomorphic as topological twisted vector bundles. LetT = (Tx)x∈M be an isomorphism from
E to F . As in the proof of Proposition 5.27, we can assume thatTx is isometric for allx. Let
T ′ :E → F be a (fiberwise linear, non equivariant) smooth morphism of vector bundles
that ‖T ′

x − Tx‖ � 1/2 for all x. Choose a smooth cutoff functionc :M → R+ for the proper
groupoidR. Let

T ′′
x =

∫
Rx

αr

(
T ′

s(r))c(s(r)
)
λx(dr).

SinceT is R-invariant,

‖T ′′
x − Tx‖ �

∫
Rx

∥∥αr(T ′
s(r) − Ts(r))

∥∥c
(
s(r)

)
λx(dr) � 1/2

∫
Rx

c
(
s(r)

)
λx(dr) = 1/2.

ThereforeT ′′
x is an isomorphism for allx ∈ M . Moreover, it is clear thatx �→ T ′′

x is equivariant.
It follows thatE andF are isomorphic as smooth twisted vector bundles, and thus[E]− [F ] = 0.
This completes the proof of the theorem.�

6. The product Ki
α(Γ•)⊗Kj

β(Γ•) →Ki+j
α+β(Γ•)

6.1. The main idea

Let S1 → R → Γ ⇒ M andS1 →R′ → Γ ⇒ M beS1-central extensions, and letα andβ be
their corresponding classes inH2(Γ•,S1). It is simple to see that there is a bilinear product

Kvb
α (Γ•)⊗Kvb

β (Γ•)→ Kvb
α+β(Γ•)

defined as follows: letE be a (Γ,R)-twisted vector bundle andE′ a (Γ,R′)-twisted vector
bundle, then the product of[E] and[E′] is [E ⊗E′].

The objective of this section is to prove the following

THEOREM 6.1. –Let Γ ⇒ M be a proper Lie groupoid such thatM/Γ is compact, andα,
β ∈ H2(Γ•,S1). Then there exists a bilinear, associative product

Ki
α(Γ•)⊗Kj

α(Γ•)→ Ki+j
α+β(Γ•)(40)

(i, j ∈ {0,1}), which is compatible with the canonical mapKvb
γ (Γ•) → K0

γ(Γ•) (γ ∈
H2(Γ•,S1)).
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In the theorem above, the canonical mapι :Kvb
γ (Γ•) → K0

γ(Γ•) is constructed as in
Section 5.6. Note that the construction ofι only requires the groupoidΓ to be proper, while
the construction of the inverse ofι as described in Section 5.6 requires all the hypotheses in

in
s
oduct

anach

mpact
nt
hus

n
ill

st
that

ear

ules: if

s
so

he

Haar
owing
,

Theorem 5.28.
Recall that in the Fredholm picture of twistedK-theory (see Theorem 3.14), the difficulty

constructing the product (40) is to obtain a Fredholm operatorT out of two Fredholm operator
T1 and T2. Exactly the same difficulty appears in the construction of the Kasparov pr
[11]. The existence of the productKK(A,D) × KK(D,B) → KK(A,B) (with A, D andB
separableC∗-algebras) is proved using non constructive methods (in particular the Hahn–B
theorem), although explicit computations are possible in particular cases.

As a matter of fact, one can show, using Theorem 3.14, that for a proper groupoid with co
orbit spaceΓ ⇒ M , theuntwistedK-theory groupsKi(Γ•) are isomorphic to the equivaria
KK-groupsKKi

Γ(C0(M),C0(M)) defined by Le Gall [44]. The existence of the product t
follows from the product inKKΓ-theory.

From the above discussion, it is quite natural to generalize theKK-bifunctor further, and the
try to identify it with the twistedK-theory groups: this is the object of this section. We w
assume that the reader has some basic knowledge aboutKK-theory [11, Chapter 8]. Since mo
of the theory is already done in [11] or [44], we will only give those definitions and proofs
need substantial modification.

6.2. TheKK bifunctor

Let us first recall a definition:

DEFINITION 6.2. – LetA andB beC∗-algebras. AC∗-correspondence fromA to B is a pair
(E , f) whereE is a B-Hilbert module andf is a non-degenerate∗-homomorphism fromA to
L(E).

Recall that a∗-homomorphismπ :A →L(E) is said to be non-degenerate if the closed lin
span ofπ(A)E is equal toE ; by Cohen’s theorem, this is equivalent toπ(A)E = E . In particular,
if f :A→ B is a∗-homomorphism, thenf induces aC∗-correspondence(B,f).

Correspondences can be composed using the internal tensor product of Hilbert mod
(E , f) is aC∗-correspondence fromA to B and(E ′, g) is aC∗-correspondence fromB to D,
then(E ′, g) ◦ (E , f) = (E ⊗g E ′, f ⊗ 1) is aC∗-correspondence fromA to D. Therefore, there i
a categoryC whose objects areC∗-algebras and morphisms areC∗-correspondences. And al
there is a functor from the usual category ofC∗-algebrasC∗ to C (given by the mapf �→ (B,f)
as above). Moreover, isomorphism in the categoryC is Morita equivalence.

Recall that given a locally compact groupG, Kasparov constructed a bifunctor from t
category ofG-C∗-algebras to abelian groups(A,B) �→ KKG(A,B) which is covariant inB
and contravariant inA, and which is endowed with an associative product

KKG(A,B)⊗KKG(B,D) → KKG(A,D).

This construction was generalized by Le Gall to locally compact groupoids admitting
systems [44]. Our goal in this subsection is to generalize this construction further, by all
the groupoid to act by Morita equivalences on theC∗-algebras instead of by∗-automorphisms
i.e. to work in the categoryC instead ofC∗. This idea was communicated to us by Le Gall.

For convenience, let us introduce some terminology.

DEFINITION 6.3. – Let Γ ⇒ M be a locally compact groupoid. LetA be a C∗-algebra.
A generalized actionof Γ onA is given by
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(i) a u.s.c. Fell bundleA overΓ;
(ii) an isomorphismA∼= C0(M ;A).

∗

nt
an

aps

t
t
hen

h

e.
For instance, ifΓ acts onA in the usual sense, then there exists a u.s.c. field ofC -algebras
A′ with fiber A′

x
∼= Ax at x ∈ M such thatA ∼= C0(M ;A′), and the action ofΓ on A induces

∗-isomorphismsαg :A′
s(g) →A′

t(g). LetA = s∗A′, with the product

Ag ⊗Ah
∼= As(g) ⊗As(h) →As(h)

∼= Agh,

(a, b) �→ αh−1(a)b

and the involution

Ag
∼= As(g) →At(g)

∼=Ag−1 ,

a �→ αg(a∗).

ThenA is a u.s.c. Fell bundle overΓ, and thus defines a generalized action ofΓ onA.
If A and B are C∗-algebras endowed with aΓ-action, there is a notion of equivaria

∗-homomorphismf :A → B. More generally, we want to introduce the definition of
equivariant correspondence (Definition 6.4).

We first introduce some notation: letA be aC∗-algebra endowed with a generalized actionA
of a locally compact groupoidΓ. Denote byÂ the space of norm-bounded continuous m
vanishing at infinityg �→ a′

g ∈ Ag−1 . Â is naturally at∗A-Hilbert module with the module
structure

(a′a)g = a′
g · ag (a′ ∈ Â, a ∈ t∗A)

and the scalar product

〈a′, a′′〉g = a′
g
∗
a′′

g ∈At(g).

DEFINITION 6.4. – LetA andB beC∗-algebras endowed with generalized actionsA andB
of a locally compact groupoidΓ. Let E be aC∗-correspondence fromA to B. We say that the
correspondenceE is equivariant if there is an isomorphism ofs∗A, t∗B correspondences

W :s∗E ⊗s∗B B̂ → Â⊗t∗A t∗E

such that for every(g,h) ∈ Γ(2),

(IdAh−1 ⊗Wg) ◦ (Wh ⊗ IdBg−1 )

∈ L(Es(h) ⊗Bs(h) Bh−1 ⊗Bt(h) Bg−1 ,Ah−1 ⊗At(h) Ag−1 ⊗At(g) Et(g))

is equal to

Wgh ∈ L(Es(h) ⊗Bs(h) Bh−1g−1 ,Ah−1g−1 ⊗At(g) Et(gh))

via the identificationsA(gh)−1 ∼= Ah−1 ⊗At(h) Ag−1 andB(gh)−1 ∼= Bh−1 ⊗Bt(h) Bg−1 .

When the action ofΓ onA� C0(M, Ã) is an action in the usual sense, andE is an equivarian
correspondence, thenE is a (Γ,B)-equivariantB-Hilbert module (see Definition 5.13). Le
L(Ẽ) =

∐
x∈M L(Ex) be the bundle defined in Appendix A, preceding Proposition A.5. T

the mapA →L(E) induces aΓ-equivariant bundle map̃A→L(Ẽ).
Note that there is a categoryCΓ whose objects consist ofC∗-algebras endowed wit

generalized actions ofΓ, and whose morphisms are equivariant correspondences.
To define theKK-groups, we first recall that ifF2 ∈ L(E2) thenId⊗F2 does not make sens

Instead, one has to use the notion of connection [18, Appendix A, pp. 1174–1178]:
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DEFINITION 6.5. – Let E1 be a D-Hilbert module andE2 a D, B-correspondence. Let
E = E1 ⊗D E2, F2 ∈ L(E2) andF ∈ L(E). We say thatF is aF2-connection forE1 if for every
ξ ∈ E1,

r

t

f

,

TξF2 − (−1)∂ξ∂F2FTξ ∈K(E2,E)

F2T
∗
ξ − (−1)∂ξ∂F2T ∗

ξ F ∈K(E ,E2).

The above operatorTξ ∈ L(E2,E) is defined by

Tξ(η) = ξ ⊗ η.(41)

Note the slight ambiguity, sinceE2 does not appear in the notationTξ .
Recall also thatF is a F2 connection if and only if for allξ ∈ E1, the graded commutato[

θξ,
(

F2 0
0 F

)]
belongs toK(E2 ⊕E), whereθξ =

( 0 T∗
ξ

Tξ 0

)
.

Let us now define theKK-groups. IfE is an equivariantA, B-correspondence andF ∈ L(E).
Denote byt∗F ∈ L(t∗E) ands∗F ∈ L(s∗E) the pull-backs ofF by t ands respectively. Let

σ(F ) = W (s∗F ⊗ Id)W ∗ ∈ L(Â ⊗t∗A t∗E).

DEFINITION 6.6. – LetA andB beC∗-algebras endowed with generalized actions ofΓ. An
equivariant KasparovA, B-bimodule5 is a pair(E , F ), whereE is aZ/2Z-graded, equivarian
A, B-correspondence andF ∈ L(E) is a degree 1 operator such that for alla ∈A,

(i) a(F − F ∗) ∈K(E);
(ii) a(F 2 − 1) ∈K(E);

(iii) [a,F ] ∈K(E);
(iv) σ(F ) is at∗F -connection forÂ.

If Γ is a discrete group, (iv) holds if and only ifAdg(F ) − F is compact for allg ∈ Γ. Thus
we will refer to condition (iv) as the condition of invariance modulo compacts.

As usual, unitarily equivalent Kasparov bimodules are identified. LetEΓ(A,B) be the set o
(unitary equivalence classes of) KasparovA, B-bimodules. Ahomotopyin EΓ(A,B) is given
by an element ofEΓ(A,B[0,1]). The set of homotopy classes of elements ofEΓ(A,B) is
denoted byKKΓ(A,B). ThenKKΓ(A,B) is an abelian group, and(A,B) �→ KKΓ(A,B)
is a bifunctor, covariant inB, contravariant inA (in the categoryCΓ).

6.3. The technical theorem

The main ingredient in the construction of the product

KKΓ(A,D)×KKΓ(D,B)→ KKΓ(A,B)

is the so-called technical theorem [34, pp. 108–109]. We first need a lemma:

LEMMA 6.7. – Let J and J ′ be twoC∗-algebras. Letπ :J → J ′ be a ∗-homomorphism
ε > 0, h0 ∈ J+ such that‖h0‖ < 1, h ∈ J , h′ ∈ J ′, K ⊂ Der(J) compact,K′ ⊂ Der(J ′)
compact. Then there existsu ∈ J such that

1) h0 � u, ‖u‖< 1;
2) ‖uh− h‖ � ε;

5 “Kasparov correspondence” might be a more appropriate terminology but is not the usual one.
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2′) ‖π(u)h′ − h′‖ � ε;
3) ∀d ∈K, ‖[d,u]‖� ε;

3′) ∀d′ ∈K′, ‖[d′, π(u)]‖ � ε.

ed
The proof is almost the same as in [34]. Let us now come to the technical theorem.

THEOREM 6.8. – Let
• A1 andA′

1 be twoC∗-algebras such thatA1 is σ-unital;
• J andJ ′ equivariant ideals inA1 andA′

1 respectively;
• π :A1 → A′

1 such thatπ(J) ⊂ J ′;
• F (resp.F ′) a separable subspace ofDer(A1) (resp. ofDer(A′

1));
• a2 ∈ M(J)+ such thata2A1 ⊂ J ;
• a′

2 ∈ M(J ′)+ such thata′
2A

′
1 ⊂ J ′.

Then there exists an elementM ∈M(A1), of degree0, such that
1) M and1−M are strictly positive;
2) (1−M)a2 ∈ J ;

2′) π(1−M)a′
2 ∈ J ′;

3) MA1 ⊂ J ;
3′) π(M)A′

1 ⊂ J ′;
4) [F ,M ]⊂ J ;

4′) [F ′, π(M)] ⊂ J ′.

Again, the proof is almost the same as in [34].

6.4. The Kasparov product

THEOREM 6.9. – Let A, D and B be separableC∗-algebras endowed with generaliz
actions of a groupoidΓ. Let (E1, F1) ∈ EΓ(A,D) and (E2, F2) ∈ EΓ(D,B). Denote byE the
equivariantA, B-correspondenceE = E1⊗̂DE2. Then the setF1#̂ΓF2 of operatorsF ∈ L(E)
such that

• (E , F ) ∈EΓ(A,B);
• F is aF2-connection forE1;
• ∀a ∈A, a[F1⊗̂D1, F ]a∗ � 0 moduloK(E)

is non-empty.

Proof. –Choose aF2-connectionT for E1, and define

J =K(E),

A1 =K(E1)⊗̂D IdE2 +J ⊂L(E),

J ′ =
{
S ∈ L(Â ⊗t∗A t∗E ⊕ t∗E) | ∀χ ∈ C0(Γ), χS ∈K

}
A′

1 =
{
S ∈ L(Â ⊗t∗A t∗E ⊕ t∗E) |

∀χ ∈C0(Γ), χS ∈K(Â ⊗t∗A t∗E1 ⊕ t∗E1)⊗ IdE2

}
+ J ′,

F = Vect
(
Ad(F1⊗̂ IdE2),Ad(T ),Ad(a) (a ∈A)

)
⊂Der(A1).

Let π :L(E)→L(Â ⊗t∗A t∗E ⊕ t∗E) defined by

π(S) =
(

σ(S) 0
0 t∗S

)
.
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Then π(A1) ⊂ A′
1 and π(J) ⊂ J ′. Let a′

2 be a strictly positive element of theC∗-algebra
generated by[θa′ , π(T )] (a′ ∈ Â), where

hus

ts”

e

ll

form
θa′ =
(

0 Ta′

T ∗
a′ 0

)
∈ L(Â ⊗t∗A t∗E ⊕ t∗E).

Let F ′ = {Adθa | a′ ∈ Â}. Let A2 be the sub-C∗-algebra ofL(E) generated by

{
T − T ∗; 1− T 2; [T,F1⊗̂D IdE2 ]; [T,a],∀a ∈A

}
and leta2 be a strictly positive element ofA2. We can apply the technical Theorem 6.8 and t
obtain an operatorM ∈ L(E) which satisfies the properties in Theorem 6.8. Let

F = M1/2(F1⊗̂D IdE2) + (1−M)1/2T.

As in the non-equivariant case, we have

(E , F ) ∈E(A,B)

and thus it just remains to prove thatF satisfies the condition of “invariance modulo compac
(Definition 6.6(iv)).

Let M1 = M1/2(F1 ⊗ Id) andM2 = (1 − M)1/2T . We show that bothM1 andM2 satisfy
the invariance condition. SinceF = M1 + M2, it follows that F also satisfies the invarianc
condition.

We have[θa′ , π(M1)] = [θa′ , π(M)1/2]π(F1 ⊗ 1) + π(M)1/2[θa′ , π(F1 ⊗ 1)]. From property
(4′) of M , we have[θa′ , π(M)1/2] ∈ J ′. SinceJ ′ is an ideal,[θa′ , π(M)1/2]π(F1 ⊗ 1) ∈ J ′.
From property (iv) in Definition 6.6 forF1, we have

[
θa′ , π(F1 ⊗ 1)

]
∈K(Â ⊗t∗A t∗E1 ⊕ t∗E1)⊗ IdE2 ⊂ A′

1.

Sinceπ(M)A′
1 ⊂ J ′, we haveπ(M)1/2[θa′ , π(F1 ⊗ 1)] ∈ J ′. Finally, [θa′ , π(M1)] ∈ J ′, which

means thatσ(M1) is at∗M1-connection.
Let us show thatM2 satisfies the invariance condition (Definition 6.6 (iv)). We have

[
θa′ , π

(
(1−M)1/2T

)]
=

[
θa′ , π(1−M)1/2

]
π(T ) + π(1−M)1/2

[
θa′ , π(T )

]
.

By the property (4′) of M ,

[
θa′ , π(1−M)

]
= −

[
θa′ , π(M)

]
∈ J ′,

and thus[θa′ , π(1−M)1/2] ∈ J ′. SinceJ ′ is an ideal, we obtain[θa′ , π(1−M)1/2]π(T ) ∈ J ′.
Sinceπ(1−M)a′

2 ∈ J ′, we haveπ(1−M)1/2a′
2 ∈ J ′ and thusπ(1−M)1/2[θa′ , π(T )] ∈ J ′.

Finally, we get[θa′ , π(M2)] ∈ J ′. This is equivalent to the fact thatσ(M2) is at∗M2-connection.
It now remains to show that the conditiona′

2A
′
1 ⊂ J ′ is fulfilled. It suffices to show that for a

a′ ∈ Â and allT ′ ∈K(Ât∗A ⊗ t∗E1 ⊕ t∗E1)⊗ Idt∗E2 , the operator[θa′ , π(T )]T ′ is compact.
SinceK(Â⊗t∗A t∗E1⊕ t∗E1) is the closed vector subspace generated by operators of the

Tζ ◦ T ∗
ζ′ (ζ, ζ ′ ∈ Â⊗ t∗E1 ⊕ t∗E1), it suffices to show that[θa′ , π(T )]Tζ ∈K for all ζ, i.e. that

(a) (Ta′t∗T − (−1)∂a′
σ(T )Ta′)Tξ′

1
∈K, ∀ξ′1 ∈ t∗E1;
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(b) (T ∗
a′σ(T )− (−1)∂a′

(t∗T )T ∗
a′)Ta′′⊗ξ′

1
∈K, ∀a′′ ⊗ ξ′1 ∈ Â⊗t∗A t∗E1.

Let us show (a). SinceT is aF2-connection,t∗T is at∗F2-connection. Hence

tion
(t∗T )Tξ′
1
− (−1)∂ξ′

1Tξ′
1
t∗F2 ∈K,

which in turn implies that

Ta′(t∗T )Tξ′
1
− (−1)∂ξ′

1Ta′⊗ξ′
1
(t∗F2) ∈K.

Therefore, it suffices to show that

Ta′⊗ξ′
1
(t∗F2)− (−1)∂(a′⊗ξ′

1)σ(T )Ta′⊗ξ′
1
∈K.(42)

Let W1 :s∗E1 ⊗s∗D D̂ ∼→ Â⊗t∗A t∗E1 be the isomorphism induced from the generalized ac
of Γ onE1. Similarly, we introduce the obvious notationsW2 andW .

To show Eq. (42), it suffices to prove that for allξ′′ ⊗ d′ ∈ s∗E1 ⊗s∗D D̂,

TW1(ξ′′
1 ⊗d′)(t∗F2)− (−1)∂(ξ′′

1 ⊗d′)σ(T )TW1(ξ′′
1 ⊗d′) ∈K.

Now TW1(ξ′′
1 ⊗d′) = (W1 ⊗ Id)(Tξ′′

1 ⊗d′). Moreover, from the invariance condition onF2

(Definition 6.6(iv)), we getTd′ ◦ t∗F2 − (−1)∂d′
σ(F2) ◦ Td′ ∈K. Thus it suffices to show that

(
(W1 ⊗ Id) ◦ Tξ′′

1
◦ σ(F2)− (−1)∂ξ′′

1 σ(T ) ◦ (W1 ⊗ Id) ◦ Tξ′′
1

)
◦ Td′ ∈K.

Now, recall that

σ(T ) = W (s∗T ⊗ IdB̂)W−1,

σ(F2) = W2(s∗F2 ⊗ IdB̂)W−1
2

with W = (W1 ⊗ Idt∗E2) ◦ (Ids∗E1 ⊗W2). Hence, we are reduced to

(W1 ⊗ Id)Tξ′′
1
W2(s∗F2 ⊗ IdB̂)W−1

2 − (−1)∂ξ′′
1 W (s∗T ⊗ IdB̂)W−1(W1 ⊗ Id)Tξ′′

1

?
∈K

and then (multiplying on the left by(W1 ⊗ Id)−1) to

Tξ′′
1
◦W ′

2(s
∗F2 ⊗ IdB̂)W−1

2 − (−1)∂ξ′′
1 (Ids∗E1 ⊗W2)(s∗T ⊗ IdB̂)(Ids∗E1 ⊗W2)−1Tξ′′

1

?
∈K.

Now (with the abuse of notation (41)),

Tξ′′
1
◦W2 = W2 ⊗ Tξ′′

1
,

(Ids∗E1 ⊗W2) ◦ Tξ′′
1

= Tξ′′
1
◦ (Ids∗E1 ⊗W2).

We are finally reduced to showing that

Tξ′′
1
(s∗F2 ⊗ IdB̂)− (−1)∂ξ′′

1 (s∗T ⊗ IdB̂)Tξ′′
1
∈K,

which is true sinceT is aF2-connection.
This completes the proof of Eq. (42).
Let us now show (b). Using the fact thatt∗T is at∗F2-connection and that

T ∗
a′Ta′′⊗ξ′

1
= T〈a′,a′′〉ξ′

1
,
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we get

T ∗
a′Ta′′⊗ξ′

1
t∗F2 − (−1)∂a′+∂a′′+∂ξ′

1(t∗T )T ∗
a′Ta′′⊗ξ′

1
∈K.

variant

the

r
s

of the

em

erator
Thus we need to show that

T ∗
a′σ(T )Ta′′⊗ξ′

1
− (−1)∂(a′⊗ξ′

1)T ∗
a′Ta′′⊗ξ′

1
(t∗F2) ∈K.

But this is immediate from Eq. (42). Thus (b) is proved.�
Theorem 6.9 enables us to construct the Kasparov product

KKΓ(A,D)×KKΓ(D,B)→ KKΓ(A,B)

of [(E1, F1)] ∈ KKΓ(A,D) and [(E2, F2)] ∈ KKΓ(D,B) by [(E , F )] ∈ KKΓ(A,B), where
E = E1 ⊗̂D E1 andF ∈ F1 #̂Γ F2. As in the case ofC∗-algebras endowed with an action ofΓ in
the usual sense, the product is well-defined, bilinear, homotopy-invariant, associative, co
with respect toB and contravariant with respect toA.

More generally, there is an associative product (fori, j ∈ {0,1})

KKi
Γ(A,B1⊗̂C0(M)D)×KKj

Γ(D ⊗̂C0(M) A1,B)

→ KKΓ,i+j(A ⊗̂C0(M) A1,B1⊗̂C0(M)B1).(43)

6.5. TwistedK-theory is aKK-group

Assume thatS1 → R → Γ ⇒ M is anS1-central extension of Lie groupoids. Recall that
line bundleL = R ×S1 C can be considered as a Fell bundle over the groupoidΓ, and thus the
C∗-algebraC0(M) is endowed with a generalized action ofΓ. Denote byAR this C∗-algebra.
Our goal is to show

PROPOSITION 6.10. – If Γ ⇒ M is a proper Lie groupoid andM/Γ is compact, then fo
i = 0,1, KKi

Γ(C0(M),AR) is isomorphic toKi
α(Γ•), whereα ∈ H2(Γ•,S1) denotes the clas

of the extensionS1 →R → Γ ⇒ M .

We will show a more general proposition, which can be considered as a generalization
Green–Julg theorem.

PROPOSITION 6.11. – LetΓ ⇒ M be a proper locally compact groupoid with a Haar syst
such thatM/Γ is compact. LetE be a u.s.c. Fell bundle overΓ and A = C0(M ;E). Then
KKΓ(C0(M),A) andK0(C∗

r (Γ;E)) are isomorphic.

Note that Proposition 6.11 implies Proposition 6.10: takeE = L if i = 0 andE = L⊗C0(R)
if i = 1.

Proof. –Let us construct a mapΦ:KKΓ(C0(M),A) → K0(C∗
r (Γ;E)). Consider(E , F ) ∈

EΓ(C0(M),A). Recalling Theorem 4.6, we have to construct a generalized Fredholm op
T ∈ F0(Γ,E). By the stabilization theorem (Proposition 5.25), we may assume thatE =
L2(Γ;E)⊗H⊕L2(Γ;E)⊗H with the obviousZ2-grading. Then, replacingF by 1

2 (F + F ∗),
and then byFΓ (see notation (30)), we may assume thatF is self-adjoint andΓ-invariant. Thus,
F can be represented as a matrix

F =
(

0 T ∗

T 0

)
.
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PutΦ([E , F ]) = [T ]. It is routine to check thatΦ is a well-defined group homomorphism. The
only slightly tricky point is to check thatT is invertible moduloKΓ(L2(Γ;E) ⊗ H). To see
this, note that Condition (ii) in Definition 6.6 implies thatTT ∗ − Id andT ∗T − Id belong to

n
that

t

e
ct

t

(44) is
tivity of

was
hnique
g Paul
Gall,
ho was

over a
C(L2(Γ;E) ⊗ H). By the compactness assumption onM/Γ and the fact thatT is Γ-invariant,
we find thatTT ∗ − Id andT ∗T − Id are inKΓ(L2(Γ;E)⊗H).

We now construct a map in the other directionΨ:K0(C∗
r (Γ;E)) → KKΓ(C0(M,A)).

Let T ∈ F0(Γ,E). Let B = L(L2(Γ;E) ⊗ H)Γ and J = KΓ(L2(Γ;E) ⊗ H). By definition,
T is an element inB whose imageτ in B/J is invertible. Write the polar decompositio
τ = u(τ∗τ)−1/2 and lift u to an elementT ′ ∈ B. One easily proves by a standard argument
T ′ is homotopic toT . Therefore, replacingT by T ′, we may assume thatT is unitary moduloJ .
That is,T ∗T − Id andTT ∗ − Id belong toKΓ(L2(Γ;E)⊗ H). Let F =

(
0 T∗

T 0

)
, which acts on

the Z2-graded Hilbert moduleE = L2(Γ;E) ⊗ H ⊕ L2(Γ;E) ⊗ H. It is not hard to check tha
(E , F ) ∈ EΓ(C0(M),A). DefineΨ([T ]) = [(E , F )]. One can verify thatΦ andΨ are inverse
from each other. �
6.6. The productKi

α(Γ•)⊗Kj
β(Γ•)→ Ki+j

α+β(Γ•)

Suppose thatS1 →R1 → Γ ⇒ M andS1 → R2 → Γ ⇒ M areS1-central extensions of a Li
groupoidΓ. Denote byα andβ their classes inH2(Γ•,S1). Using the general Kasparov produ
(43), we get a product

KKi
Γ

(
C0(M),AR

)
⊗KKj

Γ

(
C0(M),AR′

)
→KKi+j

Γ

(
C0(M),AR⊗R′

)
.

If in additionΓ is proper andM/Γ is compact, then by Proposition 6.10, we obtain a produc

Ki
α(Γ•)⊗Kj

β(Γ•)→ Ki+j
α+β(Γ•).(44)

From the general properties of the Kasparov product [11], the product defined by Eq.
associative and graded commutative, where graded commutativity comes from commuta
the diagram

AR ⊗C0(M) AR′

flip

AR⊗R′

AR′ ⊗C0(M) AR AR⊗R′ .
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Appendix A. Fell bundles over groupoids

In this appendix, we recall the definition and some basic properties of a Fell bundle
groupoid (Definition A.7) and its reducedC∗-algebra.
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A.1. Fields ofC∗-algebras

DEFINITION A.1. – Let X be a Hausdorff topological space. A continuous (resp. upper

e will
t most
spaces

e,

pace of
e

.
e
e

of
een

h

semicontinuous) field of Banach spacesE over X consists of a family(Ex)x∈X of Banach
spaces together with a topology oñE =

∐
x∈X Ex such that

(i) the topology onEx induced from that oñE is the norm-topology;
(ii) the projectionπ : Ẽ →X is continuous and open;

(iii) the operations(e, e′) ∈ Ẽ ×X Ẽ �→ e + e′ ∈ Ẽ and (λ, e) ∈ C × Ẽ → λe ∈ Ẽ are
continuous;

(iv) the normẼ → R+ is continuous (resp. u.s.c.);
(v) if ‖ei‖→ 0 andπ(ei) → x, thenei → 0x;

(vi) for all e ∈Ex there exists a continuous sectionξ such thatξ(x) = e.

In [25,26] only continuous fields were studied and they are called Banach bundles. W
also use that terminology. In this paper we are mainly concerned with continuous fields, bu
constructions and results only require the field to be u.s.c. In particular, a field of Banach
can be constructed in the following way [26]:

PROPOSITION A.2. – Let X be a topological Hausdorff space. Assume that(Ex)x∈X is a
family of Banach spaces andE is aC(X)-module of sections of̃E :=

∐
x∈X Ex →X such that

(i) for everyξ ∈ E, the functionx �→ ‖ξ(x)‖ is continuous(resp. u.s.c.);
(ii) for all x ∈ X , the set{ξ(x)| ξ ∈ E} is dense inEx.

Then there is a unique topology oñE makingẼ → X into a continuous(resp. u.s.c.) field of
Banach spaces such that elements ofE are exactly continuous sections.

In the same way, one defines fields of Banach algebras and fields ofC∗-algebras. For instanc
if f :Y → X is a continuous map between two locally compact spaces, thenC0(Y ) may be
considered as an u.s.c. field ofC∗-algebras overX with the fiber C0(f−1(x)) at x ∈ X .
Moreover, the field is continuous if and only iff is an open map.

We will use the following conventions. Denote byC(X;E), C0(X;E) and Cc(X;E) the
space of continuous sections, the space of continuous sections vanishing at infinity, the s
compactly supported continuous sections of the bundleẼ → X , respectively. We also use th
notationsC(X, Ẽ), C0(X, Ẽ) andCc(X, Ẽ).

Let us explain how pull-backs of fields are constructed. Let
∐

x∈X Ex →X be an u.s.c. (resp
continuous) field of Banach spaces overX , and letf :Y → X be a continuous map. Then th
u.s.c. (resp. continuous) fieldf∗E is the field with the fiberEf(y) aty ∈ Y , and whose total spac

is Y ×X Ẽ with the induced topology fromY × Ẽ. If E is determined by aC(X)-module of
sectionsE ⊂ C(X, Ẽ) as in Proposition A.2, thenf∗E is determined byf∗E = {ξ ◦ f | ξ ∈ E}.

Recall that if X is a locally compact space, then aC0(X)-algebra is aC∗-algebraA
together with a *-homomorphismC0(X) → Z(M(A)) (the center of the multiplier algebra
A) such thatC0(X)A = A. The proposition below indicates that there is a bijection betw
C0(X)-algebras and u.s.c. fields ofC∗-algebras overX .

For anyx ∈ X , by Cx(X), we denote the ideal ofC0(X) consisting of functions that vanis
atx.

PROPOSITION A.3. – LetX be a locally compact space,A a C0(X)-algebra and

Ax = A/
(
Cx(X)A

)
.

Denote by πx :A → Ax the projection. There is a unique u.s.c. field ofC∗-algebras
Ã :=

∐
x∈X Ax → X such that the map
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A→C0(X, Ã),

a �→
(
x �→ πx(a)

)

.

.3),
f

lds

paces

icular,
s field

a

orm
is an isomorphism ofC∗-algebras.
Conversely, assume that̃A =

∐
x∈X Ax → X is a u.s.c. field ofC∗-algebras overX , and

A = C0(X, Ã) is the space of continuous sections vanishing at infinity. ThenA is obviously a
C0(X)-algebra, and the evaluation mapA→Ax induces a∗-isomorphismAx →Ax.

Proof. –This is immediate from [12, Proposition 2.12 a)].�
Assume thatΓ ⇒ X is a topological groupoid. Recall [44, Definition 3.3] that aΓ-action on

a C0(X)-algebraA is an isomorphism ofC0(Γ)-algebrasα :s∗A → t∗A such thatαgh = αgαh

for all (g,h) ∈ Γ(2), whereαg : (s∗A)g
∼= As(g) → (r∗A)g

∼= At(g) is the induced isomorphism

Let Ã =
∐

x∈X Ax → X be an u.s.c. field ofC∗-algebras. We say that the groupoidΓ acts

on Ã → X if there is an isomorphismα :s∗A→ t∗A of fields ofC∗-algebras overΓ such that
αgh = αgαh for all (g,h) ∈ Γ(2). It is clear that using the dictionary above (Proposition A
Γ-actions onC0(X)-algebras are in bijective correspondence withΓ-actions on fields o
C∗-algebras overX .

Now, let us explain howC∗-modules over aC0(X)-algebra can be considered as u.s.c. fie
of Banach spaces overX .

PROPOSITION A.4. – Let Ã =
∐

x∈X Ax → X be an u.s.c. field ofC∗-algebras overX

and A = C0(X, Ã). Assume thatE is an A-Hilbert module. LetEx := E ⊗A Ax and denote
by πx :E → Ex the canonical map. Then there is an unique u.s.c. field of Banach s
Ẽ :=

∐
x∈X Ex → X such that the map

E →C0(X, Ẽ),

ξ �→
(
x �→ πx(ξ)

)
is an isomorphism. Moreover, if the field̃A → X is a continuous field, theñE → X is a
continuous field as well.

The proof, which uses Proposition A.2, is straightforward and is left to the reader. In part
anyC0(X)-module is the space of continuous sections vanishing at infinity of a continuou
of Hilbert spaces.

Consider an u.s.c. field ofC∗-algebras

Ã =
∐
x∈X

Ax →X.

Let A = C0(X, Ã). Assume thatE is anA-Hilbert module. It is simple to show that there is
unique topology onL(Ẽ) :=

∐
x∈X L(Ex) such that for every netTi ∈ L(Exi) andT ∈ L(Ex),

Ti converges toT if and only if for everyξ ∈C(X, Ẽ),
(i) xi → x;

(ii) Tiξ(xi)→ Tξ(x); and
(iii) T ∗

i ξ(xi)→ T ∗ξ(x).
Then the bundleL(Ẽ) → X satisfies all the properties of Definition A.1, except that the n
is not necessarily u.s.c. (in fact, one can show that it islower semi-continuous if̃E → X is a
continuous field), and the induced topology onL(Ex) is not the norm-topology.
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We say that a sectionx �→ Tx of L(Ẽ) is strongly continuous if for everyξ ∈ C(X, Ã),
x �→ Txξ(x) belongs toC(X, Ã), and a sectionx �→ Tx is ∗-strongly continuous if bothx �→ Tx

andx �→ T ∗
x are strongly continuous. It is not hard to show that a section is∗-strongly continuous

ed

nd

on

se, by
sume

that
ld of

.)

of

e.
if and only if it is a continuous section of the bundle defined above. Denote byCb(X,L(Ẽ)) the
space of continuous and norm-bounded sections.

PROPOSITION A.5. – There is an isomorphism

L(E)→Cb

(
X,L(Ẽ)

)
,

T �→ (x �→ Tx),

whereTx = T ⊗A Id ∈ L(E ⊗A Ax) =L(Ex).

Proof. –This follows directly from Proposition A.4 and the fact thatL(E) is, by definition, the
space of maps fromE to E admitting an adjoint. �

The analogue of the above proposition forK(E) is less simple. However since we do not ne
it in full generality in this paper, we only consider a particular case below.

PROPOSITION A.6. – Let H̃ =
∐

x∈X Hx → X be a continuous field of Hilbert spaces, a

H = C0(X, H̃) be the associatedC0(X)-Hilbert module. Then there exists a unique topology
K(H̃) :=

∐
x∈X K(Hx) such that

(i) the fieldK(H̃)→ X is a continuous field ofC∗-algebras;
(ii) for everyξ, η ∈C0(X, H̃), we have(x �→ Tξ(x),η(x)) ∈C0(X,K(H̃)).

Moreover, the map

Tξ,η �→ (x �→ Tξ(x),η(x))

extends uniquely to an isomorphism ofC∗-algebrasK(H) ∼→ C0(X,K(H̃)).

Proof. –We sketch the proof in the case that the field is countably generated. In this ca
the stabilization theorem (either by Dixmier and Douady [22] or Kasparov [72]), we may as
that the field is trivial:H̃ ∼= X × H. It is well-known thatK(H) is isomorphic toC0(X,K(H)),
whereK(H) is endowed with the norm-topology. Thus it follows from Proposition A.2
C0(X,K(H)) is the space of continuous sections vanishing at infinity of a continuous fie
C∗-algebras overX with fibers isomorphic toK(H). �
A.2. Fell bundles over groupoids: definition and first properties

DEFINITION A.7. – LetΓ ⇒ M be a locally compact groupoid and denote bym : Γ(2) → Γ
the multiplication map. A continuous (resp. u.s.c.) Fell bundle overΓ is a continuous (resp. u.s.c
field of Banach spaces(Eg)g∈Γ over Γ together with an associative bilinear product(ξ, η) ∈
Eg ×Eh �→ ξη ∈Egh, whenever(g,h) ∈ Γ(2), and an antilinear involutionξ ∈ Eg �→ ξ∗ ∈Eg−1

such that for any(g,h) ∈ Γ(2), and(e1, e2) ∈Eg ×Eh,
(i) ‖e1e2‖ � ‖e1‖‖e2‖;

(ii) (e1e2)∗ = e∗2e
∗
1;

(iii) ‖e∗1e1‖ = ‖e1‖2;
(iv) e∗1e1 is a positive element of theC∗-algebraEs(g);

(v) the product(e, e′) ∈m∗(Ẽ) �→ ee′ ∈ Ẽ, and the involutione ∈ Ẽ �→ e∗ are continuous;
(vi) for all (g,h) ∈ Γ(2), the image of the productEg ×Eh → Egh spans a dense subspace

Egh.

RemarkA.8. – Note that (i)–(iii) imply thatEx, x ∈M , is aC∗-algebra, so (iv) makes sens
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Continuous Fell bundles were first defined by Yamagami in [71], and were calledC∗-algebras
over groupoids. Since continuous Fell bundles are simply called “Fell bundles” in the literature
[28,42,55], we will follow this convention. In the literature one also finds the terminology “full”

t

that

e

f

Fell bundle: this refers to condition (vi). Note thatA := C0(M ;E), the restriction ofC0(Γ;E)
to M , is aC0(M)-algebra, andAx = Ex for all x ∈M , by Proposition A.3.

ExampleA.9. – Let Γ be a locally compact groupoid acting on aC0(M)-algebraA, A the
associated u.s.c. field ofC∗-algebras (Proposition A.3). There is an isomorphismα :s∗Ã→ t∗Ã
such thatαgh = αg ◦ αh for all (g,h) ∈ Γ(2). ThenE = s∗A is a u.s.c. Fell bundle overΓ with
the product(a, b) ∈ Eg × Eh = As(g) × As(h) �→ αh−1(a)b ∈ Egh = Ash and the involution
a ∈Eg �→ αg(a∗) ∈ Eg−1 .

Therefore the notion of u.s.c. Fell bundles overΓ generalizes that of actions ofΓ on
C∗-algebras. In fact, u.s.c. Fell bundles overΓ can be viewed as “actions ofΓ on C∗-algebras
by Morita equivalences” (see [55]).

Now we return to the discussion on a general u.s.c. Fell bundleE. Define anAs(g)-valued
scalar product onEg by 〈e, e′〉 = e∗e′. ThenEg becomes anAs(g)-Hilbert module, and the lef
multiplication by elements ofAt(g) defines a *-homomorphismAt(g) →L(Eg). In other words,
Eg is anAt(g)-As(g)-correspondence.

Note also that the productEg × Eh → Egh induces an isomorphism ofAt(g) − As(h)

bimodulesEg ⊗As(g) Eh → Egh. Indeed, to check that this map is isometric, we note
∀ξi ∈Eg , ηi ∈ Eh,〈∑

i

ξi ⊗ ηi,
∑

i

ξi ⊗ ηi

〉
=

∑
i,j

〈
ηi, 〈ξi, ξj〉ηj

〉
=

∑
i,j

(ξiηi)∗(ξjηj) =
〈∑

i

ξiηi,
∑

i

ξiηi

〉
.

The surjectivity ofEg ×Eh → Egh follows from condition (vi) of Definition A.7.
The following proposition justifies the reason that we require the field to be u.s.c.:

PROPOSITION A.10. – If E is an u.s.c. Fell bundle over the groupoidΓ, then sections of th
form (g,h) �→

∑
i ξi(g)ηi(h), whereξi, ηi ∈C0(Γ;E), are dense inC0(Γ(2),m∗E).

To prove the proposition, we need the following:

LEMMA A.11. – Let K andL be two compact spaces,(Ωk) an open cover ofK × L. Then
there exist finite coversUi andVj of K andL respectively such that(Ui ×Vj) is a refinement o
(Ωk).

Proof. –For every(x, y) ∈ K × L, there existKx,y , Lx,y compact andU1
x,y , V 1

x,y open
such that(x, y) ∈ Int(Kx,y) × Int(Lx,y) ⊂ Kx,y × Lx,y ⊂ U1

x,y × V 1
x,y ⊂ Ωk for somek. Let

U2
x,y = K −Kx,y andV 2

x,y = L− Lx,y . By compactness, there exists a finite family(xi, yi)i∈I

such that
⋃

i∈I Int(Kxi,yi)× Int(Lxi,yi) coversK ×L.
For anyα = (αi)i∈I ∈ {1,2}I , let Uα =

⋂
Uαi

xi,yi
andV α =

⋂
V αi

xi,yi
. It is not hard to check

that(Uα) and(Vα) are, respectively, covers ofK andL that satisfy the required properties.�
Proof. –Let ζ ∈C0(Γ(2),m∗E). We can assume thatζ is compactly supported. There existK

andL⊂ Γ compact such that the support ofζ is in the interior of

KL =
{
gh | (g,h) ∈K ∗L = (K ×L)∩ Γ(2)

}
.

By the definition ofm∗E, for every(g,h) ∈K ∗L there existξi
g,h, ηi

g,h ∈C0(Γ;E) such that

∥∥∥∥∑
i

ξi
g,h(g)ηi

g,h(h)− ζ(g,h)
∥∥∥∥ < ε.
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Since the fieldm∗E is u.s.c., there exists a neighborhoodΩg,h of (g,h) such that

∥∥∑
i ′ i ′ ′ ′

∥∥

ns

t

ell
roduct

l
s. For

pact
∥∥
i

ξg,h(g )ηg,h(h )− ζ(g ,h )∥∥ < ε

for all (g′, h′) ∈ Ωg,h.
Now, by Lemma A.11, there exist compactly supported nonnegative continuous functioϕk

andψl on Γ such that
∑

k ϕk = 1 on K,
∑

l ψl = 1 on L, 0 �
∑

k ϕk � 1, 0 �
∑

l ψl � 1, and
(g,h) �→ ϕk(g)ψl(h) is supported in someΩgk,hl

or in (K ×L)−K ∗L for all k, l.
Thus, ∥∥∥∥ζ(g,h)−

∑
k,l,i

ϕk(g)ψl(h)ξi
gk,hl

(g)ηi
gk,hl

(h)
∥∥∥∥ < ε,

for all (g,h) ∈ K ∗ L. Now, choose two compact setsK ′ andL′ whose interior containK and
L respectively. Applying the above toK ′ andL′ instead ofK andL, there existξi, ηi ∈E such
that ∥∥∥∥ζ(g,h)−

∑
i

ξi(g)ηi(h)
∥∥∥∥ < ε(45)

for (g,h) ∈ K ′ ∗ L′. Replacingξi by ϕξ, where ϕ ∈ Cc(Γ)+ has the support⊂ Int(K ′),
0 � ϕ � 1 and ϕ = 1 on K, and replacingηi by ψηi, whereψ ∈ Cc(Γ)+ has the suppor
⊂ Int(L′), 0 � ψ � 1 andψ = 1 onL, we may assume that Eq. (45) holds for all(g,h) ∈ Γ(2).

A.3. The reducedC∗-algebra

In this subsection, we recall the definition of the reducedC∗-algebra associated to an u.s.c. F
bundle over a groupoid. See [55], or [58, Section 7.7] for the definition of the crossed-p
algebra by a locally compact group, or [61, Chapter 2] for theC∗-algebra of a groupoid.

Assume thatΓ is a locally compact groupoid with a Haar system, andE is an u.s.c. Fel
bundle overΓ. Let Cc(Γ;E) denote the space of compactly supported continuous section
ξ, η ∈Cc(Γ;E), define the convolution by

(ξ ∗ η)(g) =
∫

h∈Γt(g)

ξ(h)η(h−1g)λt(g)(dh)

and the involution byξ∗(g) = ξ(g−1)∗.
Let us check thatξ ∗ η belongs toCc(Γ;E). By (v) in Definition A.7,(g,h) �→ ξ(h)η(h−1g)

is the uniform limit of maps of the form
∑

i fi(h,h−1g)ζi(h(h−1g)), wherefi ∈ Cc(Γ(2))
and ζi ∈ Cc(Γ;E), and hence of sums of the formf(h)f ′(g)ζ(g), wheref , f ′ ∈ Cc(Γ) and
ζ ∈ Cc(Γ;E). Moreover, the functionf ′(g) can be assumed to be supported on a fixed com
subset ofΓ. Now, ∫

h∈Γt(g)

f(h)λt(g)(dh)f ′(g)ζ(g)

is the product ofζ by an element ofCc(Γ), and hence belongs toCc(Γ;E). Thereforeξ ∗ η can
be uniformly approximated by elements inCc(Γ;E).
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Let ‖ξ‖1 = supx∈M

∫
Γx ‖ξ(g)‖λx(dg), and‖ξ‖I = max(‖ξ‖1,‖ξ∗‖1). Then the completion

of Cc(Γ;E) with respect to the norm‖ · ‖I is a Banach∗-algebra, and is denoted byL1(Γ;E).
Its envelopingC∗-algebra is denoted byC∗(Γ;E), and is called theC∗-algebra of the fieldE.

ach
by
.
t

,

e

,

Let L2(Γ;E) be theA-Hilbert module obtained by completingCc(Γ;E) with respect to the
A-valued scalar product:

〈ξ, η〉(x) =
∫

g∈Γx

〈
ξ(g), η(g)

〉
λx(dg) ∈Ax.

Then for everyξ ∈ Cc(Γ;E), the mapπl(ξ) :η �→ ξ ∗ η belongs toL(L2(Γ;E)), andξ �→ λ(ξ)
extends to a representation ofL1(Γ;E), called the left regular representation. Its image

C∗
r (Γ;E) = πl

(
L1(Γ;E)

)
= πl

(
Cc(Γ;E)

)
⊂L

(
L2(Γ;E)

)
is called the reducedC∗-algebra of the fieldE.

TheA-Hilbert moduleL2(Γ;E) can be considered, by Proposition A.4, as a field of Ban
spaces overM with fiber L2(Γ;E) ⊗A Ax at x ∈ M . Denote the total space of this bundle
L̃2(Γ;E) and the fiber byL2(Γx;E). To justify our notation, letix : Γx → Γ be the inclusion
ThenL2(Γx;E) is the completion ofCc(Γx; i∗xE) with respect to theAx-valued scalar produc
〈ξ, η〉=

∫
g∈Γx

〈ξ(g), η(g)〉λx(dg). ThusL2(Γx;E) is anAx-Hilbert module.

The algebra of compact operatorsK(L2(Γ;E)) is a field ofC∗-algebras overM whose total
space is denoted byK(L̃2(Γ;E)) (see Proposition A.6). Its fiber atx ∈ M is K(L2(Γx;E)).
If E is a continuous Fell bundle, thenK(L2(Γ;E)) is a continuous field ofC∗-algebras [55
pp. 76–77].

TheC∗-algebraK(L2(Γ;E)) is endowed with a continuous action ofΓ: for everyγ ∈ Γy
x, the

map

αγ :K
(
L2(Γx;E)

) ∼→K
(
L2(Γy;E)

)
is obtained as follows: letRγ−1 be the right multiplication byγ−1, and letE′ = (Rγ−1)∗(E|Γy

),
i.e. E′

g = Egγ−1 ∼= Eg ⊗ Eγ−1 . Then there is an isomorphism fromK(L2(Γx;E))
to K(L2(Γx;E′)) given byT �→ T ⊗ 1. However,L2(Γx;E′) andL2(Γy;E) are isomorphic
under the mapξ �→ η, whereη(g) = ξ(gγ). See [55, pp. 76–77] for further details.
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