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TWISTED K-THEORY OF DIFFERENTIABLE STACKS

By JEAN-LOUISTU, PING XU'! AND CAMILLE LAURENT-GENGOUX!

ABSTRACT. — In this paper, we develop twistéd-theory for stacks, where the twisted class is given by an
S'-gerbe over the stack. General properties, including the Mayer—Vietoris property, Bott periodicity, and the
product structurds’, ® Kg — K;Tb are derived. Our approach provides a uniform framework for studying
various twistedX -theories including the usual twistdd-theory of topological spaces, twisted equivariant
K-theory, and the twisted(-theory of orbifolds. We also present a Fredholm picture, and discuss the
conditions under which twiste -groups can be expressed by so-called “twisted vector bundles”.

Our approach is to work on presentations of stacks, nagrelypoids and relies heavily on the machinery
of K-theory (K K-theory) ofC*-algebras.
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RESUME. — Dans cet article, nous développongdahéorie tordue pour les champs différentiables, ou la
torsion s’effectue par ung'-gerbe sur le champ en question. Nous en établissons les propriétés générales
telles que les suites exactes de Mayer—Vietoris, la périodicité de Bott, et le pFoguit Kg — K;fﬁ.
Notre approche fournit un cadre général permettant d'étudier divéfsiegories tordues, en particulier la
K-théorie tordue usuelle des espaces topologiquds;tlaéorie tordue équivariante, etka-théorie tordue
des orbifolds. Nous donnons également une définition équivalente utilisant des opérateurs de Fredholm, et
nous discutons les conditions sous lesquelles les groupAsttiéorie tordue peuvent étre réalisés a partir
de “fibrés vectoriels tordus”.

Notre approche consiste a travailler sur les réalisations concrétes des champs, a sgrmiptaEseset
s’appuie de fagon importante sur les technique&dinéorie (X K-théorie) des”*-algebres.
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1. Introduction

Recently, motivated by-branes in string theory, there has been a great deal of interest in the
study of twistedK -theory [15,49,48,75]. Thé&-theory of a topological spack/ twisted by a
torsion class in3(M, Z) was first studied by Donovan—Karoubi [23] in the early 1970s, and,
in the 1980s, Rosenberg [63] introduc&dtheory twisted by a general element&f (M, Z).

More recently, twistedk -theory has enjoyed renewed vigor due to the discovery of its close
connection with string theory [75,76]. See also [4,65,16] and references therein.

A very natural problem which arises is the development of other types of twisted
K-theory. In particular, twisted equivariaii-theory and twistedy -theory for orbifolds should
be developed. Indeed, various definitions of such theories have been offered. For instance, Adem—
Ruan introduced a version of twistéd-theory of an orbifold by a discrete torsion element [1].
Others, for example [45,46], offer various related (but unsupported) definitions. We also remark
that Freed—Hopkins—Teleman announced [27] the amazing result that the twisted equivariant
K-theory of a compact Lie group is related to the Verlinde algebra.

It is important that twisted{-theory is a cohomology theory and, in particular, satisfies the
Mayer—Vietoris property. One also expects that, like ordin&rgheory, it should satisfy Bott
periodicity. The purpose of this paper is to develop a twidtetheory for stacks, the idea being
that this is general enough to include all the above cases, including twisted equivasiaaory
and twistedK -theory of orbifolds. As far as we know, except for the special case of manifolds,
there has been no twistdgl-theory for general stacks for which all such properties have been
established (as far as we know, this is the case even for twisted equivrinetory).

Rather than working directly with stacks, we will work on presentations of stacks, namely
groupoids. Indeed there is a dictionary in which a stack corresponddvtorita equivalence
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TWISTED K-THEORY OF DIFFERENTIABLE STACKS 843

classof groupoids [9,10]. In this paper, we will deal with differentiable stacks which are more
relevant to string theory. They correspond to Lie groupoids.

An advantage of working with Lie groupoids, for a differential geometer, is that one can
still do differential geometry even though the spaces they represent do not usually allow such
a possibility.

The notion of agroupoidis a standard generalization of the conceptspafcesandgroups In
the theory of groupoids, spaces and groups are treated on equal footing. Simplifying somewhat,
one could say that a groupoid is a mixture of a space and a group; it has space-like and group-
like properties that interact in a delicate way. In a certain sense, groupoids provide a uniform
framework for many different geometric objects. For instance, when a Lie group acts on a
manifold properly, the corresponding equivariant cohomology theories, includitigeory, can
be treated using the transformation group6ick M = M. On the other hand, an orbifold can
be represented by an étale groupoid [54,52].

The problem of computing th& -theory of groupoids has been studied by many authors. For
instance, given a locally compact groupaigthe Baum—-Connes map

pr: KP(T) — K. (CH(T))

can be used to study th&-theory groups ofC}(I"). The above map generalizes both the
assembly map for groups [7] and the coarse assembly map [67]. Of course, many techniques
used to study the Baum—Connes conjecture for groups [35] can be extended to groupoids such
as foliation groupoids [68,69]. However, recent counterexamples [36] show that other ways
of attacking the problem need to be discovered. Applications ofAhtheory of groupoids
include: tilings and gap labeling (see for instance [40]), index theorems, and pseudodifferential
calculi [50,57].

By twisted K -theory, in this paper we meaii-theory twisted by ars!-gerbe. AllS'-gerbes
over a groupoid” (or more precisely a stackr) form an abelian group which can be identified
with H?(Xr,S?t) [9,10]. Unlike the manifold case, this is not always isomorphic to the third
integer cohomology grougi®(Xr,Z). Indeed, this fails to be the case even wheris a
non-compact group. Not enough attention seems to have been paid to this in the literature.
However, for a proper Lie groupoid, these two groups are always isomorphic, and it therefore
makes sense to talk about i&-theory twisted by an integer class i (Xr,Z). In particular,
when a Lie groupG acts on a smooth manifold/ properly, one can define the equivariant
K-theory twisted by an element iff2,(M,Z). The same situation applies to orbifolds since
their corresponding groupoids are always proper.

Our approach in developing twisteld-theory is to utilize operator algebras, where many
sophisticateds -theoretic techniques have been developedSAstentral extensios® — R —
I’ = M of groupoids gives rise to af'-gerbeR over the differentiable stackr associated
to the groupoidl’ [9], and Morita equivalentS*-central extensions correspond to isomorphic
gerbes. Therefore, given a Lie groupdid= M, one may identify arb'-gerbe over the stack
Xr as a Morita equivalence class$f-central extension§' — R’ — IV = M’, wherel’ = M’
is a Lie groupoid Morita equivalent t6 = M. Given anS'-central extension of Lie groupoids
S — R—T = M, its associated complex line bundle= R x¢: C can be considered as a
Fell bundle ofC*-algebras over the groupold = M. Therefore, from this one can construct
the reduced’*-algebraC’ (T", R). The K -groups are simply defined to be tf&groups of this
C*-algebra.

This definition yields several advantages. First, since it is standard that Morita equivalent
central extensions yield Morita equivalefit-algebras, the<-groups indeed only depend on
the stack and the&!-gerbe, instead of on any particular group@it-central extension. Such
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a viewpoint is quite interesting already, even when dealing with untwigtetheory. For
instance, some classical results of Segal on equivafiatiteory [65] may be reinterpreted as

a consequence of the fact that equivari&itheory only depends on the stadk/G, i.e. the
Morita equivalence class of the transformation groupGick M = M. Secondly, important
properties of{-theory, such as the Mayer—Vietoris property and Bott periodicity, are immediate
consequences of this definition.

A drawback of this definition, however, is that it is too abstract and algebraic. Our second
goal in this paper is to connect it with the usual topological approach dfheory in terms
of Fredholm bundles [3,66]. As in the manifold case, $ncentral extension of a groupoid
naturally gives rise to a canonical principBU (H)-bundle over the groupoid, which in turn
induces associated Fredholm bundles over the groupoid. We show that-greups can be
interpreted as homotopy classes of invariant sections of these Fredholm bundles (assuming a
certain appropriate continuity). This picture fits with the usual definition of twisfettheory [4]
when the groupoid reduces to a space.

Geometrically, it is always desirable to descrikegroups in terms of vector bundles. For
twisted K -groups, a natural candidate is to use twisted vector bundles over the groupoid. Thisis a
natural generalization, in the context of groupoids, of projective representations of a group. More
precisely, given arb!-central extension of Lie groupoids' — R = T' = M, a twisted vector
bundle is a vector bundl& over the groupoid? whereker 7 =2 M x S' acts onE by scalar
multiplication. WhenI" is a groupoid Morita equivalent to a manifold, they correspond to the
so-called bundle gerbe modules in [16]. However, note that twisted vector bundles do not always
exist. In fact, a necessary condition for their existence is that the twistedcclad$?(I'®, S1)
must be a torsion. Another main theme of this paper is to explore the conditions under which the
twisted Ky-group is isomorphic to the Grothendieck group of twisted vector bundles.

As is already the case for manifolds, twist&@dgroups no longer admit a ring structure [4].

It is expected, however, that there exists a bilinear prodgts K% — K_'/;. For twisted

vector bundles, such a product is obvious and corresponds to the tensor product of vector
bundles. However, in general, twistéd-groups cannot be expressed by twisted vector bundles
as discussed above. The main difficulty in constructing such a product using the Fredholm picture
of twisted K-theory is obtaining a Fredholm operatérout of two Fredholm operator$;

andT». This is very similar to the situation of the Kasparov producthid’-theory where a
non-constructive method must be used. Motivatedibi -theory, our approach is to develop

a generalized version of Le Gall's groupoid equivari&i -theory and interpret our twisted
K-groups as sucl K-groups, which allows us to obtain such a product.

The paper is organized as follows. Section 2 is devoted to the basic theStygerbes over
stacks in terms of the groupoid picture; related cohomology theory and characteristic classes
are reviewed briefly. In Section 3, we introduce the definition of twidtedroups and outline
some basic properties. Section 4 is devoted to the study oktgeoups of theC'*-algebra of
a Fell bundle over a proper groupoid, which includes 6tiralgebras of groupoid®-central
extensions as a special case. In particular, we give the Fredholm picture &f-theups. In
Section 5, we investigate the conditions under which the twisfgdjroup can be expressed in
terms of twisted vector bundles. In Section 6, we discuss the construction&ftreup product
as outlined above. In Appendix A, we review some basic material concerning Fell bundles over
groupoids which we use frequently in the paper.

We would like to point out that there are many interesting and important questions that we
are not able to address in this paper. One of them is the study of the Chern character in twisted
K-theory, in which Connes’ noncommutative differential geometry [17] will play a prominent
role due to the nature of our algebraic definition. This subject will be discussed in a separate
paper.
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Finally, we note that after our paper was submitted a paper by Atiyah and Segal [5] appeared,
in which twisted equivariank’-theory (for a compact group acting on a space) was introduced
independently using a different method. It is not hard to check that at least in our case of interest,
that of a compact Lie group acting on a manifold, our twistéegheory coincides with theirs
(using the remark in Appendix A.1 of [5] that, in the metrizable case, the compact-open topology
is the same as the strong topology).

Notations. Finally, we list the notation used throughout the papewill denote a groupoid
(all groupoids considered are Hausdorff, locally compact, and second countable). We denote by
s andt the source and target mapsIafrespectivelyI (® will denote the unit space df, and
'™ will denote the set of strings of length

g1 <= g2 < < Gn,

i.e., the set ofi-tuples(g,...,gn) € 'x---xT'suchthas(g;) = t(g;41) foralli=1,...,n—1.

We will commonly use the expression “LEt—= M be a Lie groupoid.." to indicate that’
is a Lie groupoid and*(® = M.

Forall K, L cT®, we letl'x = s~ 1(K), I'* =¢t1(L), andTL =T NTL. If K = {2}
andL = {y}, we will use the notatiofr,,, I'V, andI'¥, respectively.

If Y is a space, thel x Y will be endowed with the pair groupoid structu(@: x Y)(® =Y,
s(y1,y2) = y2, t(y1,y2) = y1, and(y1,y2) (2, y3) = (Y1,¥y3)-

If Y is a space and: Y — I'(¥) is a map, we denote dy[Y'] the subgroupoid ofY x V') x T

consisting of{ (y1, y2,7) | v € F;ﬁg;g} ThenI'[Y] is called the pullback of the groupoidby f.

In particular, ift/ = (U;) is an open cover df (), then the pullback of by the canonical map
[1U; — T'©) is denoted either by [i4/] or by T'[U;].

If ' = M is a locally compact groupoid (resp., a Lie groupoid), a Haar systenh forll
usually be denoted by = (A*).cnr, Where)®” is a measure with suppolt® such that for all
feC.(T) (resp.,Ce(T)), . — fgerw f(g) A*(dg) is continuous (resp., smooth).

Let H be the separable Hilbert space. We denot&k§ll), or eveniC, the algebra of compact
operators offl; we denote by’ (H) the algebra of linear bounded operators.

ForaC*-algebraA, M (A) denotes its multiplier algebra [58, Section 3.12]. Recall &t)
is a unitalC*-algebra containingl as an essential ideal, and, moreover, "aalgebraB also
containsA as an essential ideal, thehC B C M (A). For instance, ifX is a locally compact
space andd = Cy(X), thenM (A) = C,(X) is the space of continuous bounded functions on
X. On the other hand, ifl = KC, thenM (A) = L(H).

For a HilbertC*-module& over A (see [72]), we denote by (&) the algebra of A-linear
bounded) adjointable operators 8nFor all¢, n € £, let T ,, be the operator ,,({) = &(n, ().
ThenT ,, is called a rank-one operator. The closed linear span of rank-one operators is called
the algebra of compact operators®@and will be denoted byC(&); this is an ideal ofL(E).

We gather below the most frequently used notations and terminology:

) o Eqg. (31)
Cr(T") [reducedC™-algebra of @ groupoid] . . .. .. ..ove it Ref. [61]
Cr(T; F) [reducedC™-algebraof aFellbundle]. ... Section A.3
C;(I'; R) [C*-algebra of arS'-central eXtension]..............covuueeiineiiinnainnn... Oafin 3.1
RS Eq. (24)
SL-CeNtral EXIENSION ...\ttt et e ettt e iefia. 7
G-bundle over a groupoid . . . .. ccu. e Défon 2.33
S o= Lo iefif.32
Generalized homomorphism . ... ... e itbafih 1
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846 J.-L. TU, P. XU AND C. LAURENT-GENGOUX

), EXE ™ (T, 8 ) ottt Section 2.2
T Theorem 3.14
Fell bundle over a groupoill . . . ... Ditiom A.7

K& (1) WiSted K -thEOTY] ..o .ottt ettt e Diein 3.4

05 =) PSP Eq. (32)
LN E), LT E) oot e e e e e Section A.3
Morita equIvalent EXIENSION .. ... ifefia. 11
Strictly trivial eXIENSION . . ... . apdyition 2.8

R =Y = Yo = o 17 A S Eq. (30)
Trivial central eXtENSION .. ... . e e opd_ition 2.13
Twisted vectorbundle . .. ... .. e Défion 5.2

2. S'-gerbes and central extensions of groupoids
2.1. Generalized homomorphisms

In this subsection, we will review some basic facts concerning generalized homomorphisms.
Here groupoids are assumed to be Lie groupoids although most of the discussions can be easily
adapted to general locally compact groupoids. Let us recall the definition below [33,38,51].

DEFINITION 2.1.— A generalized groupoid homomorphism frdmto G is given by a
manifold Z, two smooth maps

rozL z2sqgo
a left action ofl” with respect tar, a right action ofZ with respect tar, such that the two actions
commute, and is a locally trivial G-principal bundle ovefr(®) & Z.

To explain the terminology, iff :I' — G is a strict homomorphism (i.e. a smooth map
satisfyingf(gh) = f(g)f(h)) thenZ; =T x; o0 , G, With 7(2,g) =z, 0(x,9) = 5(g), and
the actionsy - (z,9) = (t(v), f(v)g) and(z, 9) - ¢’ = (z,94’), is a generalized homomorphism
fromI'to G.

Generalized homomorphisms can be composed just like the usual groupoid homomorphisms.

PROPOSITION 2.2. — Let Z and Z’ be generalized homomorphisms frdm= I'©) to
G =GO, and fromG = G© to H = H® respectively. Then
7"'=27 Xa 7 = (Z X5,GO) 71 Z/)/(z)zl)w(zg}g—lzl)

is a generalized groupoid homomorphism frdm= I'®© to H# = H). Moreover, the
composition of generalized homomorphisms is associative, and thus there is a cafegory
whose objects are Lie groupoids and morphisms are isomorphism classes of generalized
homomorphisms. There is a functor

Gs—¢

where g, is the category of Lie groupoids with strict homomorphisms givery by Z; as
described above.

Proof. —All the assertions are easy to check. For instance, to show'that— Z” is a locally
trivial H-principal bundle, note that andZ’ are locally of the fornt” x ;) G andY” x gy H
respectively. Thereforg” is locally of the formY” x ~«©) H whereY” =Y x 0 Y'. O

2Two generalized homomorphisn# and Z» are isomorphic whenever they dfe G-equivariantly diffeomorphic.
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TWISTED K-THEORY OF DIFFERENTIABLE STACKS 847

Note that isomorphism in the categayis just Morita equivalence [56,77].

PROPOSITION 2.3 (see [38, Definition 1.1]). -Any generalized homomorphism
ro . z2qgo

is obtained by composition of the canonical Morita equivalence betweand I'[U;], where
(U;) is an open cover df (), with a strict homomorphism[U;] — G.

Consequently, giving a generalized homomorphism: G is equivalent to giving a Morita
equivalencd’ ~,,., I together with a strict homomorphishi — G.

Proof. —Denoting byI'[Z] the pull-back of" via the surjective submersiagh — I'(“), i.e. the
groupoidZ xrw ;. I' X 5 Z with multiplication law(z1, g, z2) (22, b, z3) = (21, gh, 23). Then
the canonical strict homomorphisiiZ] — I is a Morita equivalence.

Moreover, it is not hard to check that

D212 {(2,2,7,9) € (Zx Z) xT x G | v2' = zg}.

Thus there is a strict homomorphismT'[Z] — G given by the fourth projection. One can then
verify that the following diagram is commutative (in the categ@ly

o

N

G

Now, sinceZ — I'(®) is a submersion, it admits local sections. Hence there exists an open cover
(U;) of T(®) and mapss; : U; — Z such thatr o s; = Id, and therefore a map:T'[U;] — T'[Z]

such that the compositioR[U;] — I'[Z] — T is the canonical map. Thetf,o 5:T'[U;] — G is

the desired strict homomorphismO

LEMMA 2.4.— Let fi, fo:T' — G be two strict homomorphisms. Thénand f, define the
isomorphic generalized homomorphisms if and only if there exists a smootkpaiap) — G

such thatfz () = ¢(t()) f1(7)e(s(7)) .

Proof. —Suppose that there exists a smodthG-equivariant mapZ; — Zy,. Then it is
necessarily of the forniz, g) — (x, p(x)g). UsingT-equivariance, we get

(t(), 0 (t() F1(7) = (), f2(M(5(7)))-

The converse is proved by working backwardsi
The following result is useful when dealing with generalized homomorphisms (see also [29]).

PROPOSITION 2.5. — Let C be a category, an@d®: G, — C be a functor. The following are
equivalent
(i) For every smooth groupoill and every open cove€l;), ®(x) is an isomorphism, where
7 is the canonical map'[U;] — T'.
(i) The functor® factors through the category (and thus®(G) = ®(H) if G and H are
Morita equivalen}.
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848 J.-L. TU, P. XU AND C. LAURENT-GENGOUX

Proof. —The only non-trivial implication is (i} (ii). Let I'© «— Z — G(©) be a generalized
homomorphism. From Proposition 2.3, there exists a strict homomorphi§i/;] — G which
is the same morphism in the categotyWe define®(Z7) : ®(I') — ®(G) to be the composition

o) 2 a(r[vy)) Y a(6).

To check that this is well-defined, suppose tffatI'[U;] — G and f:T'[V;] — G define the
same generalized homomorphism. We need to showd(At) = ®(f>) via the identification
O (T'[U;]) = ©(I'[V;]). Using the covefU; N'V;), we may assume that/;) = (V;), and f1, fo
are strict homomorphisms fromto G.

From Lemma 2.4, there exists: '(®) — T such that

—1

() = (t() (1) e(s(7))

LetI'={1,2}2 x ' and letf:T' — G be the morphism

(1,1,7) = f1(7),
(1,2,7) = fi(Me(s(1)
(2,1,7) = @ (t(1) fr(7),
(2,2,7) = 0 (t) fi(e(s(9)
Leti;:I' — T be defined byi; (v) = (4, 4,7) and7:I — T be the mapr (i, j,7v) = 7. Since

I = [W,,] with Wy = W, =T &(x) is an isomorphism. Now, from o i; = o iy, We get
®(iy) = ®(m)~1 = ®(iy), and therefore(f1) = ®(f oi1) = ®(f oiz) = ®(f2). O

Remark2.6. — Given two Lie groupoid§; = FEO), i = 1,2, a generalized homomorphism
fromI'y = r§0> tol', = Fgo) induces a morphism between their associated differential stacks
X1 — X, and vice versa. And a generalized isomorphism, i.e. a Morita equivalence, corresponds
to an isomorphism of stacks. Therefore the categband the category of differentiable stacks
are equivalent categories (see [10] for details).

2.2. S'-central extensions of groupoids

DEFINITION 2.7.—Letl’ = M be a Lie groupoid. AnS!-central extensiorfor “twist” ) of
I' = M consists of
(1) aLie groupoidR = M, together with a morphism of Lie groupoids

(m,id):[R = M] — [[ = M]

which restricts to the identity o/,

(2) aleftS!-action onR, makingz : R — T a (left) principalS!-bundle. These two structures
are compatible in the sense th@t - z)(\2 - y) = A A2 - (2y), for all A;, A2 € ST and
(l‘,y) € R(2) =R Xs,M,t R.

We denote byr'w*™(T") the set ofS*-central extensions df (the superscriptsni stands for
“smooth”).

Note that R being restricted toeo(M) is a trivial S*-bundle, whereey: M — T is the
unit map. In fact, it admits a canonical trivialization singe., ;) admits a smooth section,
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TWISTED K-THEORY OF DIFFERENTIABLE STACKS 849

namely, the base space of the groupBidBy ker 7, we denote this trivial bundI&|., (), i.€.,
ker 7 =2 M x S'. Itis clear thaker 7, as a bundle of groups, is a normal subgroupoi®of: M,
and lies in the center. Indeed its quotient groupoid is isomorpHitto M . This coincides with
the usual definition of Lie groug'-central extensions.

When 7: R — I is topologically trivial (for instance, this is true if as a space the 2nd
cohomology ofl" vanishes), thel? = T' x S' and the central extension is determined by a
groupoid2-cocycle ofl" valued inS!, i.e., a smooth map

c:T® = {(z,y)|s(z) =t(y),z,yel} — S
satisfying the cocycle condition:
1) c(z,y)e(zy, 2)elz,yz) Le(y,2) P =1, Y(z,y,2)eT®).
The groupoid structure oR is given by

(2 (z,M1) - (y,A2) = (xy,)\l)\gc(:v,y))7 Y(z,y) € r®.

For every locally compact groupoil with a Haar system (thus for every Lie groupoid),
Kumjian, Muhly, Renault and Williams [43] constructed a group, called the Brauer group of
I". Some of the constructions below is an easy adaptation of their results to our context, so we
will omit most of proofs.

Note that7w*™ (T") admits an abelian group structure in a canonical wag’if- R 5T =

M andS' — R’ L I' =@ M areS!-central extensions, then the additionfnd R, called the
tensor ofR and R’ and denoted by: @ R/, is

(3) (R Xr R/)/Sl = {(7‘, ’I’/) €R XT R/}/(TA’T/)N()\T’)\—lTI)

(A € S1), and the inverse oR is R (where the action of' on R is A\¥ = A\r and7 € R denotes
the same elememte R).

The zero element is the strictly trivial extension, i.e., the extension satisfying the following
equivalent conditions.

PROPOSITION 2.8. — Let S* — R 5 T = M be anS"'-central extension. The following are
equivalent
(i) there exists a groupoid homomorphisml’ — R such thatr o o =1d;
(i) there exists ar$'-equivariant groupoid homomorphisg: R — S*;
(i) R=T x S! (as a product of groupoids

Proof. —(i) = (ii): take p(r) = r(c o m(r)) L.
(i) = (iii): the mapr — (7(r), »(r)) is a groupoid isomorphism from to I" x S*.
(iii) = (i): obvious. O

The set ofS!-central extensions df of the form R = (t*A x s*A)/S* = M, whereA is
an S!-principal bundle onM, is a subgroup of"w*™(T"). The quotient ofl'w*™(T) by this
subgroup is denoted ™ (T).

We now introduce the definition of Morita equivalence$f-central extensions, and define
an abelian group structure on the set of Morita equivalence classes of extesisien®’ = I,
with T Morita equivalent td".
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DEFINITION 29.—-LetS! = R —-T =M and S' - R — I' = M’ be S'-central
extensions. We say that a generalized homomorphidm— Z — M’ from R to R’ is
Sl-equivariant ifZ is endowed with an action ¢! such that

(Ar)-z-r'=r-(A2) 1" =712 (M)

whenever(\,r, 7', z) € St x R x R’ x Z and the products make sense.

LEMMA 2.10.-LetS! = R—T = M andS' — R’ — I = M’ be S!'-central extensions,
and M «— Z — M’ an S'-equivariant generalized homomorphism frainto R’. Then the
St-action onZ is free andM « Z/S' — M’ defines a generalized homomorphism from
toI”.

Proof. —Assume that\z = z for A € S! and z € Z. From the compatibility condition
(Az) - " =z - (A\r") and the fact that th&’-action onZ is free, we obtain thakr’ = r’. Hence
A = 1 since theS!-action onR’ is free. The rest of the assertion follows immediately from the
compatibility condition again. O

DEFINITION 2.11.— TwoS!-central extension§! — R —T'= M andS! - R' - T' =
M’ are calledMorita equivalenif there is a generalized! -equivariant isomorphismy/ « Z —
M’. In this case/ is called arequivalence bimodule

As an immediate consequence of Lemma 2.10, in particulas!if~ R — I' = M and
S! — R' —T' = M’ are Morita equivalen$ ' -central extensions, thdhandI” must be Morita
equivalent groupoids.

The following result gives a useful construction®f-equivariant generalized homomorphism,
and in particular shows that for two Morita equivalefit-central extensions, one may recover
one from the other in terms of the equivalence bimodule.

Let S — R — T = M be anS!-central extension, and: Z — M a left principal R-bundle
over M’ := Z/R. ThenZ admits anS*-action defined as follows: for alk € S* andz € Z,
denote by), € R the elemeni\7(z), wherer(z) € R(") is considered as an elementBf We
let

AzZ2=MA, 2.

It follows from the properties of5!-central extensions that this indeed definesSaraction.
Moreover, by assumption, this action is free and therefft6' is a smooth manifold, which is
denoted byX'. It is simple to see that the following identity holds:

(Ar)-z=7-(\2) V(A7 2) €St x Rx Zwith s(r) =7(z).

PROPOSITION 2.12. —As above, assume thdt — R — I' = M is an S'-central extension,
and 7:Z — M a principal R-bundle overM’ := Z/R = X/T, where X = Z/S*. Let
IM=XxrXandR =7 xr Z. Then

() R — I’ = M’ is an S'-central extension of groupoids, and’ < Z — M with the

natural actions defines afi'-equivariant generalized homomorphism fréthto R.
(i) If moreoverr:Z — M is a surjective submersion, thd®l and R are Morita equivalent
Sl-central extensions.
As a consequence, # is an S'-equivariant Morita equivalence bimodule froRito R”, then
R'=R.
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Proof. —The proof is a straightforward verification, and is similar to [77, Theorem 3.2-
3.3]l. O

Given a Lie groupoidl' = M, there is a natural abelian group structure on the set of
Morita equivalence classes 6f -central extensions® — R’ — I'" = M’, wherel' = M’ is
a Lie groupoid Morita equivalent tb = M. To see this, assume th&t — R, — I'; = M;,,
1=1,2, are two such extensions. Sinte= M;, i = 1,2, are Morita equivalent, there exists a
generalized isomorphism/; <— X — M. By pulling back using the above maps, one obtains
two S'-central extensions over the groupdig[X] = I';[X] = X, namelyR;[X] = X and
Rs[X] = X. Thus one may definéR] + [R2] to be the class of th&!-central extension
R1[X]® Ro[X] (see Eq. (3)). Itis simple to check that this operation is well-defined. The inverse
is defined by[R] = [R]. Let us denote b¥xt*™ (T, S') the group thus obtained.

The zero element iftxt*™ (T, S') is characterized by the following

PROPOSITION 2.13. — Consider anS*-central extension of Lie groupoids! — R — T =
M . The following are equivalent
(i) there exists aif!-equivariant generalized homomorphigin— S*;
(ii) there exists a cove(UU;) of M such that the extensiost! — R[U;] — T'[U;] = [[ U is
strictly trivial;
(iii) the extension is Morita equivalent to a strictly trivial -central extensior) — S* —
I'x S'—=TI"= M,
(iii)" the class of the extension Ext*™ (T, S*) is 0;
(iv) the extension is Morita equivalent to the strictly trivigl-central extensio — S —
xSt —-T'= M;
(iv)’ the class of the extension&™ (T") is 0.

Proof. —(ii) = (iii) = (iii)’ = (i) and (iv) = (iv) = (iii) are obvious. ()= (ii) is a
consequence of Propositions 2.8 and 2.3. To showii{Jv), let Z be an equivalence bimodule
betweerl” andI”, thenZ x S! is obviously an equivalence bimodule between the trivial central
extensionsS! - I'x S!' =T’ MandS' —=I"x St —=I"V=M'. O

S1-extensions which satisfy any of the conditions in the previous proposition are said to be
trivial. Therefore £5™(T") is the quotientw*™(T") by trivial extensions. Thus twé™-central
extensionsS' — R; — I = M are equal ir€*™(T) if and only if they are Morita equivalent.

The group<*™ (I"), wherel” is a groupoid Morita equivalent f©, form an inductive system.

It follows from Proposition 2.13 that

Ext®™(T,S') = Fl/imré’sm(F’) = lim &7 (T[u)),

wherel{ runs over open covers aff .

Remark2.14. — AnS!-central extensiors! — R — I' == M gives rise to anS'-gerbeRk
over the differentiable stackr associated to the groupoit= M [9,10], and Morita equivalent
Sl-central extensions correspond to isomorphic gerbes.

Conversely, given a§*-gerbe)t = X over a differential stack, if R = M andR’ = M’ are
the Lie groupoids corresponding to the presentatibhs- R and M’ — PR of R respectively,
andT" = M andI¥ = M’ are the Lie groupoids corresponding to the induced presentations
M — X andM’ — X of X respectively, then th8'-central extension§! — R —TI' = M and
S! — R' —T' = M’ are Morita equivalent [9,10]. The equivalence bimodul® is M xx M’,
which is a principalS!-bundle overM xx M’.
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Therefore, given a Lie groupoiff = M, one may identify anS'-gerbe over the stack
Xr as an element iExt*™ (T, S1), i.e. a Morita equivalence class 6ft-central extensions
S! — R —T"= M’', wherel" = M’ is a Lie groupoid Morita equivalent t6 = M. We will
call such a Morita equivalence class an isomorphism clast aferbes by abuse of notations.
Moreover, the group structure dixt*™(I", S') corresponds to the abelian group structure on
the S*-gerbes ovekr. Therefore, one may simply identify these two groups.

2.3. Cohomology and characteristic classes

In this subsection, we briefly review some basic cohomology theory of groupoids, which will
be needed later in the paper.

There exist many equivalent ways of introducing cohomology groups associated to a Lie
groupoidl’ = I'(®) [9,10,20]. A simple and geometric way is to consider the simplicial manifold
canonically associated to the groupoid and apply the usual cohomology theory. More precisely,
letI' = ') be a Lie groupoid. Define for afi > 0

F(p) =T X))+ X(0) F,

p times

i.e., I'®) is the manifold of composable sequenceg afrrows in the groupoid’ = I'(*), We
havep + 1 canonical map$(®) — I'»=1) giving rise to a diagram

(4) . T@ —=1Q) —= 100

In fact, I'* is a simplicial manifold, so one can introduce (singular) cohomology groups
Hk(I*,Z), H*(T'*,R) and H*(T'*,R/Z). We refer the reader to [24] for the detailed study
of cohomology of simplicial manifolds. In fact, for any abelian shéabn the category of
differentiable manifolds, we have the cohomology grofig4I'*, F') [2,8,10]. One way to define
them is by choosing for every an injective resolution”? — I?* of sheaves o'(?), where
FP? is the small sheaf induced by on I'(®; then choosing homomorphisnf§ »—1* — 1r®
for every mapf:T'®) — T'®=1) in (4). This gives rise to a double complg®(T'*), whose
total cohomology groups are thié*(I'*, F'). Examples of abelian sheaves on the category of
manifolds areZ, R, R/Z, %, R andS*. The first three are sheaves of locally constant functions,
R andS! are the sheaves of differentialifevalued andS!-valued functions, respectively (see
[8-10]). With respect to the first three, the notatidfi(I"*, F') does not conflict with the notation
introduced before. Note that the cohomology gro&pgT®, F') satisfy the functorial property
with respect to generalized homomorphisms according to Proposition 2.5.

Another cohomology, which is relevant to us, is the De Rham cohomology. Consider the
double complex2® (I"*):

dT dT dT
®) Q! (r®) 2= 1) —2- 1 (re)) 2L ..

I

QO(r(O) _9_ Q) _9_ Q@) o ..
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Its boundary maps aré: QF(T'(®)) — QF+1(1'(P)), the usual exterior derivative of differen-
tiable forms and): Q*(I'®)) — Q*(I'(»+1), the alternating sum of the pull-back maps of (4).
We denote the total differential by= (—1)”?d + 9. The cohomology groups of the total complex
O (T*):

Hpp(T*)=H*(Q(T*))
are called thé&e Rham cohomologyroups ofl' = T'(0),

The following proposition lists some well-known properties regarding De Rham cohomology
groups of a Lie groupoid.

PrROPOSITION 2.15 [8-10,20,33]. —
(1) For any Lie groupoid® = T'(©), we have

(6) Hpp(T*) = H*(I*,R);
(2 if I =T andG = G© are Morita equivalent, then
Hpp(T*) = Hpp(G*), and HMI*®.S') - H*G®,SY).
We call a De Rhank-cocycle aninteger cocycleif it maps under (6) into the image of the
canonical magi*(I'*,Z) — H*(T*,R).

Example2.16. — (1) Wherl" is a manifold M, it is clear thati*(I'*,Z) (or H*(I'*,R))
reduces to the usual conomologd¥* (M, Z) (or H*(M,R) respectively). If{U;} is an open
covering of M and X = [[,U; — M is the étale map, thel := X x,; X = X, which
is [1,; Ui N U; = 11, Ui, is Morita equivalent taV = M. Hence H*(T'*,Z) (or H*(T*,R)
respectively) is isomorphic t&/* (M, Z) (or H*(M,R) respectively). The double complex (5),
when{U,} is a nice covering, is the one used by Weil in his proof of De Rham theorem [73].

(2) When T is a transformation groupoidy x M = M, H¥(*,Z) (or H*(T*,R)
respectively) is thé&-equivariant conomology grouli% (M, Z) (or HE (M, R) respectively). If
G is compactHE (M, R) can be alternatively computed by either Cartan model or Weil model
(see [32] for more details).

(3) On the other hand, if' = M is an étale groupoid representing an orbifold [52] and
A(T') = T its associated inertia groupoid, théf (A(T)*, R) is the orbifold cohomology.

It is known thatH?(I'*, S') classifiesS!-gerbes over the stackr [30]. As a consequence
(see Remark 2.14), we have

PROPOSITION 2.17. — For a Lie groupoidl’ = M, we have
Ext*™(I,S") =~ H*(T'*,S").

For instance, wheh is a manifoldM, by Example 2.26.1 belowixt ™ (M, S1) is isomorphic
to theCech cohomology group/?(M, S') = H%(M,S1).
The exponential sequenfe— Z — R — S' — 0 gives rise to a long exact sequence:

= HX(T*,7) 23 H2(T*,R) — H2(I"*,SY) % H3(T*,7)
@) Y 3T R) — -
LEMMA 2.18. —
H*(I'*,R) = H*(I',R),
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where H*(I', R) denotes th¢smootf) groupoid cohomology with the trivial coefficieris i.e.
the cohomology of the complég> (I'(")| R)),,cn with the differential

n
(de)(g1s-- s gn+1) =c(g2s -+ Gny1) + Z(—l)kc(gl, ey GGk 15 Gnt1)
k=1

+ (—1)"+1c(gl, e On)-
Proof. —There is a spectral sequence

EYY=HYT™ R)= H'T(T*, R).

Sincel'®) is a manifold and the she@&|I'®) is soft, H4(I'(?), R) = 0 for ¢ > 0. Therefore the
spectral sequence degenerates. It follows ffiafl"*, R) can be calculated using the complex
HOTW®W R)=C>(T®). 0

By identifying the groups7*(I'*, R) with H*(I",IR), the homomorphism
Y HE (D, Z) — H*(I*,R)
in the exact sequence (7) is the composition of the following sequences of morphisms:
H*(T*,7Z) — H*(T* R) = HY ,(I*) 2 H*(I',R) = H*(T'*,R),
wherepr: H,,(I'*) — H*(T',R) is given, on the cochain level, by the projection

P a'(r)) - Q°(Tw).

i+i=k

See [19,74] for details on (smooth) groupoid cohomology.
Note that in generap : H2(I'*,S') — H3(I'*, Z) is neither surjective nor injective. Write

ngrbe(r.7z) = (b(Hz(F.?Sl))

PROPOSITION 2.19. — (i) H;”e,\be(FﬁZ) is a subgroup ofH?3(I'*,Z) consisting of those
elements whose image i}, , (I'*) projects to zero undepr: H3 (') — H3(T',R).
(ii) The kernel ofp is isomorphic toH? (", R) /42 (H?(T*, Z)).

For anS*-central extensiof — I' = M, let[R] € H?(I'*,S!) denote its class. The image of
[R] in H3(I'*,Z) under the homomorphisi is called theDixmier-Douady classf R [9,10].
The Dixmier—Douady class behaves well with respect to the pull-back and the tensor operation.
Unlike the manifold case, in general the Dixmier—-Douady class does not completely determine
an St-gerbe. However this is true whéh— M is a proper groupoid. Let us recall its definition
below.

DEFINITION 2.20.— Letl’ = M be a locally compact groupoid. Thé&his said to be proper
if any of the following equivalent conditions is satisfied:

() the map(s,t):I' — M x M is proper;

(i) for every K C M compact['k is compact.

For instance, compact groupoids are of course proper; a transformation grétpaifl = M
is proper if and only if the action is proper.
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LEMMA 2.21. - (1)The notion of properness is invariant by Morita equivalence
(2) For a proper groupoid™ = M, the orbit space\//T is a Hausdorff topological space, and
is invariant by Morita equivalence.

Proof. —Suppose thaf : Y — M is a surjective submersion. If is proper, then for every
K CY compact,(I'[Y])K is a closed subset &t x K x FJ;EIIQ and therefore it is compact.
Hence I'[Y] is proper.

Conversely, ifl'[Y] is proper, then for every, C M compact, there exist&’ C Y compact
such thatf(K) = L (sincef is open surjective). Now, £ is a continuous image of the compact
set(I'[Y])¥, and thus is compact. It follows th&tis proper. This proves (1).

The first assertion in (2) is proved for instance in [68, Proposition 6.3]. For the second one,
it is clear that if f: Y — M is a surjective submersion, thefiinduces a homeomorphism
Y/TY)=M/T. O

WhenT = M is a proper Lie groupoid, since the smooth groupoid cohomold§yT", R)
vanishes whet > 1 according to Crainic [19], we see thais an isomorphism.

PROPOSITION 2.22. —If I' == M is a proper Lie groupoid, then
¢:HY(I*,8") — H3(I*,Z)

is an isomorphism.
As a consequence, we have

COROLLARY 2.23.— (1)If a Lie groupG acts on a smooth manifol®/ properly, then the
equivariant cohomologyZ, (M, Z) is isomorphic to the abelian group &f'-gerbes over the
stack)M /G associated to the transformation groupditix M = M.

(2) If T = M is an étale groupoid corresponding to an orbifoXi, then H?(T'*,Z) is
isomorphic to the abelian group ¢f'-gerbes over the orbifolX.

In other words, in both cases above, the third integer cohomology classes can be geometrically
described by Morita equivalent classes of group8idcentral extensions. In particular, for a
smooth manifoldV/, sinceM = M is a special case whe® = 1, thenH3 (M, Z) characterizes
Sl-gerbes over the manifoldi/ [14]. However the Dixmier—-Douady class does not completely
characterizes' -gerbes even whel is a non-compact group as we see below.

Example2.24 [70]. — Consider the abelian grol3 as a groupoidR? = -. It is clear that
H*(R?®,7Z) = H*(BR?,7Z) = 0 sinceR? is contractible. Therefore the kernelgfs isomorphic
to the 2nd group cohomology d&?, which is in turn isomorphic to the 2nd Lie algebra
cohomology with trivial coefficients sinde? is simply connected. The latter is isomorphic to the
invariant De Rham cohomology &2 under the translation, and therefore is one-dimensional as
aR-vector space. More explicitly, the gro@pcocycle is given by

7((.9), (& 9)) = 5y — 2.

In other words, the group-cocycleexp(2wic) defines a non-triviab*-central extension of
R? (hence a non-triviab!-gerbe overXy-) with the trivial Dixmier-Douady class.

It is often useful to use differential forms to describe the Dixmier-Douady class as in the
manifold case. Recall that a pseudo-connectiof is B € Q' (R) ® Q?(M) such thatd is a
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connection one-form of the principal -bundleR = T [9]. Its pseudo-curvature
n+w+QeQi(r®) e *() e Q3 (M) c C3(I*)

is defined by
50+ B)=m"(n+w+Q).
Then we have the following [9]:

THEOREM 2.25. — (1)[n + w + ] is independent of the pseudo-connection and defines an
integer class inH3,,(I'*). Under the canonical homomorphishi®(T'®*, Z) — H3 (T'*), the
Dixmier—Douady class aR maps ton + w + €].

(2) Assume thal' = M is proper. Given any intege¥-cocyclen +w + €2 as above, by passing
to a Morita equivalent groupoid’ = M’ if necessary, there is afi'-central extensiom? — I'
with a pseudo-connection whose pseudo-curvature equals + Q.

In conclusion, for a proper Lie groupoifi = M, if H3(I'*,Z) has no torsion, then
H3(T*,Z) — H3(T'*,R) is injective by the universal coefficient theorem. Hence any integer
class inH3 ,(I'*) can be represented uniquely by &h-gerbe overXr and vice-versa. In
this case, one can defidé-theory twisted by such a clags + w + ©]. However, in general,
our twisted K -theory is only defined for twisting a class #?(I'*,S!) not for an integer 3rd
De Rham clas§) + w + Q]. This is an essential difference when dealing with general groupoids.

Let us end this subsection by some examples, which have been studied extensively in the
literature.

Example2.26. — (1) LetM be a manifold anch € H3(M,Z), and let{U;} be a good
covering of M. Then the groupoic]l_[ij Uij = 11, Ui, whereU;; = U; N U; is Morita equivalent
to M = M. See Example 2.16. Then th&'-gerbe corresponding to the classcan be
realized as arf"-central extension of groupoidd,; Ri; — 1, Ui; = [, Ui, whereR;; are
S*-bundles ovet/;;, and the groupoid multiplication is defined as follows: taking a trivialization
Ri; 2 U x ST, then

(8) (@ij, M) (@Tjrs A2) = (@ik, M Aacijn),

wherez;;, z;i, 2, are the same point in the three-intersectiofy;;;, considered as elements
in the two-intersections, ang;y : U;j, — S1is a2-cocycle which represents the Cech class in
H?(M,S") corresponding te. Note thatc; ;;, can also be considered as gihrvalued groupoid
2-cocycle of the groupoi@_[ij U;; = [ 1, U;, and Eq. (8) above is a special case of Eq. (2). See
[14,39] for details.

(2) Let " be a transformation groupoi@ x M = M, whereG acts onM properly. By
Corollary 2.23, we havél} (M,Z) = H?(I'*,S'). Assume that there exists(&invariant good
cover {U;}, then' = M is Morita equivalent td[ [,; G x U;; = [, Ui, where the groupoid
structure is given by (g, z;;) = x;, t(g, ;) = gz, and

(9,2i5) - (hyyji) = (gh, zik)

wherez = hy andy = z. Then theS!-gerbe corresponding to the classcan be realized as
an S'-central extension of groupoid$' — [[,; Ri; — [1;; G x Ui; = [1, Ui, whereR;; are
S1-bundles overs x Ui;. Foralli, j, take an open covél,, ).cr,, of G such that the restriction
R;;, of R;; overV, x U;; is isomorphic to the trivial bundI&, X Ui; x S1. The product

Rijo xu; Rjkg — Rigy
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has the form

(9) (i,j,a,g,l’, )‘)(]7kaﬂa h7y7/14) = (i7kaP}/agha:%)‘,u/cijk;aﬁ,’y(g7x7h7y))u

where c;jg.ap~:{(g: 2, h,y) € Vo x Uiyj x Vg x Uj | © = hy, gh € V,} — S satisfies the
following cocycle relation which expresses that the product is associative:

Cijk;ayas,02 (91, z,92, y)cikl§a12a37al23 (91927 Y, 93, Z)
= Cjkl;azas;ass (925 Y,93, Z)cijl;oqagg,ans (gla T,g293, Z)

Conversely, given a cocycle as above, then one can associate t8'itcentral extension

Sl—>R—>]r_[G’><Uwzil_‘[[]z

i,j i
The proof is elementary but tedious. We omit it here.

Remark2.27. — There is a canonical maf¢,(M,Z) — H?(M,Z) induced by the inclusion
of M to the unit space off x M = M. This implies that an equivariant gerbe should induce
a gerbe oven/. From the picture of5!-central extensions, such a gerbe o¥éris simply the
restriction of theS!-central extensioi?’ — I = M’ to the unit space, wherB’ — IV = M’
is an S'-central extension representing this equivariant gerbe. In some cases, we have an
isomorphismHg,(M,Z) = H3(M,Z). It is interesting to investigate how & -gerbe overM
can be made an equivariant one under this assumption.

2.4. Continuous case

The purpose of this subsection is to clarify the relation with [43]. To relate their constructions
to ours, letS}, ., be the sheaf of continuou' -valued functions. We need to determine whether

cont

the natural mapH?(I'*,S') — H?*(I'*,S.,,,) is an isomorphism. Unfortunately, we do not

know the answer in general, but we can prove that it is an isomorphism in our main case of
interest:

PROPOSITION 2.28. — LetI" be a proper Lie groupoid. Then the natural map

(10) H*(T*,8Y) — H*(T*, 8., )

cont

is an isomorphism.

Proof. —Recall from Proposition 2.22 that/?(I'*,S') is isomorphic to H3(I'*,Z). We
claim thatH?(T*,S.,,,,) is also isomorphic td73(I'*, Z). Indeed, Crainic’s proof that smooth

groupoid cohomology vanishes [19] also works for continuous cohomology since Crainic only
uses integration and cutoff functions, and never uses differentiatian.

Exactly the same constructions can be performed in the category of locally compact groupoids:
let us denote b§'w! (T"), £%(T') and Ext' (I, S*) the groups thus obtained. The superscript “It”
stands for “locally trivial”, since central extensions are required to be locally ti/igbrincipal
bundles (in the continuous sense), and Morita equivalences between groupoids are required to be
locally trivial principal bundles. An immediate consequence of Proposition 2.28 is the following

COROLLARY 2.29. —LetI" be a proper Lie groupoid. Then the natural map
Ext*™(I, S') — Ext' (', $1)
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is an isomorphism.

However, in [43],S*-central extensions® — R — T' are not required to be locally trivial:
the homomorphismR — I' is only required to be open surjective. Moreover, the notion of
Morita equivalence in [43] is weaker since in their definition of an equivalence bimodule

r§0> LzZ Féo), the mapss and 7 are just open surjective, and the actionslgfand I’y

on Z are free and proper, buf is not necessarily a locally trividl;-principal bundle. Let us
denote byT'w'e(I"), £'¢(I") and Ext¢(I", S*) the groups constructed in [43]. There are obvious
natural morphisms

Tws™(T) — > Twh(I') —— Tw'e(D)

| | |

gsm(r) - o glt (F) - glc(r)

| |

Ext*™(T,S') —— Ext" (I, 8') — Eaxt'e(T, ).

Since anyS'!-central extension of Lie groupoids is the pull-back of the central extension
St — U(H) — PU(H)

which is locally trivial (Section 2.6), the mapw" (') — Tw'¢(T") is an isomorphism. Therefore
EM() — &(I") andExt"(T, S1) — Ext'(T", S!) are surjective.

From Proposition 2.13 and its analogue &t and&'c instead of€*™, an extension is zero in
E™(T) if and only if there exists an open cov@y;) such that its class is zero Fw (T'[U;]),
and similarly for€!¢. Therefore,

PrROPOSITION 2.30. — LetI" be a Lie groupoid. Then
(a) the natural maps!(I') — £l¢(T") andExt' (T, S') — Ext'°(T, $1) are isomorphisms.
(b) If T"is proper, therExt*™ (T, 1) & Ext" (", $) & Ext'*(T, S).

In [43] is defined the Brauer groupr(T") of T. It is the group of locally trivial bundles of
C*-algebras over endowed with an action of, with fibers isomorphic tdC, divided by
Morita equivalence. LeBry(I") be the subgroup oBr(I") consisting of those bundles whose
Dixmier-Douady class ii3(M,Z) is zero. ThenBr(I') is the group of bundles of the form
M x K with the diagonal action - (s(v),T) = (t(v),7(v)(T)), where

(11) m:I'— Aut(K) = PU (H)
is a “projective representation” @f. The group structure is given by tensor product:
[7][n] = [r & 7],

where(r @ ') () € Aut(K(H ® H)) = Aut(K).
Recall [43] that

(12) Bro(I') = &(T).
Indeed, from the datéM x K — M, ), one obtains ai$!-central extension as follows:

S'—{(y,U)eT x UMH)| r(y) =Ad(U)} —T.
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For the construction of a bundle 6f*-algebras obtained from a central extension, see [43] or
Section 2.6.

If {U;} is a cover of M by contractible open subspaces andl'if denotesI'[U;], then
Ext“(T", S') = Br(T) = Br(I") = £“(I"). To summarize,

PrROPOSITION 2.31. —If " is a proper Lie groupoid, then we have
Br(l') 2 Ext*™(T',S') = H*(I'*,S") = H*(T"*, Z).
2.5. S'-gerbes via principal G-bundles over groupoids

The purpose of this subsection is to present another constructish-gérbes using principal
G-bundles over groupoids together with &h-central extension ofs. In fact, we show, in the
next subsection, that evers-gerbe arises in this way whe is taken the projective unitary
groupPU (H) of a separable Hilbert spaék Let us recall the definition of princip&f-bundles.

DEFINITION 2.32.— Letl’ = M be a Lie groupoid. A™-space consists of a smooth manifold
P together with a smooth map: P — M such that
(i) there is a map :QQ — P, where( is the fibered produc® =T" x; as,; P. We write

o(y,x) ==
This map is subject to the constraints
(ii) for all = € P we have

J(x) x=um;
(iii) for all z € P and ally,0 € T such that/(x) = s(+) andt(y) = s(§) we have

(0-7) z=6-(y )
Note that, as a consequence of the above definition, for anl, the map
(13) L:JYu)—J ), z—r-x

must be a diffeomorphism, whete= s(r) andv = t(r).

Associated to anyl’-spaceJ: P — M, there is a natural groupoid = P, called the
transformation groupoigwhich is defined as follow§) =I" x; 57,7 P, the source and target
maps are, respectively(~y, z) = z, t(v,z) =~ - z, and the multiplication

(14) (v,y) - (6,2) = (v-6,z), wherey=4-z.

It is simple to check that the first projection defines a (strict) homomorphism of groupoids from
Q=PtoI'= M.

DEFINITION 2.33.— A principal G-bundle overl"’ = M is a principal rightG-bundle

P M, which, at the same time, is alsolaspace such that the following compatibility
condition is satisfied: for alt € P andy €T, s(y) = J(x)

(15) (y-x)-g=7-(z-g).

In this case — I" also becomes a principal (rightj-bundle.

Example2.34. — LetI' be the transformation groupoif x M = M. Then a principal
G-bundle over corresponds exactly to afi-equivariant principal (rightj=-bundle over) .
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A principal G-bundle over a groupoid® = M can also be equivalently considered as a
generalized homomorphism frofhv= M to G = -. As a consequence of Proposition 2.2, we
see that principal bundles behave well under the “generalized homomorphisms” in the following
sense.

PrROPOSITION 2.35. — Let f be a generalized homomorphism fradh = M; to 'y = M,
given by

M, & X5 M.
Then for any principalG-bundleP — M, overT'y = Mo,

def

fP XXMZP—>M1

is a principal G-bundle ovel’; = M;. As a consequenceliff = M; andT'; = M, are Morita
equivalent groupoids, then there is a bijection between their prineipalindles.

Given a principalG-bundleJ: P — M overI' = M, let 25 = M be the gauge groupoid.
We denote by(p;,p2) an element ofP x P and by (p1,p2) the class of this element in
£xE A map fromI to P%IP is defined byy — (yp,p) wherep is any element that satisfies
J(p) = s(~y). Thus we obtain the following groupoid homomorphism:

T PxP

w | ]

M—M

Since any transitive groupoid is Morita equivalent to its isotropy gr&@’? = M is Morita
equivalent toG = -. It is not hard to check that the homomorphism (16) and@sprincipal
bundle P define the isomorphic generalized homomorphisms ffoto G.

From Proposition 2.5, it follows that a generalized homomorphjsitom IT'; = M; to
'y = M, induces a natural homomorphism, called pludl-back map

froHA(T3,8Y) — H*(T1,8%).

In what follows, we describe a construcgon@]f—gerbes over a stack which is similar to the
construction in [14,16]. Assume that — G — G is an S'-central extension of Lie groups,
P is aG-bundle ovel’ = M. Then P defines a generalized homomorphism fromz M to
G = -, and therefore induces a pull-back maB(G*®,S') — H?(I'*,S'). By pulling back the
class ofS* — G — G in H2(G*,S") via this map, one obtains an elementdi}(I'*, S?), i.e
anS'-gerbe over the stackr associated t@.

Since the equivalence classessbundlesP -, M overTl’ = M are classified byl!(T*,Q),
we have a map

17) o:HYI*,G) x H*(G*,S") — H*(I'*,Sh).

Below we describe an explicit construction of the ndam a special case more relevant to us.
Besides the above assumption, we furthermore assume that;-gsiacipal bundle P — M
can be lifted to &G~ pr|nC|paI bundleP — M. Note thatif? — M is a pr|n0|paIG -bundle, there

is a naturalS!-action onP defined as followsvA € S, 5 e P, A-p= (A- 15)p, whereX - 15 is
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considered as an elementéh Thenﬁ/S1 is a principalG-bundle overM, which is isomorphic
to the reduced principal bundle induced by the group homomorp&ismG. We require that as
a principalG bundleP = P/S*. In this case, it is simple to see that
P >:P . PxP gy
G G

is anS!-central extension, which is Morita equivalent to

G—G=-

Here theS!-equivalent Morita equivalence bimodulé < P%.is given by the composition
of the projection? — P with M < P % ., the left action ofP—Ci;P on P is [(p1,02)] - Ps = P19

whereg is the unique element i& such thaps = p»g, and the righ@-action is the usual one.

Let R — I" denote the pull-baclé*-bundle of’%P — £2P via the mapl’ — £2£ as in

Eq. (16).

PROPOSITION 2.36. — Under the same hypothesis as abaie;> T is a groupoidS!-central
extension, whose corresponding classA(I'*, S) is equal to®(«, 3). Herea € H(T'*, G)
is the class defined by — M and 3 € H?(G*,S") is the class corresponding to the central
extensions! — G — G.

2.6. Hilbert bundle and Dixmier—-Douady class

The purpose of this subsection is to show that ev&ngerbe over a differential stack always
arises from a principaPU (H)-bundle over the stack as in the case of manifolds [4]. However,
unlike the manifold case, such projective bundles may not be unique. Nevertheless, we show that
there always exists a canonical one. In the following, we describe an explicit construction of such
a projective bundle.

We now fix a separable Hilbert spaieand consider the canonicét-central extension:

(18) St — U(H) — PU(H),
which is a generator off2(PU (H)*,S') [14]. Thus Eq. (17) induces a group homomorphism
(19) ®':H(T*, PU(H)) — H*(T*,S").

Note that H(I'*, PU(H)) can be endowed with the following abelian group structure:
[7][r'] = [r @ 7'] if 7, n':T[U;] — PU(H) are groupoid homomorphisms afd;) is an open
cover ofl". See [14] for the case whdnis a manifoldM = M.

In other words, any principaPU (H)-bundle ovel” = M defines an element iff?(I'*, S'),
or anS'-gerbe over the associated staek.

WhenT is a manifoldM = M, @' is indeed an isomorphism [4,14]. However, in gene®l,
may not be injective® We will see below tha®’ admits a canonical left inverse. Therefore it is
always surjective.

3 For instance, letG be a compact Lie group and any unitary representation af such thatr(g) is not a
scalar multiple of the identity for some € G. Then the associated elemdni € H'(G*, PU(H)) is nonzero, but
&’ ([n]) = 0 since the compositiofl ' (G*, U (H)) — H'(G*, PU(H)) — H?(G*,S") is zero.
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First of all, let us assume thate H?(I'*,S!) is the class defined by a groupaid-central
extensionk — I' = M.

DEFINITION 2.37.— A complex-valued functiorf on R is said to be equivariant if
FfOF)=A"1f(7) forany X € S and anyy € R.

Let A = (A%),cn be a Haar system oR, i.e. \” is a measure o®* such that for anyy € R
the mapL; : R°(7) — R'%) defined byy’ — 77’ preserves the measure.

By £2, we denote the spade*(R”)S" consisting of5*-equivariant functions defined o
which areL? with respect to the Haar measure. Let

(20) MHo=L20H, and H=]]H ..

ThenH — M is a countably generated continuous field of infinite dimensional Hilbert spaces
over the finite dimensional spadd, and therefore is a locally trivial Hilbert bundle (indeed
globally trivial) according to Dixmier-Douady theorem [22].

Forxz € M, let B, be the set of orthonormal basis &f, andB = ]_[l,eM B.. We endowB3
with the following topology: identify53,, with the spacé/(H,,H) of unitary maps froni, to
H. Then a section — u, is continuous if and only if for everg € H, x +— u, £ is a continuous
section of the fieldH{ — M. The fiber bundleB — M is a principalU (H)-bundle. Now.S*
naturally acts onB by scalar multiplication. LetPB = B/S! be its quotient. TherPB is a
principal PU (H)-bundle over).

Let U(z,y) be the set of unitary linear maps frah, to ,,, and

U(H,H)={U(z,y) | (x,y) € M x M}.

ThenU (H,H) is naturally a groupoid ovet/.
Let PU(x,y) be the set of unitary projective maps frdtf, to H,, and let

PUH,H)={PU(z,y) | (z,y) € M x M}.

ThenPU(H,H) is a groupoid ove .
The groupoidR acts naturally or#{: for any element € R with 2 = s(¥) andy = ¢(¥), and
any equivariant functiorf € H,, the action is given by:

f=73-f, where(y- f)(r)=f(""r).
Since this action preserves the measurit induces a homomorphism of groupoids
i:R—UH,H).
Sincei is equivariant under th&'-actions, it induces a homomorphism of groupaids
j:I — PU(H,H).
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In short, we have the following diagram of groupoid homomorphisms:

R—>U(H,H)

(21) l | l

r —L> PU(H,H)

Itis obvious thatPB — M is a principalPU (H)-bundle over the groupoi®U (H,H) = M.
By pushing forward the action using the above groupoid homomorphtdtn,» M is naturally
a principal PU (H)-bundle over the groupoifl = M.

PROPOSITION 2.38. — If « € H!(I'*, PU(H)) denotes the class defined B8 — M, then
®’(«) is equal to the class ifi7?(I'*, S') corresponding to th&!-central extensio? — T.

Proof. —Note that as groupoids,

U(H,H) = M
is isomorphic tof%f = M, and
PUH,H)= M

is isomorphic to% = M. Thus, the conclusion follows from Proposition 2.36 and diagram
(21). o

Now let us return to the general case. Consider a Lie groupaid M and an element
a € H?(T*,S1). There exists a Lie groupoill’ = M’ Morita equivalent tol’ such thatx is
the class of arf!-central extension

S' S R—-T/ =M.

Let PB — M’ be the corresponding princip&U (H)-bundle ovel” = M’ constructed above

as in Proposition 2.38. Sindé = M’ andl’ = M are Morita equivalent, there is an associated
principal PU (H)-bundle P, — M over the groupoid” = M. In fact, P, = (Z x - PB)/T,

where M «— Z — M’ is an equivalence bimodule betwedh—= M and I = M'. By
construction,P, and PB represent the same generalized homomorphism, thus define the same
element in H(T'*, PU(H)). Moreover, P, does not depend on a particular choice of the
Sl-central extensio®! — R — I = M’ realizing the clasa. This follows from the following

LEMMA 2.39. -Assume thap:Y — M is a surjective submersion. L¢tT'[Y] — I be the
projection map. Assume that — R — I' = M is an S'-central extension, and denote B/
(resp.P’) the associatedU (H)-bundle oveil” (resp.I'[Y]). ThenP’ is isomorphic toP o f as
generalized morphisnis]Y| — PU (H).

Proof. —Let us first treat the casé = 11, U;. Let I, = {i € I | x € U;} andH; = 11,.¢*(1,,).
Then H; — M is endowed with a structure of continuous field of Hilbert spaces dver
(associated to thé€'y (M )- Hllbert moduIeEBze, o(U;), see Proposition A.4).

It is easy to see that’ = PU(f* (H® H;),H) (where ®" denotes the tensor product of
continuous fields ovei/). Now, H @ H (H @H)® Hr = He (H; @ H) = HoH~H
sinceH; ® H is the trivial contmuous field/ x H — M (see the argument below (20)). It
follows thatP’ = PU(f*H,H) = Po f.
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In the general case, i.e. for a generalconsider a continuoyssystemu = (ta )zens, i-€. fy
is a measure with suppast ! (z) such that

Vo e Cu(Y), [ ~ [t dux(y)] € C.(M).

A Haar system of'[Y] is given by

/wz / dX"¥) () / dpps () (W), 7, 9)-

Iy ~eTPW) z€p~1(s(7))

Then, ,en L?(1n) — M is a continuous field of Hilbert spaces (associated to the
Co(M)-module obtained by the completion @f.(Y) with respect to the scalar product
(p,9)(x) = [¢]? dus), such thall,e p L? () @ His the trivial field M x H — M. The proof

is almost the same as above, except that notations are more complicated. We omit details.

Therefore we have proved the following

PROPOSITION 2.40. — Let I' = M be a Lie groupoid. Associated to any element
H?(I'*,81), there is a canonicalPU (H)-bundle overl' = M, denoted byP, — M, whose
corresponding class i/ * (I'*, PU (H)) goes too under the ma@’ in Eq. (19).

Clearly, if o can be realized as asi'-central extension over the groupdit= M without
the need of passing to Morita equivariance, tiien= PB. As a consequence, whéhis a
transformation groupoid, we obtain the following:

COROLLARY 2.41.- If G is a Lie group acting onM properly, then there is a group
homomorphism

(22) {Isomorphism classes 6f-equivariantPU (H)-bundle§ — H¢, (M, Z),

which admits a canonical inverse. Namely, to any elememt#{),Z), there associates a
canonicalG-equivariantPU (H)-bundleP,, — M.

3. Twisted K-theory and Fredholm bundles

In this section, we introduce twistdd-theory groups of a Lie groupoid (or more precisely, a
differential stack). In the case of proper Lie groupoids, we describe tRegeoups in terms
of homotopy classes of certairrinvariant sections of Fredholm operators associated to the
projective Hilbert bundle as constructed in Section 2.6 (Theorem 3.14).

3.1. The reducedC*-algebra of an S*-central extension

Given an S'-central extension of Lie groupoid§' — R —T' = M, let L = R xg: C
be its associated complex line bundle. Thern- M can be considered as a Fell bundle of
C*-algebras over the groupold= M. Therefore one can constructd -algebra out of it (see
Appendix A.3).

DEFINITION 3.1.— Letl" be a Lie groupoid and! — R — I" = M anS*-central extension.
Then the reduced™-algebra of the central extensi6ij (T'; R) is defined to be&* (T'; L), where
L =R xg Cis the associated complex line bundle considered as a Fell bundlé-afgebras
overl’ = M.
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There is another picture for this*-algebra. Consider
Co(R)S" = {€ € Cu(R) | £(Ar) = A7'E(r), VA€ ST, r € R}.

One easily checks that,(R)S" is stable under both the convolution and the adjoint, and that the
map

(23) C.(R)S" — C.(T; L),

&—n, wheren(g) = [(r,&(r))] € Ly = Ry x 51 C, is well-defined and is indeed an isomorphism
of convolution algebras. Let us define

(24) CH(R)S" == C.(R)S" C C{(R),

i.e. C*(R)S" is the norm-closure of’,(R)S" in C*(R) (see Ref. [61] for details on the
construction of the reduced*-algebraC’*(T") of a groupoidl’).

The algebraC*(S*) = C(S*) acts onC’*(R) by convolution operators. More precisely, there
is a *~-homomorphism

A:C*(SY) — M(CH(R))
such that for every € C(S!) and every € C.(R),

mwmxw=/&uxu*w¢x

Sl

whered is the normalized Haar meas@% on S'. Indeed, one only needs to check that

(UAE)(r) =€(A7"r)

defines a unitary representation$f into the unitary group of\/ (C;*(R)).

The mapA is non-degenerate, for ff, is a sequence i6'(S*) converging to the delta function
at 1, then A(f,)a converges ta: for all a € C}(R). That is, A(f,) converges strictly to the
identity. ThereforeA extends to a unital strictly continuosshomomorphism

M(C*(SY) — M(C}(R))

[58, Paragraphs 3.12.10 and 3.12.12].

Let P, € C*(S*) be the convolution by™, i.e. P, corresponds to the characteristic function
of {n} via the Fourier transformatio6’*(S') = Cy(Z). Let Q,, = A(P,). Then theQ,,’s are
pairwise orthogonal projections. Sindds non-degenerate, the sUm@,, is strictly convergent
to 1. Moreover, sincé/}, is in the center of\/ (C}(R)), the projectionsy,, also belong to the
center of M (C*(R)).

Using the formulaQ,, (€)(r) = [4: A"&(A~"7) dA, one easily checks that the image®@f is
the closure of the set of elemertts C..(R) such thatt (Ar) = A"¢(r) for all (A7) € S* x R.

In particular,C* (R)S", the closure of’.(R)S" in C*(R), is Q_1(C;(R)).
Similarly as in Eq. (23), there is an isometric isomorphism of Hilla&t)/ )-modules:

(25) L*(R)S' — L2(T;L).
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If £ e CC(R)S1 andn(g) = [(r,£(r))], then the norm of, as a convolution operator acting on
L?(R), is equal to the norm af, as a convolution operator acting @A(T'; L).

Noting thath(R)S1 is the image of the projectiof_,, we have

I€llcs(r) = 1Q-1&llcx(ry = 1Q-1llcxry =  sup  [[ExQ 19|l
H@HLQ(R):l
= sup [€xoll= saup  [n*9l2rp) = [Inlle: mp)-
@EL2(R)SY, [l¢ll L2 (gy=1 902 (r;z)=1

It follows that
(26) C*(T;R)=C*(R)S".
We summarize the above discussion in the following:

PROPOSITION 3.2. — Let S' — R — T be anS'-central extension of Lie groupoids. Then
there is a canonical isomorphism

Cr(R) = PO (IR,

neZ

whereC}(T'; R™) is theC*-algebra of the central extension
S' S R"=R®---®@R—T

for all n#0, andC}(T'; R°) = C(T") by convention.
The image o’ (I'; R) in C}(R) consists of the closure df,(T", R)S1 defined in Eq(24).
For f € C.(R) C C}(R), the imagef,, of f in C;(I'; R™) is given by

Falr) = / AT FOT) dA,
Sl
whered) is the normalized Haar measure ¢H.

For the S'-central extensiof [,; R;; — [[,,; Ui; = [1; U; in Example 2.26(1), we refer to
[60,63,42] for a detailed discussion on thé-algebraC(T', R).

3.2. Definition of twisted K -theory and first properties

PROPOSITION3.3.— Let R, — I'; = M; (i = 1,2) be Morita equivalentS*-central
extensions. The«ﬁ';‘(Rl)S1 and C;:(Rg)s1 are Morita equivalentC*-algebras.

Proof. —This follows from [62] or from [55, Theorem 11].0O0

We are now ready to define twistéd-theory.

DEFINITION 3.4.— Letl be a Lie groupoid andv € H2(I'*,St). We define the twisted
K-theory as

KL(I*) = K_,(C:(R)"),

where S — R — IV = M’ is any central extension realizing the classand I’ is Morita
equivalent tal".
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From Proposition 3.3, it follows that if tw§'-central extensions are Morita equivalent, their
twisted K -theory groups are isomorphic and therefore only depend on the corresponding stack
and theS'-gerbe over the stack. Consequently, twistédheory is well-defined.

Example 3.5 (1). — Whenl is a manifoldM = M anda € H3(M,Z) = H*(T*,S'), the
above definition reduces to the one introduced by Rosenberg [63].

(2) Assume that a Lie grougs acts on a smooth manifold/ properly. According to
Corollary 2.23, the equivariant cohomolo@#, (M, Z) is isomorphic toH?(T'*, S'), wherel"
denotes the transformation groupditix M = M. Let o € HZ (M, Z). We define the twisted
equivariantK -theory

Kf o (M) = K_;(CE(R)S),

whereS! — R — I" = M’ is any S'-central extension realizing the classandI"” is Morita
equivalent td’. According to the observation following Definition 3.4, we have the following

PrROPOSITION 3.6. —If G acts on a smooth manifoldl/ properly and freely so that//G is
a manifold, then

K o(M) 2= K, (M/G),
wherea/ is the image ofv under the isomorphismi, (M, Z) = H3(M/G,Z). More generally,
if H is a normal subgroup off which acts on\/ properly and freely, then

Ké’,(x(M) gI(éJ/H,(x/(Z\f/I{)’

wherea/ is the image ofv under the isomorphisiig, (M, Z) = Hg/H(M/H, Z).

Note that the proposition above is a non-trivial theorem even in the non-twisted cage-=.e.,
0, in the ordinary equivariank -theory of Segal [65]. The advantage of our approach is that these
facts are encoded as a part of the definition since they are obvious consequences of the Morita
equivalence between the transformation groupéids M = M andG/H x M/H = M/H.
The hard part is to prove that this definition coincides with the topological one which is more
often used by geometers.

(3) Given an orbifoldX, letI' = M be an étale groupoid representing this orbifold. Now
givena € H3(X,Z) = H?(I'*,S'), we define the twisted orbifold& -theory

KL(X):=K_i(CA(R)S"),

whereS! — R — I" = M’ is any S'-central extension realizing the classandI” is Morita
equivalent ta". It would be interesting to investigate the relation between our definition with the
one given by Lupercio and Uribe [45].

Next let us deduce some properties that are immediate from the definition.

PROPOSITION 3.7 (Bott periodicity). —Let S* — R — I' = M be anS*-central extension
of Lie groupoids. Then for all,

K (D%) = KP(r),
Em(re) =K, (T xR™)*),

whereq,, is the class of the extensidiix R — I" x R = M x R™.
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Note also thatk, ((I' x R™)*) is the kernel of the morphisri’, ((I' x S™)*) — K (T'*)
induced by the inclusiolf x {pt} C T" x S™, wherea/, is the class of the extension

RxS"—=I'xS"= M xS".

We say that a subgroupoltd = M; of I' = M is saturated if\/; is an invariant subset df/
(i.e.T}; =Tyy,) such thaly =Ty

PROPOSITION 3.8. —LetS! — R — I' = M be anS!-central extension of Lie groupoids and
denote by its class inH?(I'*, S'). Suppose thdf; is an open saturated subgroupoidlofind
let or; be the class of the correspondisg-central extension df ;. Then the inclusion:T'; — I’
induces a canonical map

i K7 (D3) — K2(T®).

Proof. —Using the obvious notation( (R;)S" is an ideal of theC*-algebraC:(R)S" .
Indeed, it is not hard to check that.(R,)S' c C.(R)S" is stable under the convolution and
the adjoint. SinceR; is a saturated subgroupoid Bf we have

[fllcxriy= sup  sup ||f *&llz2(r,)
reR(® €€CL(R)

= sup sup ||f*§HL2(Rm)
z€R(® £€C.(Ry)

=1

and thusC;(R;)S" is a subc*-algebra ofC(R)S". Moreover, for all f € C.(R;)S and
f' € C.(R)S" we havef x f' € C.(Ry)S". ThereforeC*(R,)S" is an ideal inC*(R)S" .

Cr(R)

Recall (see for instance [37, Section 3]) thakjifand/; are two closed ideals in@*-algebra
A such thatd = I, + I, then there is a six-term exact sequence

(31)«®(42)« (i1)«—(i2)«
_— _—

Ko(fl ﬁfg) KO(Il) @ Ko(l2) KO(A)
aT la
K1(A) (11) % —(32) « K, (Il) o Kl(IQ) (J1)=®(J2)« K1(I1 A 12)

wherej, : Iy N Iy — I}, andiy : I, — A are the inclusionsi(= 1, 2). Therefore, we get

PrROPOSITION 3.9 (Mayer—Vietoris sequence 1).et S' — R — I' = M be anS'-central
extension of Lie groupoids and denotedits class inH?(T'*, St). Suppose thak is the union
of two open saturated subgroupoils andT's. LetT'y, =Ty N Ty, and letay, as and ays be

the classes of the induceff-central extensions and denote By, EL AL (k=1,2) the
inclusions. Then we have an hexagonal exact sequence

(31)=®(2)« (i1)x —(i2)

K3,,(T12) Kq, () & Kg, (T'3) K(T*)

Q12 63} @

/| |o

° (il)*_(h)* ° ° (.71)*@(.72)* °
K, (T )%Kél(rl)@Kég(FQ) K} (I'f2)

@12
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Proof. —It is clear that both; = C*(R;)S" andl, = C(R,)S" are ideals ofd = C(R)S".

To check thatl; N I, = C;T(ng)sl, note that/; N I, = I; I (this is a standard result in
C*-algebras) and that, = fo € Co(R12)" if f1 € C.(R1)S" andf, € C.(Ry)S .

To check thatl; + I, = A, take a partition of unity(¢;,92) associated to the cover
(FZ(.O)/F)izl,z of M/T. Let f € C.(R)S". Then, considering; as R-invariant functions on
M, we havef = (¢1/) + (p2f) € Ce(R1)S +Co(Ry)%'. O

PROPOSITION 3.10. -Let S' — R — T = M be anS!-central extension of Lie groupoids
and denote by its class inH?(I'*, S'). Assume thal; is a closed saturated subgroupoidlof
Leta; € H2(I'$,St) be the class of the correspondisg-central extension. Then the inclusion
1:T'1 — I'induces a canonical map

i K™(I*) — K" (I'}).

Proof. ~Using the obvious notatior;*(R;)S" is a quotient of theC'*-algebraC’(R)S".
Indeed, the restriction mag,(R)S — CC(Rl)S1 is a surjectiver-hnomomorphism of convo-
lution algebras and is norm-decreasing, and therefore induces a surje¢tormomorphism
CHR)S" = Cx(R)S'. O

Suppose thatd; = A/I; and A, = A/I, are two quotients of aC*-algebra such that
I, NI, ={0}, and letA;s = A/(I; + I5). Denote bypy: A — Ay and bygy : Ay — A5 the
guotient maps. Then there is a six-term exact sequence

(q1)+®(gq2)« (p1)«—(P2)«

Ko(Ar) =" Ko(A) © Ko(Ag) =———""— Ko(A)
(P1)x—(p2)« (q1)+D(gq2)«

Kq(4) £ a Kl(Al)@Kl(AZ)L)Kl(AIQ)

Since we cannot locate this standard fact in the literature, here is a sketch of the proof. For
every locally compact spac¥, we will denote byA(X) the C*-algebraCy(X, A). Consider
theC*-algebra

D={(f-,a,f+) € Ai(~1,0] ® A® A5[0,1) | f-(0) = p1(a) andpz(a) = f1(0) }.
There is an obvious exact sequence
0— IQ(—I,O] EBIl[O, 1) —D— Alg(—l, 1) — 0.

Since I,(—1,0] & I1]0,1) is contractible, the six-term exact sequencekirtheory yields an
isomorphismK; (D) = K;(A12(—1,1)), hence

(27) Ki(D) = Kiy1(A2).
Now, the obvious exact sequence
0_>A1(—1,0) @AQ(O,].) —-D—-A—0

gives a six-term exact sequencefifittheory, which yields the result via Bott periodicity and
Eq. (27).
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ProOPOSITION 3.11 (Mayer—Vietoris sequence 2).l.etS' — R — I' = M be anS'-central
extension ofproperLie groupoids and denote byits class inH?(I'*, S'). Suppose thdt is the
union of two closed saturated groupoills andI's. LetT'o =T'y NI's. Letay, as anda;ys be
the classes of their inducesf' -central extensions and denote By, 25 T', 4T (k = 1,2) the
inclusions. Then we have an hexagonal exact sequence

(J1)"®(j2)" (i1)* —(i2)"

K? (T'12)

Q12

K3, (T1) @ KJ,(T2) KQ(T)

iy aw

KL(T) M) Kél(Fl) @Kéz (T'2) M) Kl (T'12)

Q12

Proof. —LetI'}, (k = 1,2 or 12) be the complementary @f,. Sincel';, is closed and saturated,
it follows thatI', is an open saturated subgroupoidIaf With the obvious notations, write
I = Cr(R,)S", A= C*(R)S" and Ay = A/I}, whereR), denotes the complementary ;.
Sincel' =T"; UT'3, we havel; N I, = {0}. Itis also clear thal; + Iy = I5.

To obtain the Mayer—Vietoris sequence, it suffices to show(lil;failzk)s1 = A/I. Thisis not
always true for every groupoid. I.e. the sequence

0—CrH (RS — CHR)S — Ci(Ry)® —0

is not necessarily exact. However, the analogous sequencé€witistead ofC" is always exact
by the universal property of the full*-algebra of a groupoid, and we hagg = C* for proper
groupoids (or even for amenable groupoidsj

Example 3.12. — Assume thdt is a transformation groupoi@ x M = M, whereG is a Lie
group acting onV/ properly. Assume that/; andU, are G-invariant open submanifolds @i/
such thatM = U; U Us. Then Proposition 3.9 yields that

(1)« ®(52)« (41) = (i2)

K%,alz(Ul ﬂUz) K%}al (Ul) @KCO;7Q2(U2) Kga(M)

of lo

i1)w—(12) (51)«®(J2) «
KL (M) <7 g oy e KL, (Un) <0 gL 00y

Similarly, if F; and F» are G-invariant closed submanifolds @ff such thatF; U F, = M,
then Proposition 3.11 yields that

(1) " ®U2)" (11)"—(i2)"

K%,alg(FlmFQ) K%,al(Fl)@Kg,ag(FQ) K%,CX(M)

Jo d

K (M) — gL (Rye KL, (F) 0 gL (PR
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3.3. The main theorem

Let S' — R —I' == M be anS*-central extension of groupoids, afiB — M its associated
principal PU (H)-bundle over the groupoil = M as constructed in Proposition 2.38. Let

E(ﬁ) =PB X PU(H) C(H) - M

and
’C(H) =PB X PU(H) K:(H) — M

be its associated bundles ©f -algebras, wher& (H) denotes the algebra of bounded operators
on H endowed with thex-strong topology, andC(H) denotes theC*-algebra of compact
operators orfl endowed with the norm-topology. The grodi/ (H) acts onC(H) and K(H)
by conjugation. To justify the notation, we show that these bundles are isomorphic to those
of bounded and compact operators associated to the Hilbert buhdlg, LQ(R""/’)S1 ® H (see
Eq. (20)) as in Appendix A (Propositions A.5 and A.6). _

Indeed it is simple to see that the fiber6(H) — M and K(H) — M at eachw € M are,
respectivelyL(H,) andK(H,). The map

PB x pyq LH) — ] £(H

rEM
(u, T) — uTu™?

is clearly a bijection. To identify the topology @5 x pyy ) L(H), we can assume thét is a
trivial bundle (since it is locally trivial). Then

PB XPU(H) [,(H) =M x PU(H) XPU(H) £(H) =M x £(H)

is obviously the bundle of bounded operators associated to a continuous field of Hilbert spaces
(see Proposition A.5). The proof f& () is similar (see Proposition A.6).
The groupoid--action onPB — M induces an action on the*-algebra bundlel (H) — M
(andlC(?—?) — M respectively). On the other hand, the associated line bunéde? x 51 C — M
can be considered as a Fell bundle over the grouBaid M . Therefore the general construction
of Yamagami (see Appendix A.3) gives rise to a continuous action of the groiipsid/ on the
C*- bundIeE(LQ(F L)) — M (andK(L?(T; L)) — M as well), which extends to an action on
the C*-bundle£(L2(T; L)y®H)— M (andlC(LQ(F L) ® H) — M). From Eq. (25), it follows
that the Hilbert bundle&?(I'; L) ® H — M andH — M are canonically isomorphic. In fact we
have the following:

LEMMA 3.13.-The C*-algebra bundlesC(H) — M (K(H) — M, respectively and
L(L*(T;L) ® H) — M (and K(L2(I'; L) ® H) — M respectivelyare canonically isomorphic,
and the isomorphism respects thection.

Recall that a sectiom — T, € L(?—YI), x € M, is strongly continuous if — T,£ is norm-
continuous for all continuous sectiofiss C (M, ﬁ), and thatx — T, is x-strongly continuous
if z+— T, andz — T are strongly continuous.

By Cy(M,L(H)) we denote the space of norm-boundeestrongly-continuous sections
of bounded operators ok, and byC, (M, £L(H))" we denote the subalgebra Bfinvariant
sections. Similarly, byCO(M,IC(ﬁ)) we denote the space @formcontinuous sections of
compact operators vanishing at infinity.
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Let Kr(H) be the space of norm-continuodisinvariant sections{T}, | « € M} of the
C*-algebra bundleX(H) — M satisfying the boundary conditiofZ,|| — 0 whenz —
oo in M/T. Note that||T,|| can be considered as a function on the orbit spet& due to
the invariance assumption. _ N

Denote byF? the space ofl’ € Cy,(M, L(H))' such that there existS € Cy(M, L(H))"
satisfyingl — T'S, 1 — ST € Kr(H). In other words,

(i) T, andS, are Fredholm for alk, and the sections — T, andx — S, arex-strongly

continuous and'-invariant;

(i) 1-1T,.5;,1—5,T, are compact operators for atl and the sectiong — 1 — TS,

x—1—8,T, are norm-continuous and vanishaatin M /T.
Denote byF the space of self-adjoint elements#y. Our main theorem is

THEOREM 3.14.— Let I’ = M be a proper Lie groupoidS! — R — I' an S!-central
extension and denote hyits class inH?(I'*,S')(= H3(T'*,Z)). Then

KL ={[T]|TeF.},

where[T'] denotes the homotopy classTof

The proof of (a generalization of) Theorem 3.14 is the content of the next section.

Another way to formulate Theorem 3.14 is as follows.

LetT" = M be a proper Lie groupoid ande H3(I'*,Z). Let P, — M be its corresponding
canonical PU(H)-bundle over the groupoid = M as in Proposition 2.40. Consider its
associated bundles:

(28) Fredl,(H) := Py X pym Fred'(H) — M,

(29) ]C(X(H) = P(x XPU(H) K(H) — M,

where Fred'(H) is endowed with thex-strong topology whileC(H) is endowed with the
norm-topology. ByF/,, we denote the space of norm-boundgdnvariant, continuous sections
x — T, of the bundleFred; (H) — M such that there exists a norm-bound&dinvariant,

continuous sectiom — S, of Fred’,(H) — M with the property that — 7S, and1 — S, T},
are continuous sections &f,, (H) vanishing at infinity* Then we have the following

THEOREM 3.15. — LetI’ = M be a proper Lie groupoid, and € H*(I'*,Z). Then
Ko (%) ={[1]T e 7.},

where[T'] denotes the homotopy classIof

Remark3.16. — Note that there may exist differeRU (H)-principal bundles ovef’ = M
other thanP,, which also map ton € H?(I'*,S') under the mapd’. However, only the
construction using this particular principal bundp gives the right answer for the Fredholm
picture of twistedK -theory groups.

Example3.17. — (1) WhenT" is a compact manifold}M, the principal PU(H)-bundle
P, — M over M is represented by a 1-cocyclg;: Uy, — PU(H). A class[T] in K% (M)
corresponds to a section of the bundte x py ) Fred'(H), thus to a family of«-strongly
continuous map%}, : Uy — Fredi(]HI) satisfyingT; = g;llTkgkl on Uy, [4,27].

4This definition of 72, obviously agrees with the previous one.
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(2) Whenl is a transformation groupoi@d x M = M, for anya € H2,(M,Z), the associated
PU(H)-bundle P, — M overT' is a G-equivariant PU (H)-bundle overM. Therefore, its
associated bundleBred’, (H) — M and K, (H) — M are G-equivariant. Thusk, (M) can
be represented as the group of homotopy classésiolariant-strongly continuous sections
of the Fredholm bundiéred;, (H) — M.

In terms of local charts, the principdPU (H)-bundle P, is represented by a-cocycle
ot (G x M)g; — PU(H) (see Egs. (11) and (12)). Then a cléBsin K¢, , (M) corresponds
to a family of x-strongly continuous magk;, : Uy, — Fred'(H) satisfying

Ti(y) = (9, 2) T () ori1 (g~ y)

if x € Ug, y € Uy andy = gzx.

4. C*-algebras of Fell bundles over proper groupoids

The goal of this section is to prove a general resulfiiralgebras, which includes Theorem
3.14 as a special case. More precisely, we prove thatif M is a proper groupoid and
E= ngr E, is a u.s.c. Fell bundle ovér (see Appendix A), then its associatétt-algebra
Cx(T; E) is isomorphic to the space d@f-equivariant continuous sections of tii&-algebra
bundle [, ,, K(L*(T,; E)) — M that vanish at infinity in}//T" (Proposition 4.3), and to
deduce that thé(-theory groups ofC;(T'; E') are isomorphic to homotopy classes of certain
generalized Fredholm operators (Theorem 4.6).

Let us recall

DEFINITION 4.1.— Letl'’ = M be a proper groupoid with Haar systep” | x € M}.
A continuous functiore: M — R is called a cutoff function if

(i) forall z € M, [ _p. c(s(7))A*(dy) =1; and

(i) forall K C M compact, the support ¢ o s) -« is compact.

The condition (i) means that if* C M is the saturate of a compact set, tHém supp(c) is
compact. It is known that a cutoff function exists if and only'ifs proper [68, Proposition 6.7].
Cutoff functions allow us to make “averages”. Namely, let

(30) 15— [ o (Lo e(s()N* () € L(LA(T ).

yer=

ThenT — TV is a linear projection of norm one frofi(L?(T'; E)) onto £L(L*(T; E))*. (If
I' = G is a compact group thef® is the averag{, oy (T) dg.)
More generally, lel’ = M be a proper groupoid with Haar system acting continuously on a
u.s.c. field ofC*-algebrasd — M. By A = Cy(M, .A) we denote its correspondir@*-algebra
of continuous sections vanishing at infinity. As in Proposition A.5, there exists a (not u.s.c.) field
of C*-algebrasM (.A) — M with the fiber atz € M beingM (A, ), such that
(a) asection: — T, € M(A,) is a continuous section @/ (A) — M if and only if for every
continuous sectiow — a, of A — M, z — T,a, andz — T a, are continuous sections
of A— M.
(b) The algebraC, (M, M (A)) of continuous, norm-bounded sections is isomorphic to the
multiplier algebral/ (A).
Itis clear that thé -action on4d — M induces a naturdl-action onM (A) — M.By M (A)",
we denote theC*-subalgebra of\/(A) consisting ofl’-invariant sections. For any € A, let
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T € M(A) be the element such that

("), = / 0ty Ty )e(5(0) N (d) € M(A,).

yele

Of course, the averaging map— 7" depends on the choice of the cutoff function.
Let us introduce some notations dfis aCy (M )-Hilbert module, let

(31) CE)={TeL(&)|eT k(&) VpeCy(M)}.
If, moreover£ is a(T', E)-equivariant Hilbert module, let
(32) Kr(&)={T ec(&)" |||Ts|| — 0 whenz — oo in M/T'}.

More generally, ifl" acts on &Cy (M )-algebraA, let

Ar={T € M(A)" |V € Co(M),oT € A
(33) and||T,|| — 0 whenz — oo in M/T'}.

For example, ifA = Cy(R) andT" = Z acts onA by translations, themr is the space of
1-periodic continuous functions dR, while the algebrad®, consisting ofl"-invariant elements
in A, is{0}.

LEMMA 4.2. — With the above assumptiondy is a C*-subalgebra of\/(A) and is equal to
{TV | T € A}.

Proof. —The first assertion is easy.

To show{T" | T € A} C Ar, let T € A. By a density argument, we may assume fthds
supported on a compact subsefiéf Thatis, T, = 0 for z outside a compact set. Lete C..(M).
Then(p-T), = fvm @(x)ay (Ts())c(s(7)) d is the integral o™ of a compactly supported
element oft* A. Thusy - T' belongs taA. Moreover, itis clear thal'™ is zero outside a compact
subset ofd/ /T

To show tha{ T" | T € A} D Ar, letT € Ar. Assume first thal, = 0 outside a compact set
K of M/T. Let L = (supp(c)) N7~ !(K) wherer: M — M/T is the projection. Then, for all
€ Co(M) such thatp =1 on L, one has

T,=T, / c(s(9))e(s(g)) A*(dg)

ger=

_ / Toe(s(9)) o (s(9)) A" (dg)

ger=
= [ alTun)els(0) els(0) ¥ (o).

ThusT = (pT)".

In the general case, one h&is= " T, whereT), is zero outside a compact subset\df/I"
and||T,|| < 2~ for n large enough. From the previous paragraph, we fiave (¢, 7,,)'', and
thereforelT = (3", ¢, T,)". O
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PrROPOSITION 4.3. — If ' = M is a proper groupoid with Haar system ardis a u.s.c. Fell
bundle over”, then

CHIE)={T"|T e K(L*(T;E))} = Kr (L*(T; E)).

Proof. —Let us explain the idea of the proof in the case thata compact grougr. In this case
C? (@) is the closure of the space of convolution operator€®(t). Since these operators have
a G-invariant kernelK € C(G x G), they are compadf-invariant. Conversely, any compact
invariant operatof’ is the limit of operators wittiz-invariant kernel, and such kernels are of the
forma(gh~!) wherea € C(G). It follows thatT is the limit of convolution operators.

Now we consider the general case of a proper groupoid. Let us first show (Bt £) D
{TV | T e K(L*(T;E))}. LetT € K(L?(T'; E)). We need to show th&t" lies in the image of
Cr(T'; E). We may assume thdt =Ty, ;y := (£ — b(V',£)), whereb, b/ € C.(T; E), i.e.

(T€)(g) = blg) / V(B E(h) M) (D).

hel s (q)
Then,

(T7¢)(g) = / / bgm)V () “€(h)e(5(7)) X (dy) A gy ().

her(g) ~yeTs(h)

Setf(9) = [ ere gV (7)*c(s(7)) A*¥) (dv). Let us check thaf € C.(T'; E). By Proposi-
tion A.10, (g,h) — b(g)b'(h~*)* can be approximated by sums of the fopr} f;(g, h)¢i(gh),
where f; € C.(T") and ¢; € C.(T; E). Therefore(g,v) — b(gy)d(y)* is approximated by

> filgr, v 1)Gi(g). Then, approximatingf;(gv,v~") by 3= f1,i,5(9) f2.i,;(7), we see that
f(g) is approximated by) . f/(g)¢i(g) where f] € C.(T"). Hencef is a continuous section.
Moreover, sincef is obviously compactly supported, we hate C.(T'; E). Now,

Flgh™) = / bgm)V () e(s(7)) @ (dy),

~y€Ers(9)

andm;(f)&(g) = fher‘( : flgh™1)E(h) Ay(g)(dh), wherer; : Co(T; E) — L(L*(T; E)) denotes
the left regular representation. Therefdfg’b, =m(f).

Next we show thaC(T'; E) C {TT | T € K(L?*(T'; E))}. Assume that. € C.(T'; E). Let K
be a compact subset 8f such thal'£ contains the support ef, andK; a compact subset such
that the interior ofK; containsk . By the definition ofc, the setl. = (supp(c)) N7~ (7 (K1),
wherer: M — M /T is the projection, is compact. By Proposition A.10, one may approximate
a(gh~') on the compact s@ts* x I'K* uniformly by elements of the form

S bla)bi(n)"

whereb;, b, € E. Therefore(g, k) — a(gh~!) is approximated uniformly on
{(g,h) eI xTH1 | 5(g) = s(h) }
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by elements of the form_, fvers(g) bi(gv)b(hy)*c(s(y)) dy. Replacingb;(g) by ¢(t(g))bi(9)
andb;(g) by ¢(t(g))b.(g), wherep € C.(M),0< 9 <1,p=10onK andp =00on M — K1,
we define an operator

T=Y Ty

Thenm,(a) € L(L*(T; E)) is approximated by the operatét .
The other inclusions are proved using Lemma 4.2 wits K(L?(T; E)). O

To continue, let us introduce the following convention. For &fyvalgebrasA and B such
that B C M(A), we say thatB contains an approximate unit fot if there existu; € B such
that0 < wu; <1 andu;a — afor all a € A. This terminology is slightly abusive sineg may not
belong toA.

LEMMA 4.4.— LetI’ = M be a proper groupoid with Haar system acting on a u.s.c. field of
C*-algebrasA — M, and A = Cy (M, A). Then

(a) Ar contains an approximate unit fot;

(b) ApA=A;

(€) M(Ar)=M(A)".

Proof. —(a) Let (u;);c; be an approximate unit id (it is standard that this always exists,
see [21]). Letu; = (u;)". Thenu; € Ar by Lemma 4.2. It suffices to show that for alkc Ay,
whereU is a relatively compact open subsetidf, we haveu;a — a.

Let b(g) = ay(g)c(s(g)). Thenb = (t*a)(c o 5) € t*A. Setv;(g) = ay((ui)s()). Since
a:s*A 5 t* A is an isomorphism and; = a(s*u;), it follows thatv; is an approximate unit
for t*A. Thusv;b — b, i.e.,

SLEII;’H%(_«;)C(S(Q)) — 0y (ui) s(g)ar(gyc(s(9)) | — 0.
g

By integration on'* (z € M), it follows easily that|a — w;a|| — 0.

(b) clearly follows from (a).

(c) The mapM (A)'' — M(Ar), a+ u(a), wherepu(a)b = ab, Ya € M(A)', b€ Ar, is
well-defined andk-linear. To obtain its inverse, by identifyinyy/ (A) with £(A) (the space of
A-linear adjointable operators on tieHilbert moduleA), the map

v:T € M(Ap) = L(Ar) —» T® 1€ L(Ar @4 A) = L(AFA) = L(A) = M(A)
takes its value inM (A)L'. It is clear thatv: M(Ar) — M(A)Y and p are inverse of each

other. O

COROLLARY 4.5.—If T"is a proper groupoid with Haar system aifdis a u.s.c. Fell bundle
overl, then

M(Kp (LA(T; B) ® H)) = £L(L*(T; E) @ H) .

Proof. —For aC*-algebraA and anA-Hilbert module&, we havel(E) = M (K(£)) [11,
Theorem 13.4.1]. Hence the result follows from Lemma 4.4(c).

Let F°(T', E) be the set consisting of &ll € £(L?*(T'; ) ® H) which are invertible modulo
Kr(L*(T; E) ® H), and F}(T, E) the subset ofF°(T', E) consisting of self-adjoint elements.
We denote byT'] the homotopy class df.
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THEOREM 4.6. — LetI" be a proper groupoid with a Haar system. Suppose fat (£, ) ger
is a u.s.c. Fell bundle ovdr. Then

Ki(CH(T5 B)) = {[T]| T € F(T, )}

Proof. —Recall that ifB is aC*-algebra theriy ( B) is the set of homotopy classes of elements
T € M (B ® K(H)) which are invertible modul® & IC(H), and K (B) is the set of homotopy
classes of elemenis € M (B ® IC(H)) which are self-adjoint and invertible moduld® /C(H)
([11, Corollary 12.2.3], [72, Theorem 17.3.11]).

The theorem is thus a consequence of Proposition 4.3 and Corollary 4.5, by faking
Kr(L*(T,E)). O

5. Twisted vector bundles

In many situations, it is desirable to describe tkietheory groups in terms of geometrical
objects such as vector bundles. For the twistetheory groupk? (I'*), a natural candidate will
be twisted vector bundles. However, these vector bundles do not always exist. In fact, a necessary
condition is that the twisted classc H?(I'*,S') must be a torsion class. The main purpose of
this section is to explore the conditions under whi¢h(I'*) can be expressed by twisted vector
bundles. More precisely, we prove that given $ihcentral extensiors! — R — I' = M of
a proper Lie groupoid® such thatM/T" is compact, thekK-theory groupK? (T'*) twisted by
the class of the above central extension is the Grothendieck group of twisted vector bundles
K*(I'*), provided some conditions are fulfilled (see Theorem 5.28).

The proof is divided into five steps outlined as follows. et R x 51 C be the associated
line bundle over.

Step 1: From the previous section, it is known thg}(T'*) is isomorphic to

Ko(Kr(L*(I; L) @ H)).

Therefore, if Cr(L?(I';L) ® H) has an approximate unit consisting of projections,
then KO(I'*) is the Grothendieck group of projections iGr(L?(T;L) ® H) [11,
Proposition 5.5.5].

Step 2: Kr(L?(T'; L) ® H) has an approximate unit consisting of projections if and only if the
(T, L)-equivariant Hilbert modulé.?(T; L) ® H satisfies a certain property that we denote
by AFGP.

Step 3: If L2(I") ® H is AFGP and if there exists a twisted vector bundle, thé("; L) @ H
is AFGP.

Step 4: Projections itCr(L?(I'; L) @ H) correspond tqT', L)-equivariant Hilbert module§
such thafide € Kr(€) (see notation (32)).

Step 5: (T', L)-equivariant Hilbert module§ such thatldg € Kr(€) correspond to twisted
vector bundles, which can be considered as a generalization of Swan’s theorem.

5.1. Definition of twisted vector bundles
In this subsection, we give the definition of a twisted vector bundle and show that if such a
vector bundle exists, then th# -central extension must be a torsion.

Let us first recall the definition of B-vector bundle.
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DEFINITION 5.1.—LetI" = M be a groupoid. AT'-vector bundle is a vector bundle
J:E — M such thatE is aT'-space in the sense of Definition 2.32, and the map (13) is a
linear map.

Note that in this case for anye T, the map
(34) L J ) — J ), z—r-z,

whereu = s(r) andv = ¢(r), must be a linear isomorphism.
For example, given &-bundle P overI' = M and a representatioty — EndV, the
associated vector bundle:= (P x V)/G — M naturally becomes B-vector bundle.

DEFINITION 5.2.— LetS! — R —T = M be anS'-central extension of Lie groupoids.
By a (T', R)-twisted vector bundle, we mean dtvector bundle satisfying the compatibility
condition:

A-r)-x=Ar-2), AeS'rcRandz < E suchthas(r) = J(z).

HereS' is considered as the unit circle
The following gives an equivalent definition of twisted vector bundles.

LEMMA 5.3.-Let S' — R 5T = M be anS'-central extension of Lie groupoids. An
R-vector bundleE — M is a (T, R)-twisted vector bundle if and only ifer 7 = M x S! acts
on E by scalar multiplication, wheré'! is identified with the unit circle of.

When M is a point, the definition above reduces to the usual projective representations of a
group.
Example5.4. — (1) Consider th&!-central extension as in Example 2.26(1). A twisted vector

bundleE — [T, U; of rankn corresponds to vector bundlés = U; x C", where the transition
functionsa;; : U;; — GL(n,C) satisfy the twisted cocycle condition

A5k Ak; = Cijk-

Note that when the central extension is trivial, i.e;, = 1, the transition functionga;;)
define an ordinary vector bundle ovéf. In other words, a vector bundle over the groupoid
[1;; Ui = 11, Us corresponds exactly to a vector bundle o¥érin the usual sense.

(2) Consider theS*-central extension as in Example 2.26(2). let— [[, U; be a twisted
vector bundle of rank. ThenE|y, = U; x C". For allz € U; and{ € C”, denote by[(i, z, §)]
the corresponding element &1, . Write

(avga z, )‘) : [(Ja z, 5)] = [(% gz, )‘aij;a(ga $)f)} )
wherea; ;.. : G x U;; — GL,(C). Then we have the cocycle relation
ijia (9 ) k(M Y) = Cijhiap (9,2, 0y Y) ik (ghs y)-

(3) Consider the case théat is topologically trivial and thes!-central extension is given by
a groupoidS!-valued2-cocyclec(x,y) as in Eq. (2). LetE — M be a (non-equivariant) trivial
vector bundle ovel, i.e., E = M x C". ThenE — M defines a twisted vector bundle &fif
and only if there is a smooth map ' — G L(n,C) satisfying the condition:

$(2)9(y) = clz,y)d(wy), V(z,y) €T
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In the proposition below, we show that twisted vector bundles exist only whesi'tloentral
extension defines a torsion classfrt (I'*, S1).

PROPOSITION 5.5. — Let S' — R — I' = M be anS!-central extension of Lie groupoids.
Consider the following properties
(i) there exists a rank twisted vector bundle
(i) there exists aiw!-equivariant generalized homomorphigtn— GL,,(C), whereGL,,(C)
is naturally considered as afi'-central extension oPGL,,(C):

S — GL,(C) — PGL,(C);

(i)’ there exists a generalized homomorphism» PGL, (C) such thatR is the pull-back of
GL,(C) — PGL,(C);

(iii) there exists an open covél;) and ¢ : R[U;] — C* such thaty(Ar) = A4 (r) for all
Ae StandreR;

(iv) R™is atrivial extension

(v) there exists an open covél/;) and aZ,-central extensior¥,, — R'[U;] — T'[U;] =
[1U; such thatR[U;] = R’ xz, S*, whereZ,, is identified with the group of-th roots of
unity in S* c C.

Then(i) < (ii) = (iii) & (iv) © (v).

Proof. —(i) = (ii): let £ be a rank: twisted vector bundle. Sincg is locally trivial, replacing
R by R[U;] one may assume th&t > M x C" as a (non-equivariant) vector bundle. Hence the
action of R on M x C™ defines art!-equivariant homomorphism.

(i) = (i): let (U;) be an open cover oM such that there exists afi'-equivariant strict
homomorphismR[U;] — GL,,(C) (see Proposition 2.3). L&t = [[ Ry, = {(r,%) | s(r) € U;}.
Then Z is naturally endowed with a righk[U;]-action. LetE' = Z x gy,) C". ThenE is a
twisted vector bundle of rank (where the magy — M is (r,,&) — t(r)).

(i) = (iii): compose with the determinadtL,,(C) — C*.

(iii) = (iv): replacingy by v /||, we may assume that the image1pflies in S*. Define
©(A[r,...,7]) = M(r). Thenyp is a well-definedS!-equivariant homomorphism fromt™[U;]
to S'. HenceR" is a trivial extension (see Proposition 2.13).

(iv) = (iii): If ¢:R"[U;] — St is S'-equivariant, ther)(r) := p|(r,...,r)] : R[U;] — St is
the function satisfying the desired property.

(i) = (v): take R = ¢~(1) C R[U;]. Then (r,\) € R’ xz, S' — M € R[U;] is an
isomorphism.

(v) = (iii): the map[(r,\)] € R’ xz, S'+— A" € S is well-defined and satisfies (iii). O

Remark5.6. — It is worth noting that (v) means that the clasif(I'*,S!) defined by the
S'-central extensio® — T" lies in the image of the homomorphisk? (I'*, Z,,) — H?(I'*,S).

By IN(O(F, R), we denote the Grothendieck group of twisted vector bundles. As an immediate
consequence of (8 (ii), we have

COROLLARY 5.7.—Assume thatS' — R; — I'; = M;, i = 1,2, are Morita equivalent
S1-central extensions of groupoids. Then

K°(I'y,Ry) = K°(T'y, Ry).
This allows us to introduce the following
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DEFINITION 5.8.—LetI’ = M be a Lie groupoid. For any € H?(I'*,S'), denote by
K*(I'*) the Grothendieck group dfi”, R’)-twisted vector bundles, wher¢t — R’ — ' =
M' is anyS*-central extension realizing the class

This definition coincides with the definition of twisted orbifald-theory in the special case
considered by Adem and Ruan [1].

Similarly, one can also work in the category of locally compact groupoids and introduce the
K -theory groupk 2b-c°™(T'*). We will later find conditions which guarantee that the canonical
morphismK 2% (I'®) — K¢t (T'*) is an isomorphism (see Theorem 5.33).

Remark5.9. — (1) In general, (iv) does notimply (i). Even more, there does not exist a function
f:N — N such that eveny$! -central extension satisfying (iv) has a twisted vector bundle of rank
< fn).

Let us assume the contrary. Choose any intéger f(n) such thatV andn are not mutually
prime, for instanceV = n f(n). We show that there exists & -central extension of Lie groups
S! — R — T = - such that any twisted vector bundle has rgnk’ and R" is trivial.

Let R =U(N), I = R'/Z,, whereZ, is identified with the group ofith roots of unity. We
consider the central extension (of order dividing

S' - R xz, S* =T =

Suppose that there exists a ranktwisted vector bundle withh' < f(n). Then by (ii) there
exists aZ,,-equivariant group morphism: R' — GL,(C). SinceR’ = U(N) is compact, we
may assume that is an irreducible unitary representation, and sidée 7 < N, we have
7 = (det)P for somep.

Sincer is Z,-equivariant, for = €™/ we getr(wr) = wr(r) and thusoN? = w. This is
impossible sinceéV andn have a common factor.

(2) Consider the Lie groufL,(R). Its fundamental group 8. Let H be its connected double
covering. ThenH is aZ,-central extension ove$Ly(R). Let R = S* xz, H be its associated
S1-central extension ove§L(R). Then clearlyR defines a torsion class of degrze

Let us show that? — SLo(R) does not admit any finite dimensional twisted vector bundle,
i.e., a projective representation. It is known (see [59, p. 13]) that any group homomorgphism
from the universal extensiafi of SLy(R) to GL, (C) satisfies the following property:

(35) o(z-9)=0lg), VzeZgeG.

Assume that): R — GL,(C) is anS!-equivariant group homomorphism. Let

' H — GL,(C)
be its restriction tof{. Thenv' is a Zy-equivariant map. Letr:G — H andp:Z — Z, be
the canonical projections. Singé o 7: G — GL,(C) is a group homomorphism, according to
Eq. (35), we have, for anye Z andg € G,
U (n(z-9)) =¥ (p(2) - 7(9)) =¥’ (n(g)).

Since botlp andr are onto, it follows that for any € Z, and anyg € H

(36) V'(a-g)=1'(g).

This contradicts to the assumption thidtis Z,-equivariant.
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5.2. Proof of step 2

Recall that a positive elementin a C*-algebraA is said to be strictly positive ifi = a A,
which is also equivalent td = a Aa, and that every separahié& -algebra has a strictly positive
element, i.e.A is o-unital [58, 3.10.6].

LEMMA 5.10.-— Let T be a proper groupoid with Haar system acting on a u.s.c. field of
C*-algebras A — M, and A = Cy(M,A). Let (u;) € Ar such that0 < u; < 1 (see
notation(33)). The following are equivalent

() (u;) is an approximate unit forr;

(i) (u;)is an approximate unit for.

(Recall that in (ii) above, we mean thata — a for all « € A, butu; does not necessarily
belong toA.)

Proof. —(i) = (ii): it is clear sinceAr A = A according to Lemma 4.4.

(i) = (i): by assumptiom;a — a for all a € A. Sincea — ol is linear and norm-decreasing,
we have(u;a)l’ — af'. On the other hand, it is simple to see tiiata)" = u;a'. Thus, from
Lemma4.2u;b—bforallbe Ar. O

PrRoOPOSITION 5.11. — LetI" be a proper groupoid with a Haar system acting on a u.s.c. field
of C*-algebrasA — M, and A = Cy(M, A). Then(i)—(iii) are equivalent, andi) = (iv) if A
is o-unital.
(i) 3P; € Ar approximate unit ofAr consisting of projections
(iiy 3P; € Ar approximate unit ofd consisting of projections
(i) forall x € A} ande > 0, there exists,. , € (Ar)+ such thaf(a. ,) does not contain any
interval [0,6] (6 > 0) andz < & + ac 4;
(iv) there exists: € A strictly positive with the property that for adl > 0, there exists.. ., €
(Ar)+ such thatsp(ac ;) does not contain any interv§d, §] (6 > 0) andz < € + ae 4.

Proof. —(i) = (ii) follows from Lemma 5.10.
(i) = (iii): Ve > 0, by (i), there exists such thal|x — P,z P;|| < . Since
= ||z — Pz P|| + ||| P,

we see that.. . = ||z|| P; satisfies (iii).

(iii) = (iv): obvious.

(iii) = (ii): let z1,...,z, € A ande > 0. We want to find a projectior? € Ar such that
(1= P)a;||<eforalli=1,.

Let z = > zaf Choose a real numbeyr such that0 < n < ¢2/2 andn does not belong
to the spectrum oizgz/m Then the spectral projectio = 1(,, .)(a.2/2,.) Of a2/, On

[,00) is an element ofir. Sincel — P is the spectral projection af.- /, , on [0, 7], we have
(1= P)az2/2 (1 —P) <n(1—P). Now, for anyi, we have

(1-P)z(1-P)
(1 P)( 2/2_|'(152/2 w)(l_P)

=(1-P)(e*/2+n(1-P)
<e?(1-P)<e?,

so||(1 - P)z:| = ||(1 - P)zizt(1 - P)|V/2<eforalli=1,...,n

(1-P)zzi(1-P) <

NN
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(iv) = (ii): the same proof shows that if satisfies (iv), there exist projectiot € Ar such
that(1 — P;)z'/? — 0, and thereforeP;y — y forally € 21/2A=A. 0O

We note that the approximate unit is not necessarily increasing. In fact, we have the following:

PROPOSITION 5.12. — LetI" be a proper groupoid with a Haar system acting on a countably
generated u.s.c. field 6f*-algebrasA — M. Let A = Cy (M, .A). The following are equivalent
(i) there exist projection®; < P> < --- < P, in Ar such thatP;a — a for all a € Ar;
(ii) there exist projection®; < P, < --- < P, in Ar such thatP;a — a for all a € A4;
(iii) there exists € Ar strictly positive with countable spectrum.

Proof. —(i) = (ii): follows from Lemma 5.10.

(i) = (iii): take a = 377 27" (Ppy1 — Pn) (With Py = 0 by convention). Thef- 1)(a) =
P, 41, and henceP, 1 A C aA. It follows thatA = J,, P, A C a4, soa is strictly positive with
spectrum in{0} U {27 | n € N}.

(iii) = (i): take P, = 1}, ~)(a), wherea,, is a sequence decreasingdt@nd c,, ¢ sp(a).
Then clearlyP,a — a. ThusP,b — bforallbcaA=A. O

DEFINITION 5.13.— LetE be a u.s.c. Fell bundle over a locally compact groupbjd
and letA = Cy(M; E). A (T, E)-equivariant Hilbert module is ar-Hilbert module& with
isomorphisms ofd;(,-Hilbert modules

Ei(g) @4,y g — Es(g)

such that¢n)¢ = £(n¢) whenever(g, h) € I'® and (&, 7, ¢) € &,y x E,4 x Ej,. The product is
required to be continuous in the following sense: fogadl £ andn € Cy(T'; E), g — £(t(g))n(g)
belongs tos*&.

Note that€ can be canonically identified with a field of Banach spaces dfesuch that
for any x € M the fiber &, at x is an A, -Hilbert module (see Proposition A.4¥. being
(T, E)-equivariant means, roughly speaking, that this field of Banach spaces is equipped with
an E-action.

DEFINITION 5.14. — LetT" be a locally compact groupoid with Haar systefha u.s.c. Fell
bundle overl’, A = Cy(M; E) and€ a (T', E')-equivariantA-Hilbert module. Ther€ is said
to be approximately finitely generated projective (AFGP) if there exist projecfions Kr (&)
such thatP¢ — ¢ forall £ € €.

For the notatioriCr (£), see Eq. (32).

LEmMmMA 5.15.—If Ais aC*-algebra and€ an A-Hilbert module, thefdd, € K£(€) implies
that £ is finitely generated projective, and the converse hold$ i§ unital. This explains the
terminology.

Proof. —This is proved in the unital case in [72, Theorem 15.4.2, Remark 15.4.3]. Below we
outline a proof for the direction%- ".

If Id¢ is compact, thefide can be approximated by finite rank operators, i.e. there €xist
suchthats =37 | T¢, ,,. satisfies|Id — S|| < 1. In particular,S is invertible, and therefore

Idg = S_l.S' — ZTS_lﬁiﬂh'
i=1

Replacing; by S~1¢;, we may assume théfle = > | T, ... Now, define
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U:£— A",
g'_) (<7717£>a--~7<7]na§>>7
VA" - &,
(ala"'aan)'_)glal+"'+€nan~

ThenVU =1dg. HenceP = UV is an idempotent irC(A™) = M,,(A) and€ = PA™ as right
A-Hilbert modules. O

PROPOSITION 5.16. — LetI" be a proper groupoid with a Haar systeifi,a u.s.c. Fell bundle
overI', A= Cy(M; E) and€ a (T', E)-equivariant A-Hilbert module. Ther€ is AFGP if and
only if Cr(€) has an approximate unit consisting of projections.

Proof. —
Vé. S (‘:,Png —>§ < V§ € 8, (1 — P,L)T&g(l — Pn) e T(1,p7L)57(1,Pn)£ —0
= vV¢nel,(1-P)Te,(1-P,)—0

sinceT,, = (1/4) Z Wl twm,e4wn

wi=1

= VIek(&),1-P,)T(1-P,)—0

<= (P,) is an approximate unit folc (&)

< (P,) is an approximate unit fofr (€)
by Lemma 5.10

In the second from the last equivalence, we used the fact that
IT(1 = Pa)|| = [I(T(1 = P))*T(1 = Po)[['? = ||(1 = P)T*T(1 = P2 O

An immediate consequence is the following:

COROLLARY 5.17.— Let S' — R — T = M be an S'-central extension of proper Lie
groupoids, and let. = R xg: C be the associated complex line bundle. THE; L) @ H
is AFGP if and only ifC* (T"; R) ® C(H) has an approximate unit consisting of projections.

Proof. —Apply Proposition 5.16 t& = L?(T'; L) ® H and use Proposition 4.3.0

COROLLARY 5.18. —LetI be a proper Lie groupoid, theh?(I") @ H is AFGP if and only if
Cr (') ® K(H) has an approximate unit consisting of projections.

Proof. —Apply Corollary 5.17 to the trivial5' -central extension. O
We end this subsection by listing some examples of AFGP modules.

PrROPOSITION 5.19. — If G is a compact group and a unitary representation ofs on a
separable Hilbert spacHl (considered as & -equivariantC-Hilbert modulg, thenH is AFGP.

Proof. —Choose a strictly positive elememtc (). Sincea is a compact operator on the
Hilbert spaceH, its spectrum is countable. By Propositions 5.16 and Hl3,AFGP. O

The following well known result (see [21, Corollary 15.1.4] and [41]) is a direct consequence
of the above Proposition 5.19.

CoROLLARY 5.20. - If G is a compact group, then every irreducible unitary representation
of G is finite dimensional.
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Proof. —Assume thatr is an irreducible representation dif,. Let P, be a sequence of
compact,G-invariant projections i, such thatP,¢ — ¢ for all £. Since the representation
is irreducible, we have eithd?,, = 0 or P,, = Id. ThereforeP,, = Id for n large enough. Since
P, is a compact projection on a Hilbert space, its rafeis finite dimensional. O

COROLLARY 5.21. —If I"is a transformation groupoid: x M = M, whereM is a compact
space and> is a compact group, theh?(T") @ H is AFGP.

Proof. —Since
PMOeH2C(M)® L*(G)®H,

the C*-algebralC(L3(I',H)) = C(M) ® K(L?(G)) ® K(H) is the tensor product of thre@*-
algebras having approximate units consisting of invariant projectiomns.

5.3. Proof of step 3

We need a sequence of lemmas.

LEMMA 5.22. - Let M be a locally compact spacé; a Hermitian vector bundle ang =
Co(M,F) its space of continuous sections vanishing at infinity considered as a
Co(M)-Hilbert module. Therdd z € C(F) (see notatior{31)).

Proof. —For every compact subspageof M, the restriction ofF to K, i.e. theC'(K)-Hilbert
module Fr = F ®¢,(amr) C(K), is the space of sections &f, thus by Swan theorem, is a
projective finitely generated'(K')-module. Therefore, from Remark 5.15, the identity map on
Fx is compact.

Let us show that this implieBlx € C(F). Let , » € C.(M). Choose an open sét and a
compact seK such thatV ¢ K ¢ M andU contains the supports of bothandt. Sinceld £,
is compact, there exisf;, ; € Fx such thatldg, = >, T¢, ,,. Let & =& andn] = ;.
Thenpy =5, Ter oy € L(Fk), wherepy denotes the multiplication operator acting 6n
However sincep, ¢ and all¢/, n; are all supported i/, it is not hard to check that the equality
o =3, Ter oy also holds inL(F). Therefore,py is compact for allp, 1 € C.(M). By a
density argumenty is compact for allp € Co(M), i.e.Idr € C(F). O

LEMMA 5.23.— Let S' - R, = T' =2 M, i = 1,2, be S'-central extensions of the Lie
groupoidT’, and&;, ¢ = 1,2, (T, R;)-equivariantCy (M )-Hilbert modules. Suppose thét is
AFGP andldg, € C(&2). Then&' := & ®c, ) &2 is AFGP as a(I', R ® Ry)-equivariant
Co(M)-Hilbert module.

Proof. —By assumption, there exists an approximate uhjte Kr(&;) consisting of pro-
jections. LetP; = P, ®¢, () Ide,. It is clear thatP,, is an invariant projection, and that
|P.(z)|]] — 0 whenz — 0 in M/T. Let us show thatP, € C(&'). For all ¢, ¢ € Co(M),
()P}, = (0Pp) ®cyary ¥ € K(E'). It follows that ¢ P;, € K(E') for all ¢ € Co(M), i.e.
P/ € C(&"). ThereforeP, € Kr(€'), and it is clear thaP,, is an approximate unit consisting
of projections. O

Before we proceed, we need to introduce some notation.

Let E be a u.s.c. Fell bundle over the group@idA = Cy(M; E), and let€ be a (possibly
non-equivariant)A-Hilbert module. Consider the field of Banach spaces dvewith fiber
Ei(g) @4, By, determined by sections of the forp(t(g)) @ (g) wheren € £ and( € Co(T; E)
(see Proposition A.2). Denote lgy.(I'; £, £) the space of compactly supported sections.
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EndowC.(T'; E, £) with an A-valued scalar product

(€.m) () = / (€(9).1(9)) Naldg), Ve M,

g€y

and denote by ?(T'; E, €) its completion. Sincd?(T'; E, £) is an A-Hilbert module, it can be
considered as a field of Banach spaces dverdenote byL?(T',; E, £) its fiber atz, which is
an A, -Hilbert module.

The usual action ofl', E) on L%(T',; E) (see Appendix A) extends naturally to an action on
L?(T; E, £), which is defined as follows:

L*(T; B, E)®a, By1 2 L2 (T E,E),

E@n— (g E&(g7)®n) €€y @ Egy @ Eyr 2 E4y) @ B,
If moreover¢ is a(T', £)-equivariant module, then sinég ) ®4,,, £y = Es(g), We get

37) L*(T;E,&) = L*(T) ®cy(m) €,

where on the left-hand side viiergetthe equivariant structure afy while the right-hand side is
endowed with a “diagonal” action. The isomorphism above is well-known in the case of a Hilbert
spaceH endowed with a unitary representatigm— U, of a locally compact groug-. In this

case, the isomorphisth? (G, H) — L?(G) @ H (whereH is endowed with thérivial action of

G on the left-hand side buf actsdiagonallyon the right-hand side) is given by

E—n(g) =Uy(&(9)).

PROPOSITION 5.24. — Assume thal’ = M is a proper Lie groupoid such that//T" is
compact ands! — R — T'is an S'-central extension. Let = R x ¢: C. If L?(T') @ H is AFGP,
and if there exists a topologicéle. without differentiable structujél’, R)-twisted vector bundle
(of finite rank, thenL?(T'; L) ® H is AFGP.

Proof. —Let F' be a(T", R)-twisted vector bundle. Sindé is proper,F can be endowed with
an invariant Hermitian metric, and therefore can be considered(Bsi)-equivariant Hilbert
module. As a (non-equivariant) continuous field of Hilbert spaces averF x H — M is
locally trivial with infinite dimensional fibers. According to the triviality theorem of Dixmier and
Douady [22],F x H — M is isomorphic toM x H — M. Moreover, the space of continuous
sectionsF = Cy(M, F) of F — M can be considered as(R, R)-equivariantC, (M )-module
such thafld» € Kr(F) (see Lemma 5.22).

SinceL?(I") ® H is AFGP as d'-equivariant Hilbert module, according to Lemma 5.23 and
Lemma 5.22, we see thag(T") @H®¢, ) F is AFGP as 4TI, R)-equivariant Hilbert module.
Using the isomorphism (37), we deduce tH&(T; L,H ® F) is AFGP. By the triviality of
the Hilbert bundleF” x H, we getL*(I'; L, H® F) = L*(T; L,Co(M) @ H) = L*(I'; L) ® H.
ThereforeL?(I'; L) ® H is AFGP. O

5.4. Proof of step 4

PROPOSITION 5.25 (Stabilization theorem). £etI" = M be a proper groupoid with a Haar
system, and® a u.s.c. Fell bundle ovel'. Let A = Cy(M; E). Assume thaf is a (T, E)-
equivariant countably generated-Hilbert module. Then we have the following isomorphism
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of (I', E')-equivariant HilbertC*-modules
EQLYT;E)QH=L*(T;E)®H.

Proof. —SinceT is proper,Cy(M) is (as al'-equivariantCy(M)-Hilbert module) a direct
factor of L?(T') [68]. Hence¢ is a direct factor of.%(I') @, (a) € = L*(I'; E, £). By Kasparov's
stabilization theorem for non equivariant modules ([72, Theorem 15.£.63)a direct factor of
A ®H, and thu is a direct factor of.?(T; E, A® H) = L*(I'; E) @ H. That is, there exist§’
such that€ @ & = L*(T'; E) ® H. Therefore, we have

L*TE)oHYL*(T;E)® (HoHe - )X EQE' @l @
>l (T;E)®H. O

COROLLARY 5.26.— Let I' = M be a proper Lie groupoidS' — R — T = M an
Sl-central extension, and = R x¢: C. Then there is an equivalence of categories between
the category of ', R)-equivariantCy (M )-Hilbert modules€ such thatlds € Kr(€) and the
category of projections i (T'; R) ® K(H).

Proof. —As usual, let
L=Rxg C.

Recall from Proposition 4.3 that* (T'; R) ® K (H) is isomorphic toCr(L?(T; L) ® H). Given a
projectionP € Kr(L?(T; L) ®H), £ = P(L*(T"; L)®H) is a(T, R)-equivariant Hilbert module.
Itis clear thafldg € Kr(E).

Conversely, if€ is a countably generated’, R)-equivariant Hilbert module such thhls €
Kr(€), we know, from the stabilization Theorem 5.25, that there is an invariant projeEtion
such that = P(L?(T'; L) ® H). Sinceldg € Kr (&), we haveP € Kr(L?(T'; L) ® H).

A standard argument shows that two projectiéhsaind P, € Kr(L?(T; L) @ H) are Murray—
Von Neumann equivalent if and only if the associated Hilbert modules are isomorphic.

5.5. Proof of step 5

The next proposition generalizes Serre—Swan theorem? ifs a compact space, there is
an equivalence of categories between vector bundled/oand finitely generated projective
C(M)-modules (and thu&®(M) = Ko(C(M))).

PROPOSITION 5.27. — Assume thal’ = M is a proper Lie groupoid such that//I" is

compact, ands’ — R — I' = M is an S*-central extension.

(a) The forgetful functor from the category of topologi¢iad. without differentiable structuye
(T, R)-twisted vector bundles endowed with @iinvariant Hermitian metric to the
category of T, R)-twisted vector bundles is an equivalence of categories.

(b) The functor from the category of topologiddl, R)-twisted vector bundles endowed with
an R-invariant metric to the category dfl’, R)-equivariantCy (M )-Hilbert modules€
such thaflds € Kr(€), defined by

&:F— Cy(M,F),

is an equivalence of categories.

Proof. —-To prove (a), note that by an averaging procedure using cutoff functions (see
Definition 4.1), every twisted vector bundle can be endowed with an invariant Hermitian metric.
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If two Hermitian R-equivariant vector bundle®, and F, are isomorphic ag-equivariant vector
bundles, then by the polar decomposition, they must be isometrically isomorphic. Indeed, if
T,:F , — Fy, is anR-equivariant isomorphism, théi, := T, (T, T,)~'/?, Vo € M, defines

an R-equivariant isometric isomorphism.

Let us prove (b). From Lemma 5.22 and the fact thatI’ is compact, it is easy to see
that& := ®(F) satisfieslds € Kr(€), and can be endowed with(@, R)-action so that is
equivariant. Therefor@ is well-defined and functorial.

Now, for every (T, R)-equivariantCy (M )-Hilbert module€ satisfyingIlde € Kr(€), € is
isomorphic toCy(M, F'), where F' is a continuous field of Hilbert spaces dd with fiber
F, =& ®e,y, C (see Appendix A). For every compakt C M, sincely is a finitely generated
projective module ove€(K), it follows from Swan theorem thafx is a vector bundle over
K (i.e., a locally trivial field of finite dimensional Hilbert spaces). Since this is true for every
compactK, it follows that ' is a vector bundle.

Define¥ (&) = F. Itis clear thatP and ¥ are inverse from each otherg

5.6. The main theorem: continuous case

THEOREM 5.28. — LetI' = M be a Lie groupoid, andb! — R — ' = M an S*-central
extension. Denote hy its corresponding class iff?(I'*,S'). Assume that
(8) I' = M is proper,
(b) M/T is compact
(c) L?(T') ® H is AFGP. In other words, there exists a seque(g) such that
(i) P, = (Pu(x))zenm is a continuous section of the field of compact operators
K(L*(T) @ H) — M;
(i) z+— P,(x)is-equivariant
(i) P, () is afinite rank projection for alk;
(iv) for every compactly supported continuous sectjiaf 52(1“) Q@ H, (P8)(x)—&(x)
uniformly onM whenn — co.
(d) there exists 4I", R)-twisted vector bundléof finite rank.
ThenK?(T'*) is isomorphic toK 2b:cont ().

Proof. —It is known that if B is a stably unitalC*-algebra, i.e.B ® K(H) has an approximate
identity consisting of projections, thef((B) is the Grothendieck group of projections in
B ® K(H) [11, Proposition 5.5.5]. We want to apply this factlBo= C;*(T'; L).

Since L?(T'; L) ® H is AFGP according to Proposition 5.24, it follows from Proposition 4.3
and Proposition 5.16 that (T'; R) is stably unital. Hence<y(C(T'; R)) is the Grothendieck
group of projections irC(T'; R) ® K(H). Therefore it is the Grothendieck group @f, R)-
twisted vector bundles according to Corollary 5.26 and Proposition 5.27.

Remark5.29. — Note that conditions (a), (b), (c) and (d) are invariant under Morita equiv-
alence according to Lemma 2.21, Corollary 5.18 and Proposition 5.5.

We end this subsection by describing an explicit isomorphistil'®) — K2b:cont(T®). We
will use the Fredholm picture fak'? (I'*) (Theorem 4.6).

Let T € FY. By definition, there existsS € F{ such thatST = 1 + K where K €
Kr(L*(T;L) ® H). By Lemma 4.2, we havé& = K} + KT where Ko = >i" | T¢, ,, and
| K, || < 1is compact. Sincé&?(T'; L) @ H is AFGP, we may assume thatc P(L?(T'; L) @ H),
whereP € Kr(L*(T'; L) @ H) is a projection. Then

A+K)H)'ST1-P)=(1+K)'A+ K] +K})(1—P)
—1-P+((1+ KD 'Ko(1-P))"
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r
=1-P+ <Z T(1+K1F)—15i,(1P)m)

=1-P

ReplacingT by T(1 — P) and S by (1 + K{)~1S, we may assume the§7" equals to the
projectionl — P. ThusT'S is also a projection. L&) = 1 —T'S. Then the image dff'] € K2(T'*)
iS[P] - Q) € Kbeomt ().

Conversely, assume th&tis a projection inCr(L?(T'; L) ® H). Let £ = P(L*(T; L) @ H),
and

T:L*(T;)eH=2Ee L*(T;L)@H— LA(T;L) @ H

be the projection. More explicitly,

T:L*(I;L) @ He (3(N) — L3(T; L) @ H® 4(N),

(gn)nEO — (Pgn-‘rl =+ (1 - P)§7L)n>0'
Then the maps 2>« (T'*) — K2(T'*) is given by[P] — [T].
5.7. Discussion on the conditions in Theorem 5.28

We would like to remark that conditions (a)—(d) are all necessary for Theorem 5.28 to hold.
Let us go over these conditions one by one.

1) Condition (a) cannot be avoided even whers a groupG. Note that theKy-group of
C*(@G) in general is not equal to the (finite dimensional) representation ridgwhenG is not
compact.

2) WhenT is the manifoldR, Ky(C;(T")) = {0} while vector bundles ofR are obviously
classified by their rank. Thus, condition (b) cannot be removed.

3) Condition (c) is not always true for every proper Lie groupoid. For instancé,etSU (2),
andI" be the transformation groupoi@ x G = G, whereG acts on itself by conjugation.
It is known thatH3(T'*,Z) = H(G,Z) = Z [47]. Let S' — R —T'= M be anS*-central
extension corresponding to the generatoHgf(G,Z). ThenR is clearly a proper Lie groupoid,
and C;(R) = @,,c,, C;(I'; R™) according to Proposition 3.2. Assume th@t(R) is stably
unital. ThenC;: (T'; R) is stably unital since a quotient of a stably unit&i-algebra is obviously
stably unital. Therefore it follows that there exists a projectio®’ji{I"; R) ® K(H), and hence
a (T, L)-twisted vector bundle by Corollary 5.26. This contradicts Proposition 5.5. In fact the
above argument shows that (c) fails for any non-torsidrcentral extension of a proper Lie
groupoid.

However, note that condition (c) is fulfilled whénis a transformation groupoi@ x M = M,
whereG is a compact Lie group acting on a compact manifdld(Corollary 5.21), or whei®
is a compact étale groupoid (since in this ca§¢I') is unital).

4) Condition (d) implies that the classof the S'-central extension i/ (I'*, S') must be a
torsion. We conjecture that the converse holds:

CONJECTURE — LetT' = M be a proper Lie groupoid such thdt/ /T is compact. Assume
that S' — R — I = M is an S'-central extension of Lie groupoids which corresponds to a
torsion class in/?(T'*, St). Then there exists &', R)-twisted vector bundle.

It is known by Serre-Grothendieck theorem [23,31] that Conjecture 5.7 holds Wwhen
Morita equivalent to a compact manifold. It also holdd'ifis a compact group. In this case,
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R is also a compact group, 96¥(R) is stably unital (see, for instance, Corollary 5.17 and
Proposition 5.19). Therefore there always exists a twisted vector bundle, i.e., a finite dimensional
projective representation. However, the conjecture remains open even for orbifold groupoids (i.e.
étale proper groupoids).

One possibility to prove this conjecture is to generalize Grothendieck’s proof [31, Theo-
rem 1.6] to the simplicial CW-complek® corresponding to the groupold This requires some
sophisticated study of homotopy theory of simplicial manifolds. In particular, the following ques-
tion arises naturally:

Question— Let PU(oc0) be the inductive limit ofPU (n), andI’ = M a proper Lie groupoid
such thatM//T" is compact. Lety be an element i/?(I'*,Q/Z). Doesy always induce a map
from simplicial manifoldd™® to PU(c0)®, wherel is some Lie groupoid Morita equivalentT®

Finally, we list some consequences of Theorem 5.28 in various special cases.

COROLLARY 5.30. -Let M be a compact manifold and a torsion class inf73(M,Z). Then
K2 (M) is isomorphic toK 2% comt (M).

Proof. —Use Remark 5.29 and the discussion following the conjecture abave.

COROLLARY 5.31. —Let M be a compact manifold an@ a compact Lie group. Assume that
a € HE(M,Z) is atorsion class which admits at least one twisted vector bundle. Kifen(M)

is isomorphic toK 2%:<°"¢(T'*), wherel is the transformation groupoi@ x M = M.

Note that in the above case when= 0, twisted vector bundles simply correspond to
G-equivariant vector bundles ovéd, which always exist. Corollary 5.31 simply implies that
the original definition of equivariank’-theory of Segal [65] is equivalent to th€-theory of the
crossed produat*-algebraCy (M) x G.

COROLLARY 5.32. -Let X be a compact orbifold. Assume thtis reduced, or thaX can
be represented by a compact étale groupoid. ¢f H*(X,Z) is a torsion which admits a twisted
vector bundle, thed? (X) is isomorphic toK > <"t (X).

Proof. —Recall that if an orbifold is reduced, it can be represented by a crossed-product of a
manifold by a compact group, and therefore the result follows from Corollary 5.31.

If T is a compact étale groupoid, therf:(T") is unital (the unit being represented by the
characteristic function df(?)), and therefore condition (c) is fulfilled.

5.8. The main theorem: smooth case

Our goal in this subsection is to prove the analogue of Theorem 5.28 for smooth vector
bundles. The main result is the following

THEOREM 5.33. — Under the same hypothesis as in Theote28 we have the following
commutative diagram of isomorphisms

(38) Ko(C*(T, R)) ——= K2(T*)

L

KO(C:(I‘;R)) L> Kgéb,cont(l—u)

)
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where: and i’ are naturally definedV and V'’ are defined as follows. For every projection
PeCHT;R)® K(H),

V'(P) = P(L*(I; L) @ H),
and for every projectiot? € C2°(T'; R) @ K(H,,),

V(P)=P(L* ;L) ® H,,).

HereH,, denotes the:-dimensional Hilbert spac€™ C H.

It follows from Theorem 5.28 thalt”’ is well-defined and is an isomorphism. To prove that
and:’ are isomorphisms, we will first show th@g® (', R) is stable under holomorphic functional
calculus. Let us recall the definition below.

DEFINITION 5.34. — Assume thdf is a subalgebra of a Banach algeli#alLet B andB be
the unitization of 3 and B respectively.3 is said to be stable under holomorphic functional
calculus if for anyb € B and anyf holomorphic on a neighborhood ef(b), we havef (b) € B.

If furthermore 1 is endowed with a structure of Fréchet algebra such that the inclusion
B — B is continuous, then the following are equivalent (see [13, Appendix] or [64, Lemma 1.2,
Theorem 2.1]):

(i) B is stable under holomorphic calculus;
(i) for all n, M, (B) is stable under holomorphic calculus;

(iii) every element inB which is invertible inB is actually invertible in3.
When any of the conditions above is satisfied, the inclufiear B induces an isomorphism of
K-theory.

Assume now thal' andM are manifolds and:T" — M is a submersionI{ is not necessarily
a groupoid). LetE — I be a Hermitian vector bundle. Assume that there exists a smooth
s-systemu = (p1z)zen, 1-€. 11, IS @ measure o whose support i€, = s~*(x) such that
for every f € C°(T") the functionz +— ngFw f(9) pz(dg) is smooth.

Remark5.35. — We will be interested in the case tig#dt — R — I' = M is an S'-central
extension of Lie groupoidss is the source mapl’ is the associated line bundle apdis a
smooth Haar system. It is well-known that such a Haar system exists on any Lie groupoid.

Let F' C I" be a closed subset such that the restrictign F' — M is proper. Let
Ap={acC™(T x,T,pri(E) @ pr3(E*)) | supfa) C F xs F},
wherepr,, pry:I' x, I' — I are the projections. We endad» with the convolution product

(axb)(g,h) = / ag.k) - bk, h) prage) (dR),
FS(g)

where- denotes the obvious produkl, ® £ ® B, ® £} — E, ® Ej, and the adjoint
(@*)(g,h) = a(h, g)".
Foranyé € C°(T',; E), let
(m2(a)(€)) (9) = (a *&)(9) = / a(g, h)&(h) pz (dh).-
heT,
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Thena — 7, (a) defines ax-representation ofdr in £(L?*(I';; E)). Assume now that we are
given a directed system (ordered by inclusion) of closed suligetsl” such thatsz, is proper
forall i. Let A =1lim; Ag,, and A be the completion afd under the norm

i

||lal| = sup H7r$(a)H
reM

Denote byA and.4 the unitization of4 and.4, respectively.
LEMMA 5.36. — Ais asubalgebra ofi, and is stable under holomorphic functional calculus.

Proof. —Let b € A be invertible inA. We need to show thabns invertible inA. SinceA is
dense ind, there exists: € A such that|1 — bz|| < 1/3. Sinceb—! = z(bx) !, we may assume
that||1 — b]| < 1/3. Leta = 1 — b. We haveii = X + b, where) € C, || < 1/3 andb € A. Thus
6]l = |la — || < 2/3. Leta=(1—X)"1b. Since(1 —a)~t = (1—-\)"1(1—a)~}, it suffices to
prove that(1 — a)~! € A whenever € A and||a|| < 1.

Leta, =ax*xax---*xa (ntimes). We show that the su@;’f’:l an, and as well as all its
derivatives, converges uniformly on every compact set.

Sincea, (g,h) = [an—1 * a(-,h)](g), we have

l|an(-, R) |an—1xa(-,h)|| < lla)*|a(;,

HLQ(F ) | )HLQ(FS(M)

and similarly,
-1
||am(g, ')HLZ(FS(y)) < laf™ Ha(g, ')HL2(1‘S(Q))'
From the Cauchy—Schwarz inequality,

o (010] < a9 e, loa ) s,

<lal™ = lalg, M o, laC W 2,

It follows that} _, a,, converges uniformly on every compact subsel of, I'. Similarly, one
shows that all derivatives converge uniformly on any compact subset.

PROPOSITION 5.37. — Let S — R — I' = M be anS'-central extension of Lie groupoids.
Assume thatl’ is proper. Then the subalgebr&’>*(I';R) of C*(I';R) is stable under
holomorphic functional calculus.

Proof. —\We use the construction above, wherd® — M is the source map and the fiber
bundleE is L = R x g1 C. Let K C M be a compact subset, atk = I'“. By the properness
of I', sz, is a proper map. As above, define= limx Arx . Denote byA" the subspace ofl
consisting off'-invariant elements, i.e. elements satisfyir{g~y, hy) = a(g, k), whereL, ® L},
andLgy, @ L, are both identified witlL,;,-.. Consider the map

(39) C.(T;R) — A"
fra,

given bya(g,h) = f(gh™') € Ly,-1+ = Ly @ L. This map is well-defined. Indeed, jf is
compactly supported, then there exists a compact suldsef T' such that supf) c T'%.
Therefore it follows thate € Arx N A". Conversely, if F = T'% anda € Ar N A", then
f(g) = a(g,s(g)) is supported o'£, which is compact by the properness assumption, and
a(g,h) = f(gh™1) sincea is I'-invariant. Therefore, the map defined by Eq. (39) is bijective.
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It is not hard to check that it is an isometrieisomorphism which extends to an isomorphism
C(T'; R) = A. The conclusion thus follows from Lemma 5.360

Remark5.38. — Proposition 5.37 was proved in [6, Lemma 7.5] in the non-twisted case for the
crossed-product of a discrete group acting properly on a manifold.

As an immediate consequence, we have the following

COROLLARY 5.39. — The inclusioni: C2°(T'; R) — C(I'; R) induces an isomorphism of
K-theory.

We now return to the diagram (38), and show tlatis well-defined. We first need two
preliminary lemmas.

LEMMA 5.40.- Let P € C}(I'; R) ® K be a projection ance > 0. Then there exists a
projection P’ € C°(T'; R) ® Ky, whereK, denotes the algebra of finite rank operators Hn
such that|P’ — P|| <e.

Proof. —Leta € C°(T'; R) ® Ky such thatja — P|| < £/2. Then the spectrum afis contained
in the open set/ = B(0,¢/2) U B(1,e/2) C C. Let f:U — C be the function which is equal
to 0 on B(0,¢/2) and is equal to 1 oB3(1,e/2). Then P’ := f(a) is a projection such that
|IP" —al <e/2,andP’ € C*(T'; R) ® Ky by Proposition 5.37. O

LEMMA 5.41. — Suppose thadl/ is a manifold andr: E — M a Hermitian vector bundle in
the topological sense. Assume that we are given a subspac€' (M, E) such that

(a) SisaC>(M)-module

(b) forall &, ne S, x— (£(x),n(zx)) is a smooth function od/;

(c) {¢(z) | € € S}isdenseinE, forall z.
Then there exists a unique smooth structure on the vector biihsleh thatS consists of smooth
sections.

Proof. —By the Gram—Schmidt orthonormalization process, there exists an open(Egyerf
M and section§; 1, . ..,&;,, € Ssuchthatforalk: € U;, (§;1(2), ..., & »(x)) is an orthonormal
basis ofE,.. Thus, we get local trivializations; : 7= (U;) = U; x C". Since(¢; x, &;,1) is smooth
forall i, 5, k, 1, the change of coordinates o ;' : (U;NU;) x C"* — (U; NU;) x C" is smooth,
thus we get a smooth structure @ From (b), it is clear that all elements 6f are smooth
sections.

Conversely, it is clear that iF has a second smooth structure such that all elemengs of
are smooth sections, then must be smooth for all, and therefore the two smooth structures
coincide. O

Now we return to the proof of Theorem 5.33.

Proof of Theorem 5.33.By assumption (see proof of Theorem 5.28), there exists an
approximate uni{2,) in C;(I'; R) ® K consisting of projections. According to Lemma 5.40,
there is a projection?, € C°(I'; R) ® Ko such that|| P, — P,|| < 1/n. It is clear that
(P}) is an approximate unit o€>°(T'; R) ® K, consisting of projections. Hence according
to [12, Proposition 5.5.5]K,(C°(I'; R) ® Ky) is the Grothendieck group of projections in
C*(I; R) ® K.

Assume now thatP € C*(I';R) ® Ko C L(L*(T'; L) ® H) is a projection. LetE =
P(L*(I';R) ® H). Then E is a twisted vector bundle in the topological sense. We say that a
section ofE' is smooth if it is of the formz — P,&,., where € C*(I'; L) ® H,, for somen.
Since for any two smooth sectiomsand ¢, = — (n(z),{(z)) is smooth, the space of smooth
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sections defines a smooth structurefoaccording to Lemma 5.41. It follows that the mEpn
(38) is well-defined. Also it is clear that the diagram (38) is commutative.

Finally, we prove that all maps in (38) are isomorphisms. Fand 1/, this follows from
Theorem 5.28 and Corollary 5.39. It remains to show that injective.

Assume thatE and F' are smooth twisted vector bundles such thaf — [F] € keri'.
Then there exists a topological twisted vector bun@lsuch thatE & G = F & G. From the
proof of Theorem 5.28, we know that there exists a projecfioa C;(T'; R) ® K such that
G =~ P(L*(T; R)®H). According to Lemma 5.40, there exists a projecti¥re C>°(T'; R) ® K
such thaf| P — P|| < 1. This implies thatG = P’(L*(T'; R) ® H). Therefore we can assume that
G is a smooth vector bundle. Replaciagby £ ¢ G andF by F' & G, we see thal’ and F are
isomorphic as topological twisted vector bundles. Tet (T,.).cas be an isomorphism from
E'to F. As in the proof of Proposition 5.27, we can assume fhats isometric for allz. Let
T':E — F be a (fiberwise linear, non equivariant) smooth morphism of vector bundles such
that ||T,, — T,|| < 1/2 for all z. Choose a smooth cutoff functian M — R for the proper
groupoidR. Let

T = /ar(Tg(T))c(s(r)) AT (dr).
Rz
SinceT is R-invariant,

172~ Tl < / o (T2 = Tu)els(r)) A7) < 1/2 [ e(s(r) x2(dr) =172

R=

ThereforeT is an isomorphism for alt € M. Moreover, it is clear that — T is equivariant.
It follows that E' and " are isomorphic as smooth twisted vector bundles, and[#ius [F] = 0.
This completes the proof of the theoren

6. The product K, (I'*) ® K7(I'*) — K.'7,(I'*)

6.1. The main idea

LetS! = R—T = M andS' — R’ — T = M be S'-central extensions, and letand3 be
their corresponding classes#f?(I'*,S1). It is simple to see that there is a bilinear product

K (%) @ Kg*(D®) — K% (%)

defined as follows: lef be a (T, R)-twisted vector bundle an&’ a (T, R’)-twisted vector
bundle, then the product | and[E’] is [E ® E'].
The objective of this section is to prove the following

THEOREM 6.1. —Let ' = M be a proper Lie groupoid such that//T" is compact, andy,
B € H?(T*,S%). Then there exists a bilinear, associative product

(40) Ki(D*) @ K(I®) — K,

(i, j € {0,1}), which is compatible with the canonical maf§®*(I'*) — K9(I'*) (v €
H2(T*,SY)).
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In the theorem above, the canonical maﬂqf”(l“) — KY(I'*) is constructed as in
Section 5.6. Note that the constructionobnly requires the groupoidl to be proper, while
the construction of the inverse ofas described in Section 5.6 requires all the hypotheses in
Theorem 5.28.

Recall that in the Fredholm picture of twistéd-theory (see Theorem 3.14), the difficulty in
constructing the product (40) is to obtain a Fredholm oper&tout of two Fredholm operators
T, and T,. Exactly the same difficulty appears in the construction of the Kasparov product
[11]. The existence of the produsf K (A, D) x KK(D,B) — KK (A, B) (with A, D and B
separabl€'*-algebras) is proved using non constructive methods (in particular the Hahn—Banach
theorem), although explicit computations are possible in particular cases.

As a matter of fact, one can show, using Theorem 3.14, that for a proper groupoid with compact
orbit spacel’ = M, the untwistedK -theory groupsk(I'*) are isomorphic to the equivariant
KK-groupsK Ki(Co(M),Co(M)) defined by Le Gall [44]. The existence of the product thus
follows from the product inK Kr-theory.

From the above discussion, itis quite natural to generaliz&thebifunctor further, and then
try to identify it with the twistedK -theory groups: this is the object of this section. We will
assume that the reader has some basic knowledge aligutheory [11, Chapter 8]. Since most
of the theory is already done in [11] or [44], we will only give those definitions and proofs that
need substantial modification.

6.2. The K K bifunctor

Let us first recall a definition:

DEFINITION 6.2. —LetA andB beC*-algebras. AC*-correspondence from to B is a pair
(&, f) wheref is a B-Hilbert module andf is a non-degeneratehomomorphism fromA to
L(E).

Recall that a--homomorphismr: A — £(€) is said to be non-degenerate if the closed linear
span ofr(A)E is equal tof; by Cohen’s theorem, this is equivalentit@A)E = £. In particular,
if f: A— B isax-homomorphism, theyf induces aC*-correspondencgB, f).
Correspondences can be composed using the internal tensor product of Hilbert modules: if
(€, f) is aC*-correspondence from to B and (&', g) is aC*-correspondence from to D,
then(&',g9) o (€, f) =(E®, &, f ®1) is aC*-correspondence from to D. Therefore, there is
a categoryC whose objects ar€'*-algebras and morphisms af&-correspondences. And also
there is a functor from the usual category@f-algebrasC* to C (given by the magf — (B, f)
as above). Moreover, isomorphism in the categbry Morita equivalence.
Recall that given a locally compact grodp, Kasparov constructed a bifunctor from the
category ofG-C*-algebras to abelian grougsl, B) — K K¢ (A, B) which is covariant inB
and contravariant iai, and which is endowed with an associative product

KKq(A,B)® KKq(B,D) — KKq(A, D).

This construction was generalized by Le Gall to locally compact groupoids admitting Haar
systems [44]. Our goal in this subsection is to generalize this construction further, by allowing
the groupoid to act by Morita equivalences on @ealgebras instead of by-automorphisms,
i.e. to work in the category instead ofC*. This idea was communicated to us by Le Gall.

For convenience, let us introduce some terminology.

DEFINITION 6.3.—LetI’ = M be a locally compact groupoid. Let be a C*-algebra.
A generalized actioof I" on A is given by
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(i) au.s.c. Fell bundled overT;
(i) anisomorphismA = Cy(M; A).

For instance, ifl" acts onA in the usual sense, then there exists a u.s.c. fietd*eélgebras
A’ with fiber A], = A, atx € M such thatd = Cy(M;.A’), and the action of' on A induces
+-isomorphismsy, : A ) — A ). Let A= s"A’, with the product

Ag @ A = As(g) @ As(ny = As(n) = Agh,
(a,b) — ap-1(a)b
and the involution
Ag = Agg) = Ayg) = Ag-1,
ar og(a®).

ThenA is a u.s.c. Fell bundle ovét, and thus defines a generalized actiol' @ A.

If A and B are C*-algebras endowed with &-action, there is a notion of equivariant
x-homomorphismf: A — B. More generally, we want to introduce the definition of an
equivariant correspondence (Definition 6.4).

We first introduce some notation: ldtbe aC*-algebra endowed with a generalized actibn
of a locally compact groupoid. Denote by.A the space of norm-bounded continuous maps
vanishing at infinityg — aj; € Ag-1. A is naturally at* A-Hilbert module with the module
structure

(d'a)g =ay-a, (d'€ A, aet*A)

and the scalar product

1 *

g
DEFINITION 6.4.— LetA andB be C*-algebras endowed with generalized actighandB

of a locally compact groupoidl. Let £ be aC*-correspondence fror to B. We say that the

correspondencé is equivariant if there is an isomorphismgfA, t* B correspondences

(' a")g = ay ay € Ayy).

W:s*€@epB— A@p 4 t*E
such that for everyg, h) € T(?),
(Id-A,fl ® Wg) o (Wh ® Ing—l)

S ﬁ(gs(h) ®Bs(h) Bj-1 ®Bt(h,) Bg—l,Ah—1 ®At(h) .Ag—l ®At(g) 5t(g))
is equal to

Won € L(Es(n) @B,y Br-1g-1s An-19-1 @4, Ei(gn))
via the identifications4(gh)71 = A, ® A, Ag—1 andB(gh)fl B -1 ®B, By-1.

When the action of on A ~ Cy(M, .A) is an action in the usual sense, ahib an equivariant
correspondence, thefi is a (T, B)-equivariant B-Hilbert module (see Definition 5.13). Let
L(E) = [.ca £(E2) be the bundle defined in Appendix A, preceding Proposition A.5. Then
the map4 — £(£) induces a'-equivariant bundle magl — £(€).

Note that there is a categor§r whose objects consist of'*-algebras endowed with
generalized actions df, and whose morphisms are equivariant correspondences.

To define the/ K-groups, we first recall that if; € £(&>) thenld ® F» does not make sense.
Instead, one has to use the notion of connection [18, Appendix A, pp. 1174-1178]:
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DEFINITION 6.5.—Let&; be a D-Hilbert module andé, a D, B-correspondence. Let
E=E®p &, Fre L(E)andF € L(E). We say thaff is a F»-connection forg; if for every
§eéy,

T§F2 — (—1)6£8F2FT5 S K(gg,g)
BT — (—1)7PPTrF e K(E,&).
The above operatdf; € £(&;, €) is defined by

(41) Te(n) =€ @,

Note the slight ambiguity, sinc&, does not appear in the notati@.
Recall also thatt" is a F; connection if and only if for alE € &, the graded commutator

[0, ("2 2)] belongs tok(E; & &), wheref = (ﬁg %)
Let us now define thé& K-groups. If€ is an equivarianf, B-correspondence arfd € L(E).

Denote byt*F € L(t*E) ands* F € L(s*E) the pull-backs of' by ¢ ands respectively. Let
o(F)=W(s*FQIA)W* € L(A @ t*E).

DEFINITION 6.6.— LetA andB beC*-algebras endowed with generalized action§ of\n
equivariant Kasparovi, B-bimodule® is a pair(&, F'), where€ is aZ/2Z-graded, equivariant
A, B-correspondence anfd € L(€) is a degree 1 operator such that forait A,

(i) a(F—F*)eK(&);

(i) a(F?—1)eK(&);

(i) [a,F] € K(&);

(iv) o(F) is at* F-connection forA.

If T is a discrete group, (iv) holds if and only ifd,(F) — F is compact for ally € . Thus
we will refer to condition (iv) as the condition of invariance modulo compacts.

As usual, unitarily equivalent Kasparov bimodules are identified BsgtA, B) be the set of
(unitary equivalence classes of) KasparbyB-bimodules. Ahomotopyin Er(A, B) is given
by an element ofEr (A, B[0,1]). The set of homotopy classes of elementskgf(A, B) is
denoted byK K1 (A, B). Then KK (A, B) is an abelian group, an@4, B) — K Kr(A, B)
is a bifunctor, covariant itB, contravariant inA (in the categoryr).

6.3. The technical theorem

The main ingredient in the construction of the product
KKr(A,D)x KKr(D,B)— KKr(A, B)

is the so-called technical theorem [34, pp. 108—-109]. We first need a lemma:

LEMMA 6.7.— Let J and .J’ be twoC*-algebras. Letr:.J — J' be a*-homomorphism,
e >0, hg € J4 such that||hg|| <1, h € J, ' € J', K C Der(J) compact,K' C Der(J')
compact. Then there exisis= J such that

2) |luh —h|| <&

5“Kasparov correspondence” might be a more appropriate terminology but is not the usual one.
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2) |[w(u)h’ = K[| <e;
3) Vde K, ||[d,u]]| <e;
3) Vd' e K, ||[d,m(u)]|| <e.

The proof is almost the same as in [34]. Let us now come to the technical theorem.

THEOREM 6.8. — Let
Ay and A} be twoC*-algebras such tha#l; is o-unital;
J andJ’ equivariant ideals ind; and A respectively
w: Ay — A such thatr(J) C J;
F (resp.F’) a separable subspace dfer(A;) (resp. ofDer(A}));
az € M(J)4 such thatug Ay C J;
e a, € M(J')4 suchthat, A} C J'.
Then there exists an elemeWt € M (A;), of degred), such that
1) M and1 — M are strictly positive
2) (1—M)ag € J;
2 7(1—=M)ay e J';
3) MA, C J;
3) n(M)AL C J;
4) [F,M]cCJ,
4y [F.o(M)]CJ.

Again, the proof is almost the same as in [34].
6.4. The Kasparov product

THEOREM 6.9. — Let A, D and B be separableC*-algebras endowed with generalized
actions of a groupoid’. Let (&1, Fy) € Er(A, D) and (&, F») € Er(D, B). Denote by¢ the
equivariantA, B-correspondencé = &£, & p&,. Then the seFl#ng of operatorsF € L(€)
such that

e (£,F)€Er(A,B);

e F'is a Fy-connection foiy;

e Va€ A, a[F1®pl, Fla* >0 modulok(€)
is non-empty.

Proof. —Choose a»-connectionl” for £;, and define
J=K(&),
A1 =K(&)®pldg, +J C L(E),
J ={SeLA@pAt"EDEE)| VX ECH(T), xS €K}
Al ={SeLA@pat*EDLE)|
Vx € Co(T), xS EK(A@pat™ & @t7E) @1de, } + ',
F = Vect(Ad(Fi®1de,), Ad(T), Ad(a) (a € A)) C Der(A;).

Let7:L(E) — L(A®y- 4 t*E @ t*E) defined by

m(8) = (U(OS) t98>'
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Thenn(A;) C A} andn(J) C J'. Let a; be a strictly positive element of th€™*-algebra
generated byf,/, 7(T)] (¢’ € A), where

0 Ta’ 1 * *
O = (T;, 0 ) ELARpAt" EDLE).

Let F' = {Adg,| o’ € A}. Let A, be the subc*-algebra of£(£) generated by
{T—T*1-T%[T,Fi®plde,];[T,a],Va € A}

and letas be a strictly positive element of,. We can apply the technical Theorem 6.8 and thus
obtain an operatad! € L(£) which satisfies the properties in Theorem 6.8. Let

F=MY?(F\&pldg,) + (1 — M)Y/?T.
As in the non-equivariant case, we have
(€, F) € E(A, B)

and thus it just remains to prove th&tsatisfies the condition of “invariance modulo compacts”
(Definition 6.6(iv)).

Let M; = M'Y/?(Fy ® 1d) and My = (1 — M)/2T. We show that both\/; and M- satisfy
the invariance condition. SincE = M; + M,, it follows that F' also satisfies the invariance
condition.

We havel,/, 7(My)] = [0a, 7(M)'/2|7(Fy @ 1) + 7(M)'/2[0,, 7(Fy ® 1)]. From property
(&) of M, we have[f,,,=(M)'/?] € J'. SinceJ’ is an ideal,[0, , (M) ?x(F; ® 1) € J'.
From property (iv) in Definition 6.6 fof?, we have

[, 7(FL®1)] € K(A@pat* &1 @17 E) @ 1de, C Af.

Sincer (M)A} C J', we haver (M)'/2[0,,n(F, @ 1)] € J'. Finally, [0/, 7(M;)] € J', which
means that (M ) is at* M;-connection.
Let us show thafl/, satisfies the invariance condition (Definition 6.6 (iv)). We have

[0, 7((1— M)Y2T)] = [0, (1 — M)2]7(T) + (1 — M)Y2 [0, 7(T)].
By the property (4 of M,
[Ga/,ﬂ'(l — M)} = 7[9¢,’/T(M)] € J/,

and thugf,,7(1 — M)'/?] € J'. Since.J is an ideal, we obtaiff,, (1 — M)*/2|x(T) € J'.
Sincern(1— M)al, € J', we haver(1 — M)/2a), € J" and thust(1 — M)/2[0,,n(T)] € J'.
Finally, we gefld,., 7(M>)] € J'. This is equivalent to the fact thaf M>) is at* Mx-connection.
It now remains to show that the conditiah A} C J' is fulfilled. It suffices to show that for all
o e Aand allT’ € K(Ap-p @ t*E @ t*£;) ® Id,-¢,, the operatofd,, = (T)]T" is compact.
SincelC(ft R4 t*E1 DL*E,) is the closed vector subspace generated by operators of the form
TeoTy (¢ ('€ A@t*& @ t&), it suffices to show thgb,, , m(T)|T, € K forall ¢, i.e. that

@) (Twt*T — (1) o (T)Tw)Te, €K, VE| €1°E1;
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(b) (T30 (T) — (—1)2 (T)T ) Tange, €K, Va" @ € € A@pa t*E1.
Let us show (a). Sinc&' is a F»>-connectiont*T' is at* F>-connection. Hence

(*T)Tey — (—1)P 9 T t* Fy € K,
which in turn implies that
Ty (t*T)T& — (—1)8§1Ta/®51 (t*Fg) e kK.
Therefore, it suffices to show that
(42) Tuge (t*Fy) — (=1)2 @) o(T) T, ger € K.
Let Wy :s*E @ep D S A @4 4 t*E; be the isomorphism induced from the generalized action

of I" on &, . Similarly, we introduce the obvious notatiol$, andV. .
To show Eq. (42), it suffices to prove that for il @ d’' € s*&; ®4+p D,

Tw, ey @ary (t"F2) — (=1 1)@ (1) Ty, e ed) €K.
Now T, (¢rgay = (W1 @ Id)(Tgrga). Moreover, from the invariance condition aff;
(Definition 6.6(iv)), we gefly o t*Fy — (—1)24 o(Fy) o Ty € K. Thus it suffices to show that
((W1 & Id) o T§” o U(Fg) ( )dgl O'(T) o (Wl X Id) o Tgil) o Td/ ekK.

Now, recall that
o(T)=W(s*T@Idz)W!
o(Fo) =Wo(s*F, @ Idg) Wy
with W = (W, ® Id;»¢, ) o (Ids+g, ®W2). Hence, we are reduced to
1 7

(W1 @1d)Ter Wa(s™ Fo @ Idg) Wyt — (=)W (s*T @ 1dg )W (Wy ® 1d)Tgr € K
and then (multiplying on the left b1, ® Id) ') to
Tey o Wh(s*Fa @ Idg)Wy ' — (—1)%%1 (Id g, @Wa)(s"T @ Id5) (I, @ W) ™' Ten EX.
Now (with the abuse of notation (41)),

Tey oWa=Wa®TIgy,
(Ids*gl ®W2) o] Tg{l = Tfil o (Ids*gl ®W2)
We are finally reduced to showing that
Tey (s Fy @ Idg) — (1) (s*T @ Idg) Tey € K,

which is true sincé’ is a F>-connection.

This completes the proof of Eq. (42).

Let us now show (b). Using the fact thidtl” is at* F»-connection and that

T;/Ta//®£i = T(a’,a”>§17

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



900 J.-L. TU, P. XU AND C. LAURENT-GENGOUX

we get
T;'Ta”@g{ t*Fy — (_1)8a +0a" +0¢; (t*T)T;’Ta”@E’l cK.

Thus we need to show that
T50(T) Turger — (—1)2 @ EVTE T g0 (8 F) € K.

But this is immediate from Eq. (42). Thus (b) is proveda

Theorem 6.9 enables us to construct the Kasparov product
KK]_"(A, D) X KKF(D, B) — KKF(A,B)

of [(&1,F1)] € KKr(A,D) and [(&, F»)] € KKr(D,B) by [(£,F)] € KKr(A, B), where
E=E®p& andF € Fy #p Fy. As in the case of'*-algebras endowed with an actionlofn

the usual sense, the product is well-defined, bilinear, homotopy-invariant, associative, covariant
with respect taB and contravariant with respect th

More generally, there is an associative product {fgre {0,1})
KKIZ;(A, Bl®Co(M)D) X KK%(D ®CU(M) Al, B)
(43) — KKr i+ (A®c, () A1, Bi®cy () B1).

6.5. Twisted K-theory is a K K-group

Assume thatS! — R — T' = M is anS*-central extension of Lie groupoids. Recall that the
line bundleL = R xg: C can be considered as a Fell bundle over the groupoihd thus the
C*-algebraCy(M) is endowed with a generalized actionIof Denote byAy this C*-algebra.
Our goal is to show

PrROPOSITION 6.10. — If ' == M is a proper Lie groupoid and//T" is compact, then for
i=0,1, KKL(Co(M), Ag) is isomorphic toK? (I'*), wherea € H?(I'*,S*') denotes the class
of the extensio! — R — T = M.

We will show a more general proposition, which can be considered as a generalization of the
Green-Julg theorem.

PROPOSITION 6.11. — LetI’ = M be a proper locally compact groupoid with a Haar system
such thatM/T" is compact. LetE be a u.s.c. Fell bundle ovel and A = Cy(M; E). Then
KKr(Co(M),A) and Ko (C*(T'; E)) are isomorphic.

Note that Proposition 6.11 implies Proposition 6.10: take: L if i =0 andE = L ® Cy(R)
if i =1.

Proof. —Let us construct a maf: K K1 (Co(M),A) — Ko(C}(T'; E)). Consider(E, F) €
Er(Co(M), A). Recalling Theorem 4.6, we have to construct a generalized Fredholm operator
T € F°(T', E). By the stabilization theorem (Proposition 5.25), we may assume &hat
L*(T'; E) ® H® L*(T; E) ® H with the obviousZ,-grading. Then, replacing by 1 (F + F*),
and then byF" (see notation (30)), we may assume tRas self-adjoint and -invariant. Thus,

F can be represented as a matrix
0 7T
Fe (T ; ) .
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Put®([€, F]) = [T]. Itis routine to check thad is a well-defined group homomorphism. The
only slightly tricky point is to check thal” is invertible moduloXr(L?(T; E) ® H). To see
this, note that Condition (ii) in Definition 6.6 implies thatl™ — Id andT*T — Id belong to
C(L?*(T'; F) ® H). By the compactness assumption bfyI" and the fact thaf" is I'-invariant,
we find thatT'7* — Id andT*T — Id are inKr(L?(T'; E) @ H).

We now construct a map in the other directi@n Ko (C(I; E)) — KKr(Co(M, A)).
Let T € FU(T,E). Let B = L(L*(T'; E) ® H)' and J = Kr(L*(T; F) ® H). By definition,
T is an element inB whose imager in B/J is invertible. Write the polar decomposition
7 =u(r*7)~/? and lift u to an element” € B. One easily proves by a standard argument that
T’ is homotopic tdl'. Therefore, replacin@ by 77, we may assume thdt is unitary modulaJ.
Thatis,7*T — Id andTT* — Id belong tok'r (£?(T; E) @ H). Let F = (7, :’(;) which acts on
the Zy-graded Hilbert modul€ = L?(T; E) ® H & L?(T'; E) ® H. It is not hard to check that
(E,F) € Ep(Cy(M), A). Define¥([T]) = [(€, F)]. One can verify thatb and ¥ are inverse
from each other. O
6.6. The product K, (I'*) @ K%(I'*) — K7, (I'*)

Suppose tha§' — R, — T = M andS! — R, — I' = M areS'-central extensions of a Lie
groupoidl’. Denote by and3 their classes i/ ?(I'®*, S*). Using the general Kasparov product
(43), we get a product

KKL(Co(M),Agr) ® KK (Co(M),Ap') — KK (Co(M), Arary).
If in additionT" is proper and\//T" is compact, then by Proposition 6.10, we obtain a product

(44) KL (T*) @ KL(T*) — K H5(T°).

From the general properties of the Kasparov product [11], the product defined by Eq. (44) is
associative and graded commutative, where graded commutativity comes from commutativity of
the diagram

AR ®@cy(m) AR — Apgrr

lﬂip

AR ®@co(m) AR — Apgry-
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Appendix A. Fell bundles over groupoids

In this appendix, we recall the definition and some basic properties of a Fell bundle over a
groupoid (Definition A.7) and its reduced*-algebra.
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A.l1. Fields of C*-algebras

DEFINITION A.1l.— Let X be a Hausdorff topological space. A continuous (resp. upper
semicontinuous) field of Banach spacEsover X consists of a family(E,.).cx of Banach
spaces together with a topology éh= [ [ . y E. such that

(i) the topology onk, induced from that o is the norm-topology;
(i) the projectionr: E — X is continuous and open; B B
(iii) the operations(e,e’) € E xx Er— e+ ¢ € E and(\,e) e Cx E — Xe € E are
continuous;
(iv) the normE — R is continuous (resp. u.s.c.);
(v) if |le;|| = 0 andw(e;) — x, thene; — Og;
(vi) forall e € E, there exists a continuous secti9such that(x) =e.

In [25,26] only continuous fields were studied and they are called Banach bundles. We will
also use that terminology. In this paper we are mainly concerned with continuous fields, but most
constructions and results only require the field to be u.s.c. In particular, a field of Banach spaces
can be constructed in the following way [26]:

PROPOSITION A.2. — Let X be a topological Hausdorff space. Assume th@t).cx is a
family of Banach spaces arfitlis a C'(X )-module of sections of := [,cx Ez — X such that

(i) for every¢ € E, the functionz — ||¢(x)]| is continuougresp. u.s.9;

(i) forall x € X, the set{¢(x)| £ € E} is dense inE,.
Then there is a unique topology dit makingE — X into a continuous(resp. u.s.q.field of
Banach spaces such that element& @fre exactly continuous sections.

In the same way, one defines fields of Banach algebras and fieldsaligebras. For instance,
if f:Y — X is a continuous map between two locally compact spaces, @eF) may be
considered as an u.s.c. field 6f*-algebras overX with the fiber Co(f~1(z)) at z € X.
Moreover, the field is continuous if and onlyfifis an open map.

We will use the following conventions. Denote I6Y(X; E), Cy(X; E) and C.(X; E) the
space of continuous sections, the space of continuous sections vanishing at infinity, the space of
compactly supported continuous sections of the buritlle X, respectively. We also use the
notationsC'(X, E), Co(X, E) andC.(X, E).

Let us explain how pull-backs of fields are constructed.]let y £, — X be an u.s.c. (resp.
continuous) field of Banach spaces ovérand letf:Y — X be a continuous map. Then the
u.s.c. (resp. continuous) fief £ is the field with the fibe; () aty € Y, and whose total space
is Y x x E with the induced topology from x E. If E is determined by &'(X)-module of
sectionsE C C(X, E) as in Proposition A.2, thefi* E is determined by *E = {{ o f | (¢ € E}.

Recall that if X is a locally compact space, then @, (X)-algebra is aC*-algebra A
together with a *-homomorphisr@y(X) — Z(M(A)) (the center of the multiplier algebra of
A) such thatCy(X)A = A. The proposition below indicates that there is a bijection between
Co(X)-algebras and u.s.c. fields 6f-algebras oveX .

For anyz € X, by C,.(X), we denote the ideal af,(X) consisting of functions that vanish
atz.

ProOPOSITION A.3. — Let X be a locally compact spacé, a Cy (X )-algebra and
A= A/(Ca(X)A).

Denote byr,:A — A, the projection. There is a unique u.s.c. field Of-algebras
A:=]],cx Az — X such that the map
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A— Co(X, A),
a— (z— m(a))

is an isomorphism of*-algebras.
Conversely, assume that =[], .« A, — X is a u.s.c. field oC*-algebras overX, and

A =Cy(X,.A) is the space of continuous sections vanishing at infinity. Thés obviously a
Co(X)-algebra, and the evaluation map— A, induces as-isomorphismA, — A,.

Proof. —This is immediate from [12, Proposition 2.12 a)]a

Assume thal’ = X is a topological groupoid. Recall [44, Definition 3.3] thal'aaction on
aCy(X)-algebrad is an isomorphism o€y (I')-algebrasy : s* A — t* A such thatvg;, = agap
forall (g,h) € '@, whereay : (s*A), = A () — (r*A)y = Ay, is the induced isomorphism.

Let A= [I.cx A: — X be an u.s.c. field o€*-algebras. We say that the groupdicacts

on A — X if there is an isomorphism: s* A — t* A of fields of C*-algebras ovel” such that
agn = agoy, forall (g,h) € I'®). It is clear that using the dictionary above (Proposition A.3),
I'-actions onCy(X)-algebras are in bijective correspondence wittactions on fields of
C*-algebras oveX .

Now, let us explain howC*-modules over &'y (X )-algebra can be considered as u.s.c. fields
of Banach spaces ové¥.

PROPOSITIONA.4. — Let A = [l,cx A: — X be an u.s.c. field o€*-algebras overX

and A = Cy(X,.A). Assume that is an A-Hilbert module. Letf, := £ ® 4 A, and denote
by m,:& — &, the canonical map. Then there is an unique u.s.c. field of Banach spaces
& :=]l,ex & — X such that the map

£ —Co(X,E),
g (2 ma(9))

is an isomorphism. Moreover, if the field — X is a continuous field, thed — X is a
continuous field as well.

The proof, which uses Propaosition A.2, is straightforward and is left to the reader. In particular,
anyCy(X)-module is the space of continuous sections vanishing at infinity of a continuous field
of Hilbert spaces.

Consider an u.s.c. field @f*-algebras

A= HAw—>X.

zeX

Let A = Cy(X,.A). Assume that is an A-Hilbert module. It is simple to show that there is a

unique topology orC(€) := [ [, x £(&.) such that for every nef; € L(E,,) andT € L(E,),
T; converges td if and only if for every¢ € C(X, €),
(i) z; — x;
(i) Ti&(xi) — T¢(x); and
(i) T7&(x:) — TE(x).
Then the bundleZ(£) — X satisfies all the properties of Definition A.1, except that the norm
is not necessarily u.s.c. (in fact, one can show that ibweer semi-continuous i€ > Xisa

continuous field), and the induced topology 8(€..) is not the norm-topology.
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We say that a sectiom — T, of L£(£) is strongly continuous if for every € C(X,.A),
x — Ty&(z) belongs toC(X, .A), and a section: — T}, is x-strongly continuous if botl — T,
andz — T are strongly continuous. Itis not hard to show that a sectierstsongly continuous

if and only if it is a continuous section of the bundle defined above. Denot&, b, £(£)) the
space of continuous and norm-bounded sections.

PROPOSITION A.5. — There is an isomorphism

L(E)— Cy(X,L(E)),
T (x—T,),
whereT, =T @ 1d € L(E®4 Ar) = L(E).

Proof. —This follows directly from Proposition A.4 and the fact th&(€) is, by definition, the
space of maps froréi to £ admitting an adjoint. O

The analogue of the above proposition £6(€) is less simple. However since we do not need
it in full generality in this paper, we only consider a particular case below.

PROPOSITIONA.6. — LetH = [.cx Hz — X be a continuous field of Hilbert spaces, and
H = Cy(X,H) be the associated, (X )-Hilbert module. Then there exists a unique topology on
K(H) :=11,cx K(H,) such that

(i) the fieIdIC(ﬁ) — X is a continuous field of'*-algebras

(i) for everye, n e Co(X,H), we have(z — Te(z) n(x)) € Co(X, K(H)).

Moreover, the map

Ten = (2= Te(a) n(a))
extends uniquely to an isomorphism@f-algebrask (H) = Co (X, K(H)).

Proof. —We sketch the proof in the case that the field is countably generated. In this case, by
the stabilization theorem (either by Dixmier and Douady [22] or Kasparov [72]), we may assume
that the field is trivial7{ = X x H. It is well-known that'C(#) is isomorphic taCy (X, K(H)),
where K(H) is endowed with the norm-topology. Thus it follows from Proposition A.2 that
Co(X,K(H)) is the space of continuous sections vanishing at infinity of a continuous field of
C*-algebras oveX with fibers isomorphic taC(H). O

A.2. Fell bundles over groupoids: definition and first properties

DEFINITION A.7.— Letl’ = M be a locally compact groupoid and denoterbyI'(?) — T°
the multiplication map. A continuous (resp. u.s.c.) Fell bundle dvsra continuous (resp. u.s.c.)
field of Banach space@,),cr overI' together with an associative bilinear prodétn) €
Ey x Ej, +— &n € Egy, whenever(g, h) € T, and an antilinear involutiog € E, — &* € E,—
such that for anyg, h) € T'®, and(ey, e2) € E, x Ej,

() llerez|| < leallllez]l;

(i) (ere2)” =eget;

(iit) [letesll = [lex]|;

(iv) efe; is a positive element of thé€*-algebrak,,);

(v) the producte, e’) € m*(E) — ee’ € E, and the involutiore € E — ¢* are continuous;

(vi) forall (g,h) € T'®, the image of the produdi, x E;, — E4, spans a dense subspace of

Egp.

Remark A.8. — Note that (i)—(iii) imply that,., x € M, is aC*-algebra, so (iv) makes sense.
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Continuous Fell bundles were first defined by Yamagami in [71], and were d¢@tieadgebras
over groupoids. Since continuous Fell bundles are simply called “Fell bundles” in the literature
[28,42,55], we will follow this convention. In the literature one also finds the terminology “full”
Fell bundle: this refers to condition (vi). Note that:= Cy(M; E), the restriction oiCy(T'; E)
to M, is aCy(M)-algebra, andd,, = E,. for all z € M, by Proposition A.3.

ExampleA.9. — LetI" be a locally compact groupoid acting orCa(M)-algebraA, A the
associated u.s.c. field 6f*-algebras (Proposition A.3). There is an isomorph&sm*ﬁe t*A
such thato,), = oy 0 oy, for all (g, h) € '@, ThenE = s* A is a u.s.c. Fell bundle ovét with
the product(a,b) € E; x Ej, = Agg) X Agn) = ap-1(a)b € Eg, = Ay, and the involution
ac€Ey—ag(a*) € Ej

Therefore the notion of u.s.c. Fell bundles ovérgeneralizes that of actions daf on
C*-algebras. In fact, u.s.c. Fell bundles ovecan be viewed as “actions &f on C*-algebras
by Morita equivalences” (see [55]).

Now we return to the discussion on a general u.s.c. Fell buAdIBefine anA,)-valued
scalar product oy, by (e,e’) = e*e’. ThenE, becomes am,(,4-Hilbert module, and the left
muItipIication by elements ofl,(,) defines a *-homomorphism, ;) — L(E,). In other words,
E,is anAy,)-Ayg)-correspondence.

Note also that the produck, x E, — E,, induces an isomorphism aft,,) — Ayp)
bimodulesE,, ®A,, En — Egn. Indeed, to check that this map is isometric, we note that
V& € Eg,n; € En,

<Z§i ®ni,» &® 77i> =Y (i (& &) =D _(&mi)* (§my) = <Z€mu mez>
i i i,j i,j

The surjectivity ofE,; x Ej, — Eg, follows from condition (vi) of Definition A.7.

The following proposition justifies the reason that we require the field to be u.s.c.:

PrROPOSITION A.10. — If F is an u.s.c. Fell bundle over the groupdid then sections of the
form (g, k) — 3=, &(g)ni(h), where¢;, n; € Co(T'; E), are dense itCo (T, m* E).

To prove the proposition, we need the following:

LEmMMA A.1l. - Let K and L be two compact space§);.) an open cover of{ x L. Then
there exist finite coverd; andV; of K and L respectively such thalU; x V;) is a refinement of

().

Proof. —For every (z,y) € K x L, there existK, ,, L., compact andJ, ,, V,' open
such that(z,y) € Int(K ) x Int(L, ) C Ky X Ly C Uy, x V,!, C Q for somek. Let
U2, =K—-K,, andV2 =L - L,,. By compactness, there eX|sts a finite fantity, y;)icr
such that J,; Int(K,,, ym) X Int( @i,y:) COVErsK x L.

For anyoa = (ov)icr € {1,2}, letU* =N U, andV* =V, . Itis not hard to check

that(U,) and(V,,) are, respectively, covers &f andL that satisfy the required propertiesd

Proof. —Let ¢ € Cy(T'®), m*E). We can assume thatis compactly supported. There exist
andL c I" compact such that the support©fs in the interior of

By the definition ofm* E, for every(g, h) € K * L there exist, ,,, , ,, € Co(T'; E) such that

(]7 nq

7

Q(g,h)” <e.
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Since the fieldn* £ is u.s.c., there exists a neighborhdogl;, of (g, k) such that

forall (¢',h') € Qg p.

Now, by Lemma A.11, there exist compactly supported nonnegative continuous fungtions
andy; onT suchthaty >, o, =10nK, > ¢y =10nL,0<> , v <1,0< ), <1, and
(g,h) — @r(g)wi(h) is supported in som&,, », orin (K x L) — K = L for all k,1.

Thus,

<e

Z & n(gmin () =g )

H((% h) = orl@) V()L n (9N n () H <e,

k.l

for all (g,h) € K * L. Now, choose two compact sei§' and L’ whose interior contaik’ and
L respectively. Applying the above f@’ and L’ instead ofK” and L, there exist;, n; € E such
that

(45) Jetanro - ;si@)m(mH <

for (g,h) € K’ x L’. Replacing¢; by ¢, wherey € C.(T")+ has the supportC Int(K’),
0<¢<1andy =1 on K, and replacing); by ¢n;, wherey € C.(T'); has the support
cInt(L), 0 <+ < 1andy =1 on L, we may assume that Eq. (45) holds for(gllh) € T2,

A.3. The reducedC*-algebra

In this subsection, we recall the definition of the redu€&ealgebra associated to an u.s.c. Fell
bundle over a groupoid. See [55], or [58, Section 7.7] for the definition of the crossed-product
algebra by a locally compact group, or [61, Chapter 2] fordtealgebra of a groupoid.

Assume thafl" is a locally compact groupoid with a Haar system, dnds an u.s.c. Fell
bundle overl". Let C.(T'; E) denote the space of compactly supported continuous sections. For
&, n € C.(T; E), define the convolution by

(€ xn)(g) = / £(h)n(h™"g) \'O) (dh)
hert(e)

and the involution by *(g) = £(g71)*.

Let us check tha¢ *  belongs toC,.(T; E). By (v) in Definition A.7, (g, h) — &(h)n(h~1g)
is the uniform limit of maps of the forn}_; fi(h,h=1g)¢;(h(h™1g)), where f; € C.(T'®)
and¢; € C.(T'; E), and hence of sums of the forif{%) f'(¢)¢(g), where f, f" € C.(T") and
¢ € C.(T'; E). Moreover, the functiorf’(g) can be assumed to be supported on a fixed compact
subset of". Now,

/ £() X9 (dh) £ (9) ()

helt(e)

is the product of, by an element of’.(T"), and hence belongs 16.(T'; E). Thereforef « n can
be uniformly approximated by elementsadh(T'; E).
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Let [[€]l1 = sup e pr Jre 1€(9) | A (dg), and|[¢][; = max([[€]]1,[|€*[[1). Then the completion
of C.(T; E) with respect to the norrf} - ||; is a Banachs-algebra, and is denoted by (T; E).
Its envelopingC*-algebra is denoted by*(T'; E), and is called th&'*-algebra of the fieldE.

Let L?(T'; E) be theA-Hilbert module obtained by completir@.(T; E) with respect to the
A-valued scalar product:

(€.m) () = / (€(9).m(9)) Ao(dg) € Ay
g€l

Then for every¢ € C.(T; E), the mapr; (&) :n — & * n belongs toL(L?(T; E)), andé — A(€)
extends to a representation bf(I'"; E), called the left regular representation. Its image

CiT;E)=m(LY(T;E)) =m(C.(T; E)) C L(L*(T; E))

is called the reduce@*-algebra of the field.

The A-Hilbert moduleL?(T; E') can be considered, by Proposition A.4, as a field of Banach
spaces oven/ with fiber L2(T'; E) ® 4 A, atz € M. Denote the total space of this bundle by
L2(T'; E) and the fiber byL2(T",; E). To justify our notation, let, : ', — I" be the inclusion.
ThenL?(T',; E) is the completion of”.(T',;i% E') with respect to thed,-valued scalar product
(& n) = [,cr, (€(9),1(9)) Az (dg). ThusL?(T';; E) is an A, -Hilbert module.

The algebra of compact operatdigL?(T'; E)) is a field of C*-algebras oven/ whose total
space is denoted bi(L2(T'; E)) (see Proposition A.6). Its fiber ate M is K(L2(T,; E)).

If E is a continuous Fell bundle, théG(L?(T; E)) is a continuous field of*-algebras [55,
pp. 76—77].

The C*-algebrakl(L?(T'; E)) is endowed with a continuous actionloffor everyy € I'Y, the

map

oy K(L*(Ty; E)) 5 K(L*(Ty; B))

is obtained as follows: leR., -1 be the right multiplication by, !, and letE’ = (R,-1)*(Eyr, ),
ie. B/ = E;yn = E; ® E,1. Then there is an isomorphism frontC(L*(T,; E))
to K(L*(T,; E")) given byT — T ® 1. However, L*(T',; E) and L?(T'y; E) are isomorphic
under the mag — 7, wheren(g) = £(gv). See [55, pp. 76—77] for further details.
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