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S-UNIT POINTS ON ANALYTIC HYPERSURFACES

BY PIETRO CORVAJA AND UMBERTO ZANNIER

ABSTRACT. – In analogy with algebraic equations withS-units, we shall deal withS-unit points in an
analytichypersurface, or more generally with values of analytic functions atS-unit points.

After proving a general theorem, we shall give diophantine applications to certain problems of i
points on subvarieties ofA1 ×Gn

m. Also, we shall prove an analogue of a theorem of Masser, importa
Mahler’s method for transcendence.

In the course of the proofs we shall also develop a theory for those algebraic subgroups ofGn
m whose

Zariski closure inAn contains the origin. Among others, we shall prove a structure theorem for the f
of such subgroups contained in a given analytic hypersurface, obtaining conclusions similar to the
algebraic varieties.

 2005 Elsevier SAS

RÉSUMÉ. – En analogie avec les équations algébriques enS-unités, on considère ici des pointsS-unités
sur une hypersurfaceanalytique. On dérive d’un énoncé général des applications à des problèmes s
points entiers des sous-variétés deA1 × Gn

m. En plus, on déduit un analogue d’un lemme de zéro
Masser, qui intervient dans la méthode de Mahler en transcendance.

Lors de la démonstration de ces résultats, on développe une théorie des sous-groupes algébriquGn
m

dont la clôture de Zariski dansAn contient l’origine. En particulier, on démontre un théorème de struc
pour la famille de tels sous-groupes contenus dans une hypersurface analytique, en obtenant une c
analogue à celle du cas des variétés algébriques.

 2005 Elsevier SAS

1. Introduction

Algebraic equations withS-units are now rather classical: we may recall for instance
S-unit equationX1 + · · · + Xn = 1 dealt with by Evertse and van der Poorten–Schlicke
leading to Laurent’s solution [5] of a conjecture by Lang; in particular this implies that theS-unit
points (over a number fieldk) in a subvarietyV of Gn

m (which are theS-integral points forV )
must lie in a finite number of algebraic cosets entirely contained inV .

Here we shall deal withS-unit points in ananalytic hypersurface, or more generally wi
values atS-unit points of analytic functions. (See Theorem 1 below.)

Motivations for this study come from several sources.
First, there is the case of power series in several variables, representing algebraic fu

evaluated atS-unit points; the problem is now to establish whether the values are rati
or S-integers in a number field. This case for instance occurs in the problem of studyin
S-integral points on subvarieties ofA1 ×Gn

m; here no general analogue of Laurent’s theorem
known, even in simply described cases, like the equationy2 = 1 + 2m + 3n. We shall approach
some of these questions. (See corollary below.)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

0012-9593/01/ 2005 Elsevier SAS. All rights reserved



S-UNIT POINTS ON ANALYTIC HYPERSURFACES 77

Then, we may recall, e.g., the “Vanishing Theorem” of D. Masser [6, Theorem], important
in the applications of Mahler’s method in transcendence. That result concerns precisely analytic
functions vanishing on certain special sequences ofS-unit points. Here, with completely different
methods, we have conclusions in the same direction. In a way they are less general than Masser’s
(for instance we require algebraic coefficients for the series in question), but on the other hand
we can deal with sequences ofS-unit points which have no special structure, but satisfy only
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certain growth conditions. (See Theorem 3 below.)
As in the conclusions of Laurent’s theorems, theS-unit points under consideration are found

lie in a finite union ofalgebraiccosets inGn
m, entirely contained in the hypersurfaces in quest

(In a different language, this represents also conclusion (ii) in Masser’s Theorem in [6].)
Here, the algebraic cosets important for us are those containing the origin in their Z

closure inAn (see the definitions below). We have a structure theorem for these cose
Theorem 2), which represents the analogue of what is known in the algebraic case (s
however we have found the analysis rather more delicate in the present case of analytic v

A study of similar problems in the one-variable case had been started in [3]; the concl
were much simpler, due among others to the fact that the proper cosets ofGm are just points
The higher dimensional situation presents several new features.

Notation and statements. We letK be a number field andS be a finite set of absolute valu
of K containing the archimedean ones. For every placev of K we denote by| · |v a continuation
of it to Q̄ and normalize it “with respect toK”: according to this normalization, forx ∈ K×

the absolute logarithmic Weil height readsh(x) =
∑

v log+ |x|v 1 and the product formul∏
v |x|v = 1 holds. We note that these conditions determine uniquely our normalizations. W

note that even in the archimedean case the triangle-inequality holds with these normaliz
In fact, the present absolute value is obtained from the usual one by raising to a power b
0 and1.

We fix an absolute valueν of K and denote byCν a completion of an algebraic closure ofKν .
Our notion of convergence, unless otherwise specified, refers toCν .

We also define theS-height of a non zero elementx ∈K× to be

hS(x) =
∑
v/∈S

log+ |x|v.

For S-integers this height vanishes, so it gives a measure of “how far”x is from being an
S-integer.

For a vectorz = (z0, z1, . . . , zh) ∈ Kh+1 \ {0} (h � 1), we defineh(z) as the usual projectiv
logarithmic height. We puth(0) := h((0 : 1)) = 0. Also, we denote bŷh(z) (resp. ĥS(z)),
the sum of theh(zi) (resp.hS(zi)), 0 � i � h. Moreover, we put, for an absolute valuev,
||z||v := max{|z0|v, . . . , |zh|v}.

Throughout, we putH(·) = exp(h(·)) andHS(·) = exp(hS(·)).
We shall consider power series

∑
i aiXi ∈Cν [[X1, . . . ,Xn]] where, as usual, for a multiinde

i = (i1, . . . , in), we putXi := Xi1
1 · · ·Xin

n , ‖i‖ := max{i1, . . . , in}. We shall normally assum
that the relevant series are convergent in a neighborhood of the origin inCn

ν .
Usually we shall consider pointsx with nonzero coordinates in some fieldK, and view them

as points ofGn
m(K), so operations are intended to be made coordinatewise.

We shall use the familiar “little o” and “big O” notations.

1 As usual,log+ t = max(0, log t) for a t > 0.
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78 P. CORVAJA AND U. ZANNIER

Our main result is the following theorem, where by “coset”uH we refer to a coset for some
connected algebraic subgroupH of Gn

m. In Section 2 we shall briefly recall standard notation
and basic facts about the corresponding theory.

THEOREM 1. – Let f(X) =
∑

i aiXi be a power series with algebraic coefficients inCν

converging in a neighborhood of the origin inCn
ν . Let S be a finite set of absolute values of
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K containing the archimedean ones. Letxh = (xh1, . . . , xhn) (h = 1,2, . . .) be a sequence i
K×n, tending to zero inKn

ν and such thatf(xh) is defined and belongs toK. Suppose that:
(1) For i = 1, . . . , n, we havehS(xhi) + hS(x−1

hi ) = o(h(xhi)) ash→∞.
(2) ĥ(xh) = O(− log(maxi |xhi|ν)).
(3) hS(f(xh)) = o(h(xh)).
(4) h(f(xh)) = O(h(xh)).
Then there exist a finite number of cosetsu1H1, . . . ,urHr ⊂ Gn

m such that{xh}h∈N ⊂⋃r
i=1 uiHi and such that, fori = 1, . . . , r, the restriction off(X) to uiHi coincides with a

polynomial inK[X].

Here, as in the sequel, the “restriction” may be interpreted both formally and in the se
functions near the origin.

We pause on the meaning of the cumbersome conditions in the theorem. Condition (1
that the coordinates ofxh “tend” to beS-units. (In fact, the vanishing of bothhS(x) andhS(x−1)
characterizesS-units.) In most of our applications (e.g. Theorem 3 below) we shall deal
S-units, so (1) will be automatic.

Condition (2) is crucial and states that theν-adic contribution to the height ofxh is not
negligible forh→∞, for eachcoordinatexhi.

In analogy with condition (1), conditions (3) and (4) mean that the valuesf(xh) tend to be
S-integers with not too large height.

Theorem 1, involved as it is, yields nevertheless some diophantine conclusions, as for i
the following corollary on sums ofS-units which are perfectdth powers.

COROLLARY. – Let d ∈ N, δ > 0. Let Σ be a set of pointsx = (x1, . . . , xn) ∈ (O∗
S)n such

that:
(i) |x1|ν � (maxj�2 |xj |ν)H(x)δ .

(ii) There existsy = yx ∈K with x1 + · · ·+ xn = yd.
ThenΣ is contained in a finite union of algebraic translatesuH ⊂Gn

m, u ∈ (O∗
S)n, H ⊂Gn

m

an algebraic subgroup, such that, for aP = PuH ∈ K[X±1
1 ,X2, . . . ,Xn] and ac = cuH ∈ K,

we haveX1 + · · ·+ Xn = cX1P (X1, . . . ,Xn)d, as functions inK[uH].

Condition (i) on the “dominant term”, which amounts to condition (2) in Theorem 1
probably not needed, but it seems a very difficult problem to remove it. Note that the conc
is rather restrictive on the relevant translatesuH , and admits a partial converse.

See also [9] for this corollary and for the following general conjecture on integral poin
subvarieties ofA1 ×Gn

m: let V be an irreducible subvariety ofA1 ×Gn
m with a Zariski-dense

set ofS-integral points, such that the projectionπ :V →Gn
m is finite. Thenπ(V ) is an algebraic

translateuH and there exist an integerd � 1 and a morphismτ :H → V such thatu[d] = π ◦ τ .
(Here [d] denotes thedth power map.) The conjecture is true fordimV = 1 as may be shown
e.g. by Siegel’s Theorem on integral points (see [9]); Theorem 1 quickly yields another so
of this case: one reduces to the integral solutions for an equationF (x, y) = 0, wherex is an
S-unit. Taking forf in Theorem 1 an expansion ofy as a Puiseux series gives the conclus
We leave the details to the interested reader.

The corollary allows to prove easily the finiteness of solutions to diophantine equation
asy2 = 1 + 2m + 6n (one takes either the infinite absolute value or the2-adic one as the cas
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S-UNIT POINTS ON ANALYTIC HYPERSURFACES 79

may be); see also [4], especially the corollary therein, for this and more general equations. On
the contrary, the apparently similar equationy2 = 1+2m +3n is not known to have only finitely
many integer solutions; our method does not apply since the required growth conditions may
be not verified; what can be deduced from the present corollary is that, for any possible infinite
sequence(m,n, y) of integral solutions, the ratiom log 2/n log 3 converges to1.

A situation of Theorem 1 which has been implicitly investigated in [6] is whenf(xh) = 0 for a
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sequence ofS-unit pointsxh. Note that in this case conditions (1), (3) and (4) are automatic
verified. We shall emphasize this relevant special case in Theorem 3 below. We rema
Masser’s Theorem is quite relevant in Mahler’s method for transcendence. In this resp
also remark that Mahler’s method applied to our functionf would yield, with the assumption
above, thatf coincides with an algebraic function on the sequence{xh}. In this situation, both
an application of Masser’s Theorem or of Theorem 1 (as the case may be) give further s
conclusions.

Especially in the treatment of the casef(xh) = 0, a prominent role is played by the class of t
H such thatf(X) vanishes on some cosetuH . (It turns out that this vanishing may be interpre
both formally or as a function near the origin.) In other words, we are interested in the co
subtori ofGn

m which near the origin are contained in a certain analytic hypersurface. In the
when “analytic” is replaced by “algebraic”, a structure theorem is known: given an alge
varietyZ ⊂Gn

m, there are only finitely many toriH such that some cosetuH is contained inZ
and is maximal for this property (see, e.g. [1]; see also [2] for another argument, valid also
case of abelian varieties).

Such a statement is not generally true in the analytic case (see Section 2 for a
counterexample). However, the tori which appear in our context have the further prope
containing a sequence converging to the origin; hence we restrict our considerations
class of toripassing through zero, in the sense of Definition 1 below. For this class of tori,
mentioned finiteness theorems valid in the case of algebraic varieties generalize to an
hypersurfaceV (around the origin), defined byf(x) = 0.

In fact, we shall prove a structure theorem saying that in the set of maximal coseuH
contained inV , only finitely many toriH appear, and for fixedH the set of cosets is parametriz
by an algebraic variety. This will be relevant for the last conclusion of Theorem 1 as well
the special case when we assumef(xh) = 0 (e.g. Theorem 3). In this last case in particular, t
will imply the existence of an algebraic varietyZ ⊂ V , depending only onf(X) but not on the
sequence of points, containing almost all the points in our sequence. Moreover, the poin
be contained in a finite number of cosets, each entirely contained inZ. (While Z depends only
onf , the cosets may depend on the sequence.)

We shall state precisely all of this in the following two theorems (as well as in Section 2

THEOREM 2. –Given a power seriesF ∈ C[[X]], the set of toriH ⊂ Gn
m such that(i) the

Zariski closure ofH in An contains0, (ii) for someu = uH , F vanishes onuH and (iii) no
coset larger thanuH verifies(ii) , is a finite set.

Also, for a given torusH satisfying(i), the set ofu ∈ Gn
m such thatF = 0 on uH is an

algebraic set.

In fact, the last conclusion, which proves the existence of the algebraic varietyZ alluded to
above, may be further specified (see Theorem 6 below).

THEOREM 3. –Let f(X) =
∑

i aiXi be a power series with algebraic coefficients inCν

converging in a neighborhood of the origin inCn
ν . Let S be a finite set of absolute values

K containing the archimedean ones. Letxh = (xh1, . . . , xhn) (h = 1,2, . . .) be a sequence o
S-units in K×n, tending to zero inKn

ν and such thatf(xh) = 0. Suppose also that̂h(xh) =
O(− log(maxi |xhi|ν)).
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80 P. CORVAJA AND U. ZANNIER

Then there exist a finite number of cosetsu1H1, . . . ,urHr ⊂ Gn
m on whichf vanishes and

such that{xh}h∈N ⊂
⋃r

i=1 uiHi.
Moreover, the toriH1, . . . ,Hr depend only onf , not on the sequence{xh}.

Note that we do not have the last conclusion in Theorem 1; namely, in that case the tori might
dependa priori on the sequence{xh}.
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Remark. – As in Theorem 1 of [3], the Taylor coefficients off(X), though algebraic, ar
allowed to generate an infinite degree extension ofQ.

2. Subgroups of Gn
m passing through 0 and corresponding restriction of power series

In this sectionK will denote any field of characteristic zero.
We briefly recall the structure of algebraic subgroups ofGn

m (see [8]).
Let H be such a subgroup. ThenH is defined by binomial equationsXa1

1 · · ·Xan
n = 1, where

(a1, . . . , an) varies through a lattice (possibly of rank< n) Λ = ΛH ⊂Zn. In this way we obtain
a 1–1 correspondence between algebraic subgroups ofGn

m and sub-lattices ofZn. Also, we have
dimH + rankΛ = n.

The groupH is connected (i.e. is an irreducible variety) precisely ifΛ is primitive, i.e.Zn/Λ
is torsion-free. WhenH is connected, we also say it is atorus. In any case,H is a direct produc
of a finite group by its connected component of the identity, which is a torus. Bycosetwe shall
mean a translate of a torus by a point.

WhenH is a torus we also have an algebraic group isomorphismH ∼= GdimH
m given by a

parametrisation

Xi = tui , i = 1, . . . , n, t = (t1, . . . , tk),

wherek = dimH , the vectorsui lie in Zk and the column vectors of the matrix whose r
vectors are theui are a basis for the orthogonal complement ofΛH in Zn.

The class of algebraic subgroups ofGn
m which will appear in our setting are those contain

the origin in their topological closure (for the valuationν) in An ⊃Gn
m. The main reason lies i

the assumptions of Theorem 1, involving a sequence converging to the origin. We shall a
this class of groups, which appears to have properties rather relevant for our applications

DEFINITION 1. – We say that an algebraic subgroupH ⊂Gn
m passes through0 if the Zariski

closure ofH in An contains(0, . . . ,0).

We note that a subgroupH passes through0 if and only if the same property is true for at lea
one among its translates, in which case it is true for all translates.

PROPOSITION 1. –The following conditions are equivalent for a torusH .
(i) H passes through0.

(ii) The latticeΛH does not contain any nonzero vector with all its coordinates� 0.
(iii) There exists a parametrisationϕ :Gk

m → H as above

Xi = tui , i = 1, . . . , n, t = (t1, . . . , tk),

where the vectorsui ∈Zk have all their coordinates> 0.

4e SÉRIE– TOME 38 – 2005 –N◦ 1



S-UNIT POINTS ON ANALYTIC HYPERSURFACES 81

(iv) There exists a point(x1, . . . , xn) ∈ H ∩Cn
ν with |xi|ν < 1 for i = 1, . . . , n.

(v) There exists a sequence inH ∩Cn
ν converging to(0, . . . ,0) in theν-adic topology.

Proof. –To prove that (i) implies (ii), suppose thatΛH contains a nonzero vector(a1, . . . , an)
in the first orthant, i.e. withai � 0 for i = 1, . . . , n. By definition, the functionXa1

1 · · ·Xan
n − 1

vanishes onH . On the other hand, this function is a polynomial and therefore it must vanish on
n
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the Zariski closure ofH onA , proving that this closure does not contain the origin.
To prove that (ii) implies (iii) requires more work. We start by proving the following

CLAIM . – LetV ⊂Rn be a vector space not containing any nonzero vector in the first orth
Then its orthogonal complement inRn contains a basis in the interior of the first orthant.

To prove the claim, we first consider a weak form of it, namely we show that the ortho
complementV ∗ to V contains a nonzero vector in the first orthant. Letv1, . . . ,vr ∈ Rn be a
basis forV . We view thevi as row vectors of a matrixM and definew1, . . . ,wn ∈Rr to be the
column vectors ofM .

Consider the convex spanW of thewi, namely

W :=
{

x1w1 + · · ·+ xnwn: xi � 0,
∑

xi = 1
}

.

Naturally, W is a compact subset ofRr and we contend that it contains the origin. Assu
the contrary, and take a vectorz ∈ W of minimal norm. Thenz 
= 0 and, denoting by(· , ·) the
euclidean scalar product inRr, we have

(z,w) � 0, for all w ∈W.

In fact, if (z,w) = −s < 0 for a w ∈ W , considerz(t) := tw + (1 − t)z for a real positive
t < 1. We havez(t) ∈ W and|z(t)|2 = t2|w|2 + (1− t)2|z|2 − 2t(1− t)s. Denoting byf(t) the
right side, we see thatf(0) = |z|2 andf ′(0) = −2|z|2 − 2s < 0. Thereforef(t) < |z|2 for small
positivet, contradicting the minimality of|z| for z ∈W . (This argument is fairly standard.)

If z = (z1, . . . , zr) we then have thatz1v1 + · · · + zrvr is a nonzero vector lying in the firs
orthant (namely, all of its coordinates are nonnegative): in fact, its coordinates are just the
products(z,wi). Thus we have a contradiction, proving thatW contains in fact the origin. Tak
an equationy1w1 + · · · + ynwn = 0 with nonnegativeyi having sum equal to1. The vector
y = (y1, . . . , yn) is nonzero, lies in the first orthant, and is orthogonal toV , proving the weak
form of the claim.

To prove the full claim, take a vectorv∗ ∈ V ∗ in the first orthant, having a maximum number
nonzero coordinates. We show that in fact all of its coordinates are positive. Assume the c
and renumber coordinates to assumev∗ = (x1, . . . , xh,0, . . . ,0), wherexi > 0 for i = 1, . . . , h.
DefineU ⊂ Rn−h to be the image ofV ∗ under the projection on the lastn − h coordinates
Suppose thatU has a nonzero vectoru in the first orthant ofRn−h and letu′ ∈ V ∗ be a vector
whose projection isu. Then we see that, for small positivet, the vectorv∗+ tu′ ∈ V ∗ has at leas
h + 1 positive coordinates and lies in the first orthant, a contradiction with the maximalityh.
ThereforeU has no nonzero vectors in the first orthant. By the weak form of the claim, pr
above, applied this time toU , there exists a nonzero vectorw ∈Rn−h, in the first orthant, which
is orthogonal toU . Consider now the vectorw′ ∈Rn whose firsth coordinates are0 and whose
projection on the lastn− h coordinates isw. Thenw′ is nonzero, lies in the first orthant and
orthogonal toV ∗, namely lies inV , against the assumption.

This contradiction therefore proves thatv∗ has strictly positive coordinates. In particul
a whole neighborhood ofv∗ in Rn lies in the interior of the first orthant. Intersecting th

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



82 P. CORVAJA AND U. ZANNIER

neighborhood withV ∗, we get a nonempty open subset ofV ∗ contained in the interior of the
first orthant. Since every nonempty open subset of a real vector space contains a basis of it, the
claim finally follows.

We can now apply the claim to the real vector spaceV spanned byΛH . Observe thatV cannot
contain any nonzero vector in the first orthant: in fact, assume the contrary, and letv be such a
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vector. Renumbering coordinates, we may assume thatv has the firsth coordinates equal to0
and has the remaining coordinates strictly positive. The subspace ofV consisting of vectors with
vanishing firsth coordinates is defined overQ, whence its rational points are dense in it. Sin
v lies in this space, there exists a rational nonzero vector inV contained in the first orthant. Bu
then, by multiplying this vector by a suitable positive integer, we would obtain a nonzero v
in ΛH , contained in the first orthant, against the present assumption.

In virtue of the claim, we thus obtain a basis for the orthogonalV ∗, contained in the interio
of the first orthant. SinceV ∗ is also defined overQ, we obtain an integral primitive vectorw1

in V ∗ having strictly positive coordinates. Complete now, as is certainly possible,w1 to a basis
w1, . . . ,wk for the latticeV ∗ ∩ Zn. Replacing if necessarywi by wi + Nw1 for i = 2, . . . , k,
whereN is a sufficiently large positive integer, we may assume that all thewi lie in the first
orthant.

We now define the matrixu1, . . . ,un (whereui ∈ Zk) as the transpose of the matrix form
with w1, . . . ,wk and consider the map

ϕ :Gk
m →Gn

m, t �→ (tu1 , . . . , tun).

This map is plainly regular and is an algebraic group homomorphism. Its image is conta
H , since thewi are orthogonal toΛH . Note also that

k =: dimV ∗ = n− dimV = n− rankΛH = dimH.

Since thewi are linearly independent and sinceH is a torus, the map is dominant, whence, be
a group homomorphism, is surjective; moreover, the fact that the vectorswi are a basis for th
lattice orthogonal toΛH (and not merely forV ∗), easily implies that it is injective. This finall
proves that (ii) implies (iii).

Now, suppose given a parametrisationϕ satisfying the stated conditions and chooset =
(t1, . . . , tk) ∈ Gk

m with |ti|ν < 1. Plainly the point(x1, . . . , xn) := ϕ(t) has the required
property, proving that (iii) implies (iv).

Next, starting from a point(x1, . . . , xn) as in (iv), the sequence of its positive pow
converges to the origin. This proves the implication (iv)=⇒ (v).

Finally, that (v) implies (i) is clear, since a Zariski closed subset ofAn(Cν) is closed also fo
theν-adic topology. �

Remark. – In the arithmetical results of the present paper, we shall often need to work
the restriction of a power seriesF ∈ K[[X]] to suitable algebraic subgroups or cosets pas
through0. The parametrisation occurring in (iv) of the preceding lemma, combined with the
simple lemma, allows us to view such a restriction as a new power series inK[[t]]: we thus reduce
to work on a smaller power ofGm. A parametrisationϕ as in the proposition sends a torus
Gk

m passing through0 in a subtorus ofH with the same property. Note however that there m
exist proper subtoriH ′ ⊂ H such thatH ′ passes through0 but ϕ−1(H ′) does not! (Consider
e.g. the exampleH := {x = z} ⊂ G3

m, H ′ := {x = y = z} andϕ(t, u) = (tu, tu2, tu).) This
phenomenon slightly complicates the proof of Theorems 4, 5 below.

4e SÉRIE– TOME 38 – 2005 –N◦ 1



S-UNIT POINTS ON ANALYTIC HYPERSURFACES 83

LEMMA 1. –Let H ⊂ Gn
m be a torus passing through0. Then, for every given monomial in

K[[X]], there exist only finitely many monomials having the same restriction onH .

Proof. –By Proposition 1, there existsP := (x1, . . . , xn) ∈ H with ‖P‖ν < 1. Observe
that |Xi(P )|ν � ‖P‖degXi

ν = ‖P‖i1+···+in
ν . Therefore the valuesXi(P ) tendν-adically to0,

whence at most a finite number of them can assume the same value onP and a fortiori on the
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We observe that, given a parametrisationϕ :Gk

m → H as in Proposition 1, (iii), two monomia
in X have the same restriction toH if and only if their composition withϕ produces the sam
monomial int.

This same positivity, together with Lemma 1 implies that, for a power seriesF ∈ K[[X]], the
compositionF ◦ ϕ is again a power series, inK[[t]]. This power series represents the restric
of F to H , through the given isomorphismH ∼= Gk

m. The restriction ofF to a cosetuH will be
simply the restriction toH of the power seriesF (uX).

Observe that in this way, ifH passes through0, we can always define the restriction touH
of a formal power series, regardless of convergence in any topology. In other words, we
need that the series represents a function in order to define its restriction touH .

Actually, one can define the restriction even without a parametrization as above, sim
grouping together monomials which have the same restriction toH . We shall make this precis
in a moment.

DEFINITION 2. – For an algebraic subgroupH ⊂ Gn
m, we say that two monomials a

equivalent with respect toH if their restrictions toH are equal functions, namely if the
difference belongs to the ideal definingH as an algebraic variety.

We can now define the concept ofnormal formof a formal power series with respect toH .

DEFINITION 3. – LetF =
∑

aiXi ∈K[[X1, . . . ,Xn]] be a formal power series. We say thaF
is in normal form with respect toH if the monomials which appear inF with nonzero coefficien
are inequivalent with respect toH .

The above lemma implies that given any power seriesF , we maynormalizeit, by grouping
together the monomials which are equivalent with respect toH . Namely, by the lemma, eac
equivalence class of monomials is a finite set, hence the sumaC :=

∑
Xi∈C ai is well defined

for every classC. Hence the power seriesG :=
∑

C aCXC , whereXC runs through a set o
representatives for the equivalence classes, is in normal form with respect toH and has the sam
restriction toH asF .

Now, first, we stress that the set of representatives is quite arbitrary. Second, we rem
this notion is referred to formal power series; however it is easily seen that in the case wF
converges absolutely near the origin, any of its normal forms coincides withF as a function in
the intersection ofH with the relevant convergence region.

These notions automatically extend to the case of a cosetuH in place of a torusH : it suffices
to argue withH in place ofuH and with the seriesF (uX) in place ofF (X). Note that the
relevant equivalence classes are the same as before.

Let F ∈ K[[X]] be a formal power series over the fieldK. We shall consider the family o
cosetsuH (for a torusH passing through0), such that the restriction ofF to uH vanishes.

We have the following simple criterion for this vanishing.

PROPOSITION 2. –Let f(X) =
∑

i aiXi ∈ K[[X]] and letH be a torus passing through0.
Suppose that the restriction off(X) to uH coincides with a polynomial(resp. vanishes). Then,
for all but finitely many(resp. for all) classesC of equivalence of monomials, with respect toH ,
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we have ∑
Xi∈C

aiui = 0,

the sum being finite for eachC.
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The proof is immediate using the parametrisationϕ and the preceding lemma. (A proof m
be also obtained directly by invoking the concept of normal form, just introduced.)

As a matter of fact, the same arguments prove that, when the power series is con
ν-adically, the same criterion holds if we interpret the restriction ofF in the usual sense, i.e
considering it as a function. We state this fact separately.

PROPOSITION2′. – Let f(X) =
∑

i aiXi ∈ Cν [[X]] be convergent in a neighborhoodU of
the origin inCn

ν , and letH be a torus passing through0. Suppose thatf(X) coincides with a
polynomial(resp. vanishes) onU ∩ uH . Then, for all but finitely many(resp. for all) classesC
of equivalence of monomials, with respect toH , we have

∑
Xi∈C

aiui = 0,

the sum being finite for eachC.

We shall now prove a structure theorem for the set of cosets on which a given power
vanishes.

DEFINITION 4. – We shall say that a cosetuH is maximal forF if F vanishes onuH but
does not vanish on any strictly larger cosetuH ′, whereH ′ is a torus containingH properly.

For dimensional reasons, every coset on whichF vanishes is contained in a maximal one
F .

In the case of algebraic varieties (e.g. if the power series is a polynomial), some fini
results have been proved for the set of toriH occurring in a maximal coset; see for instance
(and also [2] for another proof, valid also in the context of abelian varieties). In the pr
situation, it is a fundamental assumption that the relevant tori pass through0. Without this
proviso, examples likeF (X) :=

∏
i(1 − Xi), wherei varies onNn show that we may hav

vanishing on an infinite family of maximal tori.

THEOREM 4. –Given a power seriesF ∈ K[[X]], the set of toriH passing through0 and
such that, for someu = uH , the cosetuH is maximal forF , is a finite set.

It will be convenient to prove a more general fact. To state it, letZ be an affine irreducible
variety over the fieldK and letΓ⊂Gn

m be a subtorus. We prove:

THEOREM 5. –Given a power seriesG(z,X) ∈ K[Z][[X]], the set of toriH ⊂ Γ, H passing
through0, with the property that there existsu ∈ Z such thatH is a maximal subtorus ofΓ on
whichG(u,X) vanishes, is a finite set.

To deduce Theorem 4 from this statement, just takeZ = Γ = Gn
m andG(z,X) := F (zX)

(componentwise multiplication).

Proof of Theorem5. – We start by recalling a well-known fact, whose proof we give
completeness. We shall say that(x1, . . . , xn) � (y1, . . . , yn) if xi � yi for i = 1, . . . , n. This
defines a partial order onRn.
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CLAIM . – Given a subsetA⊂Nn, the set of minimal points inA for the above defined order
relation, is a finite set.

We argue by induction onn, the claim being clear forn = 1. Suppose by contradiction that
there exists an infinite setA′ ⊂A of minimal points, and let(x1, . . . , xn) be one of them having
a minimal first coordinate. Every other point(y1, . . . , yn) ∈A′ hasy1 � x1, whence must verify

at a
may
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rt
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er
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e

er,
ce
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ome
tely
ct,

a

ct

fore
yi < xi for at least one indexi ∈ {2, . . . , n}. Going to an infinite subset, we may assume th
given coordinate, sayyn, is bounded and, going to a smaller, but still infinite, subset, we
assume thatyn = c is fixed. Now we get a contradiction with the inductive assumption.�

To prove the theorem, we shall argue by induction onm := dimΓ, the result being clear fo
m = 0. Suppose now thatm � 1 and that the statement is true up tom− 1.

We now argue by a second induction, this time ondimZ. It turns out to be convenient to sta
the induction with the case of an emptyZ, i.e. dimZ = −1. In this case the set of relevant to
is empty as well, so the theorem is true.

We now assume thatZ is nonempty and that the statement has been proved forΓ and all
varieties of dimension smaller thandimZ.

Let Z,Γ,G be as in the statement and putG(z,X) =
∑

i ai(z)Xi. We start by replacing
G(z,X) by a possibly different series obtained by removing certain terms appearing inG. We let
C be an equivalence class of monomials with respect toΓ (see Definition 2 above) and consid
the sum

∑
Xi∈C ai(z). If this sum is zero inK[Z], we throw away the entire class fromG

and otherwise we simply leave unchanged all the terms corresponding toC. We do this for all
classes, obtaining a seriesG∗(z,X) =

∑
i a

∗
i (z)Xi. Note that the restriction ofG(z,X) to Z×Γ

coincides with the restriction ofG∗(z,X) to Z ×Γ; in particular, for allu, G(u,X) vanishes on
a subtorusH of Γ if and only if the same holds forG∗(u,X). Hence it is sufficient to prove ou
contention forG∗ in place ofG. Also, note that by construction a sum

∑
Xi∈C a∗

i (z) vanishes if
and only if all of its terms vanish.

We defineA to be the set of vectorsi such that the monomialXi has a nonzero coefficien
a∗
i in the formal power seriesG∗(z,X). We may assume thatG∗ is nonzero, since otherwise th

result is plainly true; hence we may assume thatA is nonempty. We defineA′ to be the (finite)
set of minimal vectors inA, with respect to the above defined partial order relation.

Let u ∈ Z(K) and letH be a maximal torus for the stated property, so in particularG∗(u,X)
vanishes onH (but not on larger tori contained inΓ). We distinguish two cases.

First case: there exists a classC with respect toΓ, C corresponding to some vector inA′, such
that the sum

∑
Xi∈C a∗

i (z) vanishes atu. Each of these conditions, which are finite in numb
defines a finite number of proper subvarietiesZj of Z, i.e. the components of a hypersurfa∑

Xi∈C a∗
i (z) = 0 in Z. Note that

∑
Xi∈C a∗

i (z) is not identically zero: this is because
our construction ofG∗ and becauseC contains at least one monomial corresponding to s
vector inA. Restricting the coefficients ofG∗ to each of these components gives rise to fini
many power seriesGj ∈ K[Zj ][[X]], to which we may apply the inductive assumption. In fa
dimZj < dimZ, sinceZ is irreducible. Also, note that (for givenu ∈ Zj(K)) H remainsa
fortiori maximal even with respect to the new series. In this case, the proof is concluded.

Second case: no sum
∑

Xi∈C a∗
i (z), whereC contains some monomial corresponding to

vector inA′, vanishes atu. This case requires further work.
SinceH passes through0, by Proposition 1 there exists a vectorvH ∈Zn with strictly positive

coordinates and orthogonal toΛH . Let A′′ be the subset ofi ∈ A such that the scalar produ
(i,vH) is minimal. This subset is nonempty, since(i,vH) is a nonnegative integer fori ∈A. We
contend thatA′′ ⊂A′: in fact, if i ∈ A′′ andj ∈ A is distinct fromi, we get(j,vH) � (i,vH),
whence(j− i,vH) � 0, proving thati− j cannot have only nonnegative coordinates. There
A′′ ⊂A′, whence in particular, in virtue of the claim, the setA′′ is finite (and nonempty).
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Fix j ∈ A′′ and defineE as the equivalence class ofXj with respect toH . In view of
Proposition 2, the sum

∑
Xi∈E a∗

i (u) vanishes. On the other hand, the classE is a finite union
of equivalence classes with respect toΓ, sinceH ⊂ Γ. Since the subsum corresponding to the
equivalence classC of j with respect toΓ is nonzero (in fact we are in the “second case” and
j ∈A′′ ⊂A′), there must be another classC̄ ⊂E, with respect toΓ, such that the corresponding
subsum is also nonzero. Therefore there existsj̄ ∈A such thatj− j̄ ∈ ΛH \ΛΓ. In particularj− j̄

oup
p is
e

t of

orem 4

a

a

ishing
g

is orthogonal tovH , whencēj ∈A′′ ⊂A′.
Observe that, sincej and j̄ are (distinct) elements of the finite setA′, the vectory := j− j̄ is

nonzero and lies in a finite set independent ofH . For every suchy we consider the(m − 1)-
dimensional subtorusΓy ⊂ Γ given by the connected component of the identity in the gr
defined by the equationXy = 1 in Γ. Note that the lattice associated to such a grou
Zy + ΛΓ ⊂ ΛH , so H is contained in the group. Since howeverH is connected, it must b
contained in the connected component of the identity; in other words,Γy ⊃ H .

We may now apply the inductive assumption (with respect tom), with Γy in place ofΓ.
Observe that, since there are only finitely manyy to consider, only finitely manyΓy may arise in
this way. Also, ifH ⊂ Γy is maximal forΓ (relative tou), a fortiori it is maximal forΓy (again
relative tou), concluding the proof. �

We now complete the proof of Theorem 2, by recalling:

THEOREM 6. –Given a torusH , there exists an algebraic setUH ⊂ Gn
m whose points are

pairwise inequivalent moduloH , and such thatF (X) vanishes on a cosetuH if and only if
there existsu′ ∈ UH with uH = u′H .

The proof is implicit in the proof of [1, Theorem 1(a)], since by Proposition 2 the se
u ∈Gn

m such thatF (X) vanishes onuH is an algebraic set.�

3. Proof of Theorem 1

A fundamental tool will be a consequence of the Subspace Theorem, proved as The
in [3]. For the reader’s convenience we recall the result as the following

LEMMA 2. –Let K be a number field,S a finite set of absolute values ofK containing the
archimedean ones,ν be an absolute value fromS, ε be a positive real number,N � 0 an integer.
Finally, let c0, . . . , cN ∈ K̄∗. For δ > (N + 2)ε, there are only finitely many(N + 1)-tuples
w = (w0, . . . ,wN ) ∈ (K∗)N+1 such that the inequalities

(i) hS(wi) + hS(w−1
i ) < εh(wi) for i = 1, . . . ,N ,

(ii) |c0w0 + c1w1 + · · · + cNwN |ν < (H(w0)HS(w0)N+1)−1Ĥ(w)−δ hold and no subsum
of theciwi involvingc0w0 vanishes.

We shall also need a result in the theory ofS-unit equations, which is essentially
reformulation of a theorem of Evertse.

LEMMA 3. –Let K,S,N be as above, and let0 < d < 1/(N + N2). Then there exists
finite setQ ⊂ K∗ such that, for all solutionsw = (w1, . . . ,wN ) ∈ (K∗)N of the equation
w1 + · · ·+ wN = 0 satisfyinghS(wi) + hS(w−1

i ) < dh(wi) for i = 1, . . . ,N , there exist indices
1 � r < s � N , such thatwr/ws ∈ Q.

Proof. –Without loss of generality we may assume that there is no proper nonempty van
subsum of thewi. In fact, we may otherwise consider just thewi appearing in a vanishin
subsum, since all the assumptions plainly remain valid for this subset.
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We enlargeS so that there exists a systemΣ of integral ideals inK, representatives for the
ideal classes, and made up of prime ideals inS. For everyw as above, letJ be the minimal
integral ideal such thatJw1, . . . , JwN are contained inOS . Let I ∈ Σ be in the same class ofJ
and letλ ∈K be a generator forI−1J . It is known that, multiplying if necessaryλ by a unit, we
may assume thath(λ) � hS(w1) + · · ·+ hS(wN ) + D, whereD depends only on the regulator
of K.

The
vector
sume

e

r

e

We putxi = λwi. Thexi areS-integers satisfying the equationx1 + · · ·+ xN = 0. Also, we
have

∑
v∈S

N∑
i=1

log |xi|v � Nh(λ)−
∑
v/∈S

N∑
i=1

log |wi|v

� Nh(λ) +
N∑

i=1

hS

(
w−1

i

)
� (Nd + N2d)h(w) + ND.

Put δ := Nd + N2d < 1. We apply the theorem of Evertse appearing at p. 91 of [7].
assumptions for that theorem are verified, since in the notation of that theorem the
(x1, . . . , xN ) is (exp(ND), δ,S)-admissible and since we have remarked that we may as
that no proper subsum vanishes. We conclude that the projective point

(x1 : . . . : xN ) = (w1 : . . . : wN )

has finitely many possibilities, concluding the proof.�
Now to the proof of the theorem. We fix a positive integerB; later on we shall choose it to b

large enough for our purposes.
We consider the set of monomialsXi such that‖i‖ � B andai 
= 0. We letN be the numbe

of such monomials and choose a numberingM1, . . . ,MN of them. Further, ifMr = Xi we put
cr := ai and we putc0 =−1.

For any given (large) positive integerh, we put (dropping the subscripth from thew’s)

w0 := f(xh), wj := Mj(xh), j = 1,2, . . . ,N.

We go on by proving aν-adic bound for the sumc0w0 + · · ·+ cNwN .
Sincef converges near the origin, we have a bound|ai|ν � C1ρ

‖i‖, whereC1, ρ are suitable
positive real numbers. We also recall that‖xh‖ν tends to0. We assume in the sequel thath is so
large that2ρ

√
‖xh‖ν < 1. Then we have

|c0w0 + · · ·+ cNwN |ν � C1

∑
‖i‖>B

(
ρ‖xh‖ν

)‖i‖ � C2‖xh‖B/2
ν ,(3.1)

whereC2 = C1

∑
i 2

−‖i‖ (the sum being convergent).
In order to apply Lemma 2 (for a suitableδ), we proceed to estimate the termsH(w0), HS(w0)

andĤ(w).
We shall use assumption (2) of Theorem 1, saying thatĤ(xh) is bounded above by positiv

powers of‖xh‖−1
ν .

We fix ε = 1/BN2 and putδ = (N + 3)ε. For the rest of the proof,C3,C4, . . . will denote
positive numbers independent ofB or h.

First, by assumption (4) (and (2)), we have for largeh

H−1(w0) � ‖xh‖C3
ν .
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By assumption (3), we have (for largeh)

H−1
S (w0) � ‖xh‖ε

ν .

Finally, by (4) (and (2)), we get, recalling thatw = (w0,w1, . . . ,wN ),

e

e
r

that the

ay
Ĥ−1(w) � ‖xh‖C4BN
ν .

Combining all these estimates, we obtain

(
H(w0)HS(w0)N+1

)−1
Ĥ(w)−δ � ‖xh‖C3+(N+1)ε+C4BNδ

ν .

Recalling our choices ofδ and ε, we find that the exponent of‖xh‖ν in the last inequality is
bounded above by a numberC5 independent ofB or h. Therefore, in view of Eq. (3.1), th
assumption (ii) for the above lemma (with the present choice ofε andδ) is verified for all large
h, providedB has been chosen larger than2C5.

Also, assumption (i) of the lemma (with the present choice ofε) is verified for all largeh. In
fact, take any monomialw in xh, which we write asw = xa1

h1 · · ·x
an

hn, with ai � 0. We have

|w|ν =
∏

i

|xhi|ai
ν � ‖xh‖

∑
i
ai

ν .

It follows from Liouville inequality and from the fact that̂H(xh) � ‖xh‖−C6
ν that

H(w) � |w|−1
ν � ‖xh‖

−
∑

i
ai

ν � Ĥ(xh)C6

∑
i
ai .

Now, observe thathS(w) + hS(w−1) �
∑

i ai(hS(xhi) + hS(x−1
hi )). By our assumptions th

right side iso(
∑

i aih(xhi)). In turn, this quantity iso(h(w)), in view of the previous lowe
bound forH(w).

We conclude that, for all largeh, a suitable subsum of thecjwj involving c0w0 vanishes.
Since there are only finitely many subsums to consider, we may assume in the sequel
same subsum occurs for allh.

Let P (X) be the polynomial corresponding to such a subsum; namely,

P (X) =
∑
j∈J

cjMj(X)

for someJ ⊂ {1, . . . ,N}. Then, puttingg(X) := f(X)− P (X) we have that

g(xh) = f(xh)− P (xh) = −c0w0 −
∑
j∈J

cjwj = 0

for largeh.
The theorem will then follow immediately by applying the following proposition (which m

have some independent interest) to the power seriesg(X).

PROPOSITION 3. –Let f(X) =
∑

i aiXi be a power series with algebraic coefficients inCν

converging in a neighborhood of the origin inCn
ν . LetS andxh = (xh1, . . . , xhn) (h = 1,2, . . .)
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be a sequence satisfying(1), (2) of Theorem1. Assume that for every fixed positiveB, we have

∣∣f(xh)
∣∣
ν

= O
(
‖xh‖B

ν

)
.

Then all but finitely many of the elementsxh lie in the union of finitely many cosets
u1H1, . . . ,urHr on whichf vanishes.

e
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Moreover the toriH1, . . . ,Hr may be chosen to depend only onf and not on the sequenc
{xh}.

In particular,f(xh) is forced to be eventually0.

Proof of proposition. –The idea of the proof is roughly as follows. Using Lemmas 2, 3,
can show that iff is not identically zero, then the set{xh} may be split in a finite union o
sets, each set being contained in a proper coset passing through0. Then one can argue with th
restriction off to each coset, iterating the method wheneverf does not vanish identically o
the coset. At each step the dimension of the relevant coset decreases, so we eventuall
with the union of finitely many cosets, on whichf vanishes, containing our original sequen
Actually, the proof may be shortened and one can just deal with the final step. This motiva
following definition:

We say that a cosetuH is minimal with respect to a set{zh}h∈N ⊂ uH if there do not exis
proper sub-cosetsu1H1, . . . ,urHr ⊂ uH such that{zh}h∈N is contained in

⋃r
i=1 uiHi.

For dimensional reasons, it is clear that the set{xh} may be partitioned in a finite numb
of setsYj , j = 1, . . . , s, contained respectively in cosetsvjHj passing through0 and minimal
with respect toYj . (PossiblyGn

m is already minimal with respect to{xh}.) Plainly, if a single
xh ∈ vjH , then we may choosevj = xh. Therefore, without loss of generality, we may assu
that all the involvedvj are defined overK.

To prove the proposition, it thus suffices to prove thatif a cosetuH is minimal with respect to
an infinite subsequence of{xh}, thenf vanishes onuH . We proceed to prove this claim.

To save notation, we may assume thatuH is minimal with respect to{xh} and, as we hav
just remarked, we may chooseu ∈Gn

m(K).
We begin to choose a normal form forf(uX) with respect toH , in the sense of Definition 3
Namely, if f(X) =

∑
i aiXi, we write g(X) =

∑
C aC(u)XC , whereC runs through the

classes of monomials with respect toH , theXC are a set of representative monomials for
equivalence classes and

aC(u) =
∑

Xi∈C

aiui.

This functiong(X) convergesν-adically near the origin and verifiesg(x) = f(ux) for x ∈ H ,
x near the origin.

We putyh := u−1xh, noting at once that theyh verify (1) and (2) of Theorem 1. Also, w
haveg(yh) = f(xh) (both series converge for largeh), whence in particular, for all positiveB
we have ∣∣g(yh)

∣∣
ν

= O
(
‖yh‖B

ν

)
.

The proof now runs quite similarly to what we have already seen, and we shall be a little
sketchy. As before, we fix a sufficiently large positive integerB.

We consider the set of monomialsXC of partial degrees� B and such thataC(u) 
= 0. If this
set is empty, thenf vanishes onuH and we are done. We then letN + 1 > 0 be the number o
such monomials and choose a numberingM0, . . . ,MN of them. Further, ifMr = XC we put
cr := aC(u).
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For any given (large) positive integerh, we put (dropping the subscripth)

wj := Mj(yh), j = 0,1, . . . ,N.

We go on by proving aν-adic bound for the sumc0w0 + · · ·+ cNwN .
Sinceg converges near the origin, we have a bound|aC(u)|ν � A1ρ

degXC , whereA1, ρ are

esent
ost

n),

e

ly
occurs

f

lent
suitable positive real numbers. For large enoughh, we have

|c0w0 + · · ·+ cNwN |ν �
∣∣g(yh)

∣∣
ν

+ A1

∑
‖i‖>B

(
ρ‖yh‖ν

)‖i‖ � A2‖yh‖B/2
ν ,(3.2)

for a suitableA2 independent ofh. (For the last inequality we have used thatg(yh) is small.)
We shall now apply Lemma 2, estimating the various involved heights. In the pr

application, it will be noted thatw0 has not a special role, since it is automatically an alm
S-unit (rather than an almostS-integer).

We fix ε = 1/BN2 and putδ = (N + 3)ε. For the rest of the proof,A3,A4, . . . will denote
positive numbers independent ofB or h.

For largeh we have, by (2) in the statement of Theorem 1 (and of the present propositio

H−1(w0) � ‖yh‖A3
ν

and by (1) of Theorem 1 (again for largeh)

H−1
S (w0) � ‖yh‖ε

ν .

Further, we get by (2), recalling thatw = (w0,w1, . . . ,wN ),

Ĥ−1(w) � ‖yh‖A4BN
ν .

Combining all these estimates, we obtain

(
H(w0)HS(w0)N+1

)−1
Ĥ(w)−δ � ‖yh‖A3+(N+1)ε+A4BNδ

ν .

Recalling our choices ofδ and ε, we find that the exponent of‖yh‖ν in the last inequality is
bounded above by a numberA5 independent ofB or h. Therefore, in view of Eq. (3.2), th
assumption (ii) for Lemma 2 (with the present choice ofε and δ) is verified for all largeh,
providedB has been chosen larger than2A5.

Also, assumption (i) of the lemma (with the present choice ofε) is verified for all largeh: this
is in fact an immediate consequence of assumption (1) of Theorem 1.

We conclude that for all largeh, a suitable subsum of thecjwj vanishes. Since there are on
finitely many subsums to consider, we may assume in the sequel that the same subsum
for all h.

Write the vanishing subsum in the formci1wi1 + · · · + cik
wik

= 0. We apply the lemma o
Evertse (i.e. Lemma 3) to this equation, writingN in place ofk andw = (ci1wi1 , . . . , cik

wik
).

The assumptions are certainly verified for largeh, e.g. by choosingd = 1/2(N + N2).
In our original notation, we conclude that there exist a finite setQ and indicesr, s, with

0 � r < s � N , such thatcrwr/csws ∈ Q.
For any fixed choice ofr < s and ofq ∈ Q, the equationMr(y)/Ms(y) = qcs/cr defines in

H a proper sub-coset ofH . In fact, note that the relevant monomials are pairwise inequiva
moduloH .
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Sincewj equalsMj(yh), we have proved that the sequence{yh} is contained in a finite union
of proper sub-cosets ofH , whence{xh} is contained in a finite union of proper sub-cosets of
uH . This contradicts the minimality ofuH with respect to{xh} and concludes the proof of the
first part of the proposition (which suffices to imply Theorem 1).

To prove the proposition completely, we note that, enlarging the cosets if necessary, we may
assume that they are maximal forf in the sense of Definition 4. Now it suffices to apply

that

nt

ll of

lows
he

In

clusion
ay be
Theorem 2. �
4. Proof of remaining statements

Proof of corollary. –SinceO∗
S is finitely generated we may writex1 = zdξ wherez ∈O∗

S and
whereξ ∈ O∗

S has finitely many possibilities; hence in what follows we assume thatξ is fixed.
Writing xiz

d in place ofxi we easily see that it suffices to prove the conclusion assuming
x1 = ξ is fixed. Note that this substitution leaves condition (i) unchanged.

We shall apply Theorem 1 withf(X) = d
√

ξ + X2 + · · ·+ Xn, as a Taylor series at the poi
ξ, for some given determination of thedth root ofξ. Note that for any of the points(x2, . . . , xn)
in question, the value off is in OS , for a suitable determination of thedth root of ξ (because
then the value coincides withyx). We may assume that the same determination holds for a
the points.

Conditions (1), (3), (4) of Theorem 1 are automatically verified. Also, condition (2) fol
from the present condition (i). Let thenuH be one of the finitely many translates in t
conclusion of Theorem 1, whose union contains all the points(x2, . . . , xn); note that here we
are working inGn−1

m . Thenf(X) = P (X) on uH , whereP ∈ K[X2, . . . ,Xn]. Because of the
definition off , this means that onuH the identityP d(X2, . . . ,Xn) = ξ +X2 + · · ·+Xn holds.
(Recall that the “restriction” is interpreted formally.)

To read the identity in terms of the original coordinates, replace nowXj byXjξ/X1. The coset
uH becomes a cosetu′H ′ in Gn

m; if uH contains(x2, . . . , xn) thenu′H ′ contains(x1, . . . , xn).
Also, multiplying the identity byX1 we get

X1 + · · ·+ Xn = ξ−1X1P
d

(
X2ξ

X1
, . . . ,

Xnξ

X1

)
,

valid onu′H ′. This proves the corollary. �
Proof of Theorem3. – It is immediately seen that this follows from Proposition 3.

fact, assumption (1) of Theorem 1 is automatic, because we are dealing withS-unit points.
Assumption (2) appears in the statement, and finally the growth condition off(xh) is also
implied by the vanishing of these numbers, which is assumed in Theorem 3. Now, the con
of Proposition 3 yields the conclusion of Theorem 3, since the finitely many exceptions m
viewed as translates of the trivial0-dimensional torus. �
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