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S-UNIT POINTS ON ANALYTIC HYPERSURFACES

By PIETRO CORVAJA AND UMBERTO ZANNIER

ABSTRACT. — In analogy with algebraic equations withunits, we shall deal witt5-unit points in an
analytichypersurface, or more generally with values of analytic functiorfsanit points.

After proving a general theorem, we shall give diophantine applications to certain problems of integral
points on subvarieties ck' x G7,. Also, we shall prove an analogue of a theorem of Masser, important in
Mabhler's method for transcendence.

In the course of the proofs we shall also develop a theory for those algebraic subgrdafiswhose
Zariski closure inA™ contains the origin. Among others, we shall prove a structure theorem for the family
of such subgroups contained in a given analytic hypersurface, obtaining conclusions similar to the case of
algebraic varieties.

0 2005 Elsevier SAS

RESUME — En analogie avec les équations algébriqueS-emités, on considére ici des poirfisunités
sur une hypersurfacanalytique On dérive d’'un énoncé général des applications a des problémes sur les
points entiers des sous-variétés Aé x G7,. En plus, on déduit un analogue d'un lemme de zéros de
Masser, qui intervient dans la méthode de Mahler en transcendance.

Lors de la démonstration de ces résultats, on développe une théorie des sous-groupes algélixifjues de
dont la cléture de Zariski dan&™ contient I'origine. En particulier, on démontre un théoréme de structure
pour la famille de tels sous-groupes contenus dans une hypersurface analytique, en obtenant une conclusion
analogue a celle du cas des variétés algébriques.
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1. Introduction

Algebraic equations with6-units are now rather classical: we may recall for instance the
S-unit equationX; + --- + X,, = 1 dealt with by Evertse and van der Poorten—Schlickewei,
leading to Laurent’s solution [5] of a conjecture by Lang; in particular this implies tha-tineit
points (over a number field) in a subvarietyy” of GI*, (which are theS-integral points forl)
must lie in a finite number of algebraic cosets entirely containdd.in

Here we shall deal wittb-unit points in ananalytic hypersurface, or more generally with
values atS-unit points of analytic functions. (See Theorem 1 below.)

Motivations for this study come from several sources.

First, there is the case of power series in several variables, representing algebraic functions,
evaluated atS-unit points; the problem is now to establish whether the values are rationals
or S-integers in a number field. This case for instance occurs in the problem of studying the
S-integral points on subvarieties &' x G, ; here no general analogue of Laurent’s theorem is
known, even in simply described cases, like the equajfos 1 + 2™ + 3". We shall approach
some of these questions. (See corollary below.)
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S-UNIT POINTS ON ANALYTIC HYPERSURFACES 77

Then, we may recall, e.g., the “Vanishing Theorem” of D. Masser [6, Theorem], important
in the applications of Mahler's method in transcendence. That result concerns precisely analytic
functions vanishing on certain special sequencésohit points. Here, with completely different
methods, we have conclusions in the same direction. In a way they are less general than Masser’s
(for instance we require algebraic coefficients for the series in question), but on the other hand
we can deal with sequences 8funit points which have no special structure, but satisfy only
certain growth conditions. (See Theorem 3 below.)

As in the conclusions of Laurent’s theorems, fhenit points under consideration are found to
lie in a finite union ofalgebraiccosets inG},, entirely contained in the hypersurfaces in question.

(In a different language, this represents also conclusion (ii) in Masser’s Theorem in [6].)

Here, the algebraic cosets important for us are those containing the origin in their Zariski
closure inA™ (see the definitions below). We have a structure theorem for these cosets (see
Theorem 2), which represents the analogue of what is known in the algebraic case (see [8]);
however we have found the analysis rather more delicate in the present case of analytic varieties.

A study of similar problems in the one-variable case had been started in [3]; the conclusions
were much simpler, due among others to the fact that the proper coséts afre just points.

The higher dimensional situation presents several new features.

Notation and statements. We let K be a number field anfl be a finite set of absolute values
of K containing the archimedean ones. For every placEK we denote by - |, a continuation
of it to Q and normalize it “with respect té&”: according to this normalization, far ¢ K*
the absolute logarithmic Weil height read$z) = >° log™ ||, and the product formula
I, |z|» = 1 holds. We note that these conditions determine uniquely our normalizations. We also
note that even in the archimedean case the triangle-inequality holds with these normalizations.
In fact, the present absolute value is obtained from the usual one by raising to a power between
0 andl.

We fix an absolute value of K and denote byz,, a completion of an algebraic closuref,.
Our notion of convergence, unless otherwise specified, refdts to

We also define thé&-height of a non zero elemente K to be

hs(w) = 3 log™ ..

vgS

For S-integers this height vanishes, so it gives a measure of “how dfais from being an
S-integer.

For a vectow = (2, z1, ..., 2,) € K1\ {0} (h > 1), we defineh(z) as the usual projective
logarithmic height. We puti(0) := h((0 : 1)) = 0. Also, we denote byi(z) (resp. hs(z)),
the sum of theh(z;) (resp.hs(z:)), 0 <1 < h. Moreover, we put, for an absolute value
l|12]]» := max{|z0|v,- -, |2n]v}-

Throughout, we putf (-) = exp(h(-)) andHgs(:) = exp(hs(+)).

We shall consider power serigs, ;X! € C,[X1,...,X,] where, as usual, for a multiindex
i=(i1,...,0n), we putXi:= X ... Xin ||i|| := max{iy,...,i,}. We shall normally assume
that the relevant series are convergent in a neighborhood of the origif.in

Usually we shall consider pointswith nonzero coordinates in some field, and view them
as points ofG”, (K), so operations are intended to be made coordinatewise.

We shall use the familiar “little 0” and “big O” notations.

1 As usuallog® t = max(0,logt) for at > 0.
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78 P. CORVAJA AND U. ZANNIER

Our main result is the following theorem, where by “cosef! we refer to a coset for some
connected algebraic subgroip of GJ,. In Section 2 we shall briefly recall standard notation
and basic facts about the corresponding theory.

THEOREM 1. — Let f(X) = >, a; X! be a power series with algebraic coefficients@hp
converging in a neighborhood of the origin @} . Let S be a finite set of absolute values of
K containing the archimedean ones. ket = (zp1,...,2r,) (h=1,2,...) be a sequence in
K*", tending to zero iK™ and such thaif (x;,) is defined and belongs t. Suppose that

(1) Fori=1,...,n, we havehg(zs;) + hs(z;,') = o(h(zhi)) ash — occ.

(2) h(xp) = O(—log(max; |xhi|,))-

() hs(f(xn)) = o(h(xp)).

(4) h(f(xn)) = O(h(xn)).

Then there exist a finite number of cosetsH,,...,u,.H, C G, such that{x,}ren C
U;_, w;H; and such that, foi = 1,...,r, the restriction off(X) to u, H; coincides with a
polynomial inK'[X].

Here, as in the sequel, the “restriction” may be interpreted both formally and in the sense of
functions near the origin.

We pause on the meaning of the cumbersome conditions in the theorem. Condition (1) states
that the coordinates of;, “tend” to beS-units. (In fact, the vanishing of boths (x) andhs(x 1)
characterizesS-units.) In most of our applications (e.g. Theorem 3 below) we shall deal with
S-units, so (1) will be automatic.

Condition (2) is crucial and states that theadic contribution to the height of;, is not
negligible forh — oo, for eachcoordinatery,;.

In analogy with condition (1), conditions (3) and (4) mean that the valfi{gs) tend to be
S-integers with not too large height.

Theorem 1, involved as it is, yields nevertheless some diophantine conclusions, as for instance
the following corollary on sums of-units which are perfecfth powers.

COROLLARY.—Letd € N, § > 0. Let X be a set of pointx = (z1,...,z,) € (O§)" such
that

() |21l > (maxjss 2], H(x)°.

(i) There existy =y, € K with 2y +--- + z,, = y?.

ThenX is contained in a finite union of algebraic translate& C G},,u e (0O5)", H C GJ,
an algebraic subgroup, such that, forR= P,y € K[Xlil,Xg, .., Xp]Jandac=cyg € K,
we haveX; + -+ X,, = X1 P(X1,..., X,)4, as functions iRk [uH)].

Condition (i) on the “dominant term”, which amounts to condition (2) in Theorem 1, is
probably not needed, but it seems a very difficult problem to remove it. Note that the conclusion
is rather restrictive on the relevant translatd$, and admits a partial converse.

See also [9] for this corollary and for the following general conjecture on integral points on
subvarieties oA! x G7,: let V be an irreducible subvariety ok! x G, with a Zariski-dense
set ofS-integral points, such that the projection V' — G, is finite. Thenr(V) is an algebraic
translateud and there exist an integet> 1 and a morphism: H — V such thatu[d] = 7o 7.
(Here[d] denotes theith power map.) The conjecture is true fdim V' =1 as may be shown,

e.g. by Siegel's Theorem on integral points (see [9]); Theorem 1 quickly yields another solution
of this case: one reduces to the integral solutions for an equétieny) = 0, wherez is an
S-unit. Taking for f in Theorem 1 an expansion gfas a Puiseux series gives the conclusion.
We leave the details to the interested reader.

The corollary allows to prove easily the finiteness of solutions to diophantine equations such
asy? =1+ 2™ + 6" (one takes either the infinite absolute value or 2h&dic one as the case
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S-UNIT POINTS ON ANALYTIC HYPERSURFACES 79

may be); see also [4], especially the corollary therein, for this and more general equations. On
the contrary, the apparently similar equatign= 1+ 2™ + 3" is not known to have only finitely

many integer solutions; our method does not apply since the required growth conditions may
be not verified; what can be deduced from the present corollary is that, for any possible infinite
sequencém, n,y) of integral solutions, the ratioilog 2/nlog 3 converges td.

A situation of Theorem 1 which has been implicitly investigated in [6] is wfiex,) = 0 for a
sequence of-unit pointsx;. Note that in this case conditions (1), (3) and (4) are automatically
verified. We shall emphasize this relevant special case in Theorem 3 below. We remark that
Masser’s Theorem is quite relevant in Mahler's method for transcendence. In this respect we
also remark that Mahler's method applied to our functfowould yield, with the assumptions
above, thatf coincides with an algebraic function on the sequefxcg}. In this situation, both
an application of Masser’s Theorem or of Theorem 1 (as the case may be) give further sharper
conclusions.

Especially in the treatment of the cagex;,) = 0, a prominent role is played by the class of tori
H such thatf (X) vanishes on some coset] . (It turns out that this vanishing may be interpreted
both formally or as a function near the origin.) In other words, we are interested in the cosets of
subtori of G]}, which near the origin are contained in a certain analytic hypersurface. In the case
when “analytic” is replaced by “algebraic”, a structure theorem is known: given an algebraic
variety Z C GI', there are only finitely many tod/ such that some cosatH is contained inZ
and is maximal for this property (see, e.g. [1]; see also [2] for another argument, valid also in the
case of abelian varieties).

Such a statement is not generally true in the analytic case (see Section 2 for a simple
counterexample). However, the tori which appear in our context have the further property of
containing a sequence converging to the origin; hence we restrict our considerations to the
class of toripassing through zeran the sense of Definition 1 below. For this class of tori, the
mentioned finiteness theorems valid in the case of algebraic varieties generalize to an analytic
hypersurfacd” (around the origin), defined bf(x) = 0.

In fact, we shall prove a structure theorem saying that in the set of maximal oco&ets
contained iV, only finitely many toriH appear, and for fixedl the set of cosets is parametrized
by an algebraic variety. This will be relevant for the last conclusion of Theorem 1 as well as for
the special case when we assujifg;,) = 0 (e.g. Theorem 3). In this last case in particular, this
will imply the existence of an algebraic variefyC V', depending only orf (X) but not on the
sequence of points, containing almost all the points in our sequence. Moreover, the points will
be contained in a finite number of cosets, each entirely contain&d (While Z depends only
on f, the cosets may depend on the sequence.)

We shall state precisely all of this in the following two theorems (as well as in Section 2).

THEOREM 2. —Given a power serie$’ € C[X], the set of toriH C G, such that(i) the
Zariski closure ofH in A™ contains0, (ii) for someu = uy, F vanishes oruH and (iii) no
coset larger thanu H verifies(ii), is a finite set.

Also, for a given torusd satisfying(i), the set ofu € G}, such thatF =0 on uH is an
algebraic set.

In fact, the last conclusion, which proves the existence of the algebraic variatjpded to
above, may be further specified (see Theorem 6 below).

THEOREM 3. -Let f(X) = >, a;X! be a power series with algebraic coefficients@h
converging in a neighborhood of the origin @} . Let S be a finite set of absolute values of
K containing the archimedean ones. bet = (zp1,...,zh,) (h=1,2,...) be a sequence of
S-units in K <", tending to zero ink”* and such thatf(x;) = 0. Suppose also that(x,) =
O(—log(max; |Zpi|v))-
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80 P. CORVAJA AND U. ZANNIER

Then there exist a finite number of cosaetid?s, ..., u,.H, C G}, on which f vanishes and
such that{x, }ren C U;_; w; H;.
Moreover, the toriH, . .., H,. depend only orf, not on the sequendexy, }.

Note that we do not have the last conclusion in Theorem 1; namely, in that case the tori might
dependa priori on the sequencgxy, }.

Remark— As in Theorem 1 of [3], the Taylor coefficients ¢fX), though algebraic, are
allowed to generate an infinite degree extensio@)of

2. Subgroupsof G}, passing through 0 and corresponding restriction of power series

In this sectionK will denote any field of characteristic zero.

We briefly recall the structure of algebraic subgroup&df (see [8]).

Let H be such a subgroup. Théf is defined by binomial equations; - -- X2~ = 1, where
(a1,...,a,) varies through a lattice (possibly of rarkn) A = Ay C Z™. In this way we obtain
a 1-1 correspondence between algebraic subgrou@g,adind sub-lattices d”. Also, we have
dim H + rank A = n.

The groupH is connected (i.e. is an irreducible variety) precisel ifs primitive, i.e. Z"™ /A
is torsion-free. Whet# is connected, we also say it is@us In any caseH is a direct product
of a finite group by its connected component of the identity, which is a torusoBgtwe shall
mean a translate of a torus by a point.

When H is a torus we also have an algebraic group isomorphisay GAim # given by a
parametrisation

Xi:tui, izl,...,m t:(tl,...,tk),

wherek = dim H, the vectorsu; lie in ZF and the column vectors of the matrix whose row
vectors are they; are a basis for the orthogonal complemeni\gf in Z™.

The class of algebraic subgroups@f;, which will appear in our setting are those containing
the origin in their topological closure (for the valuatiohin A™ > G7,. The main reason lies in
the assumptions of Theorem 1, involving a sequence converging to the origin. We shall analyse
this class of groups, which appears to have properties rather relevant for our applications.

DEFINITION 1. - We say that an algebraic subgradpC G}, passes through if the Zariski
closure ofH in A™ contains(0,...,0).

We note that a subgroufi passes throughif and only if the same property is true for at least
one among its translates, in which case it is true for all translates.

ProrPoOsITION 1. —The following conditions are equivalent for a torts
(i) H passes through.

(ii) The latticeA ; does not contain any nonzero vector with all its coordingtes
(iii) There exists a parametrisatian: GF, — H as above

Xi:tui, izl,...m, t:(tl,...,tk),
where the vectora; € Z* have all their coordinates- 0.
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S-UNIT POINTS ON ANALYTIC HYPERSURFACES 81

(iv) There exists a poirtey, ..., z,) € HNC? with |z;], <1fori=1,...,n.
(v) There exists a sequencelihn C” converging ta(0, ..., 0) in thev-adic topology.

Proof. —To prove that (i) implies (ii), suppose thAf; contains a nonzero vectfd,, ..., a,)
in the first orthant, i.e. witly; > 0 for : = 1,...,n. By definition, the functionXy* --- X2 — 1
vanishes orf{. On the other hand, this function is a polynomial and therefore it must vanish on
the Zariski closure off on A™, proving that this closure does not contain the origin.

To prove that (ii) implies (iii) requires more work. We start by proving the following

CLAaIM. —LetV C R™ be a vector space not containing any nonzero vector in the first orthant.
Then its orthogonal complementR™ contains a basis in the interior of the first orthant.

To prove the claim, we first consider a weak form of it, namely we show that the orthogonal
complement* to V' contains a nonzero vector in the first orthant. ket...,v,. € R" be a
basis forV. We view thev; as row vectors of a matrix/ and definew,...,w, € R" to be the
column vectors of\/.

Consider the convex spa#r of thew;, namely

W .= {xlwl 4+t wy x; =0, Zmizl}.

Naturally, W is a compact subset & and we contend that it contains the origin. Assume
the contrary, and take a vectare W of minimal norm. There # 0 and, denoting by-, -) the
euclidean scalar product R", we have

(z,w) >0, forallweW.

In fact, if (z,w) = —s < 0 for aw € W, considerz(t) := tw + (1 — t)z for a real positive
t <1.We havez(t) € W and|z(t)|* = t*|w|* + (1 — t)?|z|* — 2t(1 — ¢)s. Denoting by (¢) the
right side, we see that(0) = |z|? and f'(0) = —2|z|> — 2s < 0. Thereforef (t) < |z|? for small
positivet, contradicting the minimality ofz| for z € W. (This argument is fairly standard.)

If z=(z,...,2) we then have that;v; + - -- + z,.v,. is a nonzero vector lying in the first
orthant (namely, all of its coordinates are nonnegative): in fact, its coordinates are just the scalar
products(z, w;). Thus we have a contradiction, proving tfi&tcontains in fact the origin. Take
an equatiory; wy + - - - + y, w, = 0 with nonnegativey; having sum equal ta. The vector
v = (v1,...,yn) IS NONZero, lies in the first orthant, and is orthogonal’toproving the weak
form of the claim.

To prove the full claim, take a vecter € V* in the first orthant, having a maximum number of
nonzero coordinates. We show that in fact all of its coordinates are positive. Assume the contrary
and renumber coordinates to assunie= (x1,...,x4,0,...,0), wherex;, > 0fori=1,..., h.
DefineUU ¢ R"" to be the image of/* under the projection on the last— h coordinates.
Suppose thal/ has a nonzero vectar in the first orthant oR”~" and letu’ € V* be a vector
whose projection isi. Then we see that, for small posititghe vectow* +tu’ € V* has at least
h + 1 positive coordinates and lies in the first orthant, a contradiction with the maximality of
ThereforeU has no nonzero vectors in the first orthant. By the weak form of the claim, proved
above, applied this time 7, there exists a nonzero vectere R™~", in the first orthant, which
is orthogonal tdJ. Consider now the vectaw’ € R™ whose firsth coordinates aré and whose
projection on the last — h coordinates isv. Thenw’ is nonzero, lies in the first orthant and is
orthogonal toV *, namely lies inV/, against the assumption.

This contradiction therefore proves that has strictly positive coordinates. In particular,

a whole neighborhood of* in R" lies in the interior of the first orthant. Intersecting this

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



82 P. CORVAJA AND U. ZANNIER

neighborhood with’*, we get a nonempty open subsetlof contained in the interior of the
first orthant. Since every nonempty open subset of a real vector space contains a basis of it, the
claim finally follows.

We can now apply the claim to the real vector speicgpanned by ;. Observe thal” cannot
contain any nonzero vector in the first orthant: in fact, assume the contrary, antééesuch a
vector. Renumbering coordinates, we may assumewthas the first, coordinates equal t6
and has the remaining coordinates strictly positive. The subspaceonsisting of vectors with
vanishing firsth coordinates is defined ov€}, whence its rational points are dense in it. Since
v lies in this space, there exists a rational nonzero vectdr aontained in the first orthant. But
then, by multiplying this vector by a suitable positive integer, we would obtain a nonzero vector
in Ay, contained in the first orthant, against the present assumption.

In virtue of the claim, we thus obtain a basis for the orthogadrngl contained in the interior
of the first orthant. Sinc&* is also defined ove®, we obtain an integral primitive vectev;
in V* having strictly positive coordinates. Complete now, as is certainly possihléo a basis
wi,...,wy for the latticeV* N Z". Replacing if necessany; by w; + Nwy fori=2,... k,
where N is a sufficiently large positive integer, we may assume that alkthdie in the first
orthant.

We now define the matriw, ..., u, (Whereu; € Z*) as the transpose of the matrix formed
with wq, ..., w, and consider the map

©:GF S G, te (..

This map is plainly regular and is an algebraic group homomorphism. Its image is contained in
H, since thew; are orthogonal ta\ ;. Note also that

k=:dimV*=n—dimV =n —rank Ay =dim H.

Since thew; are linearly independent and sinfeis a torus, the map is dominant, whence, being
a group homomorphism, is surjective; moreover, the fact that the vewtoase a basis for the
lattice orthogonal to\ z (and not merely fol/*), easily implies that it is injective. This finally
proves that (ii) implies (iii).

Now, suppose given a parametrisatipnsatisfying the stated conditions and chodse
(t1,...,tr) € GE with |¢;], < 1. Plainly the point(zy,...,z,) := ¢(t) has the required
property, proving that (i) implies (iv).

Next, starting from a poin{zy,...,z,) as in (iv), the sequence of its positive powers
converges to the origin. This proves the implication &> (v).

Finally, that (v) implies (i) is clear, since a Zariski closed subseAdfC, ) is closed also for
thev-adic topology. O

Remark— In the arithmetical results of the present paper, we shall often need to work with
the restriction of a power serigs € K[X] to suitable algebraic subgroups or cosets passing
through0. The parametrisation occurring in (iv) of the preceding lemma, combined with the next
simple lemma, allows us to view such a restriction as a new power seti€fnwe thus reduce
to work on a smaller power d&,,,. A parametrisatiorp as in the proposition sends a torus in
Gk passing through in a subtorus off with the same property. Note however that there may
exist proper subtorff’ C H such thatH’ passes through but ¢ —!(H’) does not! (Consider,

e.g. the examplé] := {z = 2} C G}, H' := {z = y = z} and p(t,u) = (tu,tu? tu).) This
phenomenon slightly complicates the proof of Theorems 4, 5 below.
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LEMMA 1.-LetH C G}, be a torus passing through Then, for every given monomial in
K[X], there exist only finitely many monomials having the same restrictidti.on

Proof. —By Proposition 1, there exist® := (x1,...,2,) € H with |P||, < 1. Observe
that | X(P)|, < ||P||deX" = || P||i:++i». Therefore the valueXi(P) tend v-adically to0,
whence at most a finite number of them can assume the same valdend a fortiori on the
wholeH. O

We observe that, given a parametrisatjorG*, — H asin Proposition 1, (iii), two monomials
in X have the same restriction @ if and only if their composition withy produces the same
monomial int.

This same positivity, together with Lemma 1 implies that, for a power sétiesk [X], the
compositionF o ¢ is again a power series, E [t]. This power series represents the restriction
of F to H, through the given isomorphisid = G . The restriction off" to a cosetn H will be
simply the restriction td? of the power serie$’(uX).

Observe that in this way, ilf passes through, we can always define the restrictionud/
of a formal power series, regardless of convergence in any topology. In other words, we do not
need that the series represents a function in order to define its restrictidi.to

Actually, one can define the restriction even without a parametrization as above, simply by
grouping together monomials which have the same restrictidi.td/e shall make this precise
in a moment.

DEFINITION 2. —For an algebraic subgroul c GI.,, we say that two monomials are

equivalent with respect tdf if their restrictions toH are equal functions, namely if their
difference belongs to the ideal definidfas an algebraic variety.

We can now define the conceptmdrmal formof a formal power series with respectib.

DEFINITION 3.—LetF =Y a;X! € K[X1,...,X,] be aformal power series. We say tifat
is in normal form with respect tél if the monomials which appear ifi with nonzero coefficient
are inequivalent with respect 1.

The above lemma implies that given any power sefigsve maynormalizeit, by grouping
together the monomials which are equivalent with respedt tdNamely, by the lemma, each
equivalence class of monomials is a finite set, hence theagure= ) . - a; is well defined
for every classC. Hence the power serigs := ) . acX¢, WwhereX¢ runs through a set of
representatives for the equivalence classes, is in normal form with resgéarnad has the same
restriction toH asF'.

Now, first, we stress that the set of representatives is quite arbitrary. Second, we remark that
this notion is referred to formal power series; however it is easily seen that in the caségwhen
converges absolutely near the origin, any of its normal forms coincidesAvih a function in
the intersection off with the relevant convergence region.

These notions automatically extend to the case of a aodein place of a torudd . it suffices
to argue withH in place ofuH and with the serieg’(uX) in place of F(X). Note that the
relevant equivalence classes are the same as before.

Let F' € K[X] be a formal power series over the fielfl We shall consider the family of
cosetsuH (for a torusH passing through), such that the restriction df to uH vanishes.

We have the following simple criterion for this vanishing.

PROPOSITION 2. —Let f(X) = Y, ;X! € K[X] and letH be a torus passing through
Suppose that the restriction ¢fX) to uH coincides with a polynomidkesp. vanishes Then,
for all but finitely many(resp. for all) classe<” of equivalence of monomials, with respecfio
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we have

the sum being finite for eadfi.

The proof is immediate using the parametrisatjpand the preceding lemma. (A proof may
be also obtained directly by invoking the concept of normal form, just introduced.)

As a matter of fact, the same arguments prove that, when the power series is convergent
v-adically, the same criterion holds if we interpret the restrictiorf'oin the usual sense, i.e.
considering it as a function. We state this fact separately.

PROPOSITION2'. —Let f(X) = 3, ;X! € C,[X] be convergent in a neighborhodd of
the origin in C”, and letH be a torus passing through Suppose thaf(X) coincides with a
polynomial(resp. vanisheson U N uH. Then, for all but finitely mangresp. for all) classes”
of equivalence of monomials, with respecHowe have

the sum being finite for eadfi.

We shall now prove a structure theorem for the set of cosets on which a given power series
vanishes.

DEFINITION 4.—We shall say that a cosetd is maximal forF' if F' vanishes oruH but
does not vanish on any strictly larger coséi’, whereH' is a torus containindf properly.

For dimensional reasons, every coset on whithanishes is contained in a maximal one for
F.

In the case of algebraic varieties (e.g. if the power series is a polynomial), some finiteness
results have been proved for the set of rioccurring in a maximal coset; see for instance [1]
(and also [2] for another proof, valid also in the context of abelian varieties). In the present
situation, it is a fundamental assumption that the relevant tori pass thi@ugfithout this
proviso, examples like"(X) := [],(1 — X), wherei varies onN" show that we may have
vanishing on an infinite family of maximal tori.

THEOREM 4. —Given a power serie$’ € K[X], the set of toriH passing through) and
such that, for somea = uy, the coseund is maximal forF, is a finite set.

It will be convenient to prove a more general fact. To state itAdie an affine irreducible
variety over the field< and letl’ C G}, be a subtorus. We prove:

THEOREM 5. —Given a power serie&/(z, X) € K[Z][X], the set of torif C T", H passing
through0, with the property that there existsc Z such thatH is a maximal subtorus df on
whichG(u, X) vanishes, is a finite set.

To deduce Theorem 4 from this statement, just tdke I' = G, and G(z,X) := F(zX)
(componentwise multiplication).

Proof of Theorenb. —We start by recalling a well-known fact, whose proof we give for
completeness. We shall say that,...,z,) > (y1,...,yn) if ; >y, for i =1,...,n. This
defines a partial order dR™.
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CLAIM . —Given a subsetl € N", the set of minimal points inl for the above defined order
relation, is a finite set.

We argue by induction on, the claim being clear fon = 1. Suppose by contradiction that
there exists an infinite set’ C .4 of minimal points, and lefz1, ..., z,) be one of them having
a minimal first coordinate. Every other poifat;, . .., y,) € A" hasy, > z;, whence must verify
y; < z; for at least one indexe€ {2,...,n}. Going to an infinite subset, we may assume that a
given coordinate, say,, is bounded and, going to a smaller, but still infinite, subset, we may
assume thay,, = c is fixed. Now we get a contradiction with the inductive assumption.

To prove the theorem, we shall argue by inductiommern= dim I, the result being clear for
m = 0. Suppose now that: > 1 and that the statement is true upto— 1.

We now argue by a second induction, this timeddm . It turns out to be convenient to start
the induction with the case of an emply i.e. dim Z = —1. In this case the set of relevant tori
is empty as well, so the theorem is true.

We now assume tha? is nonempty and that the statement has been proved fmd all
varieties of dimension smaller thalim 7.

Let Z,I',G be as in the statement and plitz, X) = >, a;(z)X'. We start by replacing
G(z,X) by a possibly different series obtained by removing certain terms appearhg/ie let
C be an equivalence class of monomials with respett fgee Definition 2 above) and consider
the sum} i - ai(z). If this sum is zero inK'[Z], we throw away the entire class frotd
and otherwise we simply leave unchanged all the terms correspondig\Wé do this for all
classes, obtaining a seriés (z, X) = Y, a; (z)X'. Note that the restriction a¥(z, X) to Z x I’
coincides with the restriction @&*(z, X) to Z x I'; in particular, for allu, G(u, X) vanishes on
a subtorudd of I if and only if the same holds fa&* (u, X). Hence it is sufficient to prove our
contention forG* in place ofG. Also, note that by construction a sUy: . a; (z) vanishes if
and only if all of its terms vanish.

We defineA to be the set of vectorssuch that the monomi&! has a nonzero coefficient
af in the formal power serie§*(z, X). We may assume th&t* is nonzero, since otherwise the
result is plainly true; hence we may assume thdas nonempty. We defingl’ to be the (finite)
set of minimal vectors itd, with respect to the above defined partial order relation.

Letu € Z(K) and letH be a maximal torus for the stated property, so in particGfau, X)
vanishes orf{ (but not on larger tori contained in). We distinguish two cases.

First case there exists a clas§ with respect td”, C corresponding to some vector.4f, such
that the sund .. a; (z) vanishes aui. Each of these conditions, which are finite in number,
defines a finite number of proper subvarietigsof Z, i.e. the components of a hypersurface
> xicc @i (z) =0 in Z. Note that) . .~ a;(z) is not identically zero: this is because of
our construction ofz* and becaus€’ contains at least one monomial corresponding to some
vector in A. Restricting the coefficients @f* to each of these components gives rise to finitely
many power serie&’; € K[Z,;][X], to which we may apply the inductive assumption. In fact,
dim Z; < dim Z, sinceZ is irreducible. Also, note that (for givean € Z;(K)) H remainsa
fortiori maximal even with respect to the new series. In this case, the proof is concluded.

Second caseno sumy .. a;i(z), whereC' contains some monomial corresponding to a
vector inA’, vanishes ati. This case requires further work.

SinceH passes through, by Proposition 1 there exists a vectag € Z™ with strictly positive
coordinates and orthogonal foy. Let A” be the subset af € A such that the scalar product
(i,vgy) is minimal. This subset is nonempty, sindev ) is a nonnegative integer fore 4. We
contend thatd” c A’: in fact, if i € A” andj € A is distinct fromi, we get(j,vy) > (i,vy),
whence(j —i,vy) > 0, proving thati — j cannot have only nonnegative coordinates. Therefore
A" c A’, whence in particular, in virtue of the claim, the s&t is finite (and nonempty).
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Fix j € A” and defineE as the equivalence class 3 with respect toH. In view of
Proposition 2, the su ;. ; a; (u) vanishes. On the other hand, the cl#ss a finite union
of equivalence classes with respecfitosince H C I'. Since the subsum corresponding to the
equivalence clas€’ of j with respect td is nonzero (in fact we are in the “second case” and
je A" c A'), there must be another claSsc E, with respect td”, such that the corresponding
subsum is also nonzero. Therefore there ejistsA such thaj —j € Ay \ Ar. In particularj — j
is orthogonal tov, whencegj € A” ¢ A'.

Observe that, sincgandj are (distinct) elements of the finite sdt, the vectory :=j —j is
nonzero and lies in a finite set independentrhf For every sucly we consider thégm — 1)-
dimensional subtoruE, C I' given by the connected component of the identity in the group
defined by the equatioX¥ = 1 in I". Note that the lattice associated to such a group is
Zy + Ar C Ay, so H is contained in the group. Since howewéris connected, it must be
contained in the connected component of the identity; in other wbxds, H.

We may now apply the inductive assumption (with respect:#§o with I'y in place of[.
Observe that, since there are only finitely mantp consider, only finitely manj/,, may arise in
this way. Also, ifH C Iy is maximal forI" (relative tou), a fortiori it is maximal forl'y (again
relative tou), concluding the proof. O

We now complete the proof of Theorem 2, by recalling:

THEOREM 6. —Given a torusH, there exists an algebraic séty C G]', whose points are

pairwise inequivalent moduld/, and such that’(X) vanishes on a cosetH if and only if
there existar’ € Uy withuH =u'H.

The proof is implicit in the proof of [1, Theorem 1(a)], since by Proposition 2 the set of
u € G, such thatF'(X) vanishes o H is an algebraic set. O

3. Proof of Theorem 1

A fundamental tool will be a consequence of the Subspace Theorem, proved as Theorem 4
in [3]. For the reader’s convenience we recall the result as the following

LEMMA 2. -Let K be a number field$S a finite set of absolute values &f containing the
archimedean oneg, be an absolute value fro, € be a positive real numbely > 0 an integer.
Finally, let co,...,cxy € K*. For § > (N + 2)e, there are only finitely manyN + 1)-tuples
w = (wo, ..., wy) € (K*)N*! such that the inequalities

() hs(w;)+hs(w; ) < eh(w;) fori=1,...,N,

(i) |cowo + crwy + - 4+ eywy ], < (H(wo)Hs(we)N 1)~ H(w) % hold and no subsum

of thec;w; involving cow, vanishes.

We shall also need a result in the theory 8funit equations, which is essentially a
reformulation of a theorem of Evertse.

LEMMA 3.-Let K, S, N be as above, and leét < d < 1/(N + N?). Then there exists a
finite setQ C K* such that, for all solutionsw = (wy,...,wy) € (K*)™ of the equation
w4 - - +wy = 0 satisfyinghs (w;) + hs(w; ') < dh(w;) fori=1,..., N, there exist indices
1<r < s< N, such thatw, /ws € Q.

Proof. —Without loss of generality we may assume that there is no proper nonempty vanishing
subsum of thew;. In fact, we may otherwise consider just the appearing in a vanishing
subsum, since all the assumptions plainly remain valid for this subset.
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We enlargeS so that there exists a systerof integral ideals inK, representatives for the
ideal classes, and made up of prime idealsirFor everyw as above, letV be the minimal
integral ideal such thatwy, ..., Jwy are contained it¥s. Let I € X be in the same class df
and let\ € K be a generator foF~1.J. It is known that, multiplying if necessaryby a unit, we
may assume that(\) < hg(wy) + -+ - + hs(wn) + D, whereD depends only on the regulator
of K.

We putz; = \w;. Thex; are S-integers satisfying the equatian + - -- + 2 = 0. Also, we
have

ZZlog|xz|v<Nh Zzlog|w1|v

veS i=1 ues =1
)+ Z hs(w; ) < (Nd + N?d)h(w) + ND.

Puté := Nd + N%d < 1. We apply the theorem of Evertse appearing at p. 91 of [7]. The
assumptions for that theorem are verified, since in the notation of that theorem the vector
(1,...,2N) is (exp(ND),d,S)-admissible and since we have remarked that we may assume
that no proper subsum vanishes. We conclude that the projective point

(mlz...:xN):(wlz...:wN)

has finitely many possibilities, concluding the proofa

Now to the proof of the theorem. We fix a positive inted&rlater on we shall choose it to be
large enough for our purposes.

We consider the set of monomia& such thatli|| < B anda; # 0. We let N be the number
of such monomials and choose a numbeidg, ..., M of them. Further, itM,. = X! we put
¢ = a; and we puky = —1.

For any given (large) positive integ&r we put (dropping the subscriptfrom thew'’s)

wo = f(xn), w;=M,(xp), j=1,2,...,N.

We go on by proving a-adic bound for the surywg + - - - + eywy.

Sincef converges near the origin, we have a bolnd, < C,p!ill, whereC}, p are suitable
positive real numbers. We also recall thja, ||, tends ta0. We assume in the sequel thais so
large thap+/||x4 ||, < 1. Then we have

(3.1) lcowo + -+ exwnly <C1 S (pllxnll) ™ < Collxn]| 272,
llill>B

whereCy = C; Y, 271l (the sum being convergent).

In order to apply Lemma 2 (for a suitahi® we proceed to estimate the terfi$w), Hg (wp)
andH (w).

We shall use assumption (2) of Theorem 1, saying ﬁﬁebth) is bounded above by positive
powers of|x||; .

We fix e = 1/BN? and putd = (N + 3)e. For the rest of the proof;’s, Cy, ... will denote
positive numbers independent Bfor h.

First, by assumption (4) (and (2)), we have for lafge

H™ (wo) = [lxll5".
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By assumption (3), we have (for lar@gg
Hg ' (wo) > [[xall5-
Finally, by (4) (and (2)), we get, recalling that= (wq, w1, ..., wx),
AN (w) > ||| 527
Combining all these estimates, we obtain
(H (wo) His (o) N *) ™ H (w) ™% > [y [ HV # D CaNe,
Recalling our choices of ande, we find that the exponent difc; ||, in the last inequality is
bounded above by a numbél independent ofB or h. Therefore, in view of Eq. (3.1), the
assumption (ii) for the above lemma (with the present choiceanfdd) is verified for all large
h, providedB has been chosen larger thzis.

Also, assumption (i) of the lemma (with the present choice)a$ verified for all largeh. In
fact, take any monomial in x;, which we write asv = «}} - - - 2}, with a; > 0. We have

jwly = T honales < lcall =
7

It follows from Liouville inequality and from the fact thaf (x;,) < ||x||;; ¢ that

Hw) >l > xally 2" > H )% X,

Now, observe thabg(w) + hs(w™) < 3, a;(hs(zn;) + hs(z;,;')). By our assumptions the
right side iso(}_, a;h(zx:)). In turn, this quantity iso(h(w)), in view of the previous lower
bound forH (w).

We conclude that, for all largé, a suitable subsum of thgw; involving cow, vanishes.
Since there are only finitely many subsums to consider, we may assume in the sequel that the
same subsum occurs for all

Let P(X) be the polynomial corresponding to such a subsum; namely,

P(X) =" ¢;M;(X)
jeJ
for someJ C {1,...,N}. Then, puttingy(X) := f(X) — P(X) we have that
g(xn) = f(xn) — P(xn) = —cowp — Y _ cjw; =0
jeJ

for largeh.
The theorem will then follow immediately by applying the following proposition (which may
have some independent interest) to the power sefKs.

PROPOSITION 3. —Let f(X) = Y, a; X! be a power series with algebraic coefficientsdp
converging in a neighborhood of the origin@y. Let.S andx, = (zp1,...,2n) (h=1,2,...)
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be a sequence satisfyilig), (2) of Theorenil. Assume that for every fixed positiide we have

| FGxn)], = O(Ilxnll)-

Then all but finitely many of the elements, lie in the union of finitely many cosets
u Hy,...,u.H,. onwhichf vanishes.

Moreover the toriH,, ..., H, may be chosen to depend only frand not on the sequence
{xn}.

In particular, f (xy,) is forced to be eventually.

Proof of proposition. The idea of the proof is roughly as follows. Using Lemmas 2, 3, one
can show that iff is not identically zero, then the sék; } may be split in a finite union of
sets, each set being contained in a proper coset passing tH¥oligkn one can argue with the
restriction of f to each coset, iterating the method wheneteatoes not vanish identically on
the coset. At each step the dimension of the relevant coset decreases, so we eventually end up
with the union of finitely many cosets, on whighvanishes, containing our original sequence.
Actually, the proof may be shortened and one can just deal with the final step. This motivates the
following definition:

We say that a cosetH is minimal with respect to a sétz;, }n,cn C uH if there do not exist
proper sub-coseta; Hy, ..., u, H, C uH such that{z, },en is contained il J,_, w; H;.

For dimensional reasons, it is clear that the {set} may be partitioned in a finite number
of setsY}, j =1,...,s, contained respectively in cosetsH; passing througld and minimal
with respect tay;. (PossiblyG?, is already minimal with respect tfx;, }.) Plainly, if a single
x,, € v;jH, then we may choose; = x,,. Therefore, without loss of generality, we may assume
that all the involvedy; are defined ovek .

To prove the proposition, it thus suffices to prove thatcosetuH is minimal with respect to
an infinite subsequence %, }, thenf vanishes omuH . We proceed to prove this claim.

To save notation, we may assume thdf is minimal with respect tdx;, } and, as we have
just remarked, we may chooses G, (K).

We begin to choose a normal form féfuX) with respect tad, in the sense of Definition 3.
Namely, if f(X) = >, a: X!, we write g(X) = Y ac(u)X¢, whereC runs through the
classes of monomials with respectif the X are a set of representative monomials for the

equivalence classes and

ac(u) = Z asul.
XieC
This functiong(X) converges/-adically near the origin and verifiggx) = f(ux) for x € H,
x near the origin.
We puty,, := u'xy,, noting at once that thg,, verify (1) and (2) of Theorem 1. Also, we
haveg(yn) = f(xn) (both series converge for largg, whence in particular, for all positiv®
we have

lg(yn)], = O(llyall?)-

The proof now runs quite similarly to what we have already seen, and we shall be a little more
sketchy. As before, we fix a sufficiently large positive integer

We consider the set of monomia¥- of partial degreest B and such thatc(u) # 0. If this
set is empty, therf vanishes oruH and we are done. We then Idt+ 1 > 0 be the number of
such monomials and choose a numbeiMg, ..., My of them. Further, ifM,. = X we put

¢ :=ac(u).
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For any given (large) positive integér we put (dropping the subscrip)
wj:=M;(yn), j=0,1,...,N.

We go on by proving a-adic bound for the surywg + - -+ + eywy.
Sinceg converges near the origin, we have a bolme(u)|, < A;pieeXc, whereA,, p are
suitable positive real numbers. For large enotigtve have

32)  leowo+ - +enwnly < |gyn)], + AL S (ollyall) "™ < Asllyal 22,
lill>B

for a suitableA, independent of. (For the last inequality we have used théy;,) is small.)

We shall now apply Lemma 2, estimating the various involved heights. In the present
application, it will be noted thatvy has not a special role, since it is automatically an almost
S-unit (rather than an almost-integer).

We fix e = 1/BN? and put§ = (N + 3)e. For the rest of the proofds, A4, ... will denote
positive numbers independent Bfor h.

For largeh we have, by (2) in the statement of Theorem 1 (and of the present proposition),

H™ wo) = [lynlly®
and by (1) of Theorem 1 (again for largg
Hg ' (wo) = [yl
Further, we get by (2), recalling that = (wp, w1, ..., wy),
H™ N (w) > [lyn 27,
Combining all these estimates, we obtain
(H(wO)HS(wO)NJrl)*lE[(W)fS > Hyh||zy43+(N+1)e+A4BN6.

Recalling our choices of ande, we find that the exponent dffy, ||, in the last inequality is
bounded above by a numbdyr;, independent ofB or h. Therefore, in view of Eq. (3.2), the
assumption (i) for Lemma 2 (with the present choiceeadnd ) is verified for all largeh,
providedB has been chosen larger thaA;.

Also, assumption (i) of the lemma (with the present choice) i verified for all largeh: this
is in fact an immediate consequence of assumption (1) of Theorem 1.

We conclude that for all largk, a suitable subsum of thgw; vanishes. Since there are only
finitely many subsums to consider, we may assume in the sequel that the same subsum occurs
for all h.

Write the vanishing subsum in the foreg w;, + - - + ¢;, w;, = 0. We apply the lemma of
Evertse (i.e. Lemma 3) to this equation, writingin place ofk andw = (¢;, wi, , ..., ¢, w;, ).

The assumptions are certainly verified for latgee.g. by choosing = 1/2(N + N?).

In our original notation, we conclude that there exist a finite @etnd indicesr, s, with
0<r<s<N,suchthat,w,/c;ws € Q.

For any fixed choice of < s and ofq € @, the equatioM,.(y)/M;(y) = qcs/c, defines in
H a proper sub-coset df . In fact, note that the relevant monomials are pairwise inequivalent
modulo H.
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Sincew; equalsM,; (y), we have proved that the sequerdgs, } is contained in a finite union
of proper sub-cosets dff, whence{x} is contained in a finite union of proper sub-cosets of
uH. This contradicts the minimality ai H with respect to{x; } and concludes the proof of the
first part of the proposition (which suffices to imply Theorem 1).

To prove the proposition completely, we note that, enlarging the cosets if necessary, we may
assume that they are maximal fgrin the sense of Definition 4. Now it suffices to apply
Theorem 2. O

4. Proof of remaining statements

Proof of corollary. —SinceO¥ is finitely generated we may write, = z%¢ wherez € O and
where¢ € O has finitely many possibilities; hence in what follows we assume&hisfixed.
Writing z;2¢ in place ofz; we easily see that it suffices to prove the conclusion assuming that
x1 = £ is fixed. Note that this substitution leaves condition (i) unchanged.

We shall apply Theorem 1 witfi(X) = /£ + X2 + - -- + X,,, as a Taylor series at the point
&, for some given determination of thith root of £. Note that for any of the pointses, . .., x,,)
in question, the value of is in Og, for a suitable determination of th#h root of ¢ (because
then the value coincides with,). We may assume that the same determination holds for all of
the points.

Conditions (1), (3), (4) of Theorem 1 are automatically verified. Also, condition (2) follows
from the present condition (i). Let thenH be one of the finitely many translates in the
conclusion of Theorem 1, whose union contains all the pdipts. .., z,,); note that here we
are working inG”, 1. Then f(X) = P(X) onuH, whereP € K[Xa, ..., X,]. Because of the
definition of £, this means that onH the identityP¢(Xs, ..., X,,) =&+ Xo +--- + X,, holds.
(Recall that the “restriction” is interpreted formally.)

To read the identity in terms of the original coordinates, replaceXoWwy X ;¢ /X . The coset
uH becomes acoset H' in G”,; if uH containgzs, ..., z,) thenu’ H' containgz, ..., z,).
Also, multiplying the identity byX; we get

_ X2¢ Xné
X 4+t X, =¢tx, Pl 2% 2n
1+ + g 1 <X17 7X1>7

valid onu’ H'. This proves the corollary. O

Proof of Theorem3. —It is immediately seen that this follows from Proposition 3. In
fact, assumption (1) of Theorem 1 is automatic, because we are dealingswitlit points.
Assumption (2) appears in the statement, and finally the growth conditigf(>of) is also
implied by the vanishing of these numbers, which is assumed in Theorem 3. Now, the conclusion
of Proposition 3 yields the conclusion of Theorem 3, since the finitely many exceptions may be
viewed as translates of the triviadddimensional torus. O
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