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ABSTRACT. — Let F' be an arbitrary field of characteristi¢ 2. We write W (F’) for the Witt ring of
F, consisting of the isomorphism classes of all anisotropic quadratic forms lOvé&ior any element
x € W(F), its dimensiondim z is defined as the dimension of a quadratic form representinghe
elements of all even dimensions form an ideal denoted (#). The filtration of the ringi¥ (F’) by the
powersI (F)™ of this ideal plays a fundamental role in the algebraic theory of quadratic forms. The Milnor
conjectures, recently proved by Voevodsky and Orlov-Vishik—Voevodsky, describe the successive quotients
I(F)™/I(F)™*! of this filtration, identifying them with Galois cohomology groups and with the MilRer
groups modul@ of the field F'. In the present article we give a complete answer to a different longstanding
question concerning(F')", asking about the possible valuesdifn z for = € I(F)™. More precisely, for
anyn > 1, we prove that

() dim " ={2""" —2" [ie [I,n+ 1]} U (2ZN 2", +0)),

wheredim I"™ is the set of aldim z for all 2 € I(F)™ andall F'. Previously available partial informations
on dim I™ include the classical Arason—Pfister theorem (saying {hat") N dim I"™ = 0) as well as a
recent Vishik’s theorem oii2™,2" 4 2"~') N dim I™ = § (the casen = 3 is due to Pfistern = 4 to
Hoffmann). The proof of x) is based on computations in Chow groups of powers of projective quadrics
(involving the Steenrod operations); the method developed can be also applied to other types of algebraic
varieties.
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RESUME — SoitF un corps quelconque de caractéristigtig, W (F') l'anneau de Witt du corpg’, dont
les éléments sont les classes d'isomorphisme des formes quadratiques anisotrdpekasdimension
dimz d'un élément: € W (F') est définie comme la dimension d’'une forme quadratique le représentant.
Les éléments des dimensions paires forment I'idé€al). La filtration de 'annea®V (F") par les puissances
I(F)™ de cet idéal joue un role fondamental dans la théorie algébrique des formes quadratiques. Les deux
conjectures de Milnor, démontrées récemment par Voevodsky et Orlov—-Vishik—Voevodsky, décrivent les
quotients successif§ F)™ /I(F)""! de cette filtration en les identifiant avec les groupes de cohomologie
galoisienne et leg-groupes de Milnor modul@ du corps. Dans le présent article, on donne une réponse
compléte & une autre question de longue date concerifd@t*, a savoir, la question sur les valeurs
possibles delim = pourz € I(F)™. Plus précisément, pour tout> 1, on montre que

(%) dim " ={2""" —2" [ie[1,n+ 1]} U (2ZN[2""", +00)),

1 Supported in part by the European Community’s Human Potential Programme under contract HPRN-CT-2002-00287,
KTAGS.
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974 N.A. KARPENKO

oudim I estI'ensemble ddim z pour toust € I(F)" ettousF'. Le renseignement sdim I™ disponible
avant comprend le théoréme classique de Arason et Pfister (énongdft 2{tien dim I™ = @) ainsi qu'un
théoréme récent de Vishik s@2",2" + 2" ') N dimI"™ = () (le casn = 3 est di & Pfisterp = 4 &
Hoffmann). La démonstration dg) repose sur certains calculs dans les groupes de Chow de puissances
de quadriques projectives (employant les opérations de Steenrod) ; la méthode développée peut aussi étre
appliquée aux autres types de variétés algébriques.
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1. Introduction

In this text ' is a field withchar(F) # 2. Let I" for somen > 1 be thenth power of the
fundamental ideal (of the classes of the even-dimensional quadratic forms) of the Witt ring
W (F). Alongstanding question in the algebraic theory of quadratic forms asks about the possible
values of dimension of an anisotropic quadratic fatrover F' such thaf¢] € I"™, where[¢)] is
the class ofp in W (F).

Examples withdim(¢) = 2"+ — 2¢ for eachi € {1,2,...,n + 1} are easy to construct (see
Remark 7.4). A classical theorem of J. Arason and A. Pfister [1, Hauptsatz] statémtii@j is
never betweef = 2" +1 — 2n+1 gand2n = 27+1 — 27, Also it is known that every value between
2" and2” 42—t =27+l _9n—ljsimpossible (A. Pfister for = 3, [17, Satz 14]; D. Hoffmann
for n = 4, [6, main thm.]; A. Vishik for alln, [22], see also [21, Thm. 1.8).

Finally, A. Vishik has shown that all even valugs2™*! are possible ([21, Thm. 4.12], see
also Section 7 here) and suggested the following

CONJECTURE 1.1 (Vishik [21, Conject. 4.11P. — If [¢] € I™ and dim(¢) < 2"*!, then
dim(¢) = 2"+ — 2% for somei € {1,2,...,n+ 1}.

In the present text we prove this conjecture (see Section 6), obtaining a complete answer to the
guestion about possible dimensions of anisotropic quadratic forms whose classeg:lid e
proof closely follows the method of [10], but involves essentially more computations. As [10]
as well, it makes use of an important property of the quadratic forms satisfying the hypotheses
of Conjecture 1.1 established by A. Vishik in [21]. Here we give an extended version of this
result (see Proposition 4.28) with an elementary, complete, and self-contained (in particular,
independent of [21]) proof.

2 An alternative proof is given in [13, Thm. 4.4]; another one can be found in [10].
3 A. Vishik announced (for the first time in June 2002) that he has a proof of Conjecture 1.1; his proof however is not
available.
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In the proof of Conjecture 1.1 we work with projective quadrics rather than with quadratic
forms themselves. The method of proof is explained in Section 3; it certainly applies to other
types of algebraic varieties (in place of quadrics).

2. Notation and preliminary observations

Everywhere in the textX is a smooth projective quadric overof an even dimensioP = 2d
or of an odd dimensioh D = 2d + 1 given by a non-degenerate quadratic fasnWe write X"
for the direct produck x --- x X (over F) of r copies ofX and we writeCh(X") for the image
of the restriction homomorphisiih(X") — Ch(X") where X = X with a fixed algebraic
closureF of F andCh(.) stands for thenodulo 2total Chow group (we recommend [5] as a
general reference for the definition and properties of Chow groups). We say that an element of
Ch(X™) is rational, if it lies in the subgrougCh(X ") € Ch(X™).

A basis of the groufCh(X) (overZ/27Z) consists ofv’ andi;, i € [0,d], whereh stands for
the class of a hyperplane sectionXfwhile /; is the class of an-dimensional linear subspate
lying on X. Moreover, a basis of the grouph(X") for everyr > 1 is given by the external
products of the basis elements Gh(X) (see, e.g., [9, §1] for an explanation why this is a
basis). Speaking abouttasisor abasis elemenfor abasis cyclewe will often apply the word
“cycle” to an element of a Chow group) 6fh(X "), we will always refer to the basis described
above. By thedecompositiorof an elementy € Ch(X") we always mean its representation as
a sum of basis cycles. We say that a basis cycle containedin the decomposition of (or
simply “is contained inr”), if 3 is @ summand of the decomposition. More generally, for two
cyclesa’, o € Ch(X™), we say that is containedn «, or thata’ is asubcycleof o (notation:

o’ C «), if every basis element containeddnis also contained in.

A basis element o€h(X") is callednon-essentialif it is an external product of powers af
(including h° = 1 = [X]); the other basis elements are caltsbential An element ofCh(X")
which is a sum of non-essential basis elements, is called non-essential as well. Note that all
non-essential elements are rational simply becatseational 8

The multiplication table for the ring'h(X) is determined by the rulds’! =0, h - 1; =1;_;

(i € [0,d]; we adopt the agreement thiat, = 0), andi2 = (d + 1) - [p for D even (see [11,
Thm. 1.10]). The multiplication tables for the ring& (X ") (for all » > 2) follow by

(Bux X ) (B % - X B) = BBy X ==+ X B, ).

The cohomological action of the topological Steenrod algebr&bX ") (see [2] for the
construction of the action of the topological Steenrod algebra on the Chow group of a smooth
projective variety; originally Steenrod operations in algebraic geometry were introduced (in the
wider context of motivic cohomology) by V. Voevodsky, [23]) is determined by the fact that the
total Steenrod operatiofi: Ch(X") — Ch(X") is a (non-homogeneous) ring homomorphism,

40Only the even-dimensional case is important for our main purpose; the odd-dimensional case is included for the sake
of completeness.

5In the case of eve andi = d (and only in this case) the clagsdepends on the choice of the subspace: more
precisely, there are two different classesdeflimensional subspaces df and no canonical choice of one of them is
possible; we do not care about this however and we just choose one of them| galhdt “forget” about the other one
which is equal toh? — 1.

6 There are at least two direct ways to show thais rational: (1)A is the pull-back of the hyperplane clagé
with respect to the embedding df into the projective space, anH is rational; (2)h is the first Chern class of

[0%(1)] € Ko(X),and[O % (1)] =res([Ox (1)]) is rational.
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commuting with the external products and satisfying the formulae (see [9, §2 and Cor. 3.3])
S(hiy=ht-(1+h),, S) =1L -A+nr)P* iec{o0,1,...,d}

(in order to apply these formulae, one needs a computation of the binomial coefficients riodulo
done, e.g., in [12, Lemma 1.1]). We wrif# for the degree-part of the total Steenrod operation
on Chow groups modul® (on a complex variety, this corresponds to the Steenrod opef&4n
on mod2 cohomology).

The groupCh(X) is easy to compute. First of all one has

LEMMA 2.1.- If the quadricX is anisotropic(that is, X (F') = (}), thenChq (X) Z lo.

Proof. —If Iy € C_hO(X), then the varietyX contains a closed point of an odd degree
[F(z) : F]. It follows that the quadratic forng is isotropic over an odd degree extension of
the base field (namely, ovéf(x)) and therefore, by the Springer-Satz (see [19, Thm. 5.3]), is
isotropic already ovef'. O

COROLLARY 2.2.— If X is anisotropic, then the grough(X) is generated by the non-
essential basis elements.

Proof. —If the decomposition of an elemeate Ch(X) contains an essential basis elemignt
for somei # D /2, thenl; € Ch(X) becauseé; is thei-dimensional homogeneous component of
o (andCh(X) is a graded subring dfh(X)). If the decomposition of an elemeatc Ch(X)
contains the essential basis elemkrfor i = D/2, then the D/2)-dimensional homogeneous
component ofx is eitherlp/» or Ip/, + hP/? and we still have; € Ch(X). It follows that
lo=1; - h* € Ch(X), a contradiction with Lemma 2.1.0

Now assume for a moment that the quadkicis isotropic but not completely split (that is,
ig(X) < d), write a for the Witt indexig (X ) of X (defined as the Witt inde (¢) of ¢, see [19,
Def. 5.10 of Ch. 1]), and leX, be the projective quadric given by the anisotropic partof
¢ (one haslim(Xy) = dim(X) — 2a; the caselim(X,) = 0 is possible). We consider a group
homomorphisnpr: Ch(X) — Ch(X,) determined on the basis by the formulde— h'~* and
l; — 1;_, (here we adopt the agreemeiit= 0 and/; = 0 for all negativei). Also we consider a
backward group homomorphisin : Ch(X,) — Ch(X) determined by the formulag +— hi+®
andl; — l;4, forie {0,1,...,d — a}.

Let » be a positive integer. For every lengthsequence,... i, of integers satisfying
i; €[0,a]U[D —a+1, D], we define a group homomorphism

Py, : Ch(X") — Ch(X5)

with s = #{i; | i; = a}, called projection (the mappr of the previous paragraph will be a
special case of this projection map with=1 andi; = a). Let {j; < --- < js} be the set of
indices such that;, = a. We putJ; = {j | i; < a} and J, = {j | ¢; > a}. Then we define
pri, i (a1 X -+ x ;) for a basis element; x --- x o, aspr(a;,) x --- x pr(ay,) as far
asa; =1;; foranyj € J; anda; = hP=ii for anyj € Jy; we setpr;, ; (a1 x - xa;)=0
otherwise.

Also we define a backward group homomorphism, ; :Ch(X3) — Ch(X"), called
inclusion by

inil...i,‘(ﬂl X X ﬂg) =1 X - X Oy

for a basis element; x -+ x f,, wherea, = L, for j € Ji, a; = P~ for j € Jj, and
aj, = in(fy) fork=1,2,...,s.

4® SERIE— TOME 37 — 2004 N° 6



HOLES IN I™ 977

PropPoOsITION 2.3 (cf. [10, Lemma 2.2]). —In the notation introduced right above, the
homomorphism

(21 5000str)

given by all projections, is an isomorphism with the inverse given by the sum of all inclusions.
Under these isomorphisms, rational cycles correspond to rational cycles.

Proof. —By the Rost motivic decomposition theorem for isotropic quadrics (original proof is
in [18], generalizations are obtained in [8] and [4]), there is a motivic decomposition (in the
category of the integral Chow motives)

(%) X~ZoZ1)®---®Z(a—1)® Xo(a) BZ(D —a+1)D--- ®Z(D)

(whereZ is the motive ofSpec F', while M (4) is theith Tate twist of a motivel/). Raising

to the rth power, we get a motivic decomposition of the varigfyj; each summand of this
decomposition is a twist of the motive &f; with s varying betwee andr. If we numerate the
summands of the decompositi¢n) by their twists, then the summands of the decomposition of
X" are numerated by the sequences

ir,... i Withi; €[0,a] U[D —a+1,D).

Moreover, the(iy, ..., 4, )th summand is{§ (i1 + - - - +¢,.), wheres = #{i; | i; = a}.

In order to finish the proof of Proposition 2.3, it suffices to show that the projection morphism
to the(iy, ..., 7,)th summand considered on the Chow group and éveoincides withpr; ;-
while the inclusion morphism of th@;, ... ,4,)th summand considered on the Chow group and
over F' coincides within;, . ; . Clearly it suffices to check this for= 1 only. Fori # D /2, this
is particularly easy to do because of the relatitmy, 7 (Ch; (X)) < 1. IndeedCh;(Z(k)) =0
for k # 4. Therefore for any with a <i < D — a, i # D/2, the projection and the inclusion
betweenCh;(X) and Ch,;_,(X,) are isomorphisms and, as a consequence, they interchange
the only non-zero elements of these two groups (whichiaendl;_, if i < D/2, or hP—?
andhP~i=aif i > D/2). Fori < a, the projection and the inclusion are isomorphisms between
Ch;(X) andZ/27Z = Ch;(Z(i)) and the only non-zero element of the first Chow group is
Finally, fori > D — a, the projection and the inclusion are isomorphisms betvw&@er X ) and
7./27 and the only non-zero element of the Chow group®s.

Fori = D/2 (here we are in the case of evén of course), the basis of the groGjh, (X) is
given by the elements? and!,;, while the basis of the grouph; (X)) is given by the elements
h?=® andly_,. The subgroup€hy(X) c Chy(X) and Chy_,(Xo) C Chy_q(Xo), however,
are 1-dimensional, generated by? and h9~* (because, , ¢ Ch(X,) by Corollary 2.2).
Since these subgroups are interchanged by the projection and the inclu$ionfresponds
to k=%, Now there are only two possibilities for the element(@f,(X) corresponding to
lqg—o € Chy_,(Xo): either this isl; or this isly + h%. Which one of these two possibilities
takes place depends on the construction of the motivic decompoéijobut a given motivic
decomposition can be always corrected in such a way that the first possibility takes place (one
can simply use an automorphism of the varigty interchanging,_, with i;_, +h?~%). O

The “most important” summand in the motivic decomposition’of is, of course, X|.
We introduce a special notation for the projection and the inclusion related to this summand:
pr’ =pr, ,andin” =in, ,.
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COROLLARY 2.4, — The(mutually semi-invergeghomomorphisms
pr":Ch(X") — Ch(X}) and in":Ch(X})— Ch(X")

(for anyr > 1) map rational cycles to rational cyclesnoreover, the induced homomorphism
pr”:Ch(X") — Ch(X() is surjective.

Now we get an extended version of Corollary 2.2 which reads as follows:

COROLLARY 2.5. —For an arbitrary quadricX (isotropic or no) and any integei one has
l; € Ch(X) if and only ifig (X) > ¢ (Whereig(X) =io(¢) is the Witt index

Proof. —The “if” part of the statement is trivial. Let us prove the “only if” part using an
induction oni. The case of =0 is served by Lemma 2.1.

Now we assume that> 0 andl; € Ch(X). Sincel; - h = [;_,, the element;_, is rational
as well, and by the induction hypothesi$X) > i. If iy(X) = 4, then the image of, € Ch(X)
under the mapr! : Ch(X) — Ch(X,) equalsly and is rational by Corollary 2.4. Therefore, by
Lemma 2.1, the quadri& is isotropic, a contradiction. O

We recall that thesplitting patternsp(¢) of an anisotropic quadratic forg is defined as the
set of integers

sp(¢) = {dim(¢g)o | E/F is afield extensioh

(heregr stands for the quadratic form over the fidldbbtained fromyp by extending the scalars;
(¢r)o is the anisotropic part ab ).

The splitting pattern can be obtained using theneric splitting towerof M. Knebusch
(arbitrary field extensions of' are then replaced by concrete fields). To construct this tower,
we put F; = F(X), the function field of the projective quadri€ given by ¢. Then we put
¢1 = (¢ )o and write X; for the projective quadric (over the fielh) given by the quadratic
form ¢,. We proceed by setting» = F;(X;) and so on until we can (we stop dfy such that
dim(¢y) < 1). The tower of fieldsF’ C F; C --- C Fy obtained this way is called the generic
splitting tower of¢p and (see [14])

Sp(d)) = {dlln(¢)a dim(¢F1)Ov ce 7dhn(¢Fh )0} = {dlln(¢), dlm(¢1)v s 7d111’1(¢b)}
(the integet = h(¢) is theheightof ¢; note that the elements sf(¢) are written down in the
descending order).
An equivalent invariant op is called thenigher Witt indice®f ¢ and defined as follows. Let us

write the set of integer§ip (¢ ) | E/F afield extensioh, whereig(¢g) is the usual Witt index
of ¢, in the form

{0=ig(¢) <iy <ir+iz<-- <iy+ig+---+ip}.

The sequence of the positive integérs . ., i, is called the higher Witt indices af. For every
q€{0,1,...,h}, we also set

jg=1q(@) =0 +i1 +---+ig=10(0F,)
Clearly, one has
{0=j0,j1,....ip} = {io(¢r) | E/F is afield extensioh
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(this set of integers is sometimes also called the splitting pattegrirothe literature).
The following easy observation is crucial:

THEOREM 2.6. — The splitting pattern as well as the higher Witt indices of an anisotropic
guadratic form¢ (of some given dimensipare determined by the group

Ch(X*) = Ch(x™).

r>1

Proof. —The pull-back homomorphismi : Ch(X") — Ch(X};&)) with respect to the mor-

phism of schemesg,; :X;&) — X" given by the generic point of, say, the first factorf,
is surjective. It induces an epimorphistth(X™) — C_h(XH}()), which is a restriction of the
epimorphismCh(X") — Ch(X;zjlg)) mapping each basis element of the shape< 5 with
BeCh(X 1 tope Ch(f(;&)) and killing all other basis elements. Therefore the group
Ch(X™*) determines the grouﬁh(Xj;(X)). In particular, the grou’h(X r(x) is determined,

so that we have reconstructef X r(x)) = i1(X) (see Corollary 2.5). Moreover, by Corol-
lary 2.4, the groufCh (X7, ) determines the grouph(X7) (via the surjectiorpr®; X; stand-

ing for the anisotropic part ok - x), and we can proceed by induction

Remark2.7. — The proof of Theorem 2.6 makes it clear that the statement of this theorem
can be made more precise in the following way. If for sope {1,2,...,5} the Witt indices
i1,...,i4—1 are already reconstructed, then one determiipesg, —i,_1 —- - - —i; by the formula

j, = max{j | the product’ x k' x --- x hle=1 x [;_; is contained in a rational cycle

Remark2.8. — Concluding this section, we would like to underline that the role of the
algebraic closuré” in the definition of the group’h(X*) is secondary: the grouph(X*) (used
in the definition ofCh(X *)) has to be interpreted as the direct liiit Ch(X ;) taken overll
field extensionsE /F. The homomorphisn€h(X*) — lim Ch(X}) is an isomorphism. More
generally, the homomorphisfih(X},) — lim Ch(X},) for a givenE/F is an isomorphism if
and only if the quadratic form i is completely split (in particular, for ang/ F’ with completely
split ¢z, there is a canonical isomorphigiih (X ) = Ch(X*), coinciding with the composition

resE}F oresy,/p, WhereE is a field containing? and F).

3. Strategy of proof

As shown in Theorem 2.6, the grodfh (X *) determines the splitting pattern of the quadratic
form ¢. In its turn, the splitting pattern af determines the powers of the fundamental ideal of
the Witt ring containing the class ¢f At least it is easy to prove

LEMMA 3.1. - Let ¢ be an even-dimensional anisotropic quadratic form andnlet 1 be
an integer. We writey for the least positive integer ab(¢) (note thatp is a power of2, [19,
Thm. 5.4(1)]). If [¢] € I™, thenp > 2.

Proof. -We assume thdt] € I"(F’). Let E/F be a field extension such thditm(¢g)o = p.
Since0 # [(¢r)o] € I"(E), we get thap > 2™ by the Arason—Pfister theoremn

Remark3.2. — It is not needed in this paper but nevertheless good to know that the converse
statement to Lemma 3.1 is also true. This is a hard result, however. It is proved in [15, Thm. 4.3].
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Now we are able to describe the strategy of our proof of Conjecture 1.1. Let us consider a
power™ of the fundamental ideal. Let be an anisotropic quadratic form with] € 1", having
some dimension prohibited by Conjecture 1.1. The groupX *), where X is the projective
quadric given byy, should satisfy some restrictions listed below. This group is a subgroup of
Ch(X™), the latter one depends only on the dimensiomoB0, we prove Conjecture 1.1, if
we check that every subgroup 6h(X*), satisfying the list of restrictions, cannot b (X *)
for the form¢ by the reason given by Lemma 3.1 with Theorem 2.6. This is the way we prove
Conjecture 1.1.

And here is the list of restrictions dith(X *) considered as a subset@h(X*) (a big part of
this list is of course valid for an arbitrary smooth projective variety in place of the quadric

PROPOSITION 3.3. — Assuming that the quadri& is anisotropic,/ we have

(1) Ch(X™*) is closed under addition and multiplicatipn

(2) Ch(X*) is closed under passing to the homogeneous compoteitksrespect to the
grading of the Chow group and to thegrading);

(3) Ch(X™) containsh® = [X] andh! = h (and therefore containa’ for all i > 0);

(4) [Springer-Satz]
Ch(X*) does not contairh;

(5) for everyr > 1, Ch(X7) is closed under the automorphisms(@if(X") given by the
permutations of factors oX";

(6) for everyr > 1, Ch(X*) is closed under push-forwards and pull-backs with respect to
all » projectionsX” — X"~! and to allr diagonalsX™ — X"*! (taking into account
the previous restriction, it is enough to speak only about the first projection

T1 X Ty X+ XTpr>Tg X oo X Xp
and the first diagonal
L1 XTog X+ XTpt>X1 XTI XTg X+ XTp

here);
(7) Ch(X*) is closed under the total Steenrod operation

S:Ch(X*) — Ch(X*);
(8) [A. Vishik, “Size of binary correspondences”]
if Ch(X?2) 3 hY x I; +1; x hY for some integet > 0, then the integedim(X) —i + 1 is
a power of2;

(9) [“Inductive restriction”]
the image ofCh(X**1) under the composition

Ch(X* 1) L5 Ch(X ) 25 Ch(XT)
(g7 is introduced in the proof of Theore?6, pr* in Corollary 2.4)should coincide with

Ch(X}) and therefore should satisfy all restrictions listed in this propositiocluding
the current ong

7 Anisotropy is important only for (4), (8), (9), and (10).
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(10) [*Supplement to inductive restriction”]
for any integerr > 2, any integers < [1,r), and any projectiorpr; , of Proposi-
tion 2.3 the image ofCh(X") underpr; ; :Ch(X") — Ch()_(f(“"“””')) is inside of
Ch(x 30"y (reconstructed by9)).
Proof. —Only the property (8) needs a proof. We note that this property does not seem to be
a consequence of the others. It is proved in [12, Thm. 5.1] by some computationitireipel
Chow group ofX*, not in the modul® Chow group (although involving modul® Steenrod
operations) (the original proof is in [7, Thm. 6.1]; it makes use of higher motivic cohomology).
More precisely, the case of= 0 is proved in [12, Thm. 5.1]. In order to reduce the general
case to the case a@f= 0, we take an arbitrary subquadrii¢ C X of codimensioni and pull
back the cycleh® x I; + I; x h® with respect to the embedding?® — X?2. The result is
hO x Iy +1g x h® € Ch(Y?). Thereforedim(Y') + 1 is a power of2 by [12, Thm. 5.1]. Since
dim(Y') = dim(X) — ¢, it follows that the integedim(X') — i + 1 is the same power &f. O

Remark3.4. — Obviously, one can write down some additional restrictionsCbiiX*).
However, all restrictions | know are consequences of the restrictions of Proposition 3.3. For
instanceCh(X*) should be stable with respect to the external products; but this is a consequence
of the stability with respect to the internal products (1) and the pull-backs with respect to
projections (6). Another example: the image of the total Chern elasg (X*) — Ch(X*)
restricted toKy(X*) (note thatKy(X*) is computed for quadrics [20] and, more generally,
for all projective homogeneous varieties [16]) should be insid€ofX *); but it is already
guaranteed by the fact th@h(X*) is closed under addition and multiplication (1) and contains
rY and h! (3).8 One more exampleCh(X?) should be closed under the composition of
correspondences (see [5, §16] for the definition of composition of correspondences); but the
operation of composition of correspondences is produced by pull-backs and push-forwards with
respect to projections together with the operation of multiplication of cycles.

Remark3.5. — Let us remark that all operations involved in the list of restrictions of
Proposition 3.3 are easy to compute in terms of the basis elements. The multiplication in
Ch(X*) was described in the previous section; a formula for the total Steenrod operation was
given already as well. Also the operations used in the inductive restriction are computed (see
Corollary 2.4 and the proof of Theorem 2.6). As to the pull-backs and push-forwards with
respect to the first projectiopr: X"*! — X" and to the first diagonal: X" — X"+!, they
are computed for basis elemems 31, . . ., 4, € Ch(X) as follows:

pri(Byx - x Br)=h0 X B X - X By
pr*(ﬁoxﬂ1><~--><I6T):{ﬁ1><'~-><ﬁr, if By = lo,

0, otherwise;
0" (Bo x B x -+ x Br) = (Bo-Br) x B2 X -+ X Br;
(1> - X Br) = ((Br x %) - A) x B x -+ X B = ((B° X B1) - A) X o X -+ X B
whereA € Ch(X?2) is the class of the diagonal computed in Corollary 3.9.

Remark 3.6. — One can obviously simplify a little bit the list of restrictions of Proposition 3.3.
For instance, instead of stability under the push-forwards with respect to the diagonals, it suffices
to require that the cycl® % (h' x I; + I; x h'), related to the diagonal, lies iflh(X?2) (see

8 However the property with the Chern class can be a good replacement for (3) when transferring this theory to other
algebraic varieties in place of the quaditc
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Remark 3.5 and Corollary 3.9). Also the inductive restriction is not so restrictive as it may seem:
the groupCh(X7;) automatically satisfies most of the required restrictions.

Remark3.7. — Looking at the list of restrictions, it is easy to see that every gfup(")
determinesCh(X <"). Moreover, one can show thath(X9*+!) determines the whole group
Ch(X*).® SinceCh(X4*1) is a subgroup of the finite grouph(X +1), it follows, in particular,
that the invariantCh(X*) (of the quadratic forms of a given dimension) has only a finite
number of different values (this way one also sees that Conjecture 1.1 can be checked for any
concrete dimension by computer).

We will often use the composition of correspondences, even for the cycles on bigger than
2 powers of X: this is a convenient way to handle the things. Namely,dag Ch(X") and
S (fh(X"'), we may considery as a correspondence, say, frodf—! to X, and we may
considera’ as a correspondence frofd to X" ~!; then the compositiom’ o « is a cycle
in Ch(XT+T’—2), and here is the formula for composing the basis elements (we put here this
obvious formula because it will be used many times in our computations):

LEMMA 3.8.— The compositiors’ o 5 € Ch(X”T'*?) of two basis elements
B=p % xB€Ch(X") and B =4, % xp.eCh(X")

is equal tofy X --- x Br_1 x By x --- x B, if B, - B1 = lo; otherwise the compositioff o 5
is 0.

COROLLARY 3.9. — For the diagonal clas& € Ch(X?), one has

d
A= (W xli+1; x h')+(D+1)-(d+1)- (b x b?).
=0

In particular, the sund % (h' x I; +; x h') is always rational.

Proof. —Using Lemma 3.8, it is straightforward to verify that the cycle given by the above
formula acts (by composition) trivially on any basis cyclelf*(X?). O

4. Cycleson X2

We are using the notation introduced in Section 2. In particliais the projective quadric of
an even dimensiofy = 2d or of an odd dimensio®» = 2d + 1 given by a quadratic form over
the field F'. Apart from Lemma 4.1, we assume thiétis anisotropic everywhere in this section.
Letiy,...,iy be the higher Witt indices ap (with h being the height ob). We write S for the
set{1,2,...,h} and we sef, =i; +i» +--- + 1, for everyg € S.

An “important” as well as the “firstinteresting” part of the grop (X *) is the groupCh(X ?)
and especiallfChp (X?2) = ChD(XQ) (note that, due to the Rost nilpotence theorem ([18], see
also [3]), the latter group detects all motivic decompositionsX9f The groupChp(X?) was
studied intensively by A. Vishik (see, e.g., [22]). In the next section we reproduce most of his
results concerning this group. Actually we give an extended version of these results describing

. 7. SD
the structure of a bigger group, namely of the gréilp™— (X?).
91t would be interesting to rewrite all restrictions of Proposition 3.3 in terms of the g@uEx ¢t1).
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Originally, Vishik’s results are formulated in terms of motivic decompositionX oby this
reason, their proofs use the Rost nilpotence theorem for quadrics, which is not used in the present
text at all. Here we simplify the formulation; we also give a different complete self-contained
proof and show that all these results are consequences of the restrictidtis( &it) listed
in Proposition 3.3. More precisely, we start with some general results concerning an arbitrary
anisotropic quadricX; the proofs of these results use neither the restriction provided by the
Steenrod operation, nor the “size of binary correspondences” restriction; a summary of these
results is given in Theorem 4.24. Proposition 4.28, appearing in the very end of the section,
contains the result on the so-called small quadrics (Definition 4.27), needed in the proof of
Conjecture 1.1; its proof uses the “size of binary correspondences” restriction (the Steenrod
operation does still not show up).

We start by the following easy observation:

LEMMA 4.1. — Assume that the quadratic forgnis of even dimension and is not hyperbolic.
Then the basis elemehtx I; € Chp(X?) does not appear in the decomposition of any rational
cycle.

Proof. -We assume the contrary. Let be a cycle inC_hD(XQ) containingly x l4. Then
the push-forward with respect to the projection onto the second fagtoX? — X of the cycle
a-(h? x h0) is rational and equalg or h? +1, (becauser, (3-(h? x h°))isly for 3 = (Iq x14),
hd for B =14 x h?, and0 for every other basis cyclg@ € Chp(X?)). Therefore the cyclé; is
rational, showing thak is hyperbolic (Corollary 2.5), a contradiction

LEMMA 4.2.—If aq, a5 € C_th(XQ), then the cyclev; Nas is rational (where the notation
a1 N as means the sum of the basis cycles contained simultaneous|yand inas).

Proof. —Clearly, we may assume that anda, are homogeneous of the same dimension
D + i and do not contain any non-essential basis element. Then the intersection (modulo the
non-essential elements) is computed@s) a = ap o (ag - (R x h?)) (see Lemma 3.8). O

DEFINITION 4.3. —We writeChe(X *) for the subgroup of'h(X *) generated by the essential
basis elements. We s€the(X*) = Che(X™) N Ch(X™). Note that the groughe(X™) is a
subgroup ofCh(X*) isomorphic to the quotient dh(X *) by the subgroup of the non-essential
elements.

DEFINITION 4.4.— A non-zero cycle ofheS” (X?) is calledminimal if it does not contain
any proper rational subcycle. Note that a minimal cycle is always homogeneous.
D
(

A very first structure result ofh S X?) reads as follows:

PROPOSITION 4.5. — The minimal cycles form a basis of the groGheS”(X?). Two
different minimal cycles do not intersect each otl{eere we speak about the notion of
intersection of cycles introduced in Lemm&). The sum of the minimal cycles of dimension
D is equal to the sumd_*  h’ x I; + I; x h' of all D-dimensional essential basis elements
(excludingl, x 4 in the case of eveP).

Proof. —The first two statements of Proposition 4.5 follow from Lemma 4.2. The third
statement follows from previous ones together with the rationality of the diagonal cycle (see
Corollary 3.9). O

DEFINITION 4.6.— Leta be a homogeneous cycle @th()_@). For everyi with 0 < i <
dim(a) — D, the productsy - (h° x h?), a - (h! x h*~1), and so on up tax - (k¢ x h°) will be
called the {th order)derivativesof «.. Note that all derivatives are still ifh<” (X2) and that
all derivatives of a rational cycle are also rational.

ANNALES SCIENTIFIQUES DE LECOLE NORMALE SUPERIEURE



984 N.A. KARPENKO

LEMMA 4.7.—

(1) Each derivative of any essential basis elem@nt Che<? (X?) is an essential basis
element.

(2) For any r > 0 and any essential basis cyclgs, 32 € Chep,,(X?), two derivatives
By - (R x ki) and By - (b2 x h72) of B, and B, coincide only if3; = (s, i1 = i2, and
J1=Ja2-

Proof. —(1) If 3 € Chep,(X?) for somer > 0, then, up to transpositio, = h’ x I; . with

i € [0,d —r]. An arbitrary derivative off is equal to3 - (b7t x hiz) = kTt x I, ,,_;, with some
J1,J2 = 0 such thatj; + j» < r. We haved <i + j; < d and thereforé:' 7! is a basis element.
We also havel > i 4+ r — j, > 0 and thereforé; . ;, is a basis element too.

Statement (2) is trivial. O

Remark4.8. — For the sake of visualization, it is good to think of the basis cycles of
Cth(X2) (with Ip/o x Ip/o excluded by the reason of Lemma 4.1) as of points of the
“pyramid”

o O O O
kx O O O O O %
* %k O O O O *x %
*k % % O O O % ¥ X
* % % % O O *x *x *x
* 3k % %k 3k O 3k kx ) 3k x
(D = 8 on the picture; for an odd the pyramid has no “step”, see, e.g., the picture of Remark
4.12), where the-s stand for the non-essential basis elements while-thstand for the essential
ones; the point on the topjé) x hY; for everyi € {0,1,..., D}, theith row of the pyramid
represents the basis 6h’(X?) (in the case of evel, the Dth row is the basis without; X 1q)
ordered by the codimension of the first factors (starting it ?). For anya € ChegD(XQ),
we can put a mark on the points representing basis elements contained in the decomposition of
«; the set of marked points is tlidgagramof «. If « is homogeneous, the marked points lie in the
same row. Now it is easy to interpret the derivativea.nthe diagram of arith order derivative is
a projection of the marked points of the diagrannab theith row below along some direction.
The diagram of every derivative of has the same number of marked points as the diagram of
(Lemma 4.7). The diagrams of two different derivatives of the same order are shifts (to the right
or to the left) of each other.

LEMMA 4.9.— The following conditions on a homogeneous cyale (fth(XQ) are
equivalent

(1) « is minimal

(2) all derivatives ofx are minimaj

(3) at least one derivative af is minimal.

Proof. —Derivatives of a proper subcycle of are proper subcycles of the derivativescgf
therefore(3) = (1).

In order to show thatl) = (2), it suffices to show that two first order derivatives(h° x h')
anda - (h* x hY) of a minimal cyclea are minimal. In the contrary case, possibly replacing
by its transposition, we come to the situation where the derivativg:? x h') of a minimala
is not minimal. It follows that the cycle: - (h° x h*), wherei = dim(a) — D, is not minimal
too; leta’ be its proper subcycle. Taking the composition o’ and removing the non-essential
summands, we get a proper subcyclexdsee Lemma 3.8). O
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COROLLARY 4.10. —The derivatives of a minimal cycle are disjoint.

Proof. —The derivatives of a minimal cycle are minimal (Lemma 4.9) and pairwise differ-
ent (Lemma 4.7). Two different minimal cycles are disjoint by Lemma 4.2 (see also Proposi-
tion 4.5). O

LEMMA 4.11.— Let o be an element 0€hp;_1(X?) with somek > 1. For any ¢ €
{1,...,b} and for any non-negative with i, — k& < i < i,, the cyclea contains neither the
producthis—1+% x Ij 411 nor the transposition of this product.

Proof. —Let us assume the contrary: for soe: 1, someq € {1,...,5}, and some with
i, — k <i <y, there exists a rational cycte containing the produdt/«—**% x I _, ;41 OF
the transposition of this product. df contains the transposition of the product, we replad®y
the transposition ofv. Passing to theg(— 1)th field of the generic splitting tower and using the
projection of Corollary 2.4, we come to the situation where 1 anda contains the product
hi x liyx—1 Such that; — k < i < i;. The projectionpr,_; ; (ap(x)) is arational cycle o,
containing;+x—1—i, (note that +k —1—1i; > 0). We get a contradiction with Corollary 2.2.0

Remark4.12. — In order to “see” the statement of Lemma 4.11, it is helpful to markthg
essential basis elements which are not “forbidden” by this lemma (we are speaking about the
pyramid of basis cycles drawn in Remark 4.8). We will get isosceles triangles based on the lower
row of the pyramid. For example, X is a29-dimensional quadric with the higher Witt indices
4,3,5,2 (such a quadricX does not exist in reality, but is convenient for the illustration), then
the picture looks as follows:

o
o O
O O O
O O O O
O O 0 0O O
O 0O 0 0 Oo0oOo
O O o0 0 0O Oo0Oo
O O 0O 0O 0O O 0 O©°
O O 0O 0O O OO0 0O
O 0O 0O 0O OO0 OO0 O0OOo
O 0O 0O 00O OO0 O0OO0OO0OOo
O 0O O 0O OO0 OO0 OO0 Oo0OO
O 0O 0O 0O OO0 OO0 O0OO0OO0OO0O0
O 0O 0O OO0 O0OO0OO0OO0OO0OO0OO0OOoOOo
* O OO OO OO0 OO0 OO0 0 0 %
* k O OO OO O OO OO0 O O % %
* %k x O OO OO O O O O O O % % x
* %k % x O O OO OO O O O O % %x %x X
* % %k %k kx O O O O O O O O O % % %k % %
* % 3k k% %k %k O O O O O O O O * % 3k ) % 3k
k % %k %k %k % k O O O O O O O *k * 3k 3k % % 3k
k % 3k %k %k % %k %k O O O O O O * % 3k >} % % 3k
k %k 3k 3k %k %k 3k %k kx O O O O O ) % 3k >k % 3k 3k % 3k
k 3k %k %k %k 3k %k @ %k %k O O O O % *x @ % 3k >k % 3k 3k X
® X X %k % X %k @ @ % k O O O * * @ @ % % % % % % @
® @ X Xk @ x kx @ @ @ kX X O O % x @ @ @ X % @ X *x @ @
® 06 0 Xk 0 Xk © 06 006 X O O Xx 06 06 0 Xk 060 Xk 600
® © 06 0. 06 06 06 0 06 06 0 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 00

DEFINITION 4.13.— The triangles of Remark 4.12 will be called #iell triangles(their
bases are shells in the sense of A. Vishik). The shell triangles in the left half of the pyramid are
counted from the left starting by, The shell triangles in the right half of the pyramid are counted
from the right starting byl as well (so that the symmetric triangles have the same number; for
anygq € S, the bases of theth triangles have (each) points). The rows of the shell triangles
are counted from below starting iy The points of rows of the shell triangles (of the left ones
as well as of the right ones) are counted from the left starting. by
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LEMMA 4.14. — For every rational cyclex € (fth(XQ), the number of the essential basis
cycles contained i is even(that is, the number of the marked points in the diagram of any
o € CheSP(X?) is even.

Proof. —~We may assume that is homogeneous, say, € Chp 1 (X?), k > 0. Letn be the
number of the essential basis cycles contained ifihe pull-backi* («) of a with respect to the
diagonald : X — X2 produces: - [, € Ch(X). By Corollary 2.2, it follows that is even. O

LEMMA 4.15. - Leta € Ch(X?) be a cycle containingg = hls—1 x [;, _; for someg € S =
{1,2,...,h} (this 3 is the top of theth left shell trianglg. Thena also contains the transposition
of 5.

Proof. —ReplacingF by the fieldF,_; of the generic splitting tower of’, X by X,_;, and
o by pr?(ap,_,), we come to the situation whege= 1.
Then we replacer by its homogeneous component containihgnd apply to it Lemma 4.11
(with £ =1;). Let us assume that the transpositionsdé not contained inv.
By Lemma 4.11x does not contain any of the essential basis cycles havimgth 0 < i < i;
as a factor; therefore the number of the essential basis elements containaddrthe number
of the essential basis elements containe@rif(ar(x)) € Ch(X?) differ by 1. In particular,
these two numbers have different parity. However, the number of the essential basis elements
contained inx is even by Lemma 4.14. By the same lemma, the number of the essential basis
elements contained ipr?(ap(x)) is even too. O

DEFINITION 4.16.— A minimal cyclea € thD(XQ) is called primordial, if it is not a
positive order derivative of another rational cycle.

LEMMA 4.17.—Leta € Ch(X?) be a minimal cycle. Assume that for soge S, the cycle
o containsh’s—* x [j, _1. Thena is symmetric and primordial.

Proof. —The cyclea N ¢(a) (Wheret(«) is the transposition ofy; intersection of cycles is
defined in Lemma 4.2) is symmetric, rational (Lemma 4.2), containeglamd, by Lemma 4.15,
still containsh)a-1 x l;,—1 (in particular,a N t(a) # 0). It coincides witha by the minimality
of a.

It is easy to “see” thatv is primordial looking at the picture of Remark 4.12 (because
contains the top point of some shell triangle). Nevertheless, let us do the proof by formulae. If
there exists a rational cycle# o such thaty is a derivative of3, then there exists a rational cycle
' such thaty is an order one derivative ¢f, thatis,a = 3’ - (h° x h') ora= 3’ (h* x h°). In
the first case?’ should contain the basis cyché—1 x l;,,» while in the second cas# contains
hla—1=1 % l;,—1. However, these both cases are not possible by Lemma 4.11Atakig + 1
with ¢ = 0 for the first case anl=i,_, — 1 for the second case).O

It is easy to see that a cyclewith the property of Lemma 4.17 exists at leastdct 1:
LEMMA 4.18. - There exists a cycle i@hp,;, 1 (X?) containingh® x [;, ;.

Proof. —Take a preimage df, -1 € Ch(X(x)) under the surjectio@®h(X?) — Ch(Xr(x))
given by the pull-back with respect to the morphisfp x) — X? produced by the generic point
of the first factor ofX2. O

The following lemma is proved already in [9] (under the name of “Vishik’s principle”), but
only for odd-dimensional quadrics and by a method different from the one used here.

LEMMA 4.19. - For any cyclep € Chp(X?), anyq € S, and anyi € [1,i,], the element
Ra—1FTi=1x 5 4;—1 is contained irp if and only if the elemerif, _; x hJ«~ is contained irp.
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Proof. —Clearly, it is enough to prove Lemma 4.19 fpe= 1 only. By Lemma 4.18, the basis
elementh? x [;, _ is contained in a rational cycle; let be the minimal cycle containing® x
l;,—1. By Lemma 4.15¢ also containg;, ; x h°. Therefore, the derivative - (hi~1 x hi1~%)
contains botthi=! x I;_; andl;, _; x h'1~¢. Since the derivative of a minimal cycle is minimal
(Lemma 4.9), the statement under proof follows by Lemma 4(2.

To announce the result which follows, we prefer to use the language of picture rather than the
language of formulae:

COROLLARY 4.20.— The diagram of an arbitrarya € (fth(XQ) has the following
property. for any ¢ € S and any integers > 1 and k > 0, the ith point of thekth row of the
qth left shell triangle is marked if and only if thi¢h point of thekth row of theqth right shell
triangle is markedsee Definitiord.13for the agreement on counting the rows and the points of
the shell trianglek

Proof. —The case of = 0 is treated in Lemma 4.19 (while Lemma 4.15 treats the case of
“maximal” k). The case of an arbitrary is reduced to the case &f= 0 by taking akth order
derivative ofa. O

Remark4.21. — By Corollary 4.20, it follows that the diagram of a cycle(]_th(XQ) is
determined by, say, the left half of itself.

Example4.22. — As an application of the results 6f? obtained by now (first of all, of
Corollary 4.20), we give a short (simpler than the original) proof of the main result of [9],
which can be stated as follows: if is an anisotropic quadratic form arf is the biggest
power of 2 dividing the differencedim(¢) — i1(¢), theni;(¢) < 2". For the proof, assume
thati; = i;(¢) > 2" and consider the Steenrod operatiSf (o) of a homogeneous cycle
a € ChS” (X2) containingh® x I, _; (for the existence ofi see Lemma 4.18; note that (a)

is still inside ofCth(X2) just because of the inequality > 2"). Since

d1m(¢) — 11

S (RO x by 1) = B0 x 8% (I, 1) = ( or

) (WO x 1y, 1 o)

and the binomial coefficient is odd, we get th&?(r(a) 3 h% x I;,_1_o-. On the other hand,
aFli, 14 x h foranyi € [1,i; — 1] by Lemma 4.11; consequentl§?” (o) Z li, 1_or4i X h'
for thesei; in particular, this is so fori = 2". Now, applying Corollary 4.20, we get that
5% (o) # h° x I;, _1_or, a contradiction.

The following lemma generalizes Lemma 4.18. Note that the basis eleihentx b, 1,
which appears in the statement, is the top point ofjtheshell triangle.

LEMMA 4.23.—Letq € S. Assume that the grouph (X ?2) contains a cycley such that

(1) ~ does not contain ang® x I; withi <j,_1;

(2) ~ containsh® x I; for some integet € [j,—1,j,) (note that the interval is semi-open
Then the groupChp.i,—1(X?) contains a cyclea such thata > hle—t x [; _; and
aZh' X, foranyi <ij, ;.

Proof. —We use an induction on. In the case of; = 1, the assumption of Lemma 4.23 is
always satisfied (think of = A); the cyclea is constructed in Lemma 4.18. In the remaining
part of the proof we assume that> 1.

Let i be the smallest integer such that hi«—1+i x li,_,+i- As afirst step, we prove that
the group@th(XQ) contains a cycley’ containingh/«-*** x [; _; and none ofi/ x I, with
j <ig—1+i (if i =0 then we can take: = o/ and finish the proof).
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Applying the induction hypothesis to the quadfig with the cyclepr?(vr(x)) € Ch(X?)
(and using the inclusion homomorphism of Corollary 2.4), we get a cycﬂﬁ]eriq_l(X%(X))
containingh’«-* x I;, _1. One of its derivatives is a homogeneous cycl@h(X%(X)) containing
Rla=1F% x I; _,. Note that the quadri& px) is not hyperbolic (sincg > ¢ > 1) and therefore,
by Lemma 4.1, the basis eleméptx [, is not contained in this derivative. Therefore the group
Ch(X?®) contains a homogeneous cycle containiifgx his-1+¢ x [; _; (and not containing
h® x 14 x 13). Considering it as a correspondence of the middle factof bfnto the product of
two outer factors, composing it with, and taking the pull-back with respect to the first diagonal
X? — X3, we get the required cycle'.

The highest order derivative - (h's=*~* x h?) of o/ containgh/«~! x [; _;. By Lemma 4.19,
it also containg;,_, x hia—1. Therefore its transposition contaihs -1 x l;,_,- Replacingy by
the constructed rational cycle, we come to the situation wittD) (see the second paragraph of
the proof), finishing the proof. O

We come to the main result on the structure(&igD(Xz) for an arbitrary anisotropic
projective quadricX :

THEOREM 4.24. — The set of the primordialsee Definitior4.16) cyclesIl ¢ CheSP (X?)
has the following properties.

(1) All derivatives of all cycles ofl are minimal and pairwise differenthey form a basis of
CheSP(X?).

(2) Every cycle inll is symmetric.

(3) For everyrw €11, there exists one and only ope= f(7) € S ={1,2,...,h} such that
(@) dim(m)=D+1i, —1;
(b) ™ F A" x liqi,—1 foranyi <j,_i;
(c) 7> a1 x qufl.

(4) The mapf :1I — S thus obtained is injective, its image consistgy@f S such that there
exists a cycler € Ch™"” (X2) satisfyinga 5 h' x I, for somei € liq—1,iq) @anda # h® x I,
foranyi € [0,j4—1) (in particular, f(IT) > 1).

Proof. —We construct a chain of subsets
V):H()CH1C"'CH[,

of the setlI such that for every € S, all highest derivatives of all cycles of, are minimal and
pairwise different, and their sum contailisx /; for all i < j,. The procedure looks as follows. If
for someg € S the sefll,_; is already constructed, we decide whether wadket IT,_, U {7}
with certain cycler or we setll, =II,_;. To make this decision, we consider the suarof all
highest derivatives of all cycles of,_;. We know thatx containsh? x [; for all i € [0,j,—1). If
also containg’ x [; for all i € [j,—1,j,), then we setl, = II,_1; otherwise the cycle = a+ A
satisfies the hypothesis of Lemma 4.23, and wdket II,_; U {n} with 7 being the minimal
cycle containingh/«—1 x l;,—1 (7 exists and has Property (3b) by Lemma 4.23s primordial
by Lemma 4.17).

The setll, thus constructed has all properties claimed Ibrin Theorem 4.24. Indeed
the elements ofl, are symmetric by Lemma 4.17. The sum of all highest derivatives of all
elements ofll, containsh® x I; for all i; therefore this sum also contains the remaining basis
elementd; x A’ for all i (see Lemma 4.19). It follows that evefy-dimensional minimal cycle

is a derivative of an element di,. Consequently, every minimal cycle ﬁth(XQ) is a
derivative of a cycle ofl,. It follows thatll, = II. All minimal cycles form a basis according to
Proposition 4.5. O
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As easy as important information on relations between the primordial cyclés?cand on
X% is as follows:

PROPOSITION 4.25. — LetII be the set of all primordial cycles foX; let IT; be the set of all
primordial cycles forX;. As usual we séf =1i;(X). One has

(1) #I1 -1 < #1Ly;

(2) if II ? ho x li1—l + lil—l X ho, then#H < #114.

Proof. —Let us extend the functiofi: IT — S to the set of all non-zero cycles @heS? (X?),
defining f () as the minima € S such thatx > k' x [, for somei € [i,—1,i,) anda Z h' x I;
for anysi € [0,j,—1). By item (4) of Theorem 4.24 (which is a consequence of Lemma 4.23), the
image of the extendeflcoincides withf (IT). Let f; : CheS” (X?) — S, be the same map for the
quadricX;. We denote a$l’ the sefll without the primordial cycle containing® x I;, _; (this
is the primordial cycle whose image undgis 1). For anyr € IT’ the cyclepr?(r) € Che(X?)
is non-zero and (pr?(m)) = f(m) — 1. It follows that

#I =#f1(TI) = #Im(f1) > #f (1) = #I' = #11 - 1,

and the first statement of Proposition 4.25 is proved.

Ifnow IT Z A0 x I, _1 +1;, —1 x h°, thenpr? (7 g x)) is non-zero foeveryr € II. Note that for
the cycler € II containingh® x I;, _1, one hasf; (pr?(m)) & f1(pr?(I1')) (becauser is disjoint
with all derivatives of the cycles dii’ and, consequentlyr? () is disjoint with all derivatives
of the cycles ofpr?(I1')). Therefore#I1 < #11;, and the second statement of Proposition 4.25
is proved as well. O

We need some more notation.

DEFINITION 4.26.—For any > 1, the symmetric groug, acts on the grouh(X") by
permutations of factors oX". If & € Ch(X"), we writeSym(«) for the “symmetrization” ofy,
that is,

Sym(«a) = Z s(a).
SES,

DEFINITION 4.27.— A non-zero anisotropic quadratic fognover F' is said to besmallif for
some positive integer (which is uniquely determined biim(¢) by the Arason—Pfister theorem)
one hasp € I"™ while dim ¢ < 2"*!. A projective quadric ismallif so is the corresponding
quadratic form.

The following result is an extended version of [21, Thm. 4.1].

PROPOSITION 4.28. — Let X be a small2d-dimensional quadric of the first Witt index
a=1;(X). Then
(1) the integera divides all the higher Witt indiceg, .. .,i, of X; in particular, it divides
d+1=iy+---+ip;
(2) the cycle

(d+1)/a
= Sym< > e x zm_1> € Chagya_1(X?)
=1
is rational,
(3) moreover, for every > 0 the Chow groupCh,,. (X ?) is generated by the non-essential
basis elements and the cyctes(h?~! x he=+=7), j=1,2,...,a — k (in particular, for
k > a, this Chow group consists of the non-essential element$.only
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Proof. —Let IT be the set of primordial cycles. We prove thakl = 1, using an induction on
h=h(X).If h =1, then#II =1, since generally < #II <.

Now we assume thaf > 2. Let us consider the quadri&; (over the fieldF'(X)) and let
II; be the set of primordial cycles foxX;. Then#II; = 1 by the induction hypothesis, and we
get what we need by item (2) of Proposition 4.25, if we check that the Sale(h° x [, 1)
is not rational. By item (8) of Proposition 3.3, this cycle can be rational only if the integer
2d — (a—1)4+1=2d —a+2is a power of2. Since however

2" < dim(py) =2d+2 —2a < 2d —a +2 < 2d + 2 = dim(¢) < 2",

the integeRd — a + 2 is nota power of2.

We have shown tha#Il = 1. Let 7 be the unique element of. By item (1) of Theorem 4.24,
the elementr has property (3). Property (2) (including the fact thatlividesd + 1) follows
by rationality of the diagonal clasa (described in Corollary 3.9). Finally, property (1) follows
using Lemma 4.11, or more clearly using pictures as in Remark 4.12.

Remark4.29. — Proposition 4.28 holds also for anisotropiavith [¢] € I"™ and dim(¢) =
27+1 (the same proof is valid for sughas well).

5. Cycleson X3

Let ¢ be a small quadratic form and letbe the positive integer such thgt] € I while
dim(¢) < 2"*1. We recall thatX stands for the projective quadric given dyLet us write down
the dimension o# as a sum of powers &

dim(¢) =2"+2" .- 42" n>ng>--->n, =1

In this section weassumehatm > 2, that the height of) is at least3, and that the first three
higher Witt indices of are as followsi; (¢) = 2" ~1,i5(¢) = 2"m-1~1 andiz(¢) = 2"m—2"1,
To simplify the formulae which follow, we introduce the notation

a=1i1(¢); b=ix(9); c=1i3(e)
and
d=dim(X)/2=2"""142m " 4.yl 1,
Here is our main construction:

PROPOSITION 5.1 (cf. [10, Prop. 2.7]). -The groupCh(X?) contains a homogeneous cycle

(d—a+1)/b
p= Sym( Z RO x pU—DPra lib+a1> +4

i=1

wherey’ is a sum of only those essential basis elements which have nkftmer h? with a J/i
as a factor.

Proof. —Let X; be the projective quadric (over the fielt{ X)) given by the anisotropic part
of the form¢ . x. Applying item (2) of Proposition 4.28 to the quadrig (taking into account

4® SERIE— TOME 37 — 2004 N° 6



HOLES IN I™ 991

thati; (X;) =1i2(X) = b anddim(X,) = 2(d — a)), we, in particular, get that the groth(X?)
contains the cycle

(d—a+1)/b

ﬁ/ = Sym( Z h(i_l)b X lib—l) .

i=1

Therefore (see Corollary 2.4), the gro(jh(X%(X)) contains the cycle

(d=at)/b
ﬁ = Zn2(ﬂ/) = Sym< Z h(z—l)b+a X lib-‘ru—l) .

i=1

The pull-back homomorphisng; : Ch(X?) — Ch(X7 ) with respect to the morphism
g1 :XI%(X) — X3, given by the generic point of the first factor &, is surjective. Therefore,

there exists a homogeneous cyple Ch(X?) such thatgi (1) = 3. Note thatg; sends every
basis cycle of the typg° x ¢ x £ to ¢ x & while killing the other basis elements. Consequently
we have

(d=atD)/b
n= Ko x Sym( Z h(l_l)b+a X libJral) + €,

i=1

wheree is a sum of some basis cycles which do not ha¥en the first factor place.

We now proceed by transforming the cygldn such a way that: does not leave the group
Ch(X?3) andg; (1) remains the same.

By Proposition 4.28 (now applied t§ itself), the cycle

(d+1)/a
= Sym( Z R0 lia—l) ~(hY x hoTh)
i=1

(d+1)/a '
- Z (h(zfl)a « l(ifl)a T liyq ¥ hzafl)

i=1

is in Ch(X?). Considering it as a correspondence, we replabg the composition o y, where

p € Ch(X; x Xy x X3) is considered as a correspondence frimto X, x X3 (all X; are
copies ofX). Also let us remove from all the non-essential basis elements it might contain.
Now a basis elemerit’ x? x? occurs in the decomposition @f only if i is divisible bya (see
Lemma 3.8) while all previously established propertieg still hold.

Consideringu as a correspondence froii, to X; x X3, replacing it by the composition
1o ~,19 and removing the non-essential basis elements, we come to the situation where a basis
element’ x h x? occurs in the decomposition pfonly if 4 is divisible bya (while all previously
established properties pfstill hold).

Finally, considering;, as a correspondence frolis to X; x X, replacing it by the
compositiony o v, and removing the non-essential basis elements, we come to the situation
where a basis elemefitc? x h* occurs in the decomposition af only if i is divisible bya
(while all the previously established properties.adtill hold).

We claim that now our cyclg has the required shape.

10strictly speaking, this ig12(t12(1) © v), Wheret is the automorphism ofh(X?) induced by the transposition
of the first two factors of3.
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Let us write for the sum of those summands in the decompositignwhich haveh® as at
least one factor. To finish the proof of the proposition, it suffices to check that

(d—a+1)/b

[ = sym< D> O xRl zib+a_1>.

i=1

First of all let us check that none of the 3 basis cycles obtained fibm 1% x [,_; by a
permutation of factors appears in the decompositiomyofThis is clear forh® x h° x I,_; itself

as well as fon? x [,_; x h°, because we know exactly what the termg iof the formh® x?x?
are. Now we assume that the cyéle; x h° x h° does appear and we pull bagkwith respect
to the morphismy.z : Xp(x x x) — X3 given by the generic point of the product of the last two
factors of X3. We get

Ch(Xp(xxx)) 2 go3 (1) = g53(lo—1 X h x h?) =14

showing that the Witt index of the quadricx x « x) is at least (see Corollary 2.5). However,
since the field extensiof' (X x X)/F(X) is purely transcendental, this Witt index coincides
with i1 (X') = a anda is smaller tharb (actuallya < b/2).

It follows that g = 1 + po + 13, Wherep; is the sum of summands in the decomposition of
w such that:? is theirith factor. By the construction gf we know that

(d—a+1)/b

= ho x sym< > Rt zma_l),

i=1

and it suffices to check that, = t12(u1) and us = t13(p1) with tp; standing for the
automorphism of the Chow grouph(X?) given by the transposition of the first anith factor
of X3.

In order to see that, = t12 (1), we pull back the cycle to X2 with respect to the morphism

512X2—>X3, T1 XTog+—T1 XT1 X T

given by the diagonal map of the first factor &7 into the product of the first two factors of
X3. The decomposition of the homogeneous cy¢lg:) € Chagyp,—1(X?) does not contain any
non-essential cycle. Therefore, sifce a, 67 () = 0 by Proposition 4.28. On the other hand,
07 (n1) containsh® x l,1,—1 while neitherd} (us) nor 67 (u — po) do. It follows thaté] (us)
containsh?® x I, ,_1 as well and consequently, contains the basis cycle® x h® x Iy q_1.
Now we use the pull-back with respect to the morphhﬁ’nX%(X) — X3 given by the generic

point of the second factor oX3. The homogeneous cyclg (1) = g3 (u2) lies in Gh(Xﬁ(X)),
contains the basis cycle® x I,,,_1, and does not contain any non-essential basis element.
Passing to the anisotropic paxi of Xp(x) and using Corollary 2.4, we get a homogeneous
cyclen in Ch(X?), namelyn = pr?(g5 (1)), which containg:’ x I,_; and does not contain any
non-essential cycle. Note the(u») is in the image ofn? : Ch(X?) — Ch(XIQ,(X)), so thatyus
can be reconstructed from

By Proposition 4.28 it follows that

(d-atD)/b
n= Sym( Z RU—Db % lib_1> .
i=1
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Consequently

(d—a+1)/b

95 (u2) = in*(n) = Sym( Z U= 5 lib+a1>

i=1

andug = t12(p).
The equalityus = t13(u1) is checked similarly. O

We remark that the “defect parji’ of the cycleu does not appear in [10, Prop. 2.7] when
working with a small quadric of height. In our case here, the height &f is at least3, '
does really exist and represents an additional difficulty. The main observation which is crucial to
overcome this difficulty is as follows:

LEMMA 5.2.— Let ' be as in Propositiors.1 In the decomposition gf’ we consider the
basis elements with® on theith factor place and writg:, for their sum. Then each of the cycles
why t12(ph), andtys(ph) is the sum of somef the following(c — b) /a elements

(d—b—a+1)/c
Xj= he x <Sym< Z h(i—l)c+b+a % lic+b+a1> X (h(j—l)a % hc—b—ja))7

i=1
wherej € {1,2,...,(c—b)/a} (in particular, the cycleg.], u5, p4 are disjoin).

Proof. —Clearly, it suffices to prove the statement pgh (the statements op/, and 4 are
proved in the same way interchanging the roles of the three facto¥s pf

Let us go over the function field'(X). We still havey € Ch(Xg(X)). Thereforeprs (1) €
Ch(X?), where X, is the anisotropic part oK r.(x) and pr% : Ch(X3, ) — Ch(X?) is the
projection of Corollary 2.4. We note that-3 (1) = pr3 (1'). Moreover,y/ is in the image of
the inclusionin : Ch(X{) — Ch(X}, y,) because everly’ which is a factor of a basis element
in the decomposition of/’ hasi > a and everyl; which is a factor of a basis element in the
decomposition of.’ hasi > a as well (just look at the dimension @f). Thereforey’ can be
reconstructed from its image under’,, namely,u’ = in% (pr3 (1')).

Now we move fromCh(X?) to Ch((X1)% x(x,)) Usingg; (the pull-back with respect to
the morphism given by the generic point of the first factorXgf). Note thatg; (pr3- (1)) =
g1 (pr3 (1)) and the cyclepr3 (1;) can be reconstructed from its image ungdgr Moreover
the cycleg; (pr% (1})) is in the image of the inclusiom%;, : Ch(X3) — Ch((X1)%(x,)» Where
X is the anisotropic part ofX1) »(x)(x,). In order to see it, we note that every basis cycle in
the decomposition of; (pr (1)) is equal (up to transposition) 0’ =1 x I, ;,_; for some
i > 1. Clearly, such a basis cycle is in the imagem)}(1 if and only if (i — 1)a > b. So, if the
cycleg; (pr (1})) is notin the image ofn% , thenv 5 K=V x 1, ;. with somei such that
(i—1)a < b, wherev is the cycleg} (pr3 (1} )) or its transpose. It follows that the decomposition
of the rational cyclepryy o4 (;—1)4,0(¥) CONtaINsl;,—1. This is a contradiction becauss, is
anisotropic and therefore the groGh (X>) does not contains essential elements (Corollary 2.2).

So, one can reconstruct the cyclg(pr3 (1y)) from its image under the projection
pr%, : Ch((X1)%(xy(x,)) — Ch(X3) and for our purposes it is sufficient to determine this
image. To do so, we apply Proposition 4.28 to the quadli@etting that the cycle

(pr%, 0 g5 o pr%)(1h) € Chag_p—a—1(X3)
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is the sum of some essential generators of the gfdlug_;,_,_1(X2) indicated in item (3) of
Proposition 4.28 (we note thdtm(X5,) = 2(d — b — a) so that

2d—b—a—-1=dim(Xs)+b+a—1<dim(Xs)+c—1,

where the last inequality holds because 2b anda < b by the assumption made in the beginning
of the current section). Finally, taking into account thafor a given: can be a factor of a basis
element appearing in the decompositior(p»f%(1 o gi o pr)(i}) only if i is divisible bya, we
get the desired description of the cygle. O

6. Proof of Conjecture 1.1

In this section we prove Conjecture 1.1. Suppose that this conjecture is not true, that is, over
some fieldF’ and for some positive integer, there exists a quadratic forgnover F with [¢] € T™
and with dim(¢) prohibited by Conjecture 1.1. Note thatis at least4 (see Section 1). In
the splitting pattern of the form, let us choose the smallest numlkm (¢ ) prohibited by
Conjecture 1.1. Let us replace the fogmby this (¢g)o (and F' by E) and write X for the
projective quadric given by the nesw Note thatdim(¢) > 2" + 2"~ ([22] (the original proof),
or [13, Thm. 4.4], or [10]). Moreover,

dim(¢p(x))o =2" + on=1l 4 ... 4 9om_9gntl_gm

for somem with 3 < m < n + 1. Evidently, m # n + 1, because the highest Witt index of
any even-dimensional quadratic form is a poweRdgee [19, Thm. 4.5.4(i)]) (and therefore,
by the Arason—Pfister theorem, the highest Witt index ¢ 2" ~1). Moreover,m # n because
otherwisep would have heigh? and so (by item (1) of Proposition 4.28would have dimension
2" + 2¢, contradicting the fact that has dimension greater thah + 2" ~! and less thag"**.

We havedim(¢) = 2" + 2"~ + ... + 2™ 4 2i;, wherei; =i;(¢) is the first Witt index of
¢. Note thati; < 2™~1 simply becauseim(¢) < 2"*1. Now it follows by [9, Conject. 0.1] or
by item (1) of Proposition 4.28 (take into account that the highest Witt indexisf2" 1) that
i; = 2P~ 1 for some integep satisfyingl <p <m—1, anddim(¢) =2"+2" "1 +...+2m 4 2P,
Sinceg is a counter-example, is notm — 1, so thatl < p <m — 2 in fact.

Finally, [9, Conject. 0.1] (or item (1) of Proposition 4.28) and the fact that all dimensions
dim(¢g)o < dim(¢) are allowed by Conjecture 1.1, allows one to determine all further higher
Witt indices of ¢ (compare with the proof of Corollary 6.2). They are as follows (starting from
ip): 2m—1 om=2 " 9on—1 meaning that the splitting pattern ¢fconsists of the partial sums of
the sum2™ +27~1 + ... + 2™ 4 2P, Therefore the hypotheses of the preceding section (and, in
particular, the hypothesis of Proposition 5.1 and Lemma 5.2) are satisfied.

To simplify the formulae which follow, as we did in the previous section, we introduce the
notation

and
d=dim(X)/2=2""142n 2 4 ... pom-t por=l g

Let us consider the cycle € Ch(X?) of Proposition 5.1 as a correspondence fr&nto X?;
let us consider the cyclé®*(u) - (h° x h® x h?~1) € Ch(X?) as a correspondence froi¥ to
X (whereS? stands for the degrégecomponent of the total Steenrod operatin Then we may
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take the composition of correspondences
pro (S2(u) - (h° x h® x hP~1)) € Ch(X™).
Let us additionally consider the morphism
0 X?=X1xXo— X1 X XoXx Xgx X, =X* 21 X221 X Tg X T1 X To

(all X; are copies ofX) given by the product of the diagonal¥; — X; x X3 and
Xy — X5 x X4 (thatis,d is the diagonal morphism of 2).

The following proposition contradicts Proposition 4.28 (note that({) = 2d+b—2a—1 >
2d + a) and proves therefore Conjecture 1.1.

PROPOSITION 6.1. — Let 1 € Ch(X?) be the cycle of Propositios.1 Then the decomposi-
tion of the cycle
E=6"(po (S (p) - (h° x % x h*~1))) € Chagrp—24—1(X?)

contains the basis cycl* x l,_,_1.

Proof. —It is easy to see that each powerfofvhich is a factor of a basis element involved in
the decomposition of the cycjeo (52 (i) - (h° x h® x h*~1)) is a multiple ofa. Therefore the
same is true for the cyclg

As in the proof of Proposition 5.1, we se§ = 1 — /. We have:

5:5*(M0 ° (S2a(,u0) . (hO % hO % hb_l))) _’_5*(#/ o (SQG([L’) . (hO % hO % hb—l)))
+6*(/-/ o (S2a(M0) . (hO x hO % hb_1>)) +5*(M0 o (SQa(,u/) . (hO % hO % hb_l))),
and we consider each of these four summands separately, one by one.

First summandFirst of all we computes2? (1). For every summank® x h¢—Db+a s 1,
in the decomposition afy, and for anyr # a with 1 < r < 2a, we have:

Sr(h(i—l)b+a) — Sr(lz‘bJra—l) -0

while ¢ (pi=Db+a) = pi=1)b+20 and S (15, , 1) = 13,1 (Checking this computation remem-
ber that4a dividesb and therefore, by Proposition 4.28+ 1 is congruent taz modulo4a).
Therefore

SQa(hO % h(i*l)b+a % lib+a—1) _ hO % h(i*l)b+2a % Z'L'b—l

and
(d—a+1)/b

5% (1) = Sym< Z RO x pli—1b+2a zi“).

=1
Now we can calculate the composition

p1o © (S**(po) - (K° x h® x hb~1))

(see Lemma 3.8). The basis cycles which appear in the decompositikt @f ) - (h° x kO x
hb=1) have on the third factor place the following elements:

(*) hb—l7 hib-ﬁ—Qa—l7 l(i—l)lr
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On the other hand, the basis elements which appear in the decompositigits#lf have on the
first factor place the following:

(%) RO, pU=DbRe

It is straightforward to see that the only pair of elements, one ffemone from(xx), with the
productly is (I, h°) (look at the indices modulda). Therefore

f1o 0 (S*(po) - (h° x h® x B*~1))

(d—a+1)/b ‘
- <h0 X sym< D> plimhte zibﬂ_l)) o (Sym(h° x h?*) x o)

=1
(d—a+1)/b
= Sym(ho X h2a) X Sym( Z h(i_l)b+a X lib+a1> .

=1

Applying 6* to the cycle obtained, we get

(d—a+1)/b
Sym< Z h(i—l)b+a X lip—a—1 + h(i—l)b+3a > lib+a1> =R X lygoq + -

i=1

It remains to show that the “remaining part” tloes not contain the basis cyéle x i, _,_;.
Second summandA basis cycle of the shapé®x? x h¥x? can be involved in the
decomposition of

’u/ o (SQQ(/L,) . (hO X hO % hbfl))
only if z,y > a. In this casey* (h* x? x h¥x?) = h*T¥x? with = + y > a, therefore the cycle
5*(/1,/0 (S2a(,LL/) . (hO % hO % hbfl)))

does not contain the basis eleméfitx [,_,_1.
Third summandin order to check that the cycle

5% (1 o (82*(po) - (h° x h® x B*71)))

does not contain the basis eleméritx [,_,_1, it suffices to check that the number of basis
elements in the decomposition of the composition

py 0 (5% (1) - (h® x B x h*~1))

is even (because all the basis elements that occur in this composition have thie’ferm x

h® x v, where one of the basis elementgndwv is of the formh’ and the other is of the form
ly—q—1+;) (noOte that we replaced by p5, the notation being introduced in Lemma 5.2, and we
replacedug by 1, the notatiory; being introduced in the proof of Proposition 5.1 for the sum
of the basis elements contained in the decomposition lséving h° on the first factor place).
For this, due to Lemma 5.2, it suffices to check that each ofdheb)/a compositions

t12(x;) © (8% (pa) - (h® x B x h*71)), G €[1,(c~b)/al,
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contains an even number of basis elements. We show this by a straightforward computation. The
point is that the number of summands in the decomposition of eygiy even and either each
or none of the summands “produces” a basis element in the composition (moreover, in the first
case, precisely one basis element is produced by each summand of the,gycle

Let us do the computation. The cycl&8?(u;) - (h® x h® x hb=1) andy; (for a fixed ;) are
equal respectively th® x o and toh® x 3, where

(d—a+1)/b
o= Z h(ifl)b+2a > l(i—l)b +Lip_1 ¥ h2b+2a717
i=1
while
(d—b—a+1)/c
B = Z plimDetbiia li—1)et2p+(j+1)a—1 T licyb—(j—2)a—1 X pie=(=bea,

i=1

and we just need to check that the composifioru is a sum of an even number of basis cycles.
There are two different cases depending on the valug &fthe productja is not0 modulo

b, then every product of every second factor of the basis cycles appearing in the decomposition
of v (namely,i(;_1), and h?*T22=1) by every first factor of the basis cycles appearing in the
decomposition of (namely,h("=Detb+ie andl; .y, (;_2),—1) is different froml, (to see this,

look at the indices modulb). Therefore, the composition of every basis cycle appearing in the
decomposition oty with every basis cycle appearing in the decompositio a$ 0, and so,

(o a=0in this case.

In the contrary case — the case wifh = 0 (mod b) — for every basis cycle in the
decomposition of3 there is precisely one basis cyclein the decomposition ofe such that
yox # 0 (note thaty o x is a basis cycle in this case). Since the number of basis cycles in the
decomposition of5 is even (equal to the integéd — b — a + 1)/c doubled), the composition
0o «is the sum of an even number of basis cycles.

Fourth summandwe finish the proof of Proposition 6.1 considering the cycle

5*('u0 o (SQa(Iu/) . (hO X hO X hbfl)))'

We replacey’ by ) and, furthermorey; by x; with somej € [1, (c — b)/a]. Also, we replace
1o by 2. We are going to show that the number of the basis elements of the shagec h°x?
appearing in the decomposition of the composition

20 (S(x;) - (A x HO x hP)

is even (this will finish the proof of Proposition 6.1; note that if the basis elefferty x h° x v
appears in the decomposition of the composition, then one of the basis elenagmts is of the
form h” while the other is of the forny,). We havey; = h* x 3 andus = t12(h° x ) with

(d—a+1)/b
o= Z pli=Dbta libra—1 + lipra_1 X h(z—l)b-‘,—a’
i=1

(d—b—a+1)/c

B = Z pli=Detbiia li—1)et20+(i+1)a—1 T licb—(j—2)a—1 X pie=(=ba,
i=1
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Therefore the number we are looking for is the number of summands in the decomposition of
oo (824(6) - (h° x hb~1)).

We can compute the Steenrod operatiit on the summands of the decomposition/bf
The formula depends on the value piodulo4 because of the rules (hes2 stands for

> k<2a S*):

hte if =0 (mod 4);

§<2a(piay — hia 4 plit1a if i=1 (mod 4);
(W) =1 pyia + R+ if j =2 (mod 4);

hie 4 plitDa 4 pi+2)aeif =3 (mod 4),

while (here recall tha§(l;) = 1; - (1 + h)??="*1, d 4+ 1 = a (mod b), and4a dividesb):

lia—1 +li—2)a—1 if i =0 (mod 4);
lia—1 + 1(i—1)a— if i =1 (mod 4);

<2a(7. _ ta—1 (i—1)a—1
S (lza—l) - lia—l ifi=2 (mod 4),
lia—1 +1(i—1)a—1 +l(i=2)a—1 f i =3 (mod 4).

Assume thay =0 (mod 4) or j =1 (mod 4). Then, applying the above formulae, we get that
S?2(3) =0, and there is nothing more to prove in this case.
Now we assume thagt= 2 (mod 4) or j = 3 (mod 4). Then

S24(B) - (® x h'™1) = By + fa,

where
ﬁl :ﬁ (hQa % hb—l)
(d=b—atD)/e _ _ _
= ROTDAFGTEDE o 1141y + lictb—ja—r X RTPZU7Da~L
i=1
while
B =+ (h° x B**207)

(d—=b—a+1)/c
= D AU G by o na F lictb(-2)a—1 X RETPTUTIL
i=1

If j =3 (mod 4), then the compositionso 3; anda o 3, are0 because so are the compositions
of any basis cycles included im with any basis cycle included i, or 35 (look at the indices
modulo2a). If j =2 (mod 4), thena o 5, = 0 too and by the same reason (look at the indices
modulo4a).

Finally, assume that= 2 (mod 4) and consider the compositienc 3s. If j # 2 (mod b/a),
thena o 85 = 0 (just look at the indices moduly. If j = 2 (mod b/a), then for every basis cycle
y in the decomposition gf, there is precisely one basis cyalén the decomposition of such
thatz oy # 0 (note thatr oy is a basis cycle in this case). Since the number of basis cycles in the
decomposition of3; is even (equal to the integéd — b — a + 1)/c doubled), the composition
« o (3 is the sum of an even number of basis cycles.

Conjecture 1.1 is proved. The following supplement is now easy to get:

COROLLARY 6.2.— Let ¢ be a small quadratic form witklim(¢) = 2"+ — 2™, m € [1,
n + 1]. Then the splitting patterfidim(¢z)o| E/ F is a field extensiopof the form¢ coincides
with the set{2"+1 — 2:}F1 (in particular, the height of is equal ton + 1 — m).
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Proof. —By Conjecture 1.1 proved abovéim(¢r(x))o = 2""' — 2" for somer € [m + 1,
n + 1]. But by [9, Conject. 0.1] (or by item (1) of Proposition 4.28 taking into account that the
highest Witt index of is 27~ 1), it follows that only the value = m + 1 is possible. Proceeding
this way (with the form¢r(x)o and so on), we get the results

7. Possible dimensions

Let us recall some standard notation concerning quadratic forms: one uites. ,a,),
whereay, ..., a, € F, for the quadratic form

F'" = F, (x1,...,2,) — @125 + - + a,22;
{aq,...,an)) for then-fold Pfister form
<17 —U,1> Q- <17 _an>a

and{(ay,...,a,)) for the pure subform of the above Pfister form (see [19, Def. 1.1 of Ch. 4]) so
that{(a1,...,a,) = (1) L{a1,...,an)).
The following elementary easy statement we recall below is classical:

LEMMA 7.1. - If quadratic formsp and+ over a fieldF' are anisotropic, then the quadratic
form ¢ L t¢) over the fieldF'(¢) of the rational functions of one variabtds anisotropic too.

Proof. —Otherwise, choosing diagonalizatiots,, . .., a,) and (b, ...,b,,) of ¢ andy, we
could take a non-trivial representation@fmultiply by the denominators, and get a non-trivial
equation

ar- fi@) + - +an f20) +t(b1- g5 () + - + b g2 (2) =0.

Consideration of the highest degree term infaland of the highest degree term in gJl leads
to a contradiction. O

COROLLARY 7.2.— Letk be afield(of char(k) #2), ¢;, t;; (i=1,...,m, j=1,...,n with
some integers, andm) variables, and

F=k(ti, tij)i1<i<m,1<i<n

the field of rational functions in these variables. The following quadratic forms évare
anisotropic

@) (t1,- - tm));

(2) tq - <<t11, . ,t1n>>J_ o J_tm . <<tm1, . 7tmn>>;

(3) {(t11,. - t1n)' L — {(ta1,. . tan ).

Proof. —(1) Induction onm using Lemma 7.1.

(2) Induction onm using (1) and Lemma 7.1.

(3) Forany: =1,2,...,n we pute; = {(t11,...,t1,)) andy; = ({ta1, ..., t2;)). We prove that
the form¢), L — )} is anisotropic using induction anFor: = 1 the statement is trivial. Far> 1
we have:

¢ L — i (i L — i) Ltridioa L —toshi1.
The summand,_, L —¢;_, is anisotropic by the induction hypothesis, while the fors,
and;_, are so by item (1) of Corollary 7.2. Consequently, by Lemma 7.1, the whole form is
anisotropic. O
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The following result provides, in particular, examples for all dimensions which are not
prohibited by Conjecture 1.1.

THEOREM 7.3 (A. Vishik). — Take any integers: > 1 and m > 2. Let k& be a field (of
char(k) #2), t;, ti; i=1,...,m, j=1,...,n) variables, and

F=k(ti tij)i1<i<m,1<i<n

the field of rational functions in all these variables.
The splitting pattern of théanisotropic by iten{2) of Corollary 7.2) quadratic form

d=1t1-{(t11,- s tin) L Lt - {{Em1y- oy tmn)

overF'is
{2t =2 i=n+1,n,...,1} U (2ZN 2" m-2")).

Proof. —First of all, it is easy to see that all the integérs™ — 2! are in the splitting pattern
of ¢. Indeed, the anisotropic part gfover the fieldE obtained fromF’ by adjoining the square
roots oftsy, t41, ..., tm1, Of t; @and of—ts, is isomorphic to the (generalized Albert) form

{(t11, s t1n)) L — ({ta1, ... ton))

(anisotropic by item (3) of Corollary 7.2) of dimensidfit! — 2; the splitting pattern of this form
is {21 — 2¢} because this set is the splitting patterrmof/anisotropic(2”+! — 2)-dimensional
guadratic form whose class liesift (Corollary 6.2).

Now let us assume that some (at least one) even integers of the if@&rvalm - 2"] arenot
in the splitting pattern o. Among all such integers we take the smallest one and ca]llét
b be the biggest integer smaller tharand lying in the splitting pattern; let be the smallest
integer greater tham and lying in the splitting pattern. Lef be the field of the generic splitting
tower of ¢ such thaidim(vy)) = ¢ for v = (¢g)o. Let Y be the projective quadric given by the
quadratic formy. Let 7 € Ch(Y?) be the cycle of the sél of Theorem 4.24 withy (7) = 1. We
claim thatr = Sym(h° x l;, _1) fori; =1, (Y). Indeed, sincé, = (c —b)/2> 1 andi,(Y) =1
forallge S=S(Y)=1{1,2,...,h} (h is the height ofy) such thatlim(¢,) € [2"T! —2,b], the
cycler does not contai/s—* x [;, 4, 1 for suchg (Lemma 4.11), and also Z h* x l;4i, 1
for anyi € {1,2,...,i; — 1} (Lemma 4.11 as well). Finally, for the integerc S such that
dim(¢p4) = 2" — 2, the cyclepr?(rg,) € Ch(Y,?) (the homomorphism

pr?:Ch(Y3,) — Ch(Y;?)
is defined in Corollary 2.4) has the dimension
dim(Yy) + i1 — 1 > dim(Yy) + 1 =dim(Y,) +i1(Yy)
and therefore i9 by item (3) of Proposition 4.28.
We have shown that = Sym(h° x [;, _1). By item (8) of Proposition 3.3, it follows that the
integerdim(Y') — i; + 1 is a power o2, say2?. Since
dm(Y)—i1+1=(c—2)—(c—=b)/2+1=(b+c)/2 -1,

the integer? sits inside of the open intervéd, c); therefore, satisfying” ! < 2P < m - 2", the
integer2” is not in the splitting pattern of the quadratic forgn But all the integers< m - 2™
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divisible by 2™ are evidentlyin the splitting pattern ofp. The contradiction obtained proves
Theorem 7.3. O

Remark7.4. — Of course, the dimensio2s*! — 2¢ can be realized more directly by the
tensor products of Pfister forms and generalized Albert forms(, w,. are variables):

<<U1, e ,ui,1>> [029] (<<’U17 e ,’Un+1,i>>/ 1 — <<w1, ey wn+1,i>>’).
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