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HOLES IN In

BY NIKITA A. KARPENKO1

To my brother

ABSTRACT. – Let F be an arbitrary field of characteristic�= 2. We write W (F ) for the Witt ring of
F , consisting of the isomorphism classes of all anisotropic quadratic forms overF . For any elemen
x ∈ W (F ), its dimensiondimx is defined as the dimension of a quadratic form representingx. The
elements of all even dimensions form an ideal denoted byI(F ). The filtration of the ringW (F ) by the
powersI(F )n of this ideal plays a fundamental role in the algebraic theory of quadratic forms. The M
conjectures, recently proved by Voevodsky and Orlov–Vishik–Voevodsky, describe the successive q
I(F )n/I(F )n+1 of this filtration, identifying them with Galois cohomology groups and with the MilnorK-
groups modulo2 of the fieldF . In the present article we give a complete answer to a different longsta
question concerningI(F )n, asking about the possible values ofdimx for x ∈ I(F )n. More precisely, for
anyn � 1, we prove that

dim In = {2n+1 − 2i | i ∈ [1, n + 1]} ∪ (2Z ∩ [2n+1,+∞)),(∗)

wheredim In is the set of alldimx for all x ∈ I(F )n andall F . Previously available partial information
on dim In include the classical Arason–Pfister theorem (saying that(0,2n) ∩ dim In = ∅) as well as a
recent Vishik’s theorem on(2n,2n + 2n−1) ∩ dim In = ∅ (the casen = 3 is due to Pfister,n = 4 to
Hoffmann). The proof of(∗) is based on computations in Chow groups of powers of projective qua
(involving the Steenrod operations); the method developed can be also applied to other types of a
varieties.

 2004 Elsevier SAS

RÉSUMÉ. – SoitF un corps quelconque de caractéristique�= 2, W (F ) l’anneau de Witt du corpsF , dont
les éléments sont les classes d’isomorphisme des formes quadratiques anisotropes surF . La dimension
dimx d’un élémentx ∈ W (F ) est définie comme la dimension d’une forme quadratique le représe
Les éléments des dimensions paires forment l’idéalI(F ). La filtration de l’anneauW (F ) par les puissance
I(F )n de cet idéal joue un rôle fondamental dans la théorie algébrique des formes quadratiques. L
conjectures de Milnor, démontrées récemment par Voevodsky et Orlov–Vishik–Voevodsky, décriv
quotients successifsI(F )n/I(F )n+1 de cette filtration en les identifiant avec les groupes de cohomo
galoisienne et lesK-groupes de Milnor modulo2 du corps. Dans le présent article, on donne une rép
complète à une autre question de longue date concernantI(F )n, à savoir, la question sur les valeu
possibles dedimx pourx ∈ I(F )n. Plus précisément, pour toutn � 1, on montre que

dim In = {2n+1 − 2i | i ∈ [1, n + 1]} ∪ (2Z ∩ [2n+1,+∞)),(∗)

1 Supported in part by the European Community’s Human Potential Programme under contract HPRN-CT-2002
KTAGS.
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974 N.A. KARPENKO

oùdim In est l’ensemble dedimx pour tousx ∈ I(F )n et tousF . Le renseignement surdim In disponible
avant comprend le théorème classique de Arason et Pfister (énonçant que(0,2n)∩dim In = ∅) ainsi qu’un
théorème récent de Vishik sur(2n,2n + 2n−1) ∩ dim In = ∅ (le casn = 3 est dû à Pfister,n = 4 à
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Hoffmann). La démonstration de(∗) repose sur certains calculs dans les groupes de Chow de puis
de quadriques projectives (employant les opérations de Steenrod) ; la méthode développée peut
appliquée aux autres types de variétés algébriques.

 2004 Elsevier SAS
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1. Introduction

In this textF is a field withchar(F ) �= 2. Let In for somen � 1 be thenth power of the
fundamental idealI (of the classes of the even-dimensional quadratic forms) of the Witt
W (F ). A longstanding question in the algebraic theory of quadratic forms asks about the p
values of dimension of an anisotropic quadratic formφ overF such that[φ] ∈ In, where[φ] is
the class ofφ in W (F ).

Examples withdim(φ) = 2n+1 − 2i for eachi ∈ {1,2, . . . , n + 1} are easy to construct (se
Remark 7.4). A classical theorem of J. Arason and A. Pfister [1, Hauptsatz] states thatdim(φ) is
never between0 = 2n+1 − 2n+1 and2n = 2n+1 − 2n. Also it is known that every value betwee
2n and2n +2n−1 = 2n+1−2n−1 is impossible (A. Pfister forn = 3, [17, Satz 14]; D. Hoffmann
for n = 4, [6, main thm.]; A. Vishik for alln, [22], see also [21, Thm. 1.5]2).

Finally, A. Vishik has shown that all even values� 2n+1 are possible ([21, Thm. 4.12], se
also Section 7 here) and suggested the following

CONJECTURE 1.1 (Vishik [21, Conject. 4.11])3 . – If [φ] ∈ In and dim(φ) < 2n+1, then
dim(φ) = 2n+1 − 2i for somei ∈ {1,2, . . . , n + 1}.

In the present text we prove this conjecture (see Section 6), obtaining a complete answe
question about possible dimensions of anisotropic quadratic forms whose classes lie inIn. The
proof closely follows the method of [10], but involves essentially more computations. As
as well, it makes use of an important property of the quadratic forms satisfying the hypo
of Conjecture 1.1 established by A. Vishik in [21]. Here we give an extended version o
result (see Proposition 4.28) with an elementary, complete, and self-contained (in par
independent of [21]) proof.

2 An alternative proof is given in [13, Thm. 4.4]; another one can be found in [10].
3 A. Vishik announced (for the first time in June 2002) that he has a proof of Conjecture 1.1; his proof howeve

available.
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In the proof of Conjecture 1.1 we work with projective quadrics rather than with quadratic
forms themselves. The method of proof is explained in Section 3; it certainly applies to other
types of algebraic varieties (in place of quadrics).
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2. Notation and preliminary observations

Everywhere in the text,X is a smooth projective quadric overF of an even dimensionD = 2d
or of an odd dimension4 D = 2d + 1 given by a non-degenerate quadratic formφ. We writeXr

for the direct productX ×· · ·×X (overF ) of r copies ofX and we writeC̄h(Xr) for the image
of the restriction homomorphismCh(Xr) → Ch(X̄r) whereX̄ = XF̄ with a fixed algebraic
closureF̄ of F andCh(.) stands for themodulo 2total Chow group (we recommend [5] as
general reference for the definition and properties of Chow groups). We say that an elem
Ch(X̄r) is rational, if it lies in the subgroupC̄h(Xr) ⊂Ch(X̄r).

A basis of the groupCh(X̄) (overZ/2Z) consists ofhi andli, i ∈ [0, d], whereh stands for
the class of a hyperplane section ofX̄ while li is the class of ani-dimensional linear subspace5

lying on X̄ . Moreover, a basis of the groupCh(X̄r) for everyr � 1 is given by the externa
products of the basis elements ofCh(X̄) (see, e.g., [9, §1] for an explanation why this is
basis). Speaking about abasisor abasis element(or abasis cycle: we will often apply the word
“cycle” to an element of a Chow group) ofCh(X̄r), we will always refer to the basis describ
above. By thedecompositionof an elementα ∈ Ch(X̄r) we always mean its representation
a sum of basis cycles. We say that a basis cycleβ is containedin the decomposition ofα (or
simply “is contained inα”), if β is a summand of the decomposition. More generally, for
cyclesα′, α ∈ Ch(X̄r), we say thatα′ is containedin α, or thatα′ is asubcycleof α (notation:
α′ ⊂ α), if every basis element contained inα′ is also contained inα.

A basis element ofCh(X̄r) is callednon-essential, if it is an external product of powers ofh
(includingh0 = 1 = [X̄]); the other basis elements are calledessential. An element ofCh(X̄r)
which is a sum of non-essential basis elements, is called non-essential as well. Note
non-essential elements are rational simply becauseh is rational.6

The multiplication table for the ringCh(X̄) is determined by the ruleshd+1 = 0, h · li = li−1

(i ∈ [0, d]; we adopt the agreement thatl−1 = 0), and l2d = (d + 1) · l0 for D even (see [11
Thm. 1.10]). The multiplication tables for the ringsCh(X̄r) (for all r � 2) follow by

(β1 × · · · × βr) · (β′
1 × · · · × β′

r) = β1β
′
1 × · · · × βrβ

′
r.

The cohomological action of the topological Steenrod algebra onCh(X̄r) (see [2] for the
construction of the action of the topological Steenrod algebra on the Chow group of a s
projective variety; originally Steenrod operations in algebraic geometry were introduced
wider context of motivic cohomology) by V. Voevodsky, [23]) is determined by the fact tha
total Steenrod operationS :Ch(X̄r) → Ch(X̄r) is a (non-homogeneous) ring homomorphis

4 Only the even-dimensional case is important for our main purpose; the odd-dimensional case is included for
of completeness.

5 In the case of evenD and i = d (and only in this case) the classli depends on the choice of the subspace: m
precisely, there are two different classes ofd-dimensional subspaces on̄X and no canonical choice of one of them
possible; we do not care about this however and we just choose one of them, call itld and “forget” about the other on
which is equal tohd − ld.

6 There are at least two direct ways to show thath is rational: (1)h is the pull-back of the hyperplane classH

with respect to the embedding of̄X into the projective space, andH is rational; (2)h is the first Chern class o
[OX̄(1)] ∈ K0(X̄), and[OX̄(1)] = res([OX(1)]) is rational.
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commuting with the external products and satisfying the formulae (see [9, §2 and Cor. 3.3])

S(hi) = hi · (1 + h)i, S(li) = li · (1 + h)D−i+1, i ∈ {0,1, . . . , d}

dulo
n
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(in order to apply these formulae, one needs a computation of the binomial coefficients mo2,
done, e.g., in [12, Lemma 1.1]). We writeSi for the degree-i part of the total Steenrod operatio
on Chow groups modulo2 (on a complex variety, this corresponds to the Steenrod operationSq2i

on mod2 cohomology).
The groupC̄h(X) is easy to compute. First of all one has

LEMMA 2.1. – If the quadricX is anisotropic(that is,X(F ) = ∅), thenC̄h0(X) �� l0.

Proof. –If l0 ∈ C̄h0(X), then the varietyX contains a closed pointx of an odd degree
[F (x) : F ]. It follows that the quadratic formφ is isotropic over an odd degree extension
the base field (namely, overF (x)) and therefore, by the Springer-Satz (see [19, Thm. 5.3
isotropic already overF . �

COROLLARY 2.2. – If X is anisotropic, then the group̄Ch(X) is generated by the non
essential basis elements.

Proof. –If the decomposition of an elementα ∈ C̄h(X) contains an essential basis elemenli
for somei �= D/2, thenli ∈ C̄h(X) becauseli is thei-dimensional homogeneous componen
α (andC̄h(X) is a graded subring ofCh(X̄)). If the decomposition of an elementα ∈ C̄h(X)
contains the essential basis elementli for i = D/2, then the (D/2)-dimensional homogeneou
component ofα is either lD/2 or lD/2 + hD/2 and we still haveli ∈ C̄h(X). It follows that
l0 = li · hi ∈ C̄h(X), a contradiction with Lemma 2.1.�

Now assume for a moment that the quadricX is isotropic but not completely split (that i
i0(X) � d), write a for the Witt indexi0(X) of X (defined as the Witt indexi0(φ) of φ, see [19,
Def. 5.10 of Ch. 1]), and letX0 be the projective quadric given by the anisotropic partφ0 of
φ (one hasdim(X0) = dim(X) − 2a; the casedim(X0) = 0 is possible). We consider a grou
homomorphismpr :Ch(X̄) →Ch(X̄0) determined on the basis by the formulaehi �→ hi−a and
li �→ li−a (here we adopt the agreementhi = 0 andli = 0 for all negativei). Also we consider a
backward group homomorphismin :Ch(X̄0) → Ch(X̄) determined by the formulaehi �→ hi+a

andli �→ li+a for i ∈ {0,1, . . . , d− a}.
Let r be a positive integer. For every lengthr sequencei1, . . . , ir of integers satisfying

ij ∈ [0, a]∪ [D − a + 1,D], we define a group homomorphism

pr i1...ir
:Ch(X̄r) → Ch(X̄s

0)

with s = #{ij | ij = a}, called projection (the mappr of the previous paragraph will be
special case of this projection map withr = 1 and i1 = a). Let {j1 < · · · < js} be the set o
indices such thatijs = a. We put Jl = {j | ij < a} and Jh = {j | ij > a}. Then we define
pr i1...ir

(α1 × · · · × αr) for a basis elementα1 × · · · × αr aspr(αj1) × · · · × pr(αjs) as far
asαj = lij for any j ∈ Jl andαj = hD−ij for any j ∈ Jh; we setpr i1...ir

(α1 × · · · × αr) = 0
otherwise.

Also we define a backward group homomorphismini1...ir :Ch(X̄s
0) → Ch(X̄r), called

inclusion, by

ini1...ir(β1 × · · · × βs) = α1 × · · · × αr

for a basis elementβ1 × · · · × βs, whereαj = lij for j ∈ Jl, αj = hD−ij for j ∈ Jh, and
αjk

= in(βk) for k = 1,2, . . . , s.

4e SÉRIE– TOME 37 – 2004 –N◦ 6
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PROPOSITION 2.3 (cf. [10, Lemma 2.2]). –In the notation introduced right above, the
homomorphism
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mand:
Ch(X̄r) →
⊕

(i1,...,ir)

Ch(X̄s(i1,...,ir)
0 ), α �→

(
pr i1,...,ir

(α)
)
(i1,...,ir)

given by all projections, is an isomorphism with the inverse given by the sum of all inclu
Under these isomorphisms, rational cycles correspond to rational cycles.

Proof. –By the Rost motivic decomposition theorem for isotropic quadrics (original pro
in [18], generalizations are obtained in [8] and [4]), there is a motivic decomposition (i
category of the integral Chow motives)

X 	 Z⊕Z(1)⊕ · · · ⊕Z(a− 1)⊕X0(a)⊕Z(D − a + 1)⊕ · · · ⊕Z(D)(∗)

(whereZ is the motive ofSpecF , while M(i) is the ith Tate twist of a motiveM ). Raising
to the rth power, we get a motivic decomposition of the varietyXr; each summand of thi
decomposition is a twist of the motive ofXs

0 with s varying between0 andr. If we numerate the
summands of the decomposition(∗) by their twists, then the summands of the decompositio
Xr are numerated by the sequences

i1, . . . , ir with ij ∈ [0, a]∪ [D − a + 1,D].

Moreover, the(i1, . . . , ir)th summand isXs
0(i1 + · · ·+ ir), wheres = #{ij | ij = a}.

In order to finish the proof of Proposition 2.3, it suffices to show that the projection morp
to the(i1, . . . , ir)th summand considered on the Chow group and overF̄ coincides withpr i1...ir

while the inclusion morphism of the(i1, . . . , ir)th summand considered on the Chow group
overF̄ coincides withini1...ir . Clearly it suffices to check this forr = 1 only. Fori �= D/2, this
is particularly easy to do because of the relationdimZ/2Z(Chi(X̄)) � 1. Indeed,Chi(Z(k)) = 0
for k �= i. Therefore for anyi with a � i � D − a, i �= D/2, the projection and the inclusio
betweenChi(X̄) andChi−a(X̄0) are isomorphisms and, as a consequence, they interch
the only non-zero elements of these two groups (which areli and li−a if i < D/2, or hD−i

andhD−i−a if i > D/2). For i < a, the projection and the inclusion are isomorphisms betw
Chi(X̄) andZ/2Z = Chi(Z(i)) and the only non-zero element of the first Chow group isli.
Finally, for i > D − a, the projection and the inclusion are isomorphisms betweenChi(X) and
Z/2Z and the only non-zero element of the Chow group ishD−i.

For i = D/2 (here we are in the case of evenD, of course), the basis of the groupChi(X̄) is
given by the elementshd andld, while the basis of the groupChi−a(X̄0) is given by the element
hd−a and ld−a. The subgroupsC̄hd(X) ⊂ Chd(X̄) and C̄hd−a(X0) ⊂ Chd−a(X̄0), however,
are 1-dimensional, generated byhd and hd−a (becauseld−a �∈ C̄h(X0) by Corollary 2.2).
Since these subgroups are interchanged by the projection and the inclusion,hd corresponds
to hd−a. Now there are only two possibilities for the element ofChd(X̄) corresponding to
ld−a ∈ Chd−a(X̄0): either this isld or this is ld + hd. Which one of these two possibilitie
takes place depends on the construction of the motivic decomposition(∗); but a given motivic
decomposition can be always corrected in such a way that the first possibility takes plac
can simply use an automorphism of the varietyX0 interchangingld−a with ld−a + hd−a). �

The “most important” summand in the motivic decomposition ofXr is, of course,Xr
0 .

We introduce a special notation for the projection and the inclusion related to this sum
prr = pra...a andinr = ina...a.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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COROLLARY 2.4. – The(mutually semi-inverse) homomorphisms

prr :Ch(X̄r) →Ch(X̄r
0 ) and inr :Ch(X̄r

0 )→ Ch(X̄r)

sm

an

by

s;

wer,

c

ric

s

(for any r � 1) map rational cycles to rational cycles; moreover, the induced homomorphi
prr : C̄h(Xr)→ C̄h(Xr

0 ) is surjective.

Now we get an extended version of Corollary 2.2 which reads as follows:

COROLLARY 2.5. – For an arbitrary quadricX (isotropic or not) and any integeri one has:
li ∈ C̄h(X) if and only if i0(X) > i (wherei0(X) = i0(φ) is the Witt index).

Proof. –The “if” part of the statement is trivial. Let us prove the “only if” part using
induction oni. The case ofi = 0 is served by Lemma 2.1.

Now we assume thati > 0 and li ∈ C̄h(X). Sinceli · h = li−1, the elementli−1 is rational
as well, and by the induction hypothesisi0(X) � i. If i0(X) = i, then the image ofli ∈ C̄h(X)
under the mappr1 :Ch(X̄) → Ch(X̄0) equalsl0 and is rational by Corollary 2.4. Therefore,
Lemma 2.1, the quadricX0 is isotropic, a contradiction. �

We recall that thesplitting patternsp(φ) of an anisotropic quadratic formφ is defined as the
set of integers

sp(φ) =
{
dim(φE)0 | E/F is a field extension

}
(hereφE stands for the quadratic form over the fieldE obtained fromφ by extending the scalar
(φE)0 is the anisotropic part ofφE).

The splitting pattern can be obtained using thegeneric splitting towerof M. Knebusch
(arbitrary field extensions ofF are then replaced by concrete fields). To construct this to
we put F1 = F (X), the function field of the projective quadricX given by φ. Then we put
φ1 = (φF1)0 and writeX1 for the projective quadric (over the fieldF1) given by the quadrati
form φ1. We proceed by settingF2 = F1(X1) and so on until we can (we stop onFh such that
dim(φh) � 1). The tower of fieldsF ⊂ F1 ⊂ · · · ⊂ Fh obtained this way is called the gene
splitting tower ofφ and (see [14])

sp(φ) =
{
dim(φ),dim(φF1)0, . . . ,dim(φFh

)0
}

=
{
dim(φ),dim(φ1), . . . ,dim(φh)

}
(the integerh = h(φ) is theheightof φ; note that the elements ofsp(φ) are written down in the
descending order).

An equivalent invariant ofφ is called thehigher Witt indicesof φ and defined as follows. Let u
write the set of integers{i0(φE) | E/F a field extension}, wherei0(φE) is the usual Witt index
of φE , in the form

{
0 = i0(φ) < i1 < i1 + i2 < · · ·< i1 + i2 + · · ·+ ih

}
.

The sequence of the positive integersi1, . . . , ih is called the higher Witt indices ofφ. For every
q ∈ {0,1, . . . ,h}, we also set

jq = jq(φ) = i0 + i1 + · · ·+ iq = i0(φFq ).

Clearly, one has

{0 = j0, j1, . . . , jh} =
{
i0(φE) |E/F is a field extension

}
4e SÉRIE– TOME 37 – 2004 –N◦ 6
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(this set of integers is sometimes also called the splitting pattern ofφ in the literature).
The following easy observation is crucial:
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THEOREM 2.6. – The splitting pattern as well as the higher Witt indices of an anisotro
quadratic formφ (of some given dimension) are determined by the group

C̄h(X∗) =
⊕
r�1

C̄h(Xr).

Proof. –The pull-back homomorphismg∗1 :Ch(Xr) → Ch(Xr−1
F (X)) with respect to the mor

phism of schemesg1 :Xr−1
F (X) → Xr given by the generic point of, say, the first factor ofXr,

is surjective. It induces an epimorphism̄Ch(Xr) → C̄h(Xr−1
F (X)), which is a restriction of the

epimorphismCh(X̄r) → Ch(X̄r−1
F (X)) mapping each basis element of the shapeh0 × β with

β ∈ Ch(X̄r−1) to β ∈ Ch(X̄r−1
F (X)) and killing all other basis elements. Therefore the gr

C̄h(X∗) determines the group̄Ch(X∗
F (X)). In particular, the groupC̄h(XF (X)) is determined

so that we have reconstructedi0(XF (X)) = i1(X) (see Corollary 2.5). Moreover, by Coro
lary 2.4, the groupC̄h(X∗

F (X)) determines the group̄Ch(X∗
1 ) (via the surjectionpr∗; X1 stand-

ing for the anisotropic part ofXF (X)), and we can proceed by induction.�
Remark2.7. – The proof of Theorem 2.6 makes it clear that the statement of this the

can be made more precise in the following way. If for someq ∈ {1,2, . . . ,h} the Witt indices
i1, . . . , iq−1 are already reconstructed, then one determinesiq = jq− iq−1−· · ·− i1 by the formula

jq = max{j | the producth0 × hj1 × · · · × hjq−1 × lj−1 is contained in a rational cycle}.

Remark2.8. – Concluding this section, we would like to underline that the role of
algebraic closurēF in the definition of the group̄Ch(X∗) is secondary: the groupCh(X̄∗) (used
in the definition ofC̄h(X∗)) has to be interpreted as the direct limitlimCh(X∗

E) taken overall
field extensionsE/F . The homomorphismCh(X̄∗) → limCh(X∗

E) is an isomorphism. More
generally, the homomorphismCh(X∗

E) → limCh(X∗
E) for a givenE/F is an isomorphism i

and only if the quadratic formφE is completely split (in particular, for anyE/F with completely
split φE , there is a canonical isomorphismCh(X∗

E) = Ch(X̄∗), coinciding with the composition
res−1

Ē/F̄
◦ resĒ/E , whereĒ is a field containingE andF̄ ).

3. Strategy of proof

As shown in Theorem 2.6, the group̄Ch(X∗) determines the splitting pattern of the quadra
form φ. In its turn, the splitting pattern ofφ determines the powers of the fundamental idea
the Witt ring containing the class ofφ. At least it is easy to prove

LEMMA 3.1. – Let φ be an even-dimensional anisotropic quadratic form and letn � 1 be
an integer. We writep for the least positive integer ofsp(φ) (note thatp is a power of2, [19,
Thm. 5.4(i)]). If [φ] ∈ In, thenp � 2n.

Proof. –We assume that[φ] ∈ In(F ). Let E/F be a field extension such thatdim(φE)0 = p.
Since0 �= [(φE)0] ∈ In(E), we get thatp � 2n by the Arason–Pfister theorem.�

Remark3.2. – It is not needed in this paper but nevertheless good to know that the co
statement to Lemma 3.1 is also true. This is a hard result, however. It is proved in [15, Thm
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Now we are able to describe the strategy of our proof of Conjecture 1.1. Let us consider a
powerIn of the fundamental ideal. Letφ be an anisotropic quadratic form with[φ] ∈ In, having
some dimension prohibited by Conjecture 1.1. The groupC̄h(X∗), whereX is the projective

up of
if

rove

t to
t

quadric given byφ, should satisfy some restrictions listed below. This group is a subgro
Ch(X̄∗), the latter one depends only on the dimension ofφ. So, we prove Conjecture 1.1,
we check that every subgroup ofCh(X̄∗), satisfying the list of restrictions, cannot bēCh(X∗)
for the formφ by the reason given by Lemma 3.1 with Theorem 2.6. This is the way we p
Conjecture 1.1.

And here is the list of restrictions on̄Ch(X∗) considered as a subset ofCh(X̄∗) (a big part of
this list is of course valid for an arbitrary smooth projective variety in place of the quadricX):

PROPOSITION 3.3. – Assuming that the quadricX is anisotropic,7 we have:
(1) C̄h(X∗) is closed under addition and multiplication;
(2) C̄h(X∗) is closed under passing to the homogeneous components(with respect to the

grading of the Chow group and to the∗-grading);
(3) C̄h(X∗) containsh0 = [X̄] andh1 = h (and therefore containshi for all i � 0);
(4) [Springer-Satz]

C̄h(X∗) does not containl0;
(5) for everyr � 1, C̄h(Xr) is closed under the automorphisms ofCh(X̄r) given by the

permutations of factors ofXr;
(6) for everyr � 1, C̄h(X∗) is closed under push-forwards and pull-backs with respec

all r projectionsXr → Xr−1 and to allr diagonalsXr → Xr+1 (taking into accoun
the previous restriction, it is enough to speak only about the first projection

x1 × x2 × · · · × xr �→ x2 × · · · × xr

and the first diagonal

x1 × x2 × · · · × xr �→ x1 × x1 × x2 × · · · × xr

here);
(7) C̄h(X∗) is closed under the total Steenrod operation

S :Ch(X̄∗)→ Ch(X̄∗);

(8) [A. Vishik, “Size of binary correspondences”]
if C̄h(X2) � h0 × li + li ×h0 for some integeri � 0, then the integerdim(X)− i + 1 is
a power of2;

(9) [“Inductive restriction”]
the image ofC̄h(X∗+1) under the composition

Ch(X̄∗+1)
g∗
1−→ Ch(X̄∗

F (X))
pr∗

−→ Ch(X̄∗
1 )

(g∗1 is introduced in the proof of Theorem2.6, pr∗ in Corollary 2.4)should coincide with
C̄h(X∗

1 ) and therefore should satisfy all restrictions listed in this proposition(including
the current one);

7 Anisotropy is important only for (4), (8), (9), and (10).
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(10) [“Supplement to inductive restriction”]
for any integerr � 2, any integers ∈ [1, r), and any projectionpr i1...ir

of Proposi-

tion 2.3, the image ofC̄h(Xr) underpr :Ch(X̄r) → Ch(X̄s(i1,...,ir)) is inside of

to be
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3.3.
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i1...ir 1

C̄h(Xs(i1,...,ir)
1 ) (reconstructed by(9)).

Proof. –Only the property (8) needs a proof. We note that this property does not seem
a consequence of the others. It is proved in [12, Thm. 5.1] by some computation in theintegral
Chow group ofX∗, not in the modulo2 Chow group (although involving modulo2 Steenrod
operations) (the original proof is in [7, Thm. 6.1]; it makes use of higher motivic cohomolo

More precisely, the case ofi = 0 is proved in [12, Thm. 5.1]. In order to reduce the gene
case to the case ofi = 0, we take an arbitrary subquadricY ⊂ X of codimensioni and pull
back the cycleh0 × li + li × h0 with respect to the embeddingY 2 ↪→ X2. The result is
h0 × l0 + l0 × h0 ∈ C̄h(Y 2). Therefore,dim(Y ) + 1 is a power of2 by [12, Thm. 5.1]. Since
dim(Y ) = dim(X)− i, it follows that the integerdim(X)− i + 1 is the same power of2. �

Remark3.4. – Obviously, one can write down some additional restrictions onC̄h(X∗).
However, all restrictions I know are consequences of the restrictions of Proposition 3.
instance,C̄h(X∗) should be stable with respect to the external products; but this is a conseq
of the stability with respect to the internal products (1) and the pull-backs with respe
projections (6). Another example: the image of the total Chern classc :K0(X̄∗) → Ch(X̄∗)
restricted toK0(X∗) (note thatK0(X∗) is computed for quadrics [20] and, more genera
for all projective homogeneous varieties [16]) should be inside ofC̄h(X∗); but it is already
guaranteed by the fact that̄Ch(X∗) is closed under addition and multiplication (1) and conta
h0 and h1 (3).8 One more example:C̄h(X2) should be closed under the composition
correspondences (see [5, §16] for the definition of composition of correspondences);
operation of composition of correspondences is produced by pull-backs and push-forwar
respect to projections together with the operation of multiplication of cycles.

Remark3.5. – Let us remark that all operations involved in the list of restriction
Proposition 3.3 are easy to compute in terms of the basis elements. The multiplica
Ch(X̄∗) was described in the previous section; a formula for the total Steenrod operatio
given already as well. Also the operations used in the inductive restriction are compute
Corollary 2.4 and the proof of Theorem 2.6). As to the pull-backs and push-forwards
respect to the first projectionpr :Xr+1 → Xr and to the first diagonalδ :Xr → Xr+1, they
are computed for basis elementsβ0, β1, . . . , βr ∈ Ch(X̄) as follows:

pr∗(β1 × · · · × βr) = h0 × β1 × · · · × βr;

pr∗(β0 × β1 × · · · × βr) =
{

β1 × · · · × βr, if β0 = l0,

0, otherwise;

δ∗(β0 × β1 × · · · × βr) = (β0 · β1)× β2 × · · · × βr;

δ∗(β1 × · · · × βr) =
(
(β1 × h0) ·∆

)
× β2 × · · · × βr =

(
(h0 × β1) ·∆

)
× β2 × · · · × βr;

where∆ ∈ C̄h(X2) is the class of the diagonal computed in Corollary 3.9.

Remark3.6. – One can obviously simplify a little bit the list of restrictions of Proposition
For instance, instead of stability under the push-forwards with respect to the diagonals, it s
to require that the cycle

∑d
i=0(h

i × li + li × hi), related to the diagonal, lies in̄Ch(X2) (see

8 However the property with the Chern class can be a good replacement for (3) when transferring this theory
algebraic varieties in place of the quadricX .
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Remark 3.5 and Corollary 3.9). Also the inductive restriction is not so restrictive as it may seem:
the groupC̄h(X∗

1 ) automatically satisfies most of the required restrictions.
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Remark3.7. – Looking at the list of restrictions, it is easy to see that every groupC̄h(X )
determinesC̄h(X<r). Moreover, one can show that̄Ch(Xd+1) determines the whole grou
C̄h(X∗). 9 SinceC̄h(Xd+1) is a subgroup of the finite groupCh(X̄d+1), it follows, in particular,
that the invariantC̄h(X∗) (of the quadratic formsφ of a given dimension) has only a fini
number of different values (this way one also sees that Conjecture 1.1 can be checked
concrete dimension by computer).

We will often use the composition of correspondences, even for the cycles on bigge
2 powers ofX : this is a convenient way to handle the things. Namely, forα ∈ C̄h(Xr) and
α′ ∈ C̄h(Xr′

), we may considerα as a correspondence, say, fromXr−1 to X , and we may
considerα′ as a correspondence fromX to Xr′−1; then the compositionα′ ◦ α is a cycle
in C̄h(Xr+r′−2), and here is the formula for composing the basis elements (we put her
obvious formula because it will be used many times in our computations):

LEMMA 3.8. – The compositionβ′ ◦ β ∈Ch(X̄r+r′−2) of two basis elements

β = β1 × · · · × βr ∈ Ch(X̄r) and β′ = β′
1 × · · · × β′

r′ ∈ Ch(X̄r′
)

is equal toβ1 × · · · × βr−1 × β′
2 × · · · × β′

r′ , if βr · β′
1 = l0; otherwise the compositionβ′ ◦ β

is 0.

COROLLARY 3.9. – For the diagonal class∆ ∈ C̄h(X2), one has:

∆ =
d∑

i=0

(hi × li + li × hi) + (D + 1) · (d + 1) · (hd × hd).

In particular, the sum
∑d

i=0(h
i × li + li × hi) is always rational.

Proof. –Using Lemma 3.8, it is straightforward to verify that the cycle given by the ab
formula acts (by composition) trivially on any basis cycle ofCh2(X̄2). �

4. Cycles on X2

We are using the notation introduced in Section 2. In particular,X is the projective quadric o
an even dimensionD = 2d or of an odd dimensionD = 2d+1 given by a quadratic formφ over
the fieldF . Apart from Lemma 4.1, we assume thatX is anisotropic everywhere in this sectio
Let i1, . . . , ih be the higher Witt indices ofφ (with h being the height ofφ). We writeS for the
set{1,2, . . . ,h} and we setjq = i1 + i2 + · · ·+ iq for everyq ∈ S.

An “important” as well as the “first interesting” part of the group̄Ch(X∗) is the groupC̄h(X2)
and especiallyC̄hD(X2) = C̄hD(X2) (note that, due to the Rost nilpotence theorem ([18],
also [3]), the latter group detects all motivic decompositions ofX). The groupC̄hD(X2) was
studied intensively by A. Vishik (see, e.g., [22]). In the next section we reproduce most
results concerning this group. Actually we give an extended version of these results des
the structure of a bigger group, namely of the groupC̄h�D(X2).

9 It would be interesting to rewrite all restrictions of Proposition 3.3 in terms of the groupC̄h(Xd+1).
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Originally, Vishik’s results are formulated in terms of motivic decompositions ofX ; by this
reason, their proofs use the Rost nilpotence theorem for quadrics, which is not used in the present
text at all. Here we simplify the formulation; we also give a different complete self-contained
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proof and show that all these results are consequences of the restrictions onC̄h(X∗) listed
in Proposition 3.3. More precisely, we start with some general results concerning an ar
anisotropic quadricX ; the proofs of these results use neither the restriction provided b
Steenrod operation, nor the “size of binary correspondences” restriction; a summary o
results is given in Theorem 4.24. Proposition 4.28, appearing in the very end of the s
contains the result on the so-called small quadrics (Definition 4.27), needed in the pr
Conjecture 1.1; its proof uses the “size of binary correspondences” restriction (the St
operation does still not show up).

We start by the following easy observation:

LEMMA 4.1. – Assume that the quadratic formφ is of even dimension and is not hyperbo
Then the basis elementld × ld ∈ C̄hD(X2) does not appear in the decomposition of any ratio
cycle.

Proof. –We assume the contrary. Letα be a cycle inC̄hD(X2) containingld × ld. Then
the push-forward with respect to the projection onto the second factorpr :X2 → X of the cycle
α ·(hd×h0) is rational and equalsld or hd + ld (becausepr∗(β ·(hd×h0)) is ld for β = (ld× ld),
hd for β = ld × hd, and0 for every other basis cycleβ ∈ ChD(X̄2)). Therefore the cycleld is
rational, showing thatX is hyperbolic (Corollary 2.5), a contradiction.�

LEMMA 4.2. – If α1, α2 ∈ C̄h�D(X2), then the cycleα1∩α2 is rational (where the notation
α1 ∩ α2 means the sum of the basis cycles contained simultaneously inα1 and inα2).

Proof. –Clearly, we may assume thatα1 andα2 are homogeneous of the same dimens
D + i and do not contain any non-essential basis element. Then the intersection (mod
non-essential elements) is computed asα1 ∩ α2 = α2 ◦ (α1 · (h0 × hi)) (see Lemma 3.8). �

DEFINITION 4.3. – We writeChe(X̄∗) for the subgroup ofCh(X̄∗) generated by the essent
basis elements. We setChe(X∗) = Che(X̄∗) ∩ C̄h(X∗). Note that the groupChe(X∗) is a
subgroup ofC̄h(X∗) isomorphic to the quotient of̄Ch(X∗) by the subgroup of the non-essent
elements.

DEFINITION 4.4. – A non-zero cycle ofChe�D(X2) is calledminimal, if it does not contain
any proper rational subcycle. Note that a minimal cycle is always homogeneous.

A very first structure result on̄Ch�D(X2) reads as follows:

PROPOSITION 4.5. – The minimal cycles form a basis of the groupChe�D(X2). Two
different minimal cycles do not intersect each other(here we speak about the notion
intersection of cycles introduced in Lemma4.2). The sum of the minimal cycles of dimens
D is equal to the sum

∑d
i=0 hi × li + li × hi of all D-dimensional essential basis eleme

(excludingld × ld in the case of evenD).

Proof. –The first two statements of Proposition 4.5 follow from Lemma 4.2. The t
statement follows from previous ones together with the rationality of the diagonal cycle
Corollary 3.9). �

DEFINITION 4.6. – Letα be a homogeneous cycle inCh�D(X̄2). For everyi with 0 � i �
dim(α) − D, the productsα · (h0 × hi), α · (h1 × hi−1), and so on up toα · (hi × h0) will be
called the (ith order)derivativesof α. Note that all derivatives are still inCh�D(X̄2) and that
all derivatives of a rational cycle are also rational.
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LEMMA 4.7. –
(1) Each derivative of any essential basis elementβ ∈ Che�D(X̄2) is an essential basis
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(2) For any r � 0 and any essential basis cyclesβ1, β2 ∈ CheD+r(X̄2), two derivatives
β1 · (hi1 × hj1) andβ2 · (hi2 × hj2) of β1 andβ2 coincide only ifβ1 = β2, i1 = i2, and
j1 = j2.

Proof. –(1) If β ∈CheD+r(X̄2) for somer > 0, then, up to transposition,β = hi × li+r with
i ∈ [0, d− r]. An arbitrary derivative ofβ is equal toβ · (hj1 ×hj2) = hi+j1 × li+r−j2 with some
j1, j2 � 0 such thatj1 + j2 � r. We have0 � i + j1 � d and thereforehi+j1 is a basis elemen
We also haved � i + r − j2 � 0 and thereforeli+r−j2 is a basis element too.

Statement (2) is trivial. �
Remark4.8. – For the sake of visualization, it is good to think of the basis cycle

Ch�D(X̄2) (with lD/2 × lD/2 excluded by the reason of Lemma 4.1) as of points of
“pyramid”

◦
◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦

∗ ◦ ◦ ◦ ◦ ◦ ∗
∗ ∗ ◦ ◦ ◦ ◦ ∗ ∗

∗ ∗ ∗ ◦ ◦ ◦ ∗ ∗ ∗
∗ ∗ ∗ ∗ ◦ ◦ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ◦ ∗ ∗ ∗ ∗ ∗
(D = 8 on the picture; for an oddD the pyramid has no “step”, see, e.g., the picture of Rem
4.12), where the◦-s stand for the non-essential basis elements while the∗-s stand for the essenti
ones; the point on the top ish0 × h0; for every i ∈ {0,1, . . . ,D}, the ith row of the pyramid
represents the basis ofChi(X̄2) (in the case of evenD, theDth row is the basis withoutld × ld)
ordered by the codimension of the first factors (starting withh0×?). For anyα ∈ Che�D(X̄2),
we can put a mark on the points representing basis elements contained in the decompo
α; the set of marked points is thediagramof α. If α is homogeneous, the marked points lie in
same row. Now it is easy to interpret the derivatives ofα: the diagram of anith order derivative is
a projection of the marked points of the diagram ofα to theith row below along some directio
The diagram of every derivative ofα has the same number of marked points as the diagramα
(Lemma 4.7). The diagrams of two different derivatives of the same order are shifts (to th
or to the left) of each other.

LEMMA 4.9. – The following conditions on a homogeneous cycleα ∈ C̄h�D(X2) are
equivalent:

(1) α is minimal;
(2) all derivatives ofα are minimal;
(3) at least one derivative ofα is minimal.

Proof. –Derivatives of a proper subcycle ofα are proper subcycles of the derivatives ofα;
therefore,(3) ⇒ (1).

In order to show that(1)⇒ (2), it suffices to show that two first order derivativesα · (h0 ×h1)
andα · (h1 × h0) of a minimal cycleα are minimal. In the contrary case, possibly replacinα
by its transposition, we come to the situation where the derivativeα · (h0 × h1) of a minimalα
is not minimal. It follows that the cycleα · (h0 × hi), wherei = dim(α) − D, is not minimal
too; letα′ be its proper subcycle. Taking the compositionα ◦ α′ and removing the non-essent
summands, we get a proper subcycle ofα (see Lemma 3.8). �
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COROLLARY 4.10. –The derivatives of a minimal cycle are disjoint.

Proof. –The derivatives of a minimal cycle are minimal (Lemma 4.9) and pairwise differ-
posi-

he
t

out the
e lower
es
hen

id are
ted
r; for
s
es
ent (Lemma 4.7). Two different minimal cycles are disjoint by Lemma 4.2 (see also Pro
tion 4.5). �

LEMMA 4.11. – Let α be an element ofC̄hD+k−1(X2) with somek � 1. For any q ∈
{1, . . . ,h} and for any non-negativei with iq − k < i < iq , the cycleα contains neither the
producthjq−1+i × ljq−1+i+k−1 nor the transposition of this product.

Proof. –Let us assume the contrary: for somek � 1, someq ∈ {1, . . . ,h}, and somei with
iq − k < i < iq , there exists a rational cycleα containing the producthjq−1+i × ljq−1+i+k−1 or
the transposition of this product. Ifα contains the transposition of the product, we replaceα by
the transposition ofα. Passing to the (q − 1)th field of the generic splitting tower and using t
projection of Corollary 2.4, we come to the situation whereq = 1 andα contains the produc
hi × li+k−1 such thati1 − k < i < i1. The projectionprD−i,i1(αF (X)) is a rational cycle onX̄1

containingli+k−1−i1 (note thati+k−1− i1 � 0). We get a contradiction with Corollary 2.2.�
Remark4.12. – In order to “see” the statement of Lemma 4.11, it is helpful to mark by• the

essential basis elements which are not “forbidden” by this lemma (we are speaking ab
pyramid of basis cycles drawn in Remark 4.8). We will get isosceles triangles based on th
row of the pyramid. For example, ifX is a29-dimensional quadric with the higher Witt indic
4,3,5,2 (such a quadricX does not exist in reality, but is convenient for the illustration), t
the picture looks as follows:

◦
◦ ◦

◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗
∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗

∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗
∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ◦ ◦ ◦ ◦ ◦ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ • ∗ ∗ ◦ ◦ ◦ ◦ ∗ ∗ • ∗ ∗ ∗ ∗ ∗ ∗ ∗

• ∗ ∗ ∗ ∗ ∗ ∗ • • ∗ ∗ ◦ ◦ ◦ ∗ ∗ • • ∗ ∗ ∗ ∗ ∗ ∗ •
• • ∗ ∗ • ∗ ∗ • • • ∗ ∗ ◦ ◦ ∗ ∗ • • • ∗ ∗ • ∗ ∗ • •

• • • ∗ • • ∗ • • • • ∗ • ◦ • ∗ • • • • ∗ • • ∗ • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITION 4.13. – The triangles of Remark 4.12 will be called theshell triangles(their
bases are shells in the sense of A. Vishik). The shell triangles in the left half of the pyram
counted from the left starting by1. The shell triangles in the right half of the pyramid are coun
from the right starting by1 as well (so that the symmetric triangles have the same numbe
any q ∈ S, the bases of theqth triangles have (each)iq points). The rows of the shell triangle
are counted from below starting by0. The points of rows of the shell triangles (of the left on
as well as of the right ones) are counted from the left starting by1.
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LEMMA 4.14. – For every rational cycleα ∈ C̄h�D(X2), the number of the essential basis
cycles contained inα is even(that is, the number of the marked points in the diagram of any
α ∈Che�D(X2) is even).
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Proof. –We may assume thatα is homogeneous, say,α ∈ C̄hD+k(X2), k � 0. Let n be the
number of the essential basis cycles contained inα. The pull-backδ∗(α) of α with respect to the
diagonalδ :X → X2 producesn · lk ∈ C̄h(X). By Corollary 2.2, it follows thatn is even. �

LEMMA 4.15. – Let α ∈ C̄h(X2) be a cycle containingβ = hjq−1 × ljq−1 for someq ∈ S =
{1,2, . . . ,h} (thisβ is the top of theqth left shell triangle). Thenα also contains the transpositio
of β.

Proof. –ReplacingF by the fieldFq−1 of the generic splitting tower ofF , X by Xq−1, and
α by pr2(αFq−1), we come to the situation whereq = 1.

Then we replaceα by its homogeneous component containingβ and apply to it Lemma 4.1
(with k = i1). Let us assume that the transposition ofβ is not contained inα.

By Lemma 4.11α does not contain any of the essential basis cycles havinghi with 0 < i < i1

as a factor; therefore the number of the essential basis elements contained inα and the numbe
of the essential basis elements contained inpr2(αF (X)) ∈ C̄h(X2

1 ) differ by 1. In particular,
these two numbers have different parity. However, the number of the essential basis e
contained inα is even by Lemma 4.14. By the same lemma, the number of the essentia
elements contained inpr2(αF (X)) is even too. �

DEFINITION 4.16. – A minimal cycleα ∈ C̄h�D(X2) is calledprimordial, if it is not a
positive order derivative of another rational cycle.

LEMMA 4.17. – Let α ∈ C̄h(X2) be a minimal cycle. Assume that for someq ∈ S, the cycle
α containshjq−1 × ljq−1. Thenα is symmetric and primordial.

Proof. –The cycleα ∩ t(α) (wheret(α) is the transposition ofα; intersection of cycles i
defined in Lemma 4.2) is symmetric, rational (Lemma 4.2), contained inα, and, by Lemma 4.15
still containshjq−1 × ljq−1 (in particular,α ∩ t(α) �= 0). It coincides withα by the minimality
of α.

It is easy to “see” thatα is primordial looking at the picture of Remark 4.12 (becausα
contains the top point of some shell triangle). Nevertheless, let us do the proof by formu
there exists a rational cycleβ �= α such thatα is a derivative ofβ, then there exists a rational cyc
β′ such thatα is an order one derivative ofβ′, that is,α = β′ · (h0 ×h1) or α = β′ · (h1 ×h0). In
the first caseβ′ should contain the basis cyclehjq−1 × ljq , while in the second caseβ′ contains
hjq−1−1 × ljq−1. However, these both cases are not possible by Lemma 4.11 (takek = iq + 1
with i = 0 for the first case andi = iq−1 − 1 for the second case).�

It is easy to see that a cycleα with the property of Lemma 4.17 exists at least forq = 1:

LEMMA 4.18. – There exists a cycle in̄ChD+i1−1(X2) containingh0 × li1−1.

Proof. –Take a preimage ofli1−1 ∈ C̄h(XF (X)) under the surjection̄Ch(X2)→ C̄h(XF (X))
given by the pull-back with respect to the morphismXF (X) → X2 produced by the generic poi
of the first factor ofX2. �

The following lemma is proved already in [9] (under the name of “Vishik’s principle”),
only for odd-dimensional quadrics and by a method different from the one used here.

LEMMA 4.19. – For any cycleρ ∈ C̄hD(X2), any q ∈ S, and anyi ∈ [1, iq], the elemen
hjq−1+i−1 × ljq−1+i−1 is contained inρ if and only if the elementljq−i ×hjq−i is contained inρ.

4e SÉRIE– TOME 37 – 2004 –N◦ 6



HOLES IN In 987

Proof. –Clearly, it is enough to prove Lemma 4.19 forq = 1 only. By Lemma 4.18, the basis
elementh0 × li1−1 is contained in a rational cycle; letα be the minimal cycle containingh0 ×
li1−1. By Lemma 4.15,α also containsli1−1 × h0. Therefore, the derivativeα · (hi−1 × hi1−i)
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contains bothhi−1 × li−1 andli1−i × hi1−i. Since the derivative of a minimal cycle is minim
(Lemma 4.9), the statement under proof follows by Lemma 4.2.�

To announce the result which follows, we prefer to use the language of picture rather th
language of formulae:

COROLLARY 4.20. – The diagram of an arbitraryα ∈ C̄h�D(X2) has the following
property: for any q ∈ S and any integersi � 1 and k � 0, the ith point of thekth row of the
qth left shell triangle is marked if and only if theith point of thekth row of theqth right shell
triangle is marked(see Definition4.13for the agreement on counting the rows and the point
the shell triangles).

Proof. –The case ofk = 0 is treated in Lemma 4.19 (while Lemma 4.15 treats the cas
“maximal” k). The case of an arbitraryk is reduced to the case ofk = 0 by taking akth order
derivative ofα. �

Remark4.21. – By Corollary 4.20, it follows that the diagram of a cycle in̄Ch�D(X2) is
determined by, say, the left half of itself.

Example4.22. – As an application of the results onX2 obtained by now (first of all, o
Corollary 4.20), we give a short (simpler than the original) proof of the main result of
which can be stated as follows: ifφ is an anisotropic quadratic form and2r is the bigges
power of 2 dividing the differencedim(φ) − i1(φ), then i1(φ) � 2r. For the proof, assum
that i1 = i1(φ) > 2r and consider the Steenrod operationS2r

(α) of a homogeneous cyc

α ∈ C̄h�D(X2) containingh0 × li1−1 (for the existence ofα see Lemma 4.18; note thatS2r

(α)
is still inside ofC̄h�D(X2) just because of the inequalityi1 > 2r). Since

S2r

(h0 × li1−1) = h0 × S2r

(li1−1) =
(

dim(φ)− i1

2r

)
· (h0 × li1−1−2r)

and the binomial coefficient is odd, we get thatS2r

(α) � h0 × li1−1−2r . On the other hand
α �� li1−1+i ×hi for anyi ∈ [1, i1 − 1] by Lemma 4.11; consequently,S2r

(α) �� li1−1−2r+i ×hi

for thesei; in particular, this is so fori = 2r. Now, applying Corollary 4.20, we get th
S2r

(α) �� h0 × li1−1−2r , a contradiction.

The following lemma generalizes Lemma 4.18. Note that the basis elementhjq−1 × ljq−1,
which appears in the statement, is the top point of theqth shell triangle.

LEMMA 4.23. – Let q ∈ S. Assume that the group̄ChD(X2) contains a cycleγ such that
(1) γ does not contain anyhi × li with i < jq−1;
(2) γ containshi × li for some integeri ∈ [jq−1, jq) (note that the interval is semi-open).

Then the groupC̄hD+iq−1(X2) contains a cycleα such that α � hjq−1 × ljq−1 and
α �� hi × li+iq−1 for anyi < jq−1.

Proof. –We use an induction onq. In the case ofq = 1, the assumption of Lemma 4.23
always satisfied (think ofγ = ∆); the cycleα is constructed in Lemma 4.18. In the remain
part of the proof we assume thatq > 1.

Let i be the smallest integer such thatγ � hjq−1+i × ljq−1+i. As a first step, we prove tha

the groupC̄h�D(X2) contains a cycleα′ containinghjq−1+i × ljq−1 and none ofhj × l? with
j < jq−1 + i (if i = 0 then we can takeα = α′ and finish the proof).
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Applying the induction hypothesis to the quadricX1 with the cyclepr2(γF (X)) ∈ C̄h(X2
1 )

(and using the inclusion homomorphism of Corollary 2.4), we get a cycle inC̄hD+iq−1(X2
F (X))

containinghjq−1 ×l . One of its derivatives is a homogeneous cycle inC̄h(X2 ) containing

,
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nal
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f all
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to
jq−1 F (X)

hjq−1+i × ljq−1. Note that the quadricXF (X) is not hyperbolic (sinceh � q > 1) and therefore
by Lemma 4.1, the basis elementld × ld is not contained in this derivative. Therefore the gro
C̄h(X3) contains a homogeneous cycle containingh0 × hjq−1+i × ljq−1 (and not containing
h0 × ld × ld). Considering it as a correspondence of the middle factor ofX3 into the product of
two outer factors, composing it withγ, and taking the pull-back with respect to the first diago
X2 → X3, we get the required cycleα′.

The highest order derivativeα′ · (hiq−1−i×h0) of α′ containshjq−1× ljq−1. By Lemma 4.19,
it also containsljq−1 × hjq−1 . Therefore its transposition containshjq−1 × ljq−1 . Replacingγ by
the constructed rational cycle, we come to the situation withi = 0 (see the second paragraph
the proof), finishing the proof. �

We come to the main result on the structure ofC̄h�D(X2) for an arbitrary anisotropi
projective quadricX :

THEOREM 4.24. – The set of the primordial(see Definition4.16)cyclesΠ ⊂ Che�D(X2)
has the following properties.

(1) All derivatives of all cycles ofΠ are minimal and pairwise different; they form a basis o
Che�D(X2).

(2) Every cycle inΠ is symmetric.
(3) For everyπ ∈ Π, there exists one and only oneq = f(π) ∈ S = {1,2, . . . ,h} such that

(a) dim(π) = D + iq − 1;
(b) π �� hi × li+iq−1 for anyi < jq−1;
(c) π � hjq−1 × ljq−1.

(4) The mapf :Π → S thus obtained is injective, its image consists ofq ∈ S such that there
exists a cycleα ∈ C̄h�D(X2) satisfyingα � hi× l? for somei ∈ [jq−1, jq) andα �� hi× l?
for anyi ∈ [0, jq−1) (in particular, f(Π) � 1).

Proof. –We construct a chain of subsets

∅ = Π0 ⊂Π1 ⊂ · · · ⊂Πh

of the setΠ such that for everyq ∈ S, all highest derivatives of all cycles ofΠq are minimal and
pairwise different, and their sum containshi × li for all i < jq . The procedure looks as follows.
for someq ∈ S the setΠq−1 is already constructed, we decide whether we setΠq = Πq−1 ∪{π}
with certain cycleπ or we setΠq = Πq−1. To make this decision, we consider the sumα of all
highest derivatives of all cycles ofΠq−1. We know thatα containshi× li for all i ∈ [0, jq−1). If α
also containshi × li for all i ∈ [jq−1, jq), then we setΠq = Πq−1; otherwise the cycleγ = α+∆
satisfies the hypothesis of Lemma 4.23, and we setΠq = Πq−1 ∪ {π} with π being the minima
cycle containinghjq−1 × ljq−1 (π exists and has Property (3b) by Lemma 4.23;π is primordial
by Lemma 4.17).

The setΠh thus constructed has all properties claimed forΠ in Theorem 4.24. Indee
the elements ofΠh are symmetric by Lemma 4.17. The sum of all highest derivatives o
elements ofΠh containshi × li for all i; therefore this sum also contains the remaining b
elementsli × hi for all i (see Lemma 4.19). It follows that everyD-dimensional minimal cycle
is a derivative of an element ofΠh. Consequently, every minimal cycle in̄Ch�D(X2) is a
derivative of a cycle ofΠh. It follows thatΠh = Π. All minimal cycles form a basis according
Proposition 4.5. �
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As easy as important information on relations between the primordial cycles onX2 and on
X2

1 is as follows:

l

), the
e

.25

)
g

x

ial
PROPOSITION 4.25. – LetΠ be the set of all primordial cycles forX ; let Π1 be the set of al
primordial cycles forX1. As usual we seti1 = i1(X). One has:

(1) #Π− 1 � #Π1;
(2) if Π �� h0 × li1−1 + li1−1 × h0, then#Π � #Π1.

Proof. –Let us extend the functionf :Π→ S to the set of all non-zero cycles inChe�D(X2),
definingf(α) as the minimalq ∈ S such thatα � hi × l? for somei ∈ [jq−1, jq) andα �� hi × l?
for anyi ∈ [0, jq−1). By item (4) of Theorem 4.24 (which is a consequence of Lemma 4.23
image of the extendedf coincides withf(Π). Letf1 :Che�D(X2

1 )→ S1 be the same map for th
quadricX1. We denote asΠ′ the setΠ without the primordial cycle containingh0 × li1−1 (this
is the primordial cycle whose image underf is 1). For anyπ ∈ Π′ the cyclepr2(π) ∈ Che(X2

1 )
is non-zero andf1(pr2(π)) = f(π)− 1. It follows that

#Π1 = #f1(Π1) = #Im(f1) � #f(Π′) = #Π′ = #Π− 1,

and the first statement of Proposition 4.25 is proved.
If now Π �� h0× li1−1 + li1−1×h0, thenpr2(πF (X)) is non-zero foreveryπ ∈Π. Note that for

the cycleπ ∈Π containingh0 × li1−1, one hasf1(pr2(π)) �∈ f1(pr2(Π′)) (becauseπ is disjoint
with all derivatives of the cycles ofΠ′ and, consequently,pr2(π) is disjoint with all derivatives
of the cycles ofpr2(Π′)). Therefore#Π � #Π1, and the second statement of Proposition 4
is proved as well. �

We need some more notation.

DEFINITION 4.26. – For anyr � 1, the symmetric groupSr acts on the groupCh(X̄r) by
permutations of factors of̄Xr. If α ∈Ch(X̄r), we writeSym(α) for the “symmetrization” ofα,
that is,

Sym(α) =
∑
s∈Sr

s(α).

DEFINITION 4.27. – A non-zero anisotropic quadratic formφ overF is said to besmallif for
some positive integern (which is uniquely determined bydim(φ) by the Arason–Pfister theorem
one hasφ ∈ In while dimφ < 2n+1. A projective quadric issmall if so is the correspondin
quadratic form.

The following result is an extended version of [21, Thm. 4.1].

PROPOSITION 4.28. – Let X be a small2d-dimensional quadric of the first Witt inde
a = i1(X). Then

(1) the integera divides all the higher Witt indicesi1, . . . , ih of X ; in particular, it divides
d + 1 = i1 + · · ·+ ih;

(2) the cycle

π = Sym

(
(d+1)/a∑

i=1

h(i−1)a × lia−1

)
∈Ch2d+a−1(X̄2)

is rational;
(3) moreover, for everyk � 0 the Chow groupC̄h2d+k(X2) is generated by the non-essent

basis elements and the cyclesπ · (hj−1 × ha−k−j), j = 1,2, . . . , a− k (in particular, for
k � a, this Chow group consists of the non-essential elements only).
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Proof. –Let Π be the set of primordial cycles. We prove that#Π = 1, using an induction on
h = h(X). If h = 1, then#Π = 1, since generally1 � #Π � h.

Now we assume thath � 2. Let us consider the quadricX1 (over the fieldF (X)) and let
e

eger

,

s

e

le

rt
t

Π1 be the set of primordial cycles forX1. Then#Π1 = 1 by the induction hypothesis, and w
get what we need by item (2) of Proposition 4.25, if we check that the cycleSym(h0 × la−1)
is not rational. By item (8) of Proposition 3.3, this cycle can be rational only if the int
2d− (a− 1) + 1 = 2d− a + 2 is a power of2. Since however

2n � dim(φ1) = 2d + 2− 2a < 2d− a + 2 < 2d + 2 = dim(φ) � 2n+1,

the integer2d− a + 2 is not a power of2.
We have shown that#Π = 1. Let π be the unique element ofΠ. By item (1) of Theorem 4.24

the elementπ has property (3). Property (2) (including the fact thata dividesd + 1) follows
by rationality of the diagonal class∆ (described in Corollary 3.9). Finally, property (1) follow
using Lemma 4.11, or more clearly using pictures as in Remark 4.12.�

Remark4.29. – Proposition 4.28 holds also for anisotropicφ with [φ] ∈ In anddim(φ) =
2n+1 (the same proof is valid for suchφ as well).

5. Cycles on X3

Let φ be a small quadratic form and letn be the positive integer such that[φ] ∈ In while
dim(φ) < 2n+1. We recall thatX stands for the projective quadric given byφ. Let us write down
the dimension ofφ as a sum of powers of2:

dim(φ) = 2n + 2n1 + · · ·+ 2nm , n > n1 > · · ·> nm � 1.

In this section weassumethat m � 2, that the height ofφ is at least3, and that the first thre
higher Witt indices ofφ are as follows:i1(φ) = 2nm−1, i2(φ) = 2nm−1−1, andi3(φ) = 2nm−2−1.
To simplify the formulae which follow, we introduce the notation

a = i1(φ); b = i2(φ); c = i3(φ)

and

d = dim(X)/2 = 2n−1 + 2n1−1 + · · ·+ 2nm−1 − 1.

Here is our main construction:

PROPOSITION 5.1 (cf. [10, Prop. 2.7]). –The groupC̄h(X3) contains a homogeneous cyc

µ = Sym

(
(d−a+1)/b∑

i=1

h0 × h(i−1)b+a × lib+a−1

)
+ µ′,

whereµ′ is a sum of only those essential basis elements which have neitherh0 nor hi with a � | i
as a factor.

Proof. –Let X1 be the projective quadric (over the fieldF (X)) given by the anisotropic pa
of the formφF (X). Applying item (2) of Proposition 4.28 to the quadricX1 (taking into accoun
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thati1(X1) = i2(X) = b anddim(X1) = 2(d− a)), we, in particular, get that the group̄Ch(X2
1 )

contains the cycle ( )

,

ntly

p

ain.

n
a basis

uation

n

β′ = Sym
(d−a+1)/b∑

i=1

h(i−1)b × lib−1 .

Therefore (see Corollary 2.4), the group̄Ch(X2
F (X)) contains the cycle

β = in2(β′) = Sym

(
(d−a+1)/b∑

i=1

h(i−1)b+a × lib+a−1

)
.

The pull-back homomorphismg∗1 : C̄h(X3) → C̄h(X2
F (X)) with respect to the morphism

g1 :X2
F (X) → X3, given by the generic point of the first factor ofX3, is surjective. Therefore

there exists a homogeneous cycleµ ∈ C̄h(X3) such thatg∗1(µ) = β. Note thatg∗1 sends every
basis cycle of the typeh0 × ζ × ξ to ζ × ξ while killing the other basis elements. Conseque
we have

µ = h0 × Sym

(
(d−a+1)/b∑

i=1

h(i−1)b+a × lib+a−1

)
+ ε,

whereε is a sum of some basis cycles which do not haveh0 on the first factor place.
We now proceed by transforming the cycleµ in such a way thatµ does not leave the grou

C̄h(X3) andg∗1(µ) remains the same.
By Proposition 4.28 (now applied toX itself), the cycle

γ = Sym

(
(d+1)/a∑

i=1

h(i−1)a × lia−1

)
· (h0 × ha−1)

=
(d+1)/a∑

i=1

(h(i−1)a × l(i−1)a + lia−1 × hia−1)

is in C̄h(X2). Considering it as a correspondence, we replaceµ by the compositionµ ◦ γ, where
µ ∈ C̄h(X1 × X2 × X3) is considered as a correspondence fromX1 to X2 × X3 (all Xi are
copies ofX). Also let us remove fromµ all the non-essential basis elements it might cont
Now a basis elementhi×?×? occurs in the decomposition ofµ only if i is divisible bya (see
Lemma 3.8) while all previously established properties ofµ still hold.

Consideringµ as a correspondence fromX2 to X1 × X3, replacing it by the compositio
µ ◦ γ, 10 and removing the non-essential basis elements, we come to the situation where
element?×hi×? occurs in the decomposition ofµ only if i is divisible bya (while all previously
established properties ofµ still hold).

Finally, consideringµ as a correspondence fromX3 to X1 × X2, replacing it by the
compositionµ ◦ γ, and removing the non-essential basis elements, we come to the sit
where a basis element?×? × hi occurs in the decomposition ofµ only if i is divisible bya
(while all the previously established properties ofµ still hold).

We claim that now our cycleµ has the required shape.

10 Strictly speaking, this ist12(t12(µ) ◦ γ), wheret12 is the automorphism of̄Ch(X3) induced by the transpositio
of the first two factors ofX3.
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Let us writeµ0 for the sum of those summands in the decomposition ofµ which haveh0 as at
least one factor. To finish the proof of the proposition, it suffices to check that

wo
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µ0 = Sym

(
(d−a+1)/b∑

i=1

h0 × h(i−1)b+a × lib+a−1

)
.

First of all let us check that none of the 3 basis cycles obtained fromh0 × h0 × lb−1 by a
permutation of factors appears in the decomposition ofµ0. This is clear forh0 ×h0 × lb−1 itself
as well as forh0 × lb−1 ×h0, because we know exactly what the terms inµ of the formh0×?×?
are. Now we assume that the cyclelb−1 × h0 × h0 does appear and we pull backµ with respect
to the morphismg23 :XF (X×X) → X3 given by the generic point of the product of the last t
factors ofX3. We get

C̄h(XF (X×X)) � g∗23(µ) = g∗23(lb−1 × h0 × h0) = lb−1

showing that the Witt index of the quadricXF (X×X) is at leastb (see Corollary 2.5). Howeve
since the field extensionF (X × X)/F (X) is purely transcendental, this Witt index coincid
with i1(X) = a anda is smaller thanb (actuallya � b/2).

It follows thatµ0 = µ1 + µ2 + µ3, whereµi is the sum of summands in the decomposition
µ such thath0 is theirith factor. By the construction ofµ we know that

µ1 = h0 × Sym

(
(d−a+1)/b∑

i=1

h(i−1)b+a × lib+a−1

)
,

and it suffices to check thatµ2 = t12(µ1) and µ3 = t13(µ1) with t1i standing for the
automorphism of the Chow groupCh(X̄3) given by the transposition of the first andith factor
of X̄3.

In order to see thatµ2 = t12(µ1), we pull back the cycleµ to X2 with respect to the morphism

δ1 :X2 → X3, x1 × x2 �→ x1 × x1 × x2

given by the diagonal map of the first factor ofX2 into the product of the first two factors o
X3. The decomposition of the homogeneous cycleδ∗1(µ) ∈ C̄h2d+b−1(X2) does not contain an
non-essential cycle. Therefore, sinceb > a, δ∗1(µ) = 0 by Proposition 4.28. On the other han
δ∗1(µ1) containsha × lb+a−1 while neitherδ∗1(µ3) nor δ∗1(µ − µ0) do. It follows thatδ∗1(µ2)
containsha × lb+a−1 as well and consequentlyµ2 contains the basis cycleha × h0 × lb+a−1.
Now we use the pull-back with respect to the morphismg2 :X2

F (X) → X3 given by the generic

point of the second factor ofX3. The homogeneous cycleg∗2(µ) = g∗2(µ2) lies in C̄h(X2
F (X)),

contains the basis cycleha × lb+a−1, and does not contain any non-essential basis elem
Passing to the anisotropic partX1 of XF (X) and using Corollary 2.4, we get a homogene
cycleη in C̄h(X2

1 ), namelyη = pr2(g∗2(µ)), which containsh0 × lb−1 and does not contain an
non-essential cycle. Note thatg∗2(µ2) is in the image ofin2 :Ch(X̄2

1 ) → Ch(X̄2
F (X)), so thatµ2

can be reconstructed fromη.
By Proposition 4.28 it follows that

η = Sym

(
(d−a+1)/b∑

i=1

h(i−1)b × lib−1

)
.
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Consequently

(
(d−a+1)/b∑ )
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g∗2(µ2) = in2(η) = Sym
i=1

h(i−1)b+a × lib+a−1

andµ2 = t12(µ1).
The equalityµ3 = t13(µ1) is checked similarly. �
We remark that the “defect part”µ′ of the cycleµ does not appear in [10, Prop. 2.7] wh

working with a small quadric of height2. In our case here, the height ofX is at least3, µ′

does really exist and represents an additional difficulty. The main observation which is cru
overcome this difficulty is as follows:

LEMMA 5.2. – Let µ′ be as in Proposition5.1. In the decomposition ofµ′ we consider the
basis elements withha on theith factor place and writeµ′

i for their sum. Then each of the cycl
µ′

1, t12(µ′
2), andt13(µ′

3) is the sum of someof the following(c− b)/a elements

χj = ha ×
(

Sym

(
(d−b−a+1)/c∑

i=1

h(i−1)c+b+a × lic+b+a−1

)
· (h(j−1)a × hc−b−ja)

)
,

wherej ∈ {1,2, . . . , (c− b)/a} (in particular, the cyclesµ′
1, µ′

2, µ′
3 are disjoint).

Proof. –Clearly, it suffices to prove the statement onµ′
1 (the statements onµ′

2 andµ′
3 are

proved in the same way interchanging the roles of the three factors ofX3).
Let us go over the function fieldF (X). We still haveµ ∈ C̄h(X3

F (X)). Thereforepr3
X(µ) ∈

C̄h(X3
1 ), whereX1 is the anisotropic part ofXF (X) andpr3

X :Ch(X̄3
F (X)) → Ch(X̄3

1 ) is the

projection of Corollary 2.4. We note thatpr3
X(µ) = pr3

X(µ′). Moreover,µ′ is in the image of
the inclusionin3

X :Ch(X̄3
1 ) → Ch(X̄3

F (X)) because everyhi which is a factor of a basis eleme
in the decomposition ofµ′ hasi � a and everyli which is a factor of a basis element in t
decomposition ofµ′ hasi � a as well (just look at the dimension ofµ′). Thereforeµ′ can be
reconstructed from its image underpr3

X , namely,µ′ = in3
X(pr3

X(µ′)).
Now we move fromC̄h(X3

1 ) to C̄h((X1)2F (X)(X1)
) usingg∗1 (the pull-back with respect t

the morphism given by the generic point of the first factor ofX3
1 ). Note thatg∗1(pr3

X(µ′)) =
g∗1(pr3

X(µ′
1)) and the cyclepr3

X(µ′
1) can be reconstructed from its image underg∗1 . Moreover

the cycleg∗1(pr3
X(µ′

1)) is in the image of the inclusionin2
X1

:Ch(X̄2
2 ) →Ch((X̄1)2F (X1)

), where
X2 is the anisotropic part of(X1)F (X)(X1). In order to see it, we note that every basis cycle
the decomposition ofg∗1(pr3

X(µ′
1)) is equal (up to transposition) toh(i−1)a × lb+ia−1 for some

i � 1. Clearly, such a basis cycle is in the image ofin2
X1

if and only if (i − 1)a � b. So, if the
cycleg∗1(pr3

X(µ′
1)) is not in the image ofin2

X1
, thenν � h(i−1)a × lb+ia−1 with somei such that

(i−1)a < b, whereν is the cycleg∗1(pr3
X(µ′

1)) or its transpose. It follows that the decomposit
of the rational cyclepr2d−2a−(i−1)a,a(ν) containslia−1. This is a contradiction becauseX2 is
anisotropic and therefore the group̄Ch(X2) does not contains essential elements (Corollary 2

So, one can reconstruct the cycleg∗1(pr3
X(µ′

1)) from its image under the projectio
pr2

X1
: C̄h((X1)2F (X)(X1)

) → C̄h(X2
2 ) and for our purposes it is sufficient to determine t

image. To do so, we apply Proposition 4.28 to the quadricX2 getting that the cycle

(pr2
X1

◦ g∗1 ◦ pr3
X)(µ′

1) ∈ C̄h2d−b−a−1(X2
2 )
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is the sum of some essential generators of the groupC̄h2d−b−a−1(X2
2 ) indicated in item (3) of

Proposition 4.28 (we note thatdim(X2) = 2(d− b− a) so that

ing
is

is, over

of
e,

r

ions
gher
rom
of
d, in

the
2d− b− a− 1 = dim(X2) + b + a− 1 � dim(X2) + c− 1,

where the last inequality holds becausec = 2b anda < b by the assumption made in the beginn
of the current section). Finally, taking into account thathi for a giveni can be a factor of a bas
element appearing in the decomposition of(pr2

X1
◦ g∗1 ◦ pr3

X)(µ′
1) only if i is divisible bya, we

get the desired description of the cycleµ′
1. �

6. Proof of Conjecture 1.1

In this section we prove Conjecture 1.1. Suppose that this conjecture is not true, that
some fieldF and for some positive integern, there exists a quadratic formφ overF with [φ] ∈ In

and with dim(φ) prohibited by Conjecture 1.1. Note thatn is at least4 (see Section 1). In
the splitting pattern of the formφ, let us choose the smallest numberdim(φE)0 prohibited by
Conjecture 1.1. Let us replace the formφ by this (φE)0 (and F by E) and writeX for the
projective quadric given by the newφ. Note thatdim(φ) > 2n + 2n−1 ([22] (the original proof),
or [13, Thm. 4.4], or [10]). Moreover,

dim(φF (X))0 = 2n + 2n−1 + · · ·+ 2m = 2n+1 − 2m

for somem with 3 � m � n + 1. Evidently, m �= n + 1, because the highest Witt index
any even-dimensional quadratic form is a power of2 (see [19, Thm. 4.5.4(i)]) (and therefor
by the Arason–Pfister theorem, the highest Witt index ofφ is 2n−1). Moreover,m �= n because
otherwiseφ would have height2 and so (by item (1) of Proposition 4.28)φ would have dimension
2n + 2i, contradicting the fact thatφ has dimension greater than2n + 2n−1 and less than2n+1.

We have:dim(φ) = 2n + 2n−1 + · · · + 2m + 2i1, wherei1 = i1(φ) is the first Witt index of
φ. Note thati1 < 2m−1 simply becausedim(φ) < 2n+1. Now it follows by [9, Conject. 0.1] o
by item (1) of Proposition 4.28 (take into account that the highest Witt index ofφ is 2n−1) that
i1 = 2p−1 for some integerp satisfying1 � p � m−1, anddim(φ) = 2n +2n−1 + · · ·+2m +2p.
Sinceφ is a counter-example,p is notm− 1, so that1 � p � m− 2 in fact.

Finally, [9, Conject. 0.1] (or item (1) of Proposition 4.28) and the fact that all dimens
dim(φE)0 < dim(φ) are allowed by Conjecture 1.1, allows one to determine all further hi
Witt indices ofφ (compare with the proof of Corollary 6.2). They are as follows (starting f
i2): 2m−1,2m−2, . . . ,2n−1, meaning that the splitting pattern ofφ consists of the partial sums
the sum2n + 2n−1 + · · ·+ 2m + 2p. Therefore the hypotheses of the preceding section (an
particular, the hypothesis of Proposition 5.1 and Lemma 5.2) are satisfied.

To simplify the formulae which follow, as we did in the previous section, we introduce
notation

a = i1(φ) = 2p−1; b = i2(φ) = 2m−1; c = i3(φ) = 2m

and

d = dim(X)/2 = 2n−1 + 2n−2 + · · ·+ 2m−1 + 2p−1 − 1.

Let us consider the cycleµ ∈ C̄h(X3) of Proposition 5.1 as a correspondence fromX̄ to X̄2;
let us consider the cycleS2a(µ) · (h0 × h0 × hb−1) ∈ C̄h(X3) as a correspondence from̄X2 to
X̄ (whereSi stands for the degreei component of the total Steenrod operationS). Then we may
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take the composition of correspondences

µ ◦
(
S2a(µ) · (h0 × h0 × hb−1)

)
∈ C̄h(X4).

i-

in

-

Let us additionally consider the morphism

δ :X2 = X1 ×X2 → X1 ×X2 ×X3 ×X4 = X4, x1 × x2 �→ x1 × x2 × x1 × x2

(all Xi are copies ofX) given by the product of the diagonalsX1 → X1 × X3 and
X2 → X2 ×X4 (that is,δ is the diagonal morphism ofX2).

The following proposition contradicts Proposition 4.28 (note thatdim(ξ) = 2d+ b−2a−1 �
2d + a) and proves therefore Conjecture 1.1.

PROPOSITION 6.1. – Let µ ∈ C̄h(X3) be the cycle of Proposition5.1. Then the decompos
tion of the cycle

ξ = δ∗
(
µ ◦

(
S2a(µ) · (h0 × h0 × hb−1)

))
∈ C̄h2d+b−2a−1(X2)

contains the basis cycleha × lb−a−1.

Proof. –It is easy to see that each power ofh which is a factor of a basis element involved
the decomposition of the cycleµ ◦ (S2a(µ) · (h0 × h0 × hb−1)) is a multiple ofa. Therefore the
same is true for the cycleξ.

As in the proof of Proposition 5.1, we setµ0 = µ− µ′. We have:

ξ = δ∗
(
µ0 ◦

(
S2a(µ0) · (h0 × h0 × hb−1)

))
+ δ∗

(
µ′ ◦

(
S2a(µ′) · (h0 × h0 × hb−1)

))
+ δ∗

(
µ′ ◦

(
S2a(µ0) · (h0 × h0 × hb−1)

))
+ δ∗

(
µ0 ◦

(
S2a(µ′) · (h0 × h0 × hb−1)

))
,

and we consider each of these four summands separately, one by one.
First summand. First of all we computeS2a(µ0). For every summandh0×h(i−1)b+a×lib+a−1

in the decomposition ofµ0, and for anyr �= a with 1 � r � 2a, we have:

Sr(h(i−1)b+a) = Sr(lib+a−1) = 0

while Sa(h(i−1)b+a) = h(i−1)b+2a andSa(lib+a−1) = lib−1 (checking this computation remem
ber that4a dividesb and therefore, by Proposition 4.28,d + 1 is congruent toa modulo4a).
Therefore

S2a(h0 × h(i−1)b+a × lib+a−1) = h0 × h(i−1)b+2a × lib−1

and

S2a(µ0) = Sym

(
(d−a+1)/b∑

i=1

h0 × h(i−1)b+2a × lib−1

)
.

Now we can calculate the composition

µ0 ◦
(
S2a(µ0) · (h0 × h0 × hb−1)

)
(see Lemma 3.8). The basis cycles which appear in the decomposition ofS2a(µ0) · (h0 × h0 ×
hb−1) have on the third factor place the following elements:

hb−1, hib+2a−1, l(i−1)b.(∗)
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On the other hand, the basis elements which appear in the decomposition ofµ0 itself have on the
first factor place the following:

sis

we
um
.

h0, h(i−1)b+a, lib+a−1.(∗∗)

It is straightforward to see that the only pair of elements, one from(∗), one from(∗∗), with the
productl0 is (l0, h0) (look at the indices modulo2a). Therefore

µ0 ◦
(
S2a(µ0) · (h0 × h0 × hb−1)

)
=

(
h0 × Sym

(
(d−a+1)/b∑

i=1

h(i−1)b+a × lib+a−1

))
◦

(
Sym(h0 × h2a)× l0

)

= Sym(h0 × h2a)× Sym

(
(d−a+1)/b∑

i=1

h(i−1)b+a × lib+a−1

)
.

Applying δ∗ to the cycle obtained, we get

Sym

(
(d−a+1)/b∑

i=1

h(i−1)b+a × lib−a−1 + h(i−1)b+3a × lib+a−1

)
= ha × lb−a−1 + · · · .

It remains to show that the “remaining part” ofξ does not contain the basis cycleha × lb−a−1.
Second summand. A basis cycle of the shapehx×? × hy×? can be involved in the

decomposition of

µ′ ◦
(
S2a(µ′) · (h0 × h0 × hb−1)

)
only if x, y � a. In this caseδ∗(hx×?× hy×?) = hx+y×? with x + y > a, therefore the cycle

δ∗
(
µ′ ◦

(
S2a(µ′) · (h0 × h0 × hb−1)

))
does not contain the basis elementha × lb−a−1.

Third summand. In order to check that the cycle

δ∗
(
µ′ ◦

(
S2a(µ0) · (h0 × h0 × hb−1)

))
does not contain the basis elementha × lb−a−1, it suffices to check that the number of ba
elements in the decomposition of the composition

µ′
2 ◦

(
S2a(µ1) · (h0 × h0 × hb−1)

)
is even (because all the basis elements that occur in this composition have the formh0 × u ×
ha × v, where one of the basis elementsu andv is of the formhj and the other is of the form
lb−a−1+j) (note that we replacedµ′ by µ′

2, the notation being introduced in Lemma 5.2, and
replacedµ0 by µ1, the notationµ1 being introduced in the proof of Proposition 5.1 for the s
of the basis elements contained in the decomposition ofµ havingh0 on the first factor place)
For this, due to Lemma 5.2, it suffices to check that each of the(c− b)/a compositions

t12(χj) ◦
(
S2a(µ1) · (h0 × h0 × hb−1)

)
, j ∈ [1, (c− b)/a],
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contains an even number of basis elements. We show this by a straightforward computation. The
point is that the number of summands in the decomposition of everyχj is even and either each
or none of the summands “produces” a basis element in the composition (moreover, in the first

les.

osition
the

the

in the
n

case, precisely one basis element is produced by each summand of the cycleχj ).
Let us do the computation. The cyclesS2a(µ1) · (h0 × h0 × hb−1) andχj (for a fixedj) are

equal respectively toh0 × α and toha × β, where

α =
(d−a+1)/b∑

i=1

h(i−1)b+2a × l(i−1)b + lib−1 × hib+2a−1,

while

β =
(d−b−a+1)/c∑

i=1

h(i−1)c+b+ja × l(i−1)c+2b+(j+1)a−1 + lic+b−(j−2)a−1 × hic−(j−1)a,

and we just need to check that the compositionβ ◦α is a sum of an even number of basis cyc
There are two different cases depending on the value ofj. If the productja is not 0 modulo
b, then every product of every second factor of the basis cycles appearing in the decomp
of α (namely,l(i−1)b andhib+2a−1) by every first factor of the basis cycles appearing in
decomposition ofβ (namely,h(i−1)c+b+ja andlic+b−(j−2)a−1) is different froml0 (to see this,
look at the indices modulob). Therefore, the composition of every basis cycle appearing in
decomposition ofα with every basis cycle appearing in the decomposition ofβ is 0, and so,
β ◦ α = 0 in this case.

In the contrary case – the case withja ≡ 0 (mod b) – for every basis cycley in the
decomposition ofβ there is precisely one basis cyclex in the decomposition ofα such that
y ◦ x �= 0 (note thaty ◦ x is a basis cycle in this case). Since the number of basis cycles
decomposition ofβ is even (equal to the integer(d − b − a + 1)/c doubled), the compositio
β ◦ α is the sum of an even number of basis cycles.

Fourth summand. We finish the proof of Proposition 6.1 considering the cycle

δ∗
(
µ0 ◦

(
S2a(µ′) · (h0 × h0 × hb−1)

))
.

We replaceµ′ by µ′
1 and, furthermore,µ′

1 by χj with somej ∈ [1, (c− b)/a]. Also, we replace
µ0 by µ2. We are going to show that the number of the basis elements of the shapeha×?×h0×?
appearing in the decomposition of the composition

µ2 ◦
(
S2a(χj) · (h0 × h0 × hb−1)

)
is even (this will finish the proof of Proposition 6.1; note that if the basis elementha×u×h0×v
appears in the decomposition of the composition, then one of the basis elementsu andv is of the
form h? while the other is of the forml?). We haveχj = ha × β andµ2 = t12(h0 × α) with

α =
(d−a+1)/b∑

i=1

h(i−1)b+a × lib+a−1 + lib+a−1 × h(i−1)b+a,

β =
(d−b−a+1)/c∑

i=1

h(i−1)c+b+ja × l(i−1)c+2b+(j+1)a−1 + lic+b−(j−2)a−1 × hic−(j−1)a.
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Therefore the number we are looking for is the number of summands in the decomposition of
α ◦ (S2a(β) · (h0 × hb−1)).

We can compute the Steenrod operationS2a on the summands of the decomposition ofβ.

hat

ns

ces

e

in the
n

The formula depends on the value ofj modulo4 because of the rules (hereS�2a stands for∑
k�2a Sk):

S�2a(hia) =




hia if i≡ 0 (mod 4);
hia + h(i+1)a if i≡ 1 (mod 4);
hia + h(i+2)a if i≡ 2 (mod 4);
hia + h(i+1)a + h(i+2)a if i≡ 3 (mod 4),

while (here recall thatS(li) = li · (1 + h)2d−i+1, d + 1≡ a (mod b), and4a dividesb):

S�2a(lia−1) =




lia−1 + l(i−2)a−1 if i≡ 0 (mod 4);
lia−1 + l(i−1)a−1 if i≡ 1 (mod 4);
lia−1 if i≡ 2 (mod 4);
lia−1 + l(i−1)a−1 + l(i−2)a−1 if i≡ 3 (mod 4).

Assume thatj ≡ 0 (mod 4) or j ≡ 1 (mod 4). Then, applying the above formulae, we get t
S2a(β) = 0, and there is nothing more to prove in this case.

Now we assume thatj ≡ 2 (mod 4) or j ≡ 3 (mod 4). Then

S2a(β) · (h0 × hb−1) = β1 + β2,

where

β1 = β · (h2a × hb−1)

=
(d−b−a+1)/c∑

i=1

h(i−1)c+b+(j+2)a × l(i−1)c+b+(j+1)a + lic+b−ja−1 × hic+b−(j−1)a−1,

while

β2 = β · (h0 × hb+2a−1)

=
(d−b−a+1)/c∑

i=1

h(i−1)c+b+ja × l(i−1)c+b+(j−1)a + lic+b−(j−2)a−1 × hic+b−(j−3)a−1.

If j ≡ 3 (mod 4), then the compositionsα◦β1 andα◦β2 are0 because so are the compositio
of any basis cycles included inα with any basis cycle included inβ1 or β2 (look at the indices
modulo2a). If j ≡ 2 (mod 4), thenα ◦ β1 = 0 too and by the same reason (look at the indi
modulo4a).

Finally, assume thatj ≡ 2 (mod 4) and consider the compositionα ◦ β2. If j �≡ 2 (mod b/a),
thenα◦β2 = 0 (just look at the indices modulob). If j ≡ 2 (mod b/a), then for every basis cycl
y in the decomposition ofβ2 there is precisely one basis cyclex in the decomposition ofα such
thatx◦ y �= 0 (note thatx◦ y is a basis cycle in this case). Since the number of basis cycles
decomposition ofβ2 is even (equal to the integer(d − b − a + 1)/c doubled), the compositio
α ◦ β2 is the sum of an even number of basis cycles.�

Conjecture 1.1 is proved. The following supplement is now easy to get:

COROLLARY 6.2. – Let φ be a small quadratic form withdim(φ) = 2n+1 − 2m, m ∈ [1,
n + 1]. Then the splitting pattern{dim(φE)0|E/F is a field extension} of the formφ coincides
with the set{2n+1 − 2i}n+1

i=m (in particular, the height ofφ is equal ton + 1−m).
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Proof. –By Conjecture 1.1 proved above,dim(φF (X))0 = 2n+1 − 2r for somer ∈ [m + 1,
n + 1]. But by [9, Conject. 0.1] (or by item (1) of Proposition 4.28 taking into account that the
highest Witt index ofφ is 2n−1), it follows that only the valuer = m+1 is possible. Proceeding

]) so

ic

ial

rm is
this way (with the form(φF (X))0 and so on), we get the result.�
7. Possible dimensions

Let us recall some standard notation concerning quadratic forms: one writes〈a1, . . . , an〉,
wherea1, . . . , an ∈ F , for the quadratic form

Fn → F, (x1, . . . , xn) �→ a1x
2
1 + · · ·+ anx2

n;

〈〈a1, . . . , an〉〉 for then-fold Pfister form

〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉,

and〈〈a1, . . . , an〉〉′ for the pure subform of the above Pfister form (see [19, Def. 1.1 of Ch. 4
that〈〈a1, . . . , an〉〉 = 〈1〉⊥〈〈a1, . . . , an〉〉′.

The following elementary easy statement we recall below is classical:

LEMMA 7.1. – If quadratic formsφ andψ over a fieldF are anisotropic, then the quadrat
formφ⊥ tψ over the fieldF (t) of the rational functions of one variablet is anisotropic too.

Proof. –Otherwise, choosing diagonalizations〈a1, . . . , an〉 and〈b1, . . . , bm〉 of φ andψ, we
could take a non-trivial representation of0, multiply by the denominators, and get a non-triv
equation

a1 · f2
1 (t) + · · ·+ an · f2

n(t) + t
(
b1 · g2

1(t) + · · ·+ bm · g2
m(t)

)
= 0.

Consideration of the highest degree term in allfi and of the highest degree term in allgj leads
to a contradiction. �

COROLLARY 7.2. – Let k be a field(of char(k) �= 2), ti, tij (i = 1, . . . ,m, j = 1, . . . , n with
some integersn andm) variables, and

F = k(ti, tij)1�i�m,1�j�n

the field of rational functions in these variables. The following quadratic forms overF are
anisotropic:

(1) 〈〈t1, . . . , tm〉〉;
(2) t1 · 〈〈t11, . . . , t1n〉〉⊥ · · ·⊥tm · 〈〈tm1, . . . , tmn〉〉;
(3) 〈〈t11, . . . , t1n〉〉′⊥− 〈〈t21, . . . , t2n〉〉′.
Proof. –(1) Induction onm using Lemma 7.1.
(2) Induction onm using (1) and Lemma 7.1.
(3) For anyi = 1,2, . . . , n we putφi = 〈〈t11, . . . , t1i〉〉 andψi = 〈〈t21, . . . , t2i〉〉. We prove that

the formφ′
i ⊥−ψ′

i is anisotropic using induction oni. Fori = 1 the statement is trivial. Fori > 1
we have:

φ′
i ⊥−ψ′

i 	 (φ′
i−1⊥−ψ′

i−1)⊥t1iφi−1⊥− t2iψi−1.

The summandφ′
i−1⊥− ψ′

i−1 is anisotropic by the induction hypothesis, while the formsφi−1

andψi−1 are so by item (1) of Corollary 7.2. Consequently, by Lemma 7.1, the whole fo
anisotropic. �
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The following result provides, in particular, examples for all dimensions which are not
prohibited by Conjecture 1.1.

n
e

t
g
e

e

THEOREM 7.3 (A. Vishik). – Take any integersn � 1 and m � 2. Let k be a field (of
char(k) �= 2), ti, tij (i = 1, . . . ,m, j = 1, . . . , n) variables, and

F = k(ti, tij)1�i�m,1�j�n

the field of rational functions in all these variables.
The splitting pattern of the(anisotropic by item(2) of Corollary7.2)quadratic form

φ = t1 · 〈〈t11, . . . , t1n〉〉⊥ · · ·⊥tm · 〈〈tm1, . . . , tmn〉〉

overF is

{2n+1 − 2i | i = n + 1, n, . . . ,1} ∪
(
2Z∩ [2n+1,m · 2n]

)
.

Proof. –First of all, it is easy to see that all the integers2n+1 − 2i are in the splitting patter
of φ. Indeed, the anisotropic part ofφ over the fieldE obtained fromF by adjoining the squar
roots oft31, t41, . . . , tm1, of t1 and of−t2, is isomorphic to the (generalized Albert) form

〈〈t11, . . . , t1n〉〉′⊥− 〈〈t21, . . . , t2n〉〉′

(anisotropic by item (3) of Corollary 7.2) of dimension2n+1−2; the splitting pattern of this form
is {2n+1 −2i} because this set is the splitting pattern ofanyanisotropic(2n+1 −2)-dimensional
quadratic form whose class lies inIn (Corollary 6.2).

Now let us assume that some (at least one) even integers of the interval[2n+1,m · 2n] arenot
in the splitting pattern ofφ. Among all such integers we take the smallest one and call ita; let
b be the biggest integer smaller thana and lying in the splitting pattern; letc be the smalles
integer greater thana and lying in the splitting pattern. LetE be the field of the generic splittin
tower ofφ such thatdim(ψ) = c for ψ = (φE)0. Let Y be the projective quadric given by th
quadratic formψ. Let π ∈ C̄h(Y 2) be the cycle of the setΠ of Theorem 4.24 withf(π) = 1. We
claim thatπ = Sym(h0 × li1−1) for i1 = i1(Y ). Indeed, sincei1 = (c− b)/2 > 1 andiq(Y ) = 1
for all q ∈ S = S(Y ) = {1,2, . . . ,h} (h is the height ofψ) such thatdim(ψq) ∈ [2n+1 −2, b], the
cycleπ does not containhjq−1 × ljq−1+i1−1 for suchq (Lemma 4.11), and alsoπ �� hi × li+i1−1

for any i ∈ {1,2, . . . , i1 − 1} (Lemma 4.11 as well). Finally, for the integerq ∈ S such that
dim(ψq) = 2n+1 − 2, the cyclepr2(πEq ) ∈ C̄h(Y 2

q ) (the homomorphism

pr2 : C̄h(Y 2
Eq

)→ C̄h(Y 2
q )

is defined in Corollary 2.4) has the dimension

dim(Yq) + i1 − 1 � dim(Yq) + 1 = dim(Yq) + i1(Yq)

and therefore is0 by item (3) of Proposition 4.28.
We have shown thatπ = Sym(h0 × li1−1). By item (8) of Proposition 3.3, it follows that th

integerdim(Y )− i1 + 1 is a power of2, say2p. Since

dim(Y )− i1 + 1 = (c− 2)− (c− b)/2 + 1 = (b + c)/2− 1,

the integer2p sits inside of the open interval(b, c); therefore, satisfying2n+1 � 2p < m · 2n, the
integer2p is not in the splitting pattern of the quadratic formφ. But all the integers� m · 2n
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divisible by 2n are evidentlyin the splitting pattern ofφ. The contradiction obtained proves
Theorem 7.3. �
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c

Remark7.4. – Of course, the dimensions2 − 2 can be realized more directly by th
tensor products of Pfister forms and generalized Albert forms (u., v.,w. are variables):

〈〈u1, . . . , ui−1〉〉 ⊗
(
〈〈v1, . . . , vn+1−i〉〉′⊥− 〈〈w1, . . . ,wn+1−i〉〉′

)
.
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