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ON APPROXIMATION OF SMOOTH SUBMANIFOLDS BY
NONSINGULAR REAL ALGEBRAIC SUBVARIETIES-

By JACEK BOCHNAK AND WoJCIECHKUCHARZ

ABSTRACT. — Let M be a smooth submanifold of dimensionof a nonsingular real algebraic s&t If
M can be approximated by nonsingular algebraic subset§, ¢hen the homology class iH,. (X,Z/2)
represented by is algebraic. The converse, investigated in this paper, is true only in some exceptional
cases.
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RESUME. — Soit M une sous-variété différentiable de dimensiard’'un ensemble algébrique réel non
singulier X. Si M peut étre approchée par des sous-ensembles algébriques non singulieraldes la
classe d’homologie représentée gdrdansH,,(X,Z/2) est algébrique. La réciproque, étudiée dans cet
article, est vraie seulement dans quelques cas exceptionnels.
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1. Introduction

Throughout this paper the termeal algebraic varietydesignates a locally ringed space
isomorphic to a Zariski closed subsetRf, for somen, endowed with the Zariski topology
and the sheaf oR-valued regular functions; thus we work with affine real algebraic varieties.
Morphisms between real algebraic varieties will be callegular maps Basic facts on real
algebraic varieties and regular maps can be found in [5]. Every real algebraic variety carries
also the Euclidean topology, which is determined by the usual metric topolo@®. dimless
explicitly stated otherwise, all topological notions related to real algebraic varieties will refer to
the Euclidean topology.

Given a compact real algebraic variel), we denote bijlg(X, Z/2) the subgroup of
H,(X,Z/2) of homology classes represented dyglimensional Zariski closed subsets &f
[5,7,8]. If Z is either a Zariski closed subset&for a compact smooth (of cla§s®) submanifold
of X, dim Z = d, we denote byZ]x the homology class if#/;(X,Z/2) represented by .

Recall that a compact smooth submanifdlfi of a nonsingular real algebraic variel is
said toadmit an algebraic approximatiom X if for each neighborhootf of the inclusion map
M — X (in theC* topology on the sef>° (M, X) of all smooth maps frond/ into X), there
exists a smooth embeddirg M — X such thate is in & ande(M) is a nonsingular Zariski
closed subset oX. Clearly, if M admits an algebraic approximation i, then[M]x is in
H;“g(X, Z/2), d=dim M. Itis natural to ask whether the converse holds true. More precisely, it
would be interesting to describe explicitly the 8&fior all pairs of positive integer®:, d), n > d,
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with the property that for any compact nonsingutadimensional real algebraic variely, every
compact smootli-dimensional submanifold/ of X, with [M]x in Hj;lg(X, Z/2), admits an
algebraic approximation ix’. By [5, Theorem 12.4.11], the pain,n — 1) isin Q forall n > 2.
The only other pair known to be if is (3,1). Indeed, the following result will be proved in
Section 2.

THEOREM 1.1. — Let X be a compact nonsingular real algebraic variety of dimensi@md
let C' be a compact smooth curve ii. ThenC' admits an algebraic approximation i if and
only if [C]x is in HY8(X,7Z/2).

A special case of Theorem 1.1, in whichis assumed to be connected and homologous to the
union of finitely many nonsingular algebraic curvesXnis proved in [2].
On the other hand, we have the following negative result.

PROPOSITION 1.2. — Let N be a compact smooth submanifold of the unitsphereS™,
0 < dim N < m. Assume thatV is not the boundary of a compact smooth manifold with
boundary. Then for any positive integerthere exist a nonsingular real algebraic varieXyand
a smooth submanifoldl/ of X such thatX is diffeomorphic toS™ x S*, M is diffeomorphic to
N x S*, the clas§M]x in Hy(X,Z/2), d = dim M, is null (thus algebraiy and M does not
admit an algebraic approximation iiX.

COROLLARY 1.3.— For n andd with n — d > 2 andd > 3, the pair(n,d) is not in€; in
other words, there exist a compact nonsinguladimensional real algebraic variet and a
compact smooth-dimensional submanifold/ of X with [M]x in Hslg(X, Z/2) such thatM
does not admit an algebraic approximationin

To prove Corollary 1.3 we apply Proposition 1.2 wth=d — 2, m=n —d + 2, and N
diffeomorphic to the real projective plafieP?.

The first example of a pai{tX, M) with M not admitting an algebraic approximationih but
[M]xin Hjlg(X, 7/2), d = dim M, was given by S. Akbulut and H. King [4]. They showed that
if 32 is a nonsingular irreducible real algebraic curve with two connected compongatsd>:;
(each necessarily diffeomorphic '), and N is a smooth submanifold o§* diffeomorphic
toRP?, thenM = N x 3, does not admit an algebraic approximatiokin= S5* x , despite the
fact that the clasfM | x in H3(X,Z/2) is null. In this exampleX is not connected. Corollary 1.3
also follows from a modification of the example of Akbulut and King.

Concerning the remaining series of pairs, namelyl) and (n,2), with n > 4, it seems
probable thatn, 1) belongs ta?, whereagn, 2) does not. In other words, conjecturaliy,, d)
isinQifandonlyifn —d=1ord=1.

In the proof of Proposition 1.2 we shall make use of the following, interesting in its own right,
result.

THEOREM 1.4.— Let f: X — Y be a regular map between nonsingular real algebraic
varieties. Assume that is compact and” is irreducible. Given two regular valueg andys
of f, the smooth manifold~(y;) and f ~(y2) are cobordant.

Of course, the case of interest is whgnandys belong to distinct connected components
of Y.
Proofs of Theorem 1.4 and Proposition 1.2 are given in Section 3.
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2. Proof of Theorem 1.1

The reader may refer to [5, Chapter 12] for basic facts concerning algebraic vector bundles on
real algebraic varieties. Thigh Stiefel-Whitney class of a topologid&tvector bundle will be
denoted byt (£).

Proof of Theorem 1.1. Benote byrx the tangent bundle t&. Then\ = A7y is an algebraic
R-line bundle onX with w1 (\) = wi(7x) in H),(X,Z/2), cf. [8, p. 498]. We shall now
construct a smootiR-vector bundle¢ on X of rank 2 and a smooth section X — £ such
thatw; (€) = w1 (N), s is transverse to the zero section, and (0) = C, wheres~1(0) = {z €
X | s(z) =0}.

Let 7: T — C be an open tubular neighborhood@fin X. We identify (T, 7, C) with the
normal vector bundle of C in X. Clearly, there exists a smooth sectionl’ — 7*v such that

o is transverse to the zero section and' (0) = C. We have
(1) T | T\C=n®e,

wheree,, is the trivial smoothR-line subbundle ofr*v | T\ C generated by | T\C andn is a
smoothR-line bundle oril"\C. Note that

2 wi (1) = wi(A[T\C).
Indeed, since the tangent bundleias trivial, v is stably equivalenttex | C' and hence
’wl(l/) :wl(TX | C) = wl(/\ | C) :i*(wl()\)),

wherei:C' — X is the inclusion map. The composite map~:7 — X is homotopic to the
inclusion mapj : T'— X, which implies

w (7' v) =7 (w1 (v)) =7 (" (w1 (V) =5 (w1 (N)) =wi (A | T).

Making use of (1), we getn (n) = wy (7*v | T\C) = w1 (A | T\C) and therefore (2) is proved.

Let € be the trivialR-line bundle onX with total spaceX x R and letr: X — A @ ¢ be
the smooth section defined by(z) = (0, (z,1)) for all z in X. It follows from (2) that the
R-line bundles; and A | T\C' are isomorphic and hence (1) implies the existence of a smooth
isomorphism

o | T\C — (A®e) | T\C

of R-vector bundles ofi"\C' such thatp o 0 =7 onT\C. Let £ be the smootfR-vector bundle
on X obtained by gluingr*v and (A @ ¢) | X\C overT\C usingep. Similarly, lets: X — ¢ be
the smooth section obtained by gluiagndr | X\C overT\C usingy. Thens=1(0) = C and
s is transverse to the zero section. Furthermore,

wi (€ | X\C) = w1 ((A@e) | X\C) =wi (A | X\C)

and hencev; (§) = w; () sincedim C = 1. Thus{ ands satisfy the required conditions.
Sincew: (§) = w1 (N) isin Hyy, (X, Z)/2) andws(€) is in H2,(X,Z)/2) (note thatws (£) is
Poincaré dual to the homology cla$¥ x, which belongs td7'8(X, Z/2)), it follows from [6,
Theorem 1.6] thaf is isomorphic to an algebraiR-vector bundle onX. Thus without loss of

generality we may assume this an algebrai®-vector bundle. Let: X — £ be an algebraic
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section close tos in the C* topology, cf. [5, Theorem 12.3.2]. Then there exists a smooth
embedding ofC' = s~1(0) into X, close to the inclusion maj C — X, which transformg”
onto the nonsingular Zariski closed curve!(0), cf. [1, Theorem 20.2]. Henc€ admits an
algebraic approximation iX'. The proof is complete. O

3. Proofsof Theorem 1.4 and Proposition 1.2

We begin with some general remarks concerning complexification of real algebraic varieties.
Given a complex projective variety, defined ovelR, we denote by (R) its set of real points.

If V(R) is Zariski dense iV, thenV (R) can be regarded in a canonical way as a real algebraic
variety (note thal/(R) is contained in an affine Zariski open subsetgfdefined oveR).

It follows from Hironaka’s resolution of singularities theorem [10] that any compact
nonsingular real algebraic variefy has a nonsingular projective complexificatidn j). This
means, by definition, thalt” is a complex nonsingular projective variety defined okeand
j: X — V(R) is aregular isomorphism of real algebraic varietied. 1 — Y is a regular map
between compact nonsingular real algebraic varieties, then there exists a commutative diagram

X S Y
) l .

V=W,
where(V, j) and (W, k) are nonsingular projective complexificationsXfandY’, respectively,
andg is a regular map defined ov&. Indeed, let(U, ) and (W, k) be arbitrary nonsingular
projective complexifications ak andY. The mapk o f oi~!:U(R) — W extends to a regular
map fo: Uy — W defined ovelR, wherel, is a Zariski open neighborhood, defined o®er
of U(R) in U. The existence of4) now follows from Hironaka’s theorem on resolution of points
of indeterminacy [10].

Proof of Theorem 1.4. i view of Hironaka's theorem [10]y" can be regarded as a Zariski
open subset of a compact nonsingular real algebraic variety. This reduces our considerations to
the case wher¥ is compact.

Making use of diagram«), we may assume that = V(R), Y = W(R), and f: V(R) —
W (R) is the restriction ofy. The set of critical points ofg is Zariski closed inV and hence
the setg(X) is Zariski closed inlW [14, p. 57, Theorem 2]. Sinc¥ is irreducible, it follows
thatV is also irreducible, and therefore the 88t ¢(X) is nonempty and connected [15, p. 126,
Theorem 1]. The restriction

h: V\g_1 (g(E)) — W\g(%)

of ¢ is a locally trivial smooth fibration [12, p. 23]. The connectednes$|dfg(X) implies
that any two fibers oh are diffeomorphic. If is a point of(W\g(2)) N W (R), thenh~1(b)
is a nonsingular complex projective variety defined oRemwhose set of real points is equal
to f~1(b). By [9, Theorem 22.4], the smooth manifolds'(b) and f=1(b) x f=1(b) are
cobordant.

Suppose now that the regular valugsand y, of f belong toW\g(X). Then the smooth
manifoldsh ! (y;) andh~*(y), being diffeomorphic, are cobordant. Henfce! (y1) x f~(y1)
and f~1(y2) x f~(y2) are also cobordant and as such have the same Stiefel-Whitney
numbers [13, Theorem 4.10]. It follows that the smooth manifofds(y;) and f~1(y2)
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have the same Stiefel-Whitney numbers (note that/ifis a closed smooth manifold and
i1,...,i, are nonnegative integers satisfying+ --- + i, = dim M, then (w;, (M) U --- U
w;, (M), [M]) = (wai, (M x M)U---Uwaq;, (M x M), [M x M])) and therefore are cobordant
[13, Theorem 4.10].

In order to complete the proof, we still have to consider the case where at least one of the
pointsy; andysz is not in W\g(X). Note that(IW\¢(3)) N W (R) is dense inW (R). Thus it
suffices to show that for any regular valueof f, there exists an open neighborhoddof a
in W (R) such that every poiritin N is a regular value of, and the smooth manifoldé*(a)
andf—!(b) are cobordant. In fact any connected open neighborhootla in W (R), which does
not contain any critical value of, has the required properties. Indeed,fefV (R) — W (R)
be a smooth diffeomorphism homotopic to the identity map and satisfyifag = b. Then
f andy o f are smooth homotopic maps for whishis a regular value. Thug—!(b) and
(po f)~1(b) = f~*(a) are cobordant [11, p. 170, Lemma 1.2]. The proof is complete.

Proof of Proposition 1.2. €hoose a compact nonsingular irreducible real algebraic vatiety
with two connected components andY,, each diffeomorphic t&*. For example,

Y= {(x0,x1,...,7%) ERF |zf —dad + 14+ 22+ + 2 =0}

Let »: S*¥ — ¥ be a smooth map, which is a diffeomorphism%f onto . Denote byB™*!

the unit (m + 1)-ball and letr: B™+! x Sk — Sk pe the canonical projection. Clearly, the
unoriented bordism class of the restrictipnS™ x S* — ¥ of p o 7: B™*! x Sk — ¥ is zero.

This fact allows us to make use of [3, Theorem 2.8.4] (we only need absolute case of this theorem,
that is, P = (), L = )), and hence there exist a nonnegative integea smooth embedding

e: 8™ x Sk — R™*1 x REH1 x RY, a nonsingular Zariski closed subsépf R™+1 x R¥+1 x R4,

and a regular map: X — ¥ such thatX = e¢(S™ x S*¥) andgoe: S™ x S*¥ — ¥ is close tof

in theC* topology.

Note that the restrictiofiy : N x S¥ — ¥ of f is a submersion with fib%‘l(y) diffeomorphic
to N for y in X and empty fory in ;. SettingM = e(N x S*), we deduce that the restriction
gy - M — X of g is a submersion with fib@’;;(y) diffeomorphic toN for y in ¥, and empty
foryin 2.

Suppose that\/ admits an algebraic approximation iki. Choose a smooth embedding
i: M — X, close in theC* topology to the inclusion map/ — X, whose imag&” =i(M) is
a Zariski closed nonsingular subsetX®f Then the restrictiogy : Y — X of g is a submersion
with fiber ggl(y) diffeomorphic toN for y in %y and empty fory in 3;. In particular, since
N is not the boundary of a compact smooth manifold with boundgryhas fibers that are not
cobordant. This leads to a contradiction with Theorem gy4being regular and irreducible.
HenceM does not admit an algebraic approximationkirand the proof is complete.o
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