ON APPROXIMATION OF SMOOTH SUBMANIFOLDS BY NONSINGULAR REAL ALGEBRAIC SUBVARIETIES ☆

BY JACEK BOCHNAK AND WOJCIECH KUCHARZ

ABSTRACT. – Let M be a smooth submanifold of dimension m of a nonsingular real algebraic set X. If M can be approximated by nonsingular algebraic subsets of X, then the homology class in $H_m(X, \mathbb{Z}/2)$ represented by M is algebraic. The converse, investigated in this paper, is true only in some exceptional cases.

© 2003 Elsevier SAS

RÉSUMÉ. – Soit M une sous-variété différentiable de dimension m d'un ensemble algébrique réel non singulier X. Si M peut être approchée par des sous-ensembles algébriques non singuliers de X, alors la classe d'homologie représentée par M dans $H_m(X,\mathbb{Z}/2)$ est algébrique. La réciproque, étudiée dans cet article, est vraie seulement dans quelques cas exceptionnels.

© 2003 Elsevier SAS

1. Introduction

Throughout this paper the term *real algebraic variety* designates a locally ringed space isomorphic to a Zariski closed subset of \mathbb{R}^n , for some n, endowed with the Zariski topology and the sheaf of \mathbb{R} -valued regular functions; thus we work with affine real algebraic varieties. Morphisms between real algebraic varieties will be called *regular maps*. Basic facts on real algebraic varieties and regular maps can be found in [5]. Every real algebraic variety carries also the Euclidean topology, which is determined by the usual metric topology on \mathbb{R} . Unless explicitly stated otherwise, all topological notions related to real algebraic varieties will refer to the Euclidean topology.

Given a compact real algebraic variety X, we denote by $H^{\mathrm{alg}}_d(X,\mathbb{Z}/2)$ the subgroup of $H_d(X,\mathbb{Z}/2)$ of homology classes represented by d-dimensional Zariski closed subsets of X [5,7,8]. If Z is either a Zariski closed subset of X or a compact smooth (of class \mathcal{C}^{∞}) submanifold of X, $\dim Z = d$, we denote by $[Z]_X$ the homology class in $H_d(X,\mathbb{Z}/2)$ represented by Z.

Recall that a compact smooth submanifold M of a nonsingular real algebraic variety X is said to admit an algebraic approximation in X if for each neighborhood $\mathcal U$ of the inclusion map $M \hookrightarrow X$ (in the $\mathcal C^\infty$ topology on the set $\mathcal C^\infty(M,X)$ of all smooth maps from M into X), there exists a smooth embedding $e:M\to X$ such that e is in $\mathcal U$ and e(M) is a nonsingular Zariski closed subset of X. Clearly, if M admits an algebraic approximation in X, then $[M]_X$ is in $H^{\mathrm{alg}}_d(X,\mathbb Z/2),\ d=\dim M$. It is natural to ask whether the converse holds true. More precisely, it would be interesting to describe explicitly the set Ω for all pairs of positive integers $(n,d),\ n>d$,

^a Both authors were partially supported by the Volkswagen Stiftung (Research in Pairs at Oberwolfach).

with the property that for any compact nonsingular n-dimensional real algebraic variety X, every compact smooth d-dimensional submanifold M of X, with $[M]_X$ in $H_d^{\mathrm{alg}}(X,\mathbb{Z}/2)$, admits an algebraic approximation in X. By [5, Theorem 12.4.11], the pair (n, n-1) is in Ω for all $n \geqslant 2$. The only other pair known to be in Ω is (3,1). Indeed, the following result will be proved in Section 2.

THEOREM 1.1. — Let X be a compact nonsingular real algebraic variety of dimension 3 and let C be a compact smooth curve in X. Then C admits an algebraic approximation in X if and only if $[C]_X$ is in $H_1^{\mathrm{alg}}(X,\mathbb{Z}/2)$.

A special case of Theorem 1.1, in which C is assumed to be connected and homologous to the union of finitely many nonsingular algebraic curves in X, is proved in [2].

On the other hand, we have the following negative result.

PROPOSITION 1.2. – Let N be a compact smooth submanifold of the unit m-sphere S^m , $0 < \dim N < m$. Assume that N is not the boundary of a compact smooth manifold with boundary. Then for any positive integer k, there exist a nonsingular real algebraic variety X and a smooth submanifold M of X such that X is diffeomorphic to $S^m \times S^k$, M is diffeomorphic to $N \times S^k$, the class $[M]_X$ in $H_d(X, \mathbb{Z}/2)$, $d = \dim M$, is null (thus algebraic) and M does not admit an algebraic approximation in X.

COROLLARY 1.3. – For n and d with $n-d \geqslant 2$ and $d \geqslant 3$, the pair (n,d) is not in Ω ; in other words, there exist a compact nonsingular n-dimensional real algebraic variety X and a compact smooth d-dimensional submanifold M of X with $[M]_X$ in $H_d^{\mathrm{alg}}(X,\mathbb{Z}/2)$ such that M does not admit an algebraic approximation in X.

To prove Corollary 1.3 we apply Proposition 1.2 with k = d - 2, m = n - d + 2, and N diffeomorphic to the real projective plane $\mathbb{R}P^2$.

The first example of a pair (X,M) with M not admitting an algebraic approximation in X, but $[M]_X$ in $H^{\mathrm{alg}}_d(X,\mathbb{Z}/2)$, $d=\dim M$, was given by S. Akbulut and H. King [4]. They showed that if Σ is a nonsingular irreducible real algebraic curve with two connected components Σ_0 and Σ_1 (each necessarily diffeomorphic to S^1), and S^1 0 is a smooth submanifold of S^2 1 diffeomorphic to $\mathbb{R}P^2$ 2, then S^1 2, does not admit an algebraic approximation in S^1 3 also follows from a modification of the example of Akbulut and King.

Concerning the remaining series of pairs, namely (n,1) and (n,2), with $n \ge 4$, it seems probable that (n,1) belongs to Ω , whereas (n,2) does not. In other words, conjecturally, (n,d) is in Ω if and only if n-d=1 or d=1.

In the proof of Proposition 1.2 we shall make use of the following, interesting in its own right, result.

THEOREM 1.4. – Let $f: X \to Y$ be a regular map between nonsingular real algebraic varieties. Assume that X is compact and Y is irreducible. Given two regular values y_1 and y_2 of f, the smooth manifolds $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are cobordant.

Of course, the case of interest is when y_1 and y_2 belong to distinct connected components of Y.

Proofs of Theorem 1.4 and Proposition 1.2 are given in Section 3.

2. Proof of Theorem 1.1

The reader may refer to [5, Chapter 12] for basic facts concerning algebraic vector bundles on real algebraic varieties. The kth Stiefel–Whitney class of a topological \mathbb{R} -vector bundle ξ will be denoted by $w_k(\xi)$.

Proof of Theorem 1.1. – Denote by τ_X the tangent bundle to X. Then $\lambda = \Lambda^3 \tau_X$ is an algebraic \mathbb{R} -line bundle on X with $w_1(\lambda) = w_1(\tau_X)$ in $H^1_{\mathrm{alg}}(X,\mathbb{Z}/2)$, cf. [8, p. 498]. We shall now construct a smooth \mathbb{R} -vector bundle ξ on X of rank 2 and a smooth section $s: X \to \xi$ such that $w_1(\xi) = w_1(\lambda)$, s is transverse to the zero section, and $s^{-1}(0) = C$, where $s^{-1}(0) = \{x \in X \mid s(x) = 0\}$.

Let $\pi: T \to C$ be an open tubular neighborhood of C in X. We identify (T, π, C) with the normal vector bundle v of C in X. Clearly, there exists a smooth section $\sigma: T \to \pi^*v$ such that σ is transverse to the zero section and $\sigma^{-1}(0) = C$. We have

(1)
$$\pi^* \nu \mid T \setminus C = \eta \oplus \varepsilon_{\sigma},$$

where ε_{σ} is the trivial smooth \mathbb{R} -line subbundle of $\pi^*\nu \mid T \setminus C$ generated by $\sigma \mid T \setminus C$ and η is a smooth \mathbb{R} -line bundle on $T \setminus C$. Note that

(2)
$$w_1(\eta) = w_1(\lambda \mid T \setminus C).$$

Indeed, since the tangent bundle to C is trivial, v is stably equivalent to $\tau_X \mid C$ and hence

$$w_1(\nu) = w_1(\tau_X \mid C) = w_1(\lambda \mid C) = i^*(w_1(\lambda)),$$

where $i: C \hookrightarrow X$ is the inclusion map. The composite map $i \circ \pi: T \to X$ is homotopic to the inclusion map $j: T \hookrightarrow X$, which implies

$$w_1(\pi^*\nu) = \pi^*\big(w_1(v)\big) = \pi^*\big(i^*\big(w_1(\lambda)\big)\big) = j^*\big(w_1(\lambda)\big) = w_1\big(\lambda \mid T\big).$$

Making use of (1), we get $w_1(\eta) = w_1(\pi^*\nu \mid T \setminus C) = w_1(\lambda \mid T \setminus C)$ and therefore (2) is proved. Let ε be the trivial \mathbb{R} -line bundle on X with total space $X \times \mathbb{R}$ and let $\tau \colon X \to \lambda \oplus \varepsilon$ be the smooth section defined by $\tau(x) = (0, (x, 1))$ for all x in X. It follows from (2) that the \mathbb{R} -line bundles η and $\lambda \mid T \setminus C$ are isomorphic and hence (1) implies the existence of a smooth isomorphism

$$\varphi : \pi^* \nu \mid T \backslash C \to (\lambda \oplus \varepsilon) \mid T \backslash C$$

of \mathbb{R} -vector bundles on $T \setminus C$ such that $\varphi \circ \sigma = \tau$ on $T \setminus C$. Let ξ be the smooth \mathbb{R} -vector bundle on X obtained by gluing $\pi^* \nu$ and $(\lambda \oplus \varepsilon) \mid X \setminus C$ over $T \setminus C$ using φ . Similarly, let $s: X \to \xi$ be the smooth section obtained by gluing σ and $\tau \mid X \setminus C$ over $T \setminus C$ using φ . Then $s^{-1}(0) = C$ and s is transverse to the zero section. Furthermore,

$$w_1(\xi \mid X \setminus C) = w_1((\lambda \oplus \varepsilon) \mid X \setminus C) = w_1(\lambda \mid X \setminus C)$$

and hence $w_1(\xi) = w_1(\lambda)$ since dim C = 1. Thus ξ and s satisfy the required conditions.

Since $w_1(\xi) = w_1(\lambda)$ is in $H^1_{\mathrm{alg}}(X,\mathbb{Z})/2$ and $w_2(\xi)$ is in $H^2_{\mathrm{alg}}(X,\mathbb{Z})/2$ (note that $w_2(\xi)$ is Poincaré dual to the homology class $[C]_X$, which belongs to $H^{\mathrm{alg}}_1(X,\mathbb{Z}/2)$), it follows from [6, Theorem 1.6] that ξ is isomorphic to an algebraic \mathbb{R} -vector bundle on X. Thus without loss of generality we may assume that ξ is an algebraic \mathbb{R} -vector bundle. Let $v: X \to \xi$ be an algebraic

section close to s in the \mathcal{C}^{∞} topology, cf. [5, Theorem 12.3.2]. Then there exists a smooth embedding of $C = s^{-1}(0)$ into X, close to the inclusion map $i: C \hookrightarrow X$, which transforms C onto the nonsingular Zariski closed curve $v^{-1}(0)$, cf. [1, Theorem 20.2]. Hence C admits an algebraic approximation in X. The proof is complete. \square

3. Proofs of Theorem 1.4 and Proposition 1.2

We begin with some general remarks concerning complexification of real algebraic varieties. Given a complex projective variety V, defined over \mathbb{R} , we denote by $V(\mathbb{R})$ its set of real points. If $V(\mathbb{R})$ is Zariski dense in V, then $V(\mathbb{R})$ can be regarded in a canonical way as a real algebraic variety (note that $V(\mathbb{R})$ is contained in an affine Zariski open subset of V, defined over \mathbb{R}).

It follows from Hironaka's resolution of singularities theorem [10] that any compact nonsingular real algebraic variety X has a nonsingular projective complexification (V,j). This means, by definition, that V is a complex nonsingular projective variety defined over \mathbb{R} and $j:X\to V(\mathbb{R})$ is a regular isomorphism of real algebraic varieties. If $f:X\to Y$ is a regular map between compact nonsingular real algebraic varieties, then there exists a commutative diagram

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow \downarrow & & \downarrow k \\
V & \xrightarrow{g} & W,
\end{array}$$

where (V,j) and (W,k) are nonsingular projective complexifications of X and Y, respectively, and g is a regular map defined over \mathbb{R} . Indeed, let (U,i) and (W,k) be arbitrary nonsingular projective complexifications of X and Y. The map $k \circ f \circ i^{-1} : U(\mathbb{R}) \to W$ extends to a regular map $f_0: U_0 \to W$ defined over \mathbb{R} , where U_0 is a Zariski open neighborhood, defined over \mathbb{R} , of $U(\mathbb{R})$ in U. The existence of (*) now follows from Hironaka's theorem on resolution of points of indeterminacy [10].

Proof of Theorem 1.4. – In view of Hironaka's theorem [10], Y can be regarded as a Zariski open subset of a compact nonsingular real algebraic variety. This reduces our considerations to the case where Y is compact.

Making use of diagram (*), we may assume that $X = V(\mathbb{R})$, $Y = W(\mathbb{R})$, and $f:V(\mathbb{R}) \to W(\mathbb{R})$ is the restriction of g. The set Σ of critical points of g is Zariski closed in V and hence the set $g(\Sigma)$ is Zariski closed in W [14, p. 57, Theorem 2]. Since Y is irreducible, it follows that W is also irreducible, and therefore the set $W\backslash g(\Sigma)$ is nonempty and connected [15, p. 126, Theorem 1]. The restriction

$$h: V \setminus g^{-1}(g(\Sigma)) \to W \setminus g(\Sigma)$$

of g is a locally trivial smooth fibration [12, p. 23]. The connectedness of $W\backslash g(\Sigma)$ implies that any two fibers of h are diffeomorphic. If b is a point of $(W\backslash g(\Sigma))\cap W(\mathbb{R})$, then $h^{-1}(b)$ is a nonsingular complex projective variety defined over \mathbb{R} , whose set of real points is equal to $f^{-1}(b)$. By [9, Theorem 22.4], the smooth manifolds $h^{-1}(b)$ and $f^{-1}(b)\times f^{-1}(b)$ are cobordant.

Suppose now that the regular values y_1 and y_2 of f belong to $W\backslash g(\Sigma)$. Then the smooth manifolds $h^{-1}(y_1)$ and $h^{-1}(y_2)$, being diffeomorphic, are cobordant. Hence $f^{-1}(y_1)\times f^{-1}(y_1)$ and $f^{-1}(y_2)\times f^{-1}(y_2)$ are also cobordant and as such have the same Stiefel-Whitney numbers [13, Theorem 4.10]. It follows that the smooth manifolds $f^{-1}(y_1)$ and $f^{-1}(y_2)$

have the same Stiefel-Whitney numbers (note that if M is a closed smooth manifold and i_1, \ldots, i_r are nonnegative integers satisfying $i_1 + \cdots + i_r = \dim M$, then $\langle w_{i_1}(M) \cup \cdots \cup w_{i_r}(M), [M] \rangle = \langle w_{2i_1}(M \times M) \cup \cdots \cup w_{2i_r}(M \times M), [M \times M] \rangle$) and therefore are cobordant [13, Theorem 4.10].

In order to complete the proof, we still have to consider the case where at least one of the points y_1 and y_2 is not in $W \setminus g(\Sigma)$. Note that $(W \setminus g(\Sigma)) \cap W(\mathbb{R})$ is dense in $W(\mathbb{R})$. Thus it suffices to show that for any regular value a of f, there exists an open neighborhood N of a in $W(\mathbb{R})$ such that every point b in N is a regular value of f, and the smooth manifolds $f^{-1}(a)$ and $f^{-1}(b)$ are cobordant. In fact any connected open neighborhood N of a in $W(\mathbb{R})$, which does not contain any critical value of f, has the required properties. Indeed, let $\varphi:W(\mathbb{R}) \to W(\mathbb{R})$ be a smooth diffeomorphism homotopic to the identity map and satisfying $\varphi(a) = b$. Then f and $\varphi \circ f$ are smooth homotopic maps for which b is a regular value. Thus $f^{-1}(b)$ and $(\varphi \circ f)^{-1}(b) = f^{-1}(a)$ are cobordant [11, p. 170, Lemma 1.2]. The proof is complete. \square

Proof of Proposition 1.2. – Choose a compact nonsingular irreducible real algebraic variety Σ , with two connected components Σ_0 and Σ_1 , each diffeomorphic to S^k . For example,

$$\Sigma = \{(x_0, x_1, \dots, x_k) \in \mathbb{R}^{k+1} \mid x_0^4 - 4x_0^2 + 1 + x_1^2 + \dots + x_k^2 = 0\}.$$

Let $\varphi\colon S^k\to \Sigma$ be a smooth map, which is a diffeomorphism of S^k onto Σ_0 . Denote by B^{m+1} the unit (m+1)-ball and let $\pi\colon B^{m+1}\times S^k\to S^k$ be the canonical projection. Clearly, the unoriented bordism class of the restriction $f\colon S^m\times S^k\to \Sigma$ of $\varphi\circ\pi\colon B^{m+1}\times S^k\to \Sigma$ is zero. This fact allows us to make use of [3, Theorem 2.8.4] (we only need absolute case of this theorem, that is, $P=\emptyset$, $L=\emptyset$), and hence there exist a nonnegative integer q, a smooth embedding $e\colon S^m\times S^k\to \mathbb{R}^{m+1}\times \mathbb{R}^{k+1}\times \mathbb{R}^q$, a nonsingular Zariski closed subset X of $\mathbb{R}^{m+1}\times \mathbb{R}^{k+1}\times \mathbb{R}^q$, and a regular map $g\colon X\to \Sigma$ such that $X=e(S^m\times S^k)$ and $g\circ e\colon S^m\times S^k\to \Sigma$ is close to f in the \mathcal{C}^∞ topology.

Note that the restriction $f_0: N \times S^k \to \Sigma$ of f is a submersion with fiber $f_0^{-1}(y)$ diffeomorphic to N for y in Σ_0 and empty for y in Σ_1 . Setting $M = e(N \times S^k)$, we deduce that the restriction $g_M: M \to \Sigma$ of g is a submersion with fiber $g_M^{-1}(y)$ diffeomorphic to N for y in Σ_0 and empty for y in Σ_1 .

Suppose that M admits an algebraic approximation in X. Choose a smooth embedding $i: M \hookrightarrow X$, close in the \mathcal{C}^{∞} topology to the inclusion map $M \hookrightarrow X$, whose image Y = i(M) is a Zariski closed nonsingular subset of X. Then the restriction $g_Y: Y \to \Sigma$ of g is a submersion with fiber $g_Y^{-1}(y)$ diffeomorphic to N for g in g and empty for g in g. In particular, since g is not the boundary of a compact smooth manifold with boundary, g has fibers that are not cobordant. This leads to a contradiction with Theorem 1.4, g being regular and g irreducible. Hence g does not admit an algebraic approximation in g and the proof is complete. g

REFERENCES

- [1] ABRAHAM R., ROBBIN J., Transversal Mappings and Flows, Benjamin, New York, 1967.
- [2] AKBULUT S., KING H., Polynomial equations of immersed surfaces, Pacific J. Math. 131 (1988) 209–217.
- [3] AKBULUT S., KING H., Topology of Real Algebraic Sets, Math. Sci. Res. Inst. Publ., vol. 25, Springer, New York/Berlin/Heidelberg, 1992.
- [4] AKBULUT S., KING H., Private communication.
- [5] BOCHNAK J., COSTE M., ROY M.-F., Real Algebraic Geometry, Ergeb. Math. Grenzgeb. (3), vol. 36, Springer, Berlin/Heidelberg/New York, 1998.

- [6] BOCHNAK J., KUCHARZ W., K-theory of real algebraic surfaces and threefolds, *Math. Proc. Cambridge Philos. Soc.* **106** (1989) 471–480.
- [7] BOCHNAK J., KUCHARZ W., On homology classes represented by real algebraic varieties, in: Banach Center Publ., vol. 44, Warsaw, 1998, pp. 21–35.
- [8] BOREL A., HAEFLIGER A., La classe d'homologie fondamentale d'un espace analytique, *Bull. Soc. Math. France* **89** (1961) 461–513.
- [9] CONNER P.E., Differentiable Periodic Maps, 2nd Edition, Lecture Notes in Math., vol. 738, Springer, Berlin/Heidelberg/New York, 1979.
- [10] HIRONAKA H., Resolution of singularities of an algebraic variety over a field of characteristic zero, *Ann. of Math.* **79** (1964) 109–326.
- [11] HIRSCH M., Differential Topology, Grad. Texts in Math., vol. 33, Springer, New York/Berlin/ Heidelberg, 1997.
- [12] LAMOTKE K., The topology of complex projective varieties after S. Lefschetz, *Topology* **20** (1981) 15–51.
- [13] MILNOR J., STASHEFF J., Characteristic Classes, Ann. of Math. Stud., vol. 76, Princeton Univ. Press, Princeton, 1974.
- [14] SHAFAREVICH I.R., Basic Algebraic Geometry 1, 2nd Edition, Springer, Berlin, 1994.
- [15] SHAFAREVICH I.R., Basic Algebraic Geometry 2, 2nd Edition, Springer, Berlin, 1994.

(Manuscrit reçu le 2 mai 2002 ; accepté, après révision, le 4 avril 2003.)

Jacek BOCHNAK
Department of Mathematics,
Vrije Universiteit,
De Boelelaan 1081a,
1081 HV Amsterdam
The Netherlands
E-mail: bochnak@cs.vu.nl

Wojciech KUCHARZ
Department of Mathematics and Statistics,
University of New Mexico,
Albuquerque, NM 87131-1141,
USA

E-mail: kucharz@math.unm.edu