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ON APPROXIMATION OF SMOOTH SUBMANIFOLDS BY
NONSINGULAR REAL ALGEBRAIC SUBVARIETIES✩

BY JACEK BOCHNAK AND WOJCIECH KUCHARZ

ABSTRACT. – LetM be a smooth submanifold of dimensionm of a nonsingular real algebraic setX. If
M can be approximated by nonsingular algebraic subsets ofX, then the homology class inHm(X,Z/2)
represented byM is algebraic. The converse, investigated in this paper, is true only in some excep
cases.

 2003 Elsevier SAS

RÉSUMÉ. – SoitM une sous-variété différentiable de dimensionm d’un ensemble algébrique réel no
singulierX. Si M peut être approchée par des sous-ensembles algébriques non singuliers deX, alors la
classe d’homologie représentée parM dansHm(X,Z/2) est algébrique. La réciproque, étudiée dans
article, est vraie seulement dans quelques cas exceptionnels.

 2003 Elsevier SAS

1. Introduction

Throughout this paper the termreal algebraic varietydesignates a locally ringed spa
isomorphic to a Zariski closed subset ofR

n, for somen, endowed with the Zariski topolog
and the sheaf ofR-valued regular functions; thus we work with affine real algebraic varie
Morphisms between real algebraic varieties will be calledregular maps. Basic facts on rea
algebraic varieties and regular maps can be found in [5]. Every real algebraic variety
also the Euclidean topology, which is determined by the usual metric topology onR. Unless
explicitly stated otherwise, all topological notions related to real algebraic varieties will re
the Euclidean topology.

Given a compact real algebraic varietyX , we denote byHalg
d (X,Z/2) the subgroup o

Hd(X,Z/2) of homology classes represented byd-dimensional Zariski closed subsets ofX
[5,7,8]. IfZ is either a Zariski closed subset ofX or a compact smooth (of classC∞) submanifold
of X , dimZ = d, we denote by[Z]X the homology class inHd(X,Z/2) represented byZ .

Recall that a compact smooth submanifoldM of a nonsingular real algebraic varietyX is
said toadmit an algebraic approximationin X if for each neighborhoodU of the inclusion map
M ↪→X (in theC∞ topology on the setC∞(M,X) of all smooth maps fromM into X), there
exists a smooth embeddinge :M → X such thate is in U ande(M) is a nonsingular Zarisk
closed subset ofX . Clearly, if M admits an algebraic approximation inX , then [M ]X is in
Halg

d (X,Z/2), d= dimM . It is natural to ask whether the converse holds true. More precise
would be interesting to describe explicitly the setΩ for all pairs of positive integers(n,d), n > d,
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with the property that for any compact nonsingularn-dimensional real algebraic varietyX , every
compact smoothd-dimensional submanifoldM of X , with [M ]X in Halg

d (X,Z/2), admits an
algebraic approximation inX . By [5, Theorem 12.4.11], the pair(n,n− 1) is in Ω for all n � 2.
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The only other pair known to be inΩ is (3,1). Indeed, the following result will be proved
Section 2.

THEOREM 1.1. – LetX be a compact nonsingular real algebraic variety of dimension3 and
let C be a compact smooth curve inX . ThenC admits an algebraic approximation inX if and
only if [C]X is in Halg

1 (X,Z/2).

A special case of Theorem 1.1, in whichC is assumed to be connected and homologous to
union of finitely many nonsingular algebraic curves inX , is proved in [2].

On the other hand, we have the following negative result.

PROPOSITION 1.2. – Let N be a compact smooth submanifold of the unitm-sphereSm,
0 < dimN < m. Assume thatN is not the boundary of a compact smooth manifold w
boundary. Then for any positive integerk, there exist a nonsingular real algebraic varietyX and
a smooth submanifoldM ofX such thatX is diffeomorphic toSm ×Sk, M is diffeomorphic to
N × Sk, the class[M ]X in Hd(X,Z/2), d = dimM , is null (thus algebraic) andM does not
admit an algebraic approximation inX .

COROLLARY 1.3. – For n andd with n− d � 2 andd � 3, the pair (n,d) is not in Ω; in
other words, there exist a compact nonsingularn-dimensional real algebraic varietyX and a
compact smoothd-dimensional submanifoldM of X with [M ]X in Halg

d (X,Z/2) such thatM
does not admit an algebraic approximation inX .

To prove Corollary 1.3 we apply Proposition 1.2 withk = d − 2, m = n − d + 2, andN
diffeomorphic to the real projective planeRP 2.

The first example of a pair(X,M) with M not admitting an algebraic approximation inX , but
[M ]X in Halg

d (X,Z/2), d= dimM , was given by S. Akbulut and H. King [4]. They showed th
if Σ is a nonsingular irreducible real algebraic curve with two connected componentsΣ0 andΣ1

(each necessarily diffeomorphic toS1), andN is a smooth submanifold ofS4 diffeomorphic
toRP 2, thenM = N×Σ0 does not admit an algebraic approximation inX = S4×Σ, despite the
fact that the class[M ]X in H3(X,Z/2) is null. In this exampleX is not connected. Corollary 1.
also follows from a modification of the example of Akbulut and King.

Concerning the remaining series of pairs, namely(n,1) and (n,2), with n � 4, it seems
probable that(n,1) belongs toΩ, whereas(n,2) does not. In other words, conjecturally,(n,d)
is in Ω if and only if n− d= 1 or d = 1.

In the proof of Proposition 1.2 we shall make use of the following, interesting in its own
result.

THEOREM 1.4. – Let f :X → Y be a regular map between nonsingular real algebr
varieties. Assume thatX is compact andY is irreducible. Given two regular valuesy1 andy2

of f , the smooth manifoldsf−1(y1) andf−1(y2) are cobordant.

Of course, the case of interest is wheny1 andy2 belong to distinct connected compone
of Y .

Proofs of Theorem 1.4 and Proposition 1.2 are given in Section 3.
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2. Proof of Theorem 1.1

The reader may refer to [5, Chapter 12] for basic facts concerning algebraic vector bundles on

.

ooth

f

real algebraic varieties. Thekth Stiefel–Whitney class of a topologicalR-vector bundleξ will be
denoted bywk(ξ).

Proof of Theorem 1.1. –Denote byτX the tangent bundle toX . Thenλ= Λ3τX is an algebraic
R-line bundle onX with w1(λ) = w1(τX) in H1

alg(X,Z/2), cf. [8, p. 498]. We shall now
construct a smoothR-vector bundleξ on X of rank 2 and a smooth sections :X → ξ such
thatw1(ξ) = w1(λ), s is transverse to the zero section, ands−1(0) = C, wheres−1(0) = {x ∈
X | s(x) = 0}.

Let π :T → C be an open tubular neighborhood ofC in X . We identify (T,π,C) with the
normal vector bundlev of C in X . Clearly, there exists a smooth sectionσ :T → π∗v such that
σ is transverse to the zero section andσ−1(0) = C. We have

π∗ν | T \C = η⊕ εσ,(1)

whereεσ is the trivial smoothR-line subbundle ofπ∗ν | T \C generated byσ | T \C andη is a
smoothR-line bundle onT \C. Note that

w1(η) = w1(λ | T \C).(2)

Indeed, since the tangent bundle toC is trivial, v is stably equivalent toτX |C and hence

w1(ν) = w1(τX |C) = w1(λ | C) = i∗
(
w1(λ)

)
,

wherei :C ↪→ X is the inclusion map. The composite mapi ◦ π :T → X is homotopic to the
inclusion mapj :T ↪→X , which implies

w1(π∗ν) = π∗(w1(v)
)

= π∗(i∗
(
w1(λ)

))
= j∗

(
w1(λ)

)
= w1

(
λ | T

)
.

Making use of (1), we getw1(η) =w1(π∗ν | T \C) = w1(λ | T \C) and therefore (2) is proved
Let ε be the trivialR-line bundle onX with total spaceX × R and letτ :X → λ ⊕ ε be

the smooth section defined byτ(x) = (0, (x,1)) for all x in X . It follows from (2) that the
R-line bundlesη andλ | T \C are isomorphic and hence (1) implies the existence of a sm
isomorphism

ϕ :π∗ν | T \C → (λ⊕ ε) | T \C
of R-vector bundles onT \C such thatϕ ◦ σ = τ onT \C. Let ξ be the smoothR-vector bundle
onX obtained by gluingπ∗ν and(λ⊕ ε) |X\C overT \C usingϕ. Similarly, lets :X → ξ be
the smooth section obtained by gluingσ andτ |X\C overT \C usingϕ. Thens−1(0) = C and
s is transverse to the zero section. Furthermore,

w1(ξ |X\C) = w1

(
(λ⊕ ε) |X\C

)
= w1(λ |X\C)

and hencew1(ξ) = w1(λ) sincedimC = 1. Thusξ ands satisfy the required conditions.
Sincew1(ξ) = w1(λ) is in H1

alg(X,Z)/2) andw2(ξ) is in H2
alg(X,Z)/2) (note thatw2(ξ) is

Poincaré dual to the homology class[C]X , which belongs toHalg
1 (X,Z/2)), it follows from [6,

Theorem 1.6] thatξ is isomorphic to an algebraicR-vector bundle onX . Thus without loss o
generality we may assume thatξ is an algebraicR-vector bundle. Letv :X → ξ be an algebraic
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section close tos in the C∞ topology, cf. [5, Theorem 12.3.2]. Then there exists a smooth
embedding ofC = s−1(0) into X , close to the inclusion mapi :C ↪→ X , which transformsC
onto the nonsingular Zariski closed curvev−1(0), cf. [1, Theorem 20.2]. HenceC admits an
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algebraic approximation inX . The proof is complete. ✷

3. Proofs of Theorem 1.4 and Proposition 1.2

We begin with some general remarks concerning complexification of real algebraic va
Given a complex projective varietyV , defined overR, we denote byV (R) its set of real points
If V (R) is Zariski dense inV , thenV (R) can be regarded in a canonical way as a real algeb
variety (note thatV (R) is contained in an affine Zariski open subset ofV , defined overR).

It follows from Hironaka’s resolution of singularities theorem [10] that any com
nonsingular real algebraic varietyX has a nonsingular projective complexification(V, j). This
means, by definition, thatV is a complex nonsingular projective variety defined overR and
j :X → V (R) is a regular isomorphism of real algebraic varieties. Iff :X → Y is a regular map
between compact nonsingular real algebraic varieties, then there exists a commutative d

X
f

j

Y

k

V
g

W,

(∗)

where(V, j) and(W,k) are nonsingular projective complexifications ofX andY , respectively,
andg is a regular map defined overR. Indeed, let(U, i) and (W,k) be arbitrary nonsingula
projective complexifications ofX andY . The mapk ◦ f ◦ i−1 :U(R)→W extends to a regula
mapf0 :U0 → W defined overR, whereU0 is a Zariski open neighborhood, defined overR,
of U(R) in U . The existence of (∗) now follows from Hironaka’s theorem on resolution of poin
of indeterminacy [10].

Proof of Theorem 1.4. –In view of Hironaka’s theorem [10],Y can be regarded as a Zaris
open subset of a compact nonsingular real algebraic variety. This reduces our considera
the case whereY is compact.

Making use of diagram (∗), we may assume thatX = V (R), Y = W (R), andf :V (R) →
W (R) is the restriction ofg. The setΣ of critical points ofg is Zariski closed inV and hence
the setg(Σ) is Zariski closed inW [14, p. 57, Theorem 2]. SinceY is irreducible, it follows
thatW is also irreducible, and therefore the setW\g(Σ) is nonempty and connected [15, p. 12
Theorem 1]. The restriction

h :V \g−1
(
g(Σ)

)
→W\g(Σ)

of g is a locally trivial smooth fibration [12, p. 23]. The connectedness ofW\g(Σ) implies
that any two fibers ofh are diffeomorphic. Ifb is a point of(W\g(Σ)) ∩W (R), thenh−1(b)
is a nonsingular complex projective variety defined overR, whose set of real points is equ
to f−1(b). By [9, Theorem 22.4], the smooth manifoldsh−1(b) and f−1(b) × f−1(b) are
cobordant.

Suppose now that the regular valuesy1 andy2 of f belong toW\g(Σ). Then the smooth
manifoldsh−1(y1) andh−1(y2), being diffeomorphic, are cobordant. Hencef−1(y1)×f−1(y1)
and f−1(y2) × f−1(y2) are also cobordant and as such have the same Stiefel–Wh
numbers [13, Theorem 4.10]. It follows that the smooth manifoldsf−1(y1) and f−1(y2)
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have the same Stiefel–Whitney numbers (note that ifM is a closed smooth manifold and
i1, . . . , ir are nonnegative integers satisfyingi1 + · · · + ir = dimM , then 〈wi1 (M) ∪ · · · ∪
wir (M), [M ]〉= 〈w2i1 (M ×M)∪ · · ·∪w2ir (M ×M), [M ×M ]〉) and therefore are cobordant
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[13, Theorem 4.10].
In order to complete the proof, we still have to consider the case where at least one

pointsy1 andy2 is not inW\g(Σ). Note that(W\g(Σ)) ∩W (R) is dense inW (R). Thus it
suffices to show that for any regular valuea of f , there exists an open neighborhoodN of a
in W (R) such that every pointb in N is a regular value off , and the smooth manifoldsf−1(a)
andf−1(b) are cobordant. In fact any connected open neighborhoodN of a in W (R), which does
not contain any critical value off , has the required properties. Indeed, letϕ :W (R) →W (R)
be a smooth diffeomorphism homotopic to the identity map and satisfyingϕ(a) = b. Then
f and ϕ ◦ f are smooth homotopic maps for whichb is a regular value. Thusf−1(b) and
(ϕ ◦ f)−1(b) = f−1(a) are cobordant [11, p. 170, Lemma 1.2]. The proof is complete.✷

Proof of Proposition 1.2. –Choose a compact nonsingular irreducible real algebraic varieΣ,
with two connected componentsΣ0 andΣ1, each diffeomorphic toSk. For example,

Σ =
{
(x0, x1, . . . , xk) ∈ R

k+1 | x4
0 − 4x2

0 + 1 + x2
1 + · · ·+ x2

k = 0
}
.

Let ϕ :Sk → Σ be a smooth map, which is a diffeomorphism ofSk ontoΣ0. Denote byBm+1

the unit (m + 1)-ball and letπ :Bm+1 × Sk → Sk be the canonical projection. Clearly, t
unoriented bordism class of the restrictionf :Sm × Sk →Σ of ϕ ◦ π :Bm+1 × Sk → Σ is zero.
This fact allows us to make use of [3, Theorem 2.8.4] (we only need absolute case of this th
that is,P = ∅, L = ∅), and hence there exist a nonnegative integerq, a smooth embeddin
e :Sm×Sk → R

m+1×R
k+1×R

q, a nonsingular Zariski closed subsetX of R
m+1×R

k+1×R
q,

and a regular mapg :X → Σ such thatX = e(Sm × Sk) andg ◦ e : Sm × Sk →Σ is close tof
in theC∞ topology.

Note that the restrictionf0 :N×Sk →Σ of f is a submersion with fiberf−1
0 (y) diffeomorphic

to N for y in Σ0 and empty fory in Σ1. SettingM = e(N × Sk), we deduce that the restrictio
gM :M → Σ of g is a submersion with fiberg−1

M (y) diffeomorphic toN for y in Σ0 and empty
for y in Σ1.

Suppose thatM admits an algebraic approximation inX . Choose a smooth embeddi
i :M ↪→X , close in theC∞ topology to the inclusion mapM ↪→X , whose imageY = i(M) is
a Zariski closed nonsingular subset ofX . Then the restrictiongY :Y → Σ of g is a submersion
with fiber g−1

Y (y) diffeomorphic toN for y in Σ0 and empty fory in Σ1. In particular, since
N is not the boundary of a compact smooth manifold with boundary,gY has fibers that are no
cobordant. This leads to a contradiction with Theorem 1.4,gY being regular andΣ irreducible.
HenceM does not admit an algebraic approximation inX and the proof is complete.✷
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