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Abstract

We consider ground states of pseudo-relativistic boson stars with a self-interacting potential K(x) in R3, which can be described 
by minimizers of the pseudo-relativistic Hartree energy functional. Under some assumptions on K(x), minimizers exist if the stellar 
mass N satisfies 0 < N < N∗, and there is no minimizer if N > N∗, where N∗ is called the critical stellar mass. In contrast to the 
case of the Coulomb-type potential where K(x) ≡ 1, we prove that the existence of minimizers may occur at N = N∗, depending 
on the local profile of K(x) near the origin. When there is no minimizer at N = N∗, we also present a detailed analysis of the 
behavior of minimizers as N approaches N∗ from below, for which the stellar mass concentrates at a unique point.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We study ground states of pseudo-relativistic boson stars in the mean field limit, which can be described (cf. [5,9,
20]) by minimizers of the following variational problem

e(N) := inf
{
E(u) : u ∈ H

1
2 (R3) and

∫
R3

|u(x)|2dx = N
}

(1.1)

under the stellar mass N > 0 of boson stars, where the pseudo-relativistic Hartree energy functional E(u) is defined 
by

E(u) :=
∫
R3

ū
(√−� + m2 − m

)
udx − 1

2

∫
R3

(K(x)

|x| ∗ |u|2)|u|2dx. (1.2)
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Here the operator 
√−� + m2 is defined via its symbol 

√
k2 + m2 in Fourier space, which describes the kinetic and 

rest energy of a relativistic particle with rest mass m > 0, and the symbol ∗ stands for the convolution on R3. Moreover, 
we always assume that the self-interacting potential K(x) of boson stars satisfies 0 < K(x) ≤ K(0) = 1 in R3. From 
physical point of view, there are two typical types of such potentials: one is the Coulomb-type potential K(x) ≡ 1, and 
the other is the Yukawa-type potential K(x) ≡ e−μ|x| with μ > 0. Our investigation of e(N) is motivated by our recent 
series of works [4,12–15], where we studied the minimization problem of the Laplacian type arising from attractive 
Bose–Einstein condensates (BEC). However, the analysis of e(N) is more complicated in a substantial way, due to 
the nonlocal nature of the pseudo-differential operator 

√−� + m2, and the convolution-type nonlinearity as well.
In the recent works [8–10,16,17,20] and references therein, the authors discussed e(N) for the case of the Coulomb-

type potential, i.e., K(x) ≡ 1, where the existence, nonexistence, dynamics and some other analytic properties of 
minimizers for e(N) were obtained. The existing results of analyzing e(N) show that the problem (1.1) is related well 
to the following Gagliardo–Nirenberg type inequality∫

R3

( 1

|x| ∗ |u|2)|u|2dx ≤ 2

‖Q‖2
2

‖(−�)1/4u‖2
2 ‖u‖2

2, u ∈ H
1
2 (R3), (1.3)

where Q(x) = Q(|x|) > 0 is a ground state, up to translations and suitable rescaling (cf. [2,6,9]), of the fractional 
equation

√−�u + u − ( 1

|x| ∗ |u|2)u = 0 in R
3, where u ∈ H

1
2 (R3). (1.4)

Similar to that of [3,6,7,11], here we define

Definition 1.1. If Q(x) = Q(|x|) ∈ H
1
2 (R3) is a positive solution of (1.4), and Q(x) optimizes (1.3), we then say that 

Q(x) is a ground state of (1.4).

Note from [1,6,9] that (1.4) admits ground states, and all ground states of (1.4) must be radially symmetric and 
nonincreasing. Therefore, one can define the nonempty set G by

G = {
Q(x) = Q(|x|) > 0 : Q(x) is a ground state of (1.4)

}
. (1.5)

It thus follows from (1.3) and (1.4) that

‖Q‖2
2 = ‖(−�)1/4Q‖2

2 = 1

2

∫
R3

( 1

|x| ∗ Q2
)
Q2dx for all Q ∈ G. (1.6)

Moreover, one can derive from [6, Lemma 2.2] that there exists C > 0 such that for all Q(x) ∈ G,

|Q(x)| ≤ C(1 + |x|)−4 in R
3, (1.7)

and

(|x|−1 ∗ |Q|2)(x) ≤ C(1 + |x|)−1 in R
3. (1.8)

Making full use of the above results, inspired by [9,12,20] we first derive the following existence of a critical stellar 
mass N∗.

Theorem 1.1. Let Q be a ground state of (1.4), and suppose that m > 0 and

K(x) ∈ C(R3) satisfies 0 < K(x) ≤ K(0) = 1 in R
3. (1.9)

Then,

(a). If 0 < N < N∗ := ‖Q‖2
2, and assume that

either m > 0 is large sufficiently or K(x) ≥ O(|x|−α) as |x| → ∞ with 0 < α < 1, (1.10)

then there exists at least one minimizer for (1.1).
(b). If N > N∗, there is no minimizer for (1.1).
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Theorem 1.1 is extended essentially from those obtained in [9,20] for the special case where K(x) ≡ 1. The 
assumption (1.10) is to ensure the estimate e(N) < 0 (see Lemma 2.1), which seems essential to the existence of 
minimizers. Actually, if K(x) decays fast enough as |x| → ∞, for example K(x) = e−μ|x| with μ > 0, we may have 
e(N) = 0 at least for both small N > 0 and m > 0, in which case minimizers may not exist.1 In view of Theorem 1.1, 
we are next concerned with the existence of minimizers at the critical stellar mass N = N∗(= ‖Q‖2

2), in which case 
we can prove the following results provided that K(x) satisfies (1.11) below.

Theorem 1.2. Let m > 0 and suppose K(x) satisfies the assumptions (1.9) and (1.10). If there exists a constant p > 0
such that

K(x) = 1 − O(|x|p) ≥ 0 as |x| → 0, (1.11)

then we have

(a). If 1 < p < ∞, there is no minimizer for (1.1) at N = N∗.
(b). If 0 < p < 1, then there exists at least one minimizer for (1.1) at N = N∗.
(c). If p = 1 and lim inf|x|→0

1−K(x)
|x| ≥ 2m

N∗ , then there exists at least one minimizer for (1.1) at N = N∗.

Theorems 1.1 and 1.2 imply that the existence of minimizers depends greatly on the potential K(x) near the origin 
and near the spatial infinity as well. By applying Ekeland’s variational principle (cf. [22, Theorem 5.1]), Theorem 1.2
shows that the existence of minimizers may occur at the critical stellar mass N = N∗, which depends a little more on 
the local profile of K(x) near the origin. This is in contrast to the case of the Coulomb-type potential where K(x) ≡ 1, 
for which any minimizer does not exist at N = N∗ (see [9] and references therein). As a completion of Theorem 1.2, 
one may wonder whether there is no minimizer for (1.1) at N = N∗, if K(x) satisfies 0 < lim inf|x|→0

1−K(x)
|x| < 2m

N∗ .

Without loss of generality, one can restrict the minimization of (1.1) to positive functions. Indeed, we note from [19, 
Theorem 7.12] that E(u) ≥ E(|u|) for any u ∈ H

1
2 (R3), which then implies that any minimizer uN of (1.1) satisfies 

either uN ≥ 0 or uN ≤ 0 in R3. Further, uN satisfies the Euler–Lagrange equation[√
−� + m2 − m + V (x)

]
uN = −μNuN in R

3, (1.12)

where V (x) := −(
K(x)
|x| ∗ |uN |2) and μN ∈ R is the associated Lagrange multiplier. If uN ≥ 0 and uN �≡ 0 in R3, 

by (1.12) we then deduce from [19, Theorem 11.8] that uN > 0 in R3. Therefore, for convenience we next focus on 
positive minimizers of (1.1).

As discussed in Remark 2.1, the proof of Theorem 1.1 also implies that there is no minimizer for (1.1) at N = N∗
for the more general case where K(x) = 1 − o(|x|) ≥ 0 as |x| → 0. Inspired by our recent work [12], we next focus 
on this case to derive the refined behavior of minimizers uN of (1.1) as N approaches the critical value N∗ := ‖Q‖2

2
from below.

Theorem 1.3. Suppose m > 0 and K(x) satisfies (1.9), (1.10) and K(x) = 1 − o(|x|) ≥ 0 as |x| → 0. Let uN be 
a positive minimizer of (1.1) for N < N∗. Then for any sequence {Nk} with Nk ↗ N∗ as k → ∞, there exist a 
subsequence, still denoted by {Nk}, of {Nk} and {yNk

} ⊂R
3 as well as y0 ∈ R

3 such that

lim
k→∞ ε

3
2
Nk

uNk

(
εNk

x + εNk
yNk

) = ( 1

N∗
) 3

2 Q0
( |x − y0|

N∗
)

strongly in H
1
2 (R3), (1.13)

where Q0 ∈ G is a ground state of (1.4), and εNk
> 0 is given by

εNk
:=

(∫
R2

∣∣(−�)1/4uNk

∣∣2
dx

)−1 → 0 as k → ∞. (1.14)

Additionally, if K(x) satisfies

1 Private discussions with Robert Seiringer.
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lim|x|→0

1 − K(x)

|x|p = β ∈ (0,∞), 1 < p ≤ ∞, (1.15)

then (1.13) holds for εNk
> 0 satisfying

lim
k→∞

N∗εNk

(N∗ − Nk)
1

�+1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

( 2

(p − 1)βγ0

) 1
p
, 1 < p < 2;( 2

m2λ0 + βγ0

) 1
2
, p = 2;( 2

m2λ0

) 1
2
, 2 < p ≤ ∞;

(1.16)

and the energy e(Nk) satisfies

lim
k→∞

e(Nk) + mNk

(N∗ − Nk)
�

�+1

= � + 1

�
�

1
�+1

( κ̂p

2

) 1
�+1

, (1.17)

where � = min{2, p} − 1 > 0 and

λ0 :=
∫
R3

∣∣Q̂0(k)
∣∣2

|k| dk ∈ (0,∞) and γ0 :=
∫
R3

(
|x|p−1 ∗ |Q0|2

)
|Q0|2dx ∈ (0,∞], (1.18)

and κ̂p > 0 satisfies

κ̂p =

⎧⎪⎪⎨⎪⎪⎩
βγ0, 1 < p < 2;
βγ0 + m2λ0, p = 2;
m2λ0, 2 < p ≤ ∞.

(1.19)

As a byproduct, Theorem 1.3 also presents a refined energy estimate (1.17) of e(N) as N ↗ N∗. The proof of 
Theorem 1.3 shows that the polynomial decaying characters (1.7) and (1.8) of Q0 ∈ G result in more delicate energy 
estimates and more complicated blow up analysis of minimizers as N ↗ N∗, compared with those obtained in [12–14]
for attractive BEC. Also, one may use (1.7) and (1.8) to check that the constant γ0 in (1.18) satisfies γ0 < ∞ for 
1 < p < 6 (see also (3.21) for details), and therefore, the constant κ̂p in (1.19) is always finite. Finally, denote

η :=
(m2

2

∫
R3

∣∣Q̂0(k)
∣∣2

|k| dk
)− 1

2
, (1.20)

where Q0 ∈ G is a ground state of (1.4). Then for the case where K(x) ≡ 1, Theorem 1.3 with p = ∞ is reduced 
immediately to the following simplified one.

Proposition 1.4. Suppose m > 0, K(x) ≡ 1 and let uN be a positive minimizer of (1.1) for N < N∗. Then for any 
sequence {Nk} with Nk ↗ N∗ as k → ∞, there exist a subsequence, still denoted by {Nk}, of {Nk} and {yNk

} ⊂R
3 as 

well as y0 ∈R
3 such that

lim
k→∞(N∗ − Nk)

3
2 uNk

[
(N∗ − Nk)

1
2
(
x + yNk

)] = η
3
2 Q0

(
η|x − y0|

)
strongly in H

1
2 (R3).

Moreover, the energy e(Nk) satisfies

lim
k→∞

e(Nk) + mNk

(N∗ − Nk)
1
2

= 2

η
.

After this paper was submitted, we learned that a similar minimization problem of (1.1), where a trapping potential 
V (x) is imposed, was also studied in [23]. This paper is organized as follows. Section 2 is devoted to the proof of The-
orems 1.1 and 1.2, and particularly we shall employ in Subsection 2.1 Ekeland’s variational principle to establish the 
existence of minimizers at N = N∗ as stated in Theorem 1.2. In Section 3 we then complete the proof of Theorem 1.3
on the mass concentration of minimizers as N ↗ N∗. We shall always assume m > 0 throughout the paper.
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2. Existence and nonexistence of minimizers

The main purpose of this section is to establish Theorems 1.1 and 1.2 on the existence and nonexistence of mini-
mizers. Towards this aim, we first address the following energy estimate of (1.1).

Lemma 2.1. Suppose that either m > 0 is large sufficiently or K(x) ≥ O(|x|−α) as |x| → ∞ with 0 < α < 1. Then 
we have e(N) < 0 for any N > 0.

Proof. For m > 0, using the operator inequality,

2m
√

−� + m2 ≤ −� + 2m2,

we have for any N > 0,

e(N) ≤ ec(N) := inf
{
Ec(ψ) : ψ ∈ H 1(R3),

∫
R3

|ψ(x)|2dx = N
}
, (2.1)

where the energy functional Ec(ψ) is of the form

Ec(ψ) = 1

2m

∫
R3

|∇ψ |2dx − 1

2

∫
R3

(K(x)

|x| ∗ |ψ |2)|ψ |2dx.

For any N > 0, if one chooses ψ(x) ∈ C∞
c (R3), such that 

∫
R3 |ψ |2dx = N , and sets

ψλ := λ
3
2 ψ(λx), λ > 0,

then ∫
R3

|ψλ|2dx = N,

and

Ec(ψλ) = λ2

2m

∫
R3

|∇ψ |2dx − λ

2

∫
R3

(K(x/λ)

|x| ∗ |ψ |2)|ψ |2dx. (2.2)

Inspired by [18,19], we shall carry out the proof by discussing separately the following two cases:

(1). Suppose that m > 0 is large sufficiently. In this case, by taking λ = 1 and ψ1 > 0 is a suitable test function as 
above, we obtain from (2.1) and (2.2) that

e(N) ≤ ec(N) ≤ Ec(ψ1) < 0 for all N > 0,

and we are done.
(2). Suppose that K(x) ≥ O(|x|−α) as |x| → ∞ with 0 < α < 1. In this case, we further deduce that∫

R3

(K(x/λ)

|x| ∗ |ψ |2)|ψ |2dx

≥
∫

|x|<R

∫
1<|y|<R

K(y/λ)

|y| ψ2(x − y)ψ2(x)dxdy

≥ Cλα

∫
|x|<R

∫
1<|y|<R

K∞
|y|1+α

ψ2(x − y)ψ2(x)dxdy ≥ Cλα > 0 as λ → 0.

Applying (2.2), we then have
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Ec(ψλ) < 0 if λ > 0 is small,

and further,

e(N) ≤ ec(N) ≤ Ec(ψλ) < 0 for all N > 0, (2.3)

which completes the proof of Lemma 2.1. �
The conclusion e(N) < 0 of Lemma 2.1 gives essentially the strict subadditivity condition of e(N), based on 

which we shall be able to apply the concentration-compactness-type method (cf. [9,21]) to deriving the existence 
of minimizers. More precisely, we shall follow Lemma 2.1 to establish the following theorem, which then gives 
Theorem 1.1.

Theorem 2.2. Suppose m > 0 and K(x) satisfies (1.9). Then we have

1. If 0 ≤ N < N∗ := ‖Q‖2
2 and K(x) also satisfies (1.10), there exists at least one minimizer for (1.1).

2. If N > N∗, there is no minimizer for (1.1).
3. If K(x) satisfies additionally that K(x) = 1 − o(|x|) ≥ 0 as |x| → 0, then there is no minimizer for (1.1) at 

N = N∗.

Proof. Inspired by [9, Theorem 2.1], [12, Theorem 1] and [20, Theorem 4], we divide our proof into three parts.
(i). Under the additional assumption (1.10), we first prove that (1.1) has at least one minimizer for all 0 < N < N∗. 

Actually, if u ∈ H
1
2 (R3) and ‖u‖2

2 = N , we then deduce from the inequality (1.3) that

E(u) ≥ ‖(−� + m2)1/4u‖2
2 − 1

2

∫
R3

( 1

|x| ∗ |u|2)(x)|u|2dx − mN

≥ ‖(−�)1/4u‖2
2 − 1

N∗ ‖(−�)1/4u‖2
2 ‖u‖2

2 − mN

= N∗ − N

N∗ ‖(−�)1/4u‖2
2 − mN,

(2.4)

which implies that E(u) is bounded uniformly from below for all 0 < N < N∗. Choose a minimizing sequence 
{un} ⊂ H

1
2 (R3) satisfying ‖un‖2

2 = N and limn→∞ E(un) = e(N). It follows from (2.4) that the sequence {un} is 

bounded uniformly in H
1
2 (R3). Furthermore, similar to the proof of [9, Theorem 2.1], applying Lemma 2.1 and the 

concentration-compactness-type method (cf. [9,21]), one can derive that there exist subsequences {unk
} and {yk} ⊂R

3

such that the sequence

ũk(·) := unk
(· + yk)

satisfies

ũk → u strongly in H
1
2 (R3) as k → ∞,

and

lim
k→∞

∫
R3

(K(x)

|x| ∗ |ũk|2
)
(x)|ũk(x)|2dx =

∫
R3

(K(x)

|x| ∗ |u|2)(x)|u(x)|2dx

for some u ∈ H
1
2 (R3). We therefore conclude that 

∫
R3 |u(x)|2dx = N and E(u) = e(N) by the weak lower semicon-

tinuity. This implies the existence of minimizers for all 0 < N < N∗.
(ii). We next show that there is no minimizer for (1.1) as soon as N > N∗. Choose any Q ∈ G, and define

uτ (x) =
√

Nτ
3
2

‖Q‖2
Q(τx) , (2.5)

so that 
∫

3 u2
τ (x)dx = N . Using the inequality that 

√−� + m2 − m ≤ √−�, we then obtain from (1.6) that

R
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e(N) ≤ E(uτ ) ≤ ∥∥(−�)1/4uτ

∥∥2
2 − 1

2

∫
R3

(K(x)

|x| ∗ |uτ |2
)
(x)|uτ |2dx

= Nτ

N∗
∥∥(−�)1/4Q

∥∥2
2 − N2τ

2(N∗)2

∫
R3

(K(x
τ
)

|x| ∗ Q2
)
(x)Q2(x)dx

= Nτ

2N∗
[(

1 − N

N∗
)∫
R3

( 1

|x| ∗ Q2
)
(x)Q2(x)dx (2.6)

+ N

N∗

∫
R3

(1 − K(x
τ
)

|x| ∗ Q2
)
(x)Q2(x)dx

]

= Nτ

N∗
[
(N∗ − N) + N

2N∗

∫
R3

(1 − K(x
τ
)

|x| ∗ Q2
)
(x)Q2(x)dx

]
.

Since K(0) = 1, one can check that∫
R3

(1 − K(x
τ
)

|x| ∗ Q2
)
(x)Q2(x)dx → 0 as τ → ∞.

It then follows from (2.6) that

e(N) ≤ E(uτ ) ≤ Nτ

N∗
[
(N∗ − N) + o(1)

]
as τ → ∞, (2.7)

which thus yields that e(N) = −∞ if N > N∗. This implies the non-existence of minimizers as soon as N > N∗.
(iii). We finally deal with the case N = N∗ under the additional assumption that 1 − K(x) = o(|x|) as |x| → 0. In 

this case, we use the same trial function uτ as that of (2.5). It then follows from (1.3) that

−mN∗ ≤ e(N∗) ≤ E(uτ ) ≤ 〈uτ ,
(√−� + m2 − √−�

)
uτ 〉 − mN∗

+ 1

2

∫
R3

(1 − K(x)

|x| ∗ |uτ |2
)
(x)|uτ |2dx.

(2.8)

Applying Plancherel’s theorem, we use the dominated convergence to derive that

〈uτ ,
(√−� + m2 − √−�

)
uτ 〉

=
∫
R3

∣∣Q̂(k)
∣∣2(√

τ 2k2 + m2 − τ |k|)dk → 0 as τ → ∞.
(2.9)

Moreover, since 1 − K(x) = o(|x|) as |x| → 0, we also have

1

2

∫
R3

(1 − K(x)

|x| ∗ |uτ |2
)
(x)|uτ (x)|2dx

= 1

2

∫
R3

(1 − K(x
τ
)∣∣ x

τ

∣∣ ∗ Q2
)
(x)Q2(x)dx → 0 as τ → ∞.

(2.10)

We now conclude from (2.8)–(2.10) that e(N∗) = −mN∗ by letting τ → ∞. This implies that if there exists a mini-
mizer u for e(N∗), we then have

‖(−� + m2)1/4u‖2
2 = 1

2

∫
R3

(K(x)

|x| ∗ |u|2)(x)|u(x)|2dx

≤ 1

2

∫
3

( 1

|x| ∗ |u|2)(x)|u|2dx ≤ ‖(−�)1/4u(x)‖2
2,

(2.11)
R
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which however contradicts the fact that

‖(−� + m2)1/4u‖2
2 > ‖(−�)1/4u‖2

2

holds for any m > 0. This proves the nonexistence of minimizers for (1.1) at N = N∗, which therefore completes the 
proof of Theorem 2.2. �
Remark 2.1. If K(x) ∈ C(R3) satisfies (1.9) and (1.10), we then conclude from Lemma 2.1 and the proof of Theo-
rem 1.1 that the Hartree energy e(N) satisfies

−mN < e(N) < 0 for 0 < N < N∗, and e(N) = −∞ for N > N∗. (2.12)

One can also check that e(N) is strictly decreasing and concave downward for all 0 < N < N∗. Additionally, if 
K(x) = 1 − o(|x|) ≥ 0 as |x| → 0, we then have

lim
N↗N∗ e(N) = −mN∗.

All these properties are often used in next section.

2.1. Existence of minimizers at N = N∗

One can note that Theorem 1.1 and (a) of Theorem 1.2 follow from Theorem 2.2. To complete the proof of 
Theorems 1.2, the rest is to derive the following existence of minimizers at N = N∗.

Theorem 2.3. Suppose m > 0, K(x) satisfies (1.9) and (1.10). If K(x) also satisfies either

K(x) = 1 − O(|x|p) ≥ 0 as |x| → 0 for some constant 0 < p < 1, (2.13)

or

lim inf|x|→0

1 − K(x)

|x| ≥ 2m

N∗ , (2.14)

then there exists at least one minimizer for (1.1) at N = N∗.

This subsection is devoted to the proof of Theorem 2.3. Under the assumptions of Theorem 2.3, consider the 
manifold

A :=
{
u : u ∈ H

1
2 (R3) and

∫
R3

|u|2dx = N∗},

and define

d(u, v) = ‖u − v‖
H

1
2
, u, v ∈ A,

so that (A, d) is a complete metric space. By Ekeland’s variational principle (cf. [22, Theorem 5.1]), then there exists 
a minimizing sequence {un} of e(N∗) such that

e(N∗) ≤ E(un) ≤ e(N∗) + 1

n
, (2.15)

E(v) ≥ E(un) − 1

n
‖un − v‖

H
1
2

for any v ∈ A. (2.16)

By applying (2.15) and (2.16), we shall derive the claim that

{un} is bounded uniformly in A. (2.17)

Note from the assumption (1.10) that Lemma 2.1 holds. Thus, if the claim (2.17) holds, by applying Lemma 2.1, the 
same argument of (i) in the proof of Theorem 2.2 then gives the existence of minimizers at N = N∗, and Theorem 2.3
is therefore proved.
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The rest part of this subsection is to derive the claim (2.17). On the contrary, we now suppose that (2.17) is false, 
i.e. {un} is unbounded in A, and we shall finally derive a contradiction. In this case, then there exists a subsequence 
of {un}, still denoted by {un}, such that ‖un‖

H
1
2

→ ∞ as n → ∞. Note from (1.3) and (2.15) that for m > 0,

0 ≤
∫
R3

|(−�)1/4un(x)|2dx − 1

2

∫
R3

(K(x)

|x| ∗ |un|2
)
|un(x)|2dx ≤ e(N∗) + mN∗ + 1

n
, (2.18)

which then implies that∫
R3

|(−�)1/4un(x)|2dx → ∞ as n → ∞,

1

2

∫
R3

(K(x)

|x| ∗ |un|2
)
|un(x)|2dx → ∞ as n → ∞.

(2.19)

Define now

ε−1
n :=

∫
R3

(K(x)

|x| ∗ |un|2
)
|un(x)|2dx, εn > 0, (2.20)

so that εn → 0 as n → ∞ in view of (2.19). It then follows from (2.18) that there exists a constant M > 0, independent 
of n, such that

0 < Mε−1
n ≤

∫
R3

|(−�)1/4un(x)|2dx ≤ 1

M
ε−1
n + e(N∗) + mN∗ as n → ∞. (2.21)

In view of above facts, we next define the L2(R2)-normalized function

w̃n(x) := ε
3
2
n un

(
εnx

)
. (2.22)

It then yields from (2.20) and (2.21) that∫
R3

(K(εnx)

|x| ∗ |w̃n|2
)
|w̃n(x)|2dx = 1,

M ≤
∫
R3

|(−�)1/4w̃n(x)|2dx ≤ 1

M
+ εn[e(N∗) + mN∗],

(2.23)

where M > 0, independent of n, is the same as that in (2.21).
We claim that there exist a sequence {yεn} and positive constants R and η such that

lim inf
εn→0

∫
BR(yεn )

|w̃n(x)|2dx ≥ η > 0. (2.24)

On the contrary, suppose that (2.24) is false. A proof similar to that of [9, Lemma A.2] then gives that∫
R3

(K(εnx)

|x| ∗ |w̃n|2
)
(x)|w̃n(x)|2dx → 0 as n → ∞,

which however contradicts (2.23). Therefore, the above claim (2.24) holds. For the sequence {yεn} obtained in (2.24), 
we next set

wn(x) = w̃n(x + yεn) = ε
3
2
n un(εnx + εnyεn). (2.25)

Note from (2.23) that wn ∈ H
1
2 (R3), and the estimate (2.24) implies that
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lim inf
εn→0

∫
BR(0)

|wn(x)|2dx ≥ η > 0, (2.26)

where positive constants R and η are given by (2.24). In the following we need to establish the following crucial 
lemma.

Lemma 2.4. Under the assumptions of Theorem 2.3, let wn ∈ H
1
2 (R3) be defined by (2.25). Then wn → w0 strongly 

in Lp(R3) for all p ∈ [2, 3), where w0 is a nonzero solution of the problem

√−�w(x) + 1

N∗ w(x) −
( 1

|x| ∗ |w|2
)
w(x) = 0 in R

3. (2.27)

Proof. For any ϕ(x) ∈ C∞
0 (R2), define

ϕ̃(x) = ε
− 1

2
n ϕ

(x − εnyεn

εn

)
, j (τ, σ ) = 1

2

∫
R3

∣∣un + τun + σ ϕ̃
∣∣2

dx − N∗

2
.

Then j (τ, σ) satisfies

j (0,0) = 0,
∂j (0,0)

∂τ
=

∫
R3

|un(x)|2dx = N∗ and
∂j (0,0)

∂σ
=

∫
R3

un(x)ϕ̃(x)dx.

Applying the implicit function theorem, we thus obtain that there exist a constant δn > 0 and a function τ(σ ) ∈
C1

(
(−δn, δn), R

)
, where |σ | > 0 is sufficiently small, such that

τ(0) = 0, τ ′(0) = − 1

N∗

∫
R3

un(x)ϕ̃(x)dx, and j (τ (σ ), σ ) = 0.

Therefore, we have un + τ(σ )un + σ ϕ̃ ∈ A, where σ ∈ (−δn, δn). By applying (2.16), we get that

E(un + τ(σ )un + σ ϕ̃) − E(un) ≥ −1

n
‖τ(σ )un + σ ϕ̃‖

H
1
2
.

Taking the limits σ → 0+ and σ → 0−, respectively, we then deduce that∣∣∣〈E ′(un), τ
′(0)un + ϕ̃

〉∣∣∣ ≤ 1

n
‖τ ′(0)un + ϕ̃‖

H
1
2
. (2.28)

On the other hand, the definition of (2.25) gives that

1

2

〈
E ′(un), ϕ̃

〉 = ∫
R3

ϕ(x)
(√−� + m2ε2

n − mεn

)
wn(x)dx

−
∫
R3

(K(εnx)

|x| ∗ |wn|2
)
wn(x)ϕ(x)dx.

(2.29)

By setting

μn := 〈E ′(un), un〉,
we then deduce from (2.29) that

‖τ ′(0)un + ϕ̃‖
H

1
2

< Cε
1
2
n ,

τ ′(0) = − 1

N∗

∫
R3

un(x)ϕ̃(x)dx = − εn

N∗

∫
R3

wn(x)ϕ(x)dx,

∣∣∣μnεn + 1
∣∣∣ =

∣∣∣μnεn + εn

∫
3

(K(x)

|x| ∗ |un|2
)
|un(x)|2dx

∣∣∣ → 0 as n → ∞.

(2.30)
R
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Thus, the estimates (2.28)–(2.30) yield that∣∣∣∣ ∫
R3

ϕ(x)
(√−� + m2ε2

n − mεn

)
wn(x)dx − μnεn

N∗

∫
R3

wn(x)ϕ(x)dx

−
∫
R3

(K(εnx)

|x| ∗ |wn|2
)
wn(x)ϕ(x)dx

∣∣∣∣ ≤ Cε
1
2
n

n
.

(2.31)

By the estimate (2.26), we thus derive from (2.31) that wn ⇀ w0 �≡ 0 in H 1(R2) as n → ∞, where w0 satisfies the 
equation (2.27), due to the assumption that K(0) = 1. Further, we deduce from (2.26) that

0 <

∫
R3

|w0|2dx ≤ lim inf
n→∞

∫
R3

|wn|2dx = N∗. (2.32)

Moreover, it follows from (2.27) and the standard Pohozaev identity that

1

N∗

∫
R3

|w0|2dx =
∫
R3

|k||ŵ0|2dk = 1

2

∫
R3

( 1

|x| ∗ |w0|2
)|w0|2dx.

We thus derive from (1.3) that

N∗

2
≤

∫
R3 |k||ŵ0|2dk · ∫

R3 |w0|2dx∫
R3

( 1
|x| ∗ |w0|2

)|w0|2dx
=

∫
R3 |w0|2dx

2
.

This together with (2.32) indicates that

wn → w0 strongly in Lp(R3), (2.33)

for all p ∈ [2, 3) in view of H
1
2 (R3) boundness, and the proof is complete. �

Completion for the Proof of (2.17). Case (I): If K(x) satisfies (2.13). By applying Fatou’s lemma, we obtain from 
Lemma 2.4 that for the constant R > 0 given in (2.26), there exists a constant C = C(R) > 0 such that

lim
n→∞

1

2ε
p
n

∫
BR(0)

∫
BR(0)

1 − K(εnx − εny)

|x − y| |wn(x)|2|wn(y)|2dydx

≥ C lim
n→∞

∫
BR(0)

∫
BR(0)

|wn(x)|2|wn(y)|2
|x − y|1−p

dydx

≥ C

∫
BR(0)

∫
BR(0)

lim
n→∞

|wn(x)|2|wn(y)|2
(|x| + |y|)1−p

dydx ≥ C(R).

(2.34)

Since 0 < p < 1, we then derive from (2.34) that

lim
n→∞

e(N∗) + mN∗

ε
p−1
n

≥ lim
n→∞

1

2ε
p
n

∫
R3

(1 − K(εnx)

|x| ∗ |wn|2
)
|wn(x)|2dx ≥ C(R) > 0,

which is impossible, and (2.17) is therefore proved.
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Case (II): If K(x) satisfies (2.14). By using Fatou’s lemma again, in this case we deduce from (2.33) that

lim inf
n→∞

∫
R3

(1 − K(x)

|x| ∗ |un|2
)
|un(x)|2dx

= lim inf
n→∞

∫
R3

(1 − K(εnx)

|εnx| ∗ |wn|2
)
|wn(x)|2dx

≥
∫
R3

lim inf
n→∞

(1 − K(εnx)

|εnx| ∗ |wn|2
)
|wn(x)|2dx ≥ 2m

N∗ (N∗)2 = 2mN∗.

Applying (1.3), the above estimate then yields that

e(N∗) = lim
n→∞E(un)

= −mN∗ + lim
n→∞

{
〈un,

√−�un〉 − 1

2

∫
R3

( 1

|x| ∗ |uN |2
)
(x)|un|2dx

+ 〈un, (
√

−� + m2 − √−�)un〉 + 1

2

∫
R3

(1 − K(x)

|x| ∗ |un|2
)
|un|2dx

}

≥ −mN∗ + 1

2
lim inf
n→∞

∫
R3

(1 − K(x)

|x| ∗ |un|2
)
|un|2dx ≥ 0,

which however contradicts Lemma 2.1 under the assumption (1.10). This verifies that (2.17) also holds, and the proof 
is done. �
3. Mass concentration as N ↗ N∗

This section is focused on the proof of Theorem 1.3, for which we always assume that K(x) satisfies (1.9), (1.10)
and K(x) = 1 −o(|x|) ≥ 0 as |x| → 0. Denote uN a positive minimizer of (1.1) with 0 < N < N∗, so that uN satisfies 
the Euler–Lagrange equation(√−� + m2 − m

)
uN −

(K(x)

|x| ∗ |uN |2
)
uN = −μNuN in R

3, (3.1)

where the Lagrange multiplier μN ∈R satisfies

NμN = −2e(N) + 〈uN, (
√

−� + m2 − m)uN 〉 > 0, (3.2)

in view of Lemma 2.1 under the assumption (1.10). We start with the following lemma.

Lemma 3.1. For m > 0, assume that K(x) satisfies (1.9), (1.10) and K(x) = 1 − o(|x|) ≥ 0 as |x| → 0. Define

ε−1
N :=

∫
R2

∣∣(−�)1/4uN

∣∣2
dx > 0, (3.3)

where uN is a positive minimizer of (1.1) with N < N∗. Then we have

(i). εN > 0 satisfies

εN → 0 as N ↗ N∗, (3.4)

and the Lagrange multiplier μN in (3.1) satisfies

μN · εN → 1

N∗ as N ↗ N∗. (3.5)
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(ii). Defining

w̄N (x) := ε
3
2
NuN(εNx), (3.6)

then ∥∥(−�)1/4w̄N

∥∥2
2 = 1,

∫
R3

(K(εNx)

|x| ∗ |w̄N |2
)
(x)|w̄N (x)|2dx → 2 as N ↗ N∗, (3.7)

(iii). There exist a sequence {yN } ⊂R
3, R > 0 and η > 0 such that

lim inf
N↗N∗

∫
BR(yN )

|w̄N |2dx ≥ η > 0. (3.8)

Proof. (i). On the contrary, if (3.4) is false, then {uN(x)} is bounded uniformly in H
1
2 (R3) as N ↗ N∗. Setting

ũN =
√

N∗
N

uN,

then {ũN } is also bounded uniformly in H
1
2 (R3) and 

∫
R3 |ũN |2dx = N∗. Moreover, we deduce from Remark 2.1 that

−mN∗ ≤ e(N∗) ≤ lim
N↗N∗ E(ũN ) = lim

N↗N∗ E(uN) = lim
N↗N∗ e(N) = −mN∗. (3.9)

This implies that {ũN } is a minimizing sequence of e(N∗) = −mN∗ < 0. Similar to the proof of Theorem 1.1, by using 
(1.10) one can employ the concentration-compactness principle to deduce that there exist u0 ∈ H

1
2 (R3), a sequence 

{Nk} with Nk ↗ N∗ as k → ∞ and {zk} ⊂R
3 such that

ũNk
(· + zk) → u0(·) strongly in H

1
2 (R3) as k → ∞,

and

lim
k→∞

∫
R3

(K(x)

|x| ∗ |ũNk
|2

)
(x)|ũNk

(x)|2dx =
∫
R3

(K(x)

|x| ∗ |u0|2
)
(x)|u0(x)|2dx.

This indicates that u0 is a minimizer of e(N∗), which however contradicts Theorem 1.1 on the nonexistence of 
minimizers for e(N∗) under the assumption (1.10). Therefore, (3.4) is proved.

We next prove (3.5) as follows. Since

(−�)
1
2 ≤

√
−� + m2 ≤ (−�)

1
2 + m,

then

〈uN, (−�)
1
2 uN 〉 ≤ 〈uN,

√
−� + m2 uN 〉 ≤ 〈uN, (−�)

1
2 uN 〉 + mN.

We thus deduce from (3.3) and (3.4) that

lim
N↗N∗〈uN,

√
−� + m2uN 〉 · εN = 1. (3.10)

Together with (3.2) and Remark 2.1, this yields that

NμN · εN = −2e(N) · εN + 〈uN, (
√

−� + m2 − m)uN 〉 · εN → 1 as N ↗ N∗,

which then gives (3.5).
(ii). By (3.3) and (3.6), we obtain that∥∥(−�)1/4w̄N

∥∥2
2 = εN · ∥∥(−�)1/4uN

∥∥2
2 = 1. (3.11)
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Moreover, since

1

2

∫
R3

(K(x)

|x| ∗ |uN |2
)
(x)|uN |2dx = 〈uN,

√
−� + m2uN 〉 − e(N) − mN,

it follows from (3.4) and (3.10) that

εN

2

∫
R3

(K(x)

|x| ∗ |uN |2
)
(x)|uN(x)|2dx → 1 as N ↗ N∗.

By (3.6), equivalently we have

1

2

∫
R3

(K(εNx)

|x| ∗ |w̄N |2
)
(x)|w̄N (x)|2dx → 1 as N ↗ N∗,

which then gives (3.7) by applying (3.11).
(iii). On the contrary, suppose that (3.8) is false. Then for any R > 0, there exists a subsequence {w̄Nk

} with 
Nk ↗ N∗ such that

lim
k→∞ sup

y∈R2

∫
BR(y)

|w̄Nk
|2dx = 0.

A proof similar to that of [9, Lemma A.2] thus yields that∫
R3

(K(εNk
x)

|x| ∗ |w̄Nk
|2

)
(x)|w̄Nk

(x)|2dx → 0 as Nk ↗ N∗,

which however contradicts (3.7). Therefore, (3.8) holds and the proof is complete. �
Recall from Remark 2.1 that the proof of Theorem 1.1 gives the estimate e(N) ∼ −mN∗ as N ↗ N∗. In what 

follows, we give the refined upper bound of e(N) as N ↗ N∗ under the additional assumption (1.15).

Lemma 3.2. For m > 0, suppose K(x) satisfies (1.9), (1.10) and (1.15) for 1 < p ≤ ∞. Define for any Q ∈ G,

λ :=
∫
R3

|Q̂(k)|2
|k| dk and γ :=

∫
R3

∫
R3

|y|p−1Q2(x − y)Q2(x)dydx ∈ (0,∞]. (3.12)

Then,

−mN ≤ e(N) ≤ −mN + � + 1

�
�

1
�+1

(κp

2

) 1
�+1 (

1 + o(1)
)
(N∗ − N)

�
�+1 as N ↗ N∗, (3.13)

where � = min{2, p} − 1 > 0, and κp > 0 satisfies

κp =

⎧⎪⎪⎨⎪⎪⎩
βγ, 1 < p < 2;
βγ + m2λ, p = 2;
m2λ, 2 < p ≤ ∞.

(3.14)

Proof. The lower bound of (3.13) follows directly from (2.4). To prove the upper bound of e(N), similar to the proof 
of Theorem 1.1, we use a trial function uτ of the form (2.5) so that 

∫
R3 |uτ |2dx = N . Similar to the argument of (2.6), 

we then have
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e(N) ≤ E(uτ ) = −mN + 〈uτ ,
(√−� + m2 − √−�

)
uτ 〉

+
[∥∥(−�)1/4uτ

∥∥2
2 − 1

2

∫
R3

( 1

|x| ∗ |uτ |2
)
(x)|uτ |2dx

]

+ 1

2

∫
R3

(1 − K(x)

|x| ∗ |uτ |2
)
(x)|uτ |2dx

= −mN + N(N∗ − N)τ

N∗ + 〈uτ ,
(√−� + m2 − √−�

)
uτ 〉

+ N2τ

2(N∗)2

∫
R3

(1 − K(x
τ
)

|x| ∗ Q2
)
(x)Q2(x)dx

= −mN + N(N∗ − N)τ

N∗ + I + II.

(3.15)

As for the term I , it follows from Plancherel’s theorem that

I = 〈uτ ,
(√−� + m2 − √−�

)
uτ 〉

= N

N∗

∫
R3

∣∣Q̂(k)
∣∣2(√

τ 2k2 + m2 − τ |k|)dk

= Nm2

N∗τ

∫
R3

∣∣Q̂(k)
∣∣2 1√

k2 + m2/τ 2 + |k|dk

= Nm2

N∗τ

∫
R3

∣∣Q̂(k)
∣∣2

2|k| dk + o(τ−1) = Nm2λ

2N∗τ
+ o(τ−1) as τ → ∞,

(3.16)

where (3.12) is used in the last equality.
We next estimate the term II as follows. Consider α ∈ (0, 1), which will be determined later. Then,∫

R3

(1 − K(x
τ
)

|x| ∗ Q2
)
(x)Q2(x)dx

=
∫

|x|≥τα

(1 − K(x
τ
)

|x| ∗ Q2
)
(x)Q2(x)dx

+
{ ∫
|x|<τα

∫
|y|≥2τα

+
∫

|x|<τα

∫
|y|<2τα

}(1 − K(
y
τ
)

|y| Q2(x − y)Q2(x)
)
dydx

= II1 + II2 + II3.

(3.17)

From (1.7) and (1.8), we see that

II1 ≤
∫

|x|≥τα

( 1

|x| ∗ Q2
)
(x)Q2(x)dx

≤ C

∫
|x|≥τα

(1 + |x|)−9dx ≤ Cτ−6α as τ → ∞.

(3.18)

If |x| < τα and |y| ≥ 2τα , then

|x − y| ≥ |y| − |x| ≥ |y|
2

→ ∞ as τ → ∞.

This estimate and (1.7) imply that
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∫
|y|≥2τα

1 − K(
y
τ
)

|y| Q2(x − y)dy ≤ C

∫
|y|≥2τα

1

|y|9 dy ≤ Cτ−6α,

and therefore,

II2 ≤ Cτ−6α

∫
|x|<τα

Q2(x)dx ≤ Cτ−6α as τ → ∞. (3.19)

As for II3, since K(x) satisfies (1.15) and 0 < α < 1, we have∫
|y|<2τα

1 − K(
y
τ
)

|y| Q2(x − y)dy

≤ (
β + o(1)

)
τ−p

∫
|y|<2τα

|y|p−1Q2(x − y)dy as τ → ∞.

Thus for τ → ∞,

τp(
β + o(1)

) · II3 ≤
∫

|x|<τα

∫
|y|<2τα

|y|p−1Q2(x − y)Q2(x)dydx

=
∫

|x|<τα

∫
|z−x|<2τα

|z − x|p−1Q2(z)Q2(x)dzdx

≤ C

∫
|x|<τα

∫
|z|<3τα

(|z|p−1 + |x|p−1)Q2(z)Q2(x)dzdx

≤ C
[ ∫
|x|<τα

Q2(x)dx

∫
|z|<3τα

|z|p−1Q2(z)dz

+
∫

|z|<3τα

Q2(z)dz

∫
|x|<τα

|x|p−1Q2(x)dx
]

≤ C +
{

Cτ(p−6)α, 1 < p �= 6;
αC ln τ, p = 6.

(3.20)

This indicates that if 1 < p < 6, then

lim
τ→∞

∫
|x|<τα

∫
|y|<2τα

|y|p−1Q2(x − y)Q2(x)dydx = γ ∈ (0,∞), (3.21)

where γ is defined by (3.12). Therefore, it follows from (3.20) and (3.21) that for τ → ∞,

II3 ≤

⎧⎪⎪⎨⎪⎪⎩
(
βγ + o(1)

)
τ−p, 1 < p < 6;

Cτ−p ln τ, p = 6;
Cτ(α−1)p−6α, p > 6.

This together with (3.17), (3.18) and (3.19) implies that for τ → ∞,

II ≤ Cτ−6α+1 +

⎧⎪⎪⎨⎪⎪⎩
N2(βγ+o(1))

2(N∗)2 τ−p+1, 1 < p < 6;
Cτ−5 ln τ, p = 6;
Cτ(α−1)p−6α+1, 6 < p ≤ ∞.
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Choose α ∈ ( 1
3 , 1) so that τ−6α+1 = o(τ−1) as τ → ∞. We then conclude from the above that

II ≤
{

N2(βγ+o(1))

2(N∗)2 τ−p+1, 1 < p ≤ 2;
o(τ−1), 2 < p ≤ ∞.

(3.22)

We are now ready to derive the upper bound of (3.13) by discussing separately the following three cases:
Case 1: 2 < p ≤ ∞. In this case, it follows from (3.22) that II = o(τ−1) as τ → ∞. We then deduce from (3.15) and 
(3.16) that

e(N) ≤ E(uτ ) ≤ −mN + N(N∗ − N)τ

N∗ + Nm2λ

2N∗τ
+ o(τ−1) as τ → ∞.

Taking

τ =
[ m2λ

2(N∗ − N)

] 1
2 → ∞ as N ↗ N∗,

we thus obtain from above that

e(N) ≤ −mN + √
2mλ

1
2
(
1 + o(1)

)
(N∗ − N)

1
2 as N ↗ N∗, (3.23)

which then gives the upper bound of (3.13) for Case 1.
Case 2: p = 2. In this case, we deduce from (3.15), (3.16) and (3.22) that

e(N) ≤ E(uτ ) ≤ −mN + N(N∗ − N)τ

N∗

+ Nm2λ

2N∗τ
+ N2(βγ + o(1))

2(N∗)2τ
+ o(τ−1) as τ → ∞.

By taking

τ =
[ m2λ + βγ

2(N∗ − N)

] 1
2
,

so that τ → ∞ as N ↗ N∗, we then have

e(N) ≤ −mN + √
2(m2λ + βγ )

1
2
(
1 + o(1)

)
(N∗ − N)

1
2 as N ↗ N∗, (3.24)

which gives the upper bound of (3.13) for Case 2.
Case 3: 1 < p < 2. In this case, one can derive from (3.15), (3.16) and (3.22) that

e(N) ≤ −mN + N(N∗ − N)τ

N∗ + N2(βγ + o(1))

2(N∗)2τp−1
+ o(τ 1−p) as τ → ∞.

Taking

τ =
[ (p − 1)βγ

2(N∗ − N)

] 1
p
,

so that τ → ∞ as N ↗ N∗, it thus follows that

e(N) ≤ −mN + p

p − 1
(p − 1)

1
p (

βγ

2
)

1
p
(
1 + o(1)

)
(N∗ − N)

p−1
p as N ↗ N∗, (3.25)

and the upper bound of (3.13) is therefore established. �
Proof of Theorem 1.3. (1). We first prove (1.13) under the assumptions (1.9), (1.10) and K(x) = 1 − o(|x|) ≥ 0 as 
|x| → 0. For the sequence {yN } obtained in (3.8), in this case we set

wN(x) := w̄N(x + yN) = ε
3
2 uN(εNx + εNyN). (3.26)
N
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It then follows from (3.8) that there exist R > 0 and η > 0 such that

lim inf
N↗N∗

∫
BR(0)

|wN |2dx ≥ η > 0. (3.27)

Moreover, we deduce from (3.1) and (3.26) that wN satisfies(√−� + ε2
Nm2 − εNm

)
wN −

(K(εNx)

|x| ∗ |wN |2
)
wN = −μNεNwN in R

3. (3.28)

Note from (3.7) that {wN } is bounded uniformly in H
1
2 (R3). Thus, under the assumption (1.10) there exists a subse-

quence of {wN }, still denoted by {wN }, such that wN ⇀ w0 ≥ 0 in H
1
2 (R3). In addition, it follows from (1.9), (3.5)

and (3.28) that w0 satisfies

√−�w0 −
( 1

|x| ∗ |w0|2
)
w0 = − 1

N∗ w0 in R
3. (3.29)

By (3.27), we have w0 �≡ 0 in R3, and thus

0 <

∫
R3

|w0|2dx ≤ lim inf
N↗N∗

∫
R3

|wN |2dx = N∗. (3.30)

On the other hand, it follows from (3.29) and the standard Pohozaev identity that

1

N∗

∫
R3

|w0|2dx =
∫
R3

|k||ŵ0|2dk = 1

2

∫
R3

( 1

|x| ∗ |w0|2
)|w0|2dx.

We thus derive from (1.3) and (3.30) that

N∗

2
≤

∫
R3 |k||ŵ0|2dk · ∫

R3 |w0|2dx∫
R3

( 1
|x| ∗ |w0|2

)|w0|2dx
=

∫
R3 |w0|2dx

2
≤ N∗

2
. (3.31)

This indicates that w0 optimizes the Gagliardo–Nirenberg type inequality (1.3). Moreover, wN converges to w0
strongly in L2(R3), and in fact strongly in Lp(R3) for all p ∈ [2, 3). Further, since wN and w0 satisfy (3.28) and 
(3.29), respectively, standard elliptic regular theory gives that

wN → w0 ≥ 0 strongly in H
1
2 (R3). (3.32)

Since w0 ≥ 0 (�≡ 0) satisfies (3.29), it then follows from [6, Theorem 1.1], [19, Theorem 11.8] that w0 > 0 and w0 is 
radially symmetric about some point y1 ∈R

3. Set

Q0(x) = (N∗)
3
2 w0

(
N∗|x − y1|

)
. (3.33)

Then, Q0(x) = Q0(|x|) > 0 optimizes the inequality (1.3) and it follows from (3.29) and (3.31) that Q0 satisfies (1.4). 
Thus we have Q0(x) ∈ G. We therefore conclude (1.13) with y0 = −N∗y1 by applying (3.26), (3.32) and (3.33).

(2). Based on the conclusions of the above (1), the limits (1.16) and (1.17) can be derived, if Lemma 3.3 below 
holds under the additional assumption (1.15). Indeed, by taking Q = Q0 for Lemma 3.2, where Q0 is as in (3.33), 
if Lemma 3.3 is true we then derive from (3.13) that (3.34) below is indeed an equality, and therefore (1.17) holds. 
Furthermore, (1.16) and (1.19) also follow immediately if Lemma 3.3 holds. This completes the proof of Theo-
rem 1.3. �

For simplicity, as in (1.18) we next denote

λ0 :=
∫
R3

∣∣Q̂0(k)
∣∣2

|k| dk and γ0 :=
∫
R3

(
|x|p−1 ∗ |Q0|2

)
|Q0|2dx,

where Q0 > 0 is as that of (3.33). Under the assumptions (1.9), (1.10) and (1.15) for 1 < p ≤ ∞, the rest of this 
section is to establish the following lemma by following those obtained in the proof of Theorem 1.3.
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Lemma 3.3. For m > 0, suppose K(x) satisfies (1.9), (1.10) and (1.15) for 1 < p ≤ ∞. Then the energy e(N) satisfies

e(N) ≥ −mN + � + 1

�
�

1
�+1

( κ̂p

2

) 1
�+1 (

1 + o(1)
)
(N∗ − N)

�
�+1 as N ↗ N∗, (3.34)

where � = min{2, p} − 1 > 0, and κ̂p > 0 satisfies

κ̂p =

⎧⎪⎪⎨⎪⎪⎩
βγ0, 1 < p < 2;
βγ0 + m2λ0, p = 2;
m2λ0, 2 < p ≤ ∞.

(3.35)

Especially, the identity of (3.34) holds if and only if

εN ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

N∗
( 2

(p − 1)βγ0

) 1
p
(N∗ − N)

1
p , 1 < p < 2;

1

N∗
( 2

m2λ0 + βγ0

) 1
2
(N∗ − N)

1
2 , p = 2;

1

N∗
( 2

m2λ0

) 1
2
(N∗ − N)

1
2 , 2 < p ≤ ∞;

(3.36)

where f ≈ g denotes f/g → 1 as N ↗ N∗.

Proof. Under the assumptions of Lemma 3.3, all conclusions of (1) in the above proof of Theorem 1.3 are true. 
Further, note from (1.3) and (3.3) that

e(N) = E(uN) = −mN + 〈uN,
√−�uN 〉 − 1

2

∫
R3

( 1

|x| ∗ |uN |2
)
(x)|uN |2dx

+ 〈uN, (
√

−� + m2 − √−�)uN 〉
+ 1

2

∫
R3

(1 − K(x)

|x| ∗ |uN |2
)
|uN |2dx (3.37)

≥ −mN + N∗ − N

N∗
1

εN

+ 〈uN, (
√

−� + m2 − √−�)uN 〉︸ ︷︷ ︸
Î

+ 1

2

∫
R3

(1 − K(x)

|x| ∗ |uN |2
)
|uN |2dx

︸ ︷︷ ︸
Î I

.

By Plancherel’s theorem, we deduce from (3.26), (3.32) and (3.33) that

Î =
∫
R3

∣∣ŵN(k)
∣∣2(√

k2/ε2
N + m2 − |k|

εN

)
dk

= m2εN

∫
R3

∣∣ŵN(k)
∣∣2 1√

k2 + m2ε2
N + |k|

dk

= m2 + o(1)

2
εN

∫
R3

∣∣ŵ0(k)
∣∣2

|k| dk

= m2 + o(1)

2
N∗εN

∫
R3

∣∣Q̂0(k)
∣∣2

|k| dk as N ↗ N∗,

(3.38)

which gives the estimate of Î .
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We next estimate the term Î I as follows. Similar to the proof of [6, Lemma 2.2], one can derive from (3.28) and 
(3.31) that there exists C > 0, independent of N , such that

|wN(x)| ≤ C(1 + |x|)−4 and
( 1

|x| ∗ |wN |2
)
(x) ≤ C(1 + |x|)−1 in R

3. (3.39)

For simplicity, we next set

QN(x) := (N∗)
3
2 wN(N∗x) = (N∗εN)

3
2 uN(N∗εNx + N∗εNyN), (3.40)

so that QN satisfies (3.39) and

QN(x) → Q0

(∣∣∣x − y0

N∗
∣∣∣) strongly in H

1
2 (R3) as N ↗ N∗, (3.41)

in view of (3.32) and (3.33). By (3.40) we have

Î I = 1

N∗εN

∫
R3

(1 − K(N∗εNx)

|x| ∗ |QN |2
)
|QN |2dx

≥
∫

|x|≤ε
−1/2
N

∫
|y|≤2ε

−1/2
N

1 − K(N∗εNy)

|N∗εNy| |QN(x − y)|2|QN(x)|2dydx

≥ (
N∗εN

)p−1(
β + o(1)

) ∫
|x|≤ε

−1/2
N

∫
|y|≤2ε

−1/2
N

|y|p−1|QN(x − y)|2|QN(x)|2dydx,

(3.42)

where β > 0 is defined by (1.15). Moreover, similar to the calculations of (3.20) (where τ > 0 is replaced by ε−1
N ), we 

deduce from (3.39) and (3.41) that if 1 < p < 6,

lim
N↗N∗

∫
|x|≤ε−1

N

∫
|y|≤2ε−1

N

|y|p−1|QN(x − y)|2|QN(x)|2dydx

=
∫
R3

(
|x|p−1 ∗ |Q0|2

)
|Q0|2dx = γ0 < ∞.

Together with (3.42), this implies that for 1 < p < 6,

Î I ≥ γ0(β + o(1))(N∗εN)p−1 as N ↗ N∗. (3.43)

In what follows, we shall complete the proof by considering separately the following three different cases:
Case 1: 2 < p ≤ ∞. In this case, we deduce from (3.37) and (3.38) that

e(N) + mN ≥ N∗ − N

N∗εN

+ m2 + o(1)

2
λ0N

∗εN

≥ √
2
[(

m2 + o(1)
)
λ0

] 1
2
(N∗ − N)

1
2 as N ↗ N∗, (3.44)

and moreover, a simple calculation shows that the second inequality of (3.44) is an identity if and only if

εN ≈ 1

N∗
( 2

m2λ0

) 1
2
(N∗ − N)

1
2 as N ↗ N∗. (3.45)

Case 2: p = 2. In this case, we deduce from (3.37), (3.38) and (3.43) that

e(N) + mN ≥ N∗ − N

N∗εN

+ m2 + o(1)

2
λ0N

∗εN + γ0

2
(β + o(1))N∗εN

≥ √
2
(
λ0m

2 + βγ0 + o(1)
) 1

2
(N∗ − N)

1
2 as N ↗ N∗,

(3.46)
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and the second inequality of (3.46) is an identity if and only if

εN ≈ 1

N∗
( 2

m2λ0 + βγ0

) 1
2
(N∗ − N)

1
2 as N ↗ N∗. (3.47)

Case 3: 1 < p < 2. In this case, we derive from (3.37), (3.38) and (3.43) that

e(N) + mN ≥ N∗ − N

N∗εN

+ m2 + o(1)

2
λ0N

∗εN + γ0
(
β + o(1)

)
(N∗εN)p−1

≥ p

p − 1
(p − 1)

1
p

(βγ0

2

) 1
p (

1 + o(1)
)
(N∗ − N)

p−1
p as N ↗ N∗,

(3.48)

and the second inequality of (3.48) is an identity if and only if

εN ≈ 1

N∗
( 2

(p − 1)βγ0

) 1
p
(N∗ − N)

1
p as N ↗ N∗. (3.49)

Therefore, (3.34) and (3.35) now follow from (3.44), (3.46) and (3.48). Moreover, (3.45), (3.47) and (3.49) also 
imply that (3.36) is true. This completes the proof of Lemma 3.3. �
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