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Abstract

In this paper we prove a two-dimensional existence result for a variational model of crack growth for brittle materials in the realm 
of linearized elasticity. Starting with a time-discretized version of the evolution driven by a prescribed boundary load, we derive 
a time-continuous quasistatic crack growth in the framework of generalized special functions of bounded deformation (GSBD). 
As the time-discretization step tends to zero, the major difficulty lies in showing the stability of the static equilibrium condition, 
which is achieved by means of a Jump Transfer Lemma generalizing the result of [19] to the GSBD setting. Moreover, we present 
a general compactness theorem for this framework and prove existence of the evolution without imposing a-priori bounds on the 
displacements or applied body forces.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The mathematical foundations of the theory of brittle fracture were laid by the work of A. Griffith [26] in the 
1920s. The fundamental idea is that the formation of cracks may be seen as the result of the competition between 
the elastic bulk energy of the body and the work needed to produce a new crack. This latter is modeled as a surface 
energy, which, in its simplest form, is proportional to the surface measure of the crack via a material constant, called 
the toughness of the material. The rigorous mathematical formulation of the problem, introduced in [23], requires that 
the function t → (u(t), �(t)), associating to each time t a deformation u(t) of the reference configuration and a crack 
set �(t), is a quasistatic evolution satisfying the following conditions:
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• (a) static equilibrium: for every t the pair (u(t), �(t)) minimizes the energy at time t among all admissible 
competitors;

• (b) irreversibility: �(s) is contained in �(t) for 0 ≤ s < t ;
• (c) nondissipativity: the derivative of the internal energy equals the power of the applied forces.

Remarkable features of this approach are that it is able to show crack initiation, as well as a discontinuous evolution 
of the crack path, which needs not to be a priori prescribed. On the other hand, establishing a rigorous mathematical 
framework for the existence of a continuous-time evolution has proved to be quite a hard task.

1.1. Existence results for continuous-time evolution

The first breakthrough results in this direction are the ones in [15] and [9] tackling in a planar setting the case of 
anti-plane shear and linearized elasticity, respectively. The evolution is driven by a given prescribed load g(t) on a 
Dirichlet part ∂D� of the boundary of the reference configuration �. Namely, in the case considered in [9], the energy 
associated to a displacement u and a crack � is given by

E(u,�) :=
ˆ

�\�
Q(e(u))dx +H1(�) , (1)

where Q is a quadratic form acting on the symmetrized gradient e(u). At each time t , the deformation u(t), which 
fulfills the boundary condition u(t) = g(t) on ∂D� \ �(t) has to satisfy the minimality property

E(u(t),�(t)) ≤ E(v,�) (2)

for all � ⊃ ⋃
s<t �(s) and all v ∈ LD(� \ �) with v = g(t) on ∂D� \ �. Here LD is the space of displacements 

with square-integrable strains. The existence of an evolution is proved by following the natural idea, in the context of 
quasistatic brittle fracture, of starting with a time-discretized evolution, and then letting the time-step go to 0. Namely, 
for a given time step δ > 0 and n ∈N, the pair (u(nδ), �(nδ)) is inductively defined as a solution for the problem

arg min

⎧⎪⎨
⎪⎩
ˆ

�\�
Q(e(u))dx +H1(�)

⎫⎪⎬
⎪⎭ (3)

among all cracks � ⊃ �((n − 1)δ) and displacements u ∈ LD(� \ �) with u = g(nδ) on ∂D� \ �. Notice that the 
existence for the above minimum problems can be proved under the additional restriction that the admissible cracks 
have at most a fixed number of connected components. Indeed, in this case the direct method proves successful: 
crack sets are compact and lower semicontinuous with respect to the Hausdorff topology of sets via Gołab’s Theorem 
(see [25]), while compactness of the displacements is recovered via the Poincaré–Korn inequality, upon noticing that 
the energy stays invariant under subtraction of rigid movements in the connected components of � \� whose boundary 
has no intersection with ∂D� \ �.

The aforementioned important restriction plays furthermore a fundamental role in overcoming a stability issue, 
which arises when taking the limit for a time step δ going to 0. Indeed, if this hypothesis is dropped, the convergence 
in the Hausdorff metric of the approximating cracks �δ(t) (obtained as piecewise constant interpolations of �(nδ), 
n ∈ N) to a set �(t) does not imply that piecewise constant interpolations of the time-discretized displacements uδ(t)

converge to a solution of the minimum problem (3). This issue, which is due to a Neumann-sieve-type phenomenon 
(see [30]), can be overcome in a planar setting imposing an a-priori bound on the connected components of the cracks 
and using some results from the analysis of Neumann problems in varying domains, contained in [7,11].

To avoid this restriction, a different and more powerful approach has been proposed in [19], and successfully
applied to the case of anti-plane shear in arbitrary dimension N . In this case, the reference configuration is an infinite 
cylinder � ×R with � ⊂R

N open and bounded, and admissible displacements are of the form (0, . . . , 0, u(x)) where 
x varies in � and the only nonzero component u(x) is scalar-valued. In this case, the linear elastic energy reduces 
to the Dirichlet energy 

´
�\� |∇u|2 dx and the incremental minimum problems become very similar to the strong 

formulation of the Mumford–Shah functional in image segmentation proposed in [29]. Inspired by De Giorgi’s weak 
formulation in the space of special functions of bounded variation SBV (�) (see [16,17]), the authors model crack 



M. Friedrich, F. Solombrino / Ann. I. H. Poincaré – AN 35 (2018) 27–64 29
sets as (union of) jump sets of admissible displacements. The minimum problems to be solved at every time step 
essentially reduce (up to some modifications in order to allow for cracks running alongside the boundary) to

arg min

⎧⎨
⎩
ˆ

�

|∇u|2 dx +HN−1(Ju \ �((n − 1)δ))

⎫⎬
⎭ , (4)

with Ju denoting the jump set of u, among all displacement satisfying u = g(nδ) on ∂D�. Provided one assumes an 
L∞ bound on the boundary datum, the maximum principle and Ambrosio’s compactness theorem in SBV (see [1]
and [2]) ensure well-posedness for the above problem. If u is a solution thereof, the crack set is then updated by setting 
�(nδ) := Ju ∪ �((n − 1)δ).

A key tool introduced in the paper [19] in order to deal with the above mentioned stability issues, when the time 
step δ tends to 0, is the so-called Jump Transfer Lemma. It allows to transfer most of the jump set of any function in 
SBV that lies inside of the jump set of a function u onto that of un, if un is a sequence in SBV weakly converging 
to u. As a consequence of this lemma, the authors are able to recover a weak form of (2) in the limit. The existence 
result has been later generalized to finite hyperelastic energies and vector-valued deformations in [14], whereas the 
existence of a weak quasistatic evolution for the fully linear elastic model (1) has remained an open issue, due to at 
least two major difficulties.

1.2. Challenges for linear elastic models

As a first point, even in the static setting the existence of minimizers for the weak formulation is not clear. A natural 
attempt of generalizing (4) consists indeed in considering problems of the type

arg min

⎧⎨
⎩
ˆ

�

Q(e(u))dx +HN−1(Ju \ �)

⎫⎬
⎭ , (5)

under some prescribed boundary condition g, in the space SBD of special functions of bounded deformation 
(see [3,6]), for which a symmetrized gradient and an HN−1-rectifiable jump set are well defined. However, weak 
sequential compactness in SBD requires (see [6, Theorem 1.1]) a uniform bound on the L∞ norm of the sequence, 
similarly to the SBV -case, which in this setting is not guaranteed along a minimizing sequence, due to the lack of a 
maximum principle. The addition of lower order terms, related for instance to the action of bulk forces, can at least 
provide some uniform bound on the Lp norm of the minimizing sequences, so that, mimicking a successful approach 
to similar problems in spaces of functions of bounded variation, one can recover an existence result in the space 
GSBD of generalized special functions of bounded deformation. A correct definition of this space and the investiga-
tion of the related compactness and lower semicontinuity properties have proved to be a quite delicate issue, which has 
been overcome only recently in the paper [13]. On the other hand, it would be highly desirable to have an existence 
result also for the model (5) without the addition of lower order terms. This requires a suitable Korn-type inequality in 
GSBD to be available, allowing in some sense to reproduce the steps of the existence proof for (3) in a weak setting.

The other major issue to be faced in order to give an existence proof of a quasistatic evolution with values in GSBD

is the generalization of the Jump Transfer Lemma to this setting. Actually, the proof strategy devised in [19] cannot be 
straightforwardly reproduced in this context. Indeed, there the jump set Ju is written as a countable union of pairwise 
intersections of level sets of u. The parts of the corresponding level sets for un lying outside Jun are then shown to 
have small length. With this, one can transfer onto pieces of these sets the jump Jφ ∩ Ju for a given competitor φ. In 
this procedure, the coarea formula and the equiintegrability of ∇un play a crucial role. In the framework of linearized 
elasticity, however, only an a-priori control on the symmetrized gradient is available. Again, being able to estimate 
gradients in terms of their symmetrized part via a Korn-type inequality would remove parts of these obstacles and be 
a good starting point for proving an analog of the lemma in the GSBD setting.

1.3. The present paper

This preliminary discussion leads us to the purpose of the present paper. Our goal is to provide an existence result, 
in dimension N = 2, for quasistatic crack growth in the sense of Griffith in a linearly elastic material. In Theorem 3.1
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we show the existence of a pair (u(t), �(t)), with u(t) ∈ GSBD2(�), Ju(t) ⊂ �(t), and �(t) nondecreasing in time, 
such that u(t) minimizesˆ

�

Q(e(v))dx +H1(Jv \ �(t))

among all v ∈ GSBD2(�) satisfying the prescribed time-dependent Dirichlet condition g(t), and the total energy 
satisfies the energy-dissipation balance

E(u(t),�(t)) = E(u(0),�(0)) +
tˆ

0

ˆ

�

Ce(u(s, x)) · e(ġ(s, x))ds dx .

In the above equality C is the elastic tensor generating the quadratic form Q, so that the integral term can be interpreted 
as the virtual work of the applied boundary load. We also mention that, as it is typical of variational problems in spaces 
of functions of bounded deformation, the boundary condition has to be understood in a relaxed sense (see Section 3
for details).

A starting point for our proof strategy is the use of a piecewise Korn inequality for GSBD functions, proved in the 
planar setting in [22], extending other recent results in the literature ([20, Theorem 1.1] and [12, Theorem 1.2]). For 
every 1 ≤ p < 2 it allows to control the Lp-norm of a displacement and its gradient in terms of the square norm of the 
symmetrized gradient, provided a suitable piecewise infinitesimal rigid motion is subtracted. With this construction 
the jump set is enlarged, but still controlled by the length of the original jump set.

A major ingredient is then a sharp version of the piecewise Korn inequality proved in Theorem 4.1. We show that 
the jump set can even only be enlarged by a small length at the prize of having only an L1-control on the gradient. 
This control, however, involves constants which behave well with respect to scaling and particularly are small on 
small squares (see Remark 4.2).

Equipped with this result, we can prove Theorem 5.5, where, up to an arbitrarily small error θ , the jump set of a 
weakly compact sequence (un)n in GSBD is shown to coincide with the one of a sequence (vn)n of SBV functions, 
still L1-converging to u up to some small exceptional sets. Furthermore, the L1-norm of ∇vn is uniformly small in a 
tubular neighborhood of the jump set Ju. Notice that the construction of vn is quite involved and depends on the given 
covering of Ju (see Section 5 for details).

This allows to prove a Jump Transfer Lemma also in this setting (Theorem 5.1), adapting the arguments of [19, 
Theorem 2.1]. The reflection procedure that the authors use there in order to define the sequence (φn)n corresponding 
to the competitor φ, which is not compatible with a control only on the symmetrized gradient e(φ), is here replaced 
by a suitable generalization introduced in [31] and adjusted to our purposes in Lemma 5.2.

The existence proof for the minimum problem (5) requires an additional step, namely a version of the sharp piece-
wise Korn inequality proved in Theorem 4.1 which also takes into account the relaxed boundary conditions. This is 
proved in Theorem 4.5. With this, we can derive a general compactness result for minimizing sequences of the energy 
(5) drawing some ideas from [20]: while typically sequences are not compact, it is always possible to pass to modifica-
tions by subtracting suitable piecewise infinitesimal rigid motions (which do not change the elastic part of the energy) 
at the expense of arbitrarily small additional fracture energy. This allows us to construct a minimizing sequence (yn)n
which satisfies the uniform boundˆ

�

ψ(|yn|)dx +
ˆ

�

|e(yn)|2dx +H1(Jyn) ≤ M

for an increasing, continuous functions ψ : [0, ∞) → [0, ∞) with ψ(s) → ∞ as s → ∞. This bound, in general 
weaker than any Lp-bound, is enough to apply the compactness result in [13, Theorem 11.3] deducing the existence 
of a minimizer (see Theorem 6.1 and Theorem 6.2 below). An additional delicate point of the proof is showing that 
the function ψ is only depending on the reference configuration � and the H 1 norm of the boundary displacement 
g(t), so that, under the usual regularity assumptions on the boundary load, it is independent from the time t along an 
evolution. This is crucial in the proof of Theorem 7.5 where the global stability property is derived.

Once this two major hurdles have been fixed, the by now well-known machinery successfully exploited in [19] and 
in [14], in the linear antiplane and in the finite elastic context, respectively, can be adapted to our setting with minor 
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modifications, which we however detail to some extent in Section 7. This leads to the proof of our main result stated 
in Theorem 3.1.

As already mentioned, we establish the result only in two dimensions as we make a heavy use of the piecewise 
Korn inequality of [22] which has been only derived in a planar setting due to technical difficulties, concerning 
the topological structure of crack geometries in higher dimensions. Additionally, also its generalization to the sharp 
version (Theorem 4.1) and the case of prescribed boundary conditions (Theorem 4.5) makes use of estimates holding 
in a planar setting (see Lemma 2.3, Lemma 4.4, and Lemma 4.6). Without these restrictions, the methods we use 
actually hold in any dimension. We therefore believe that our results can be extended to the N -dimensional case and 
that the proof provides the principal techniques being necessary to establish the result in arbitrary space dimension.

2. Preliminaries

In this section we introduce basic definitions and the function spaces which we will use in the paper. Moreover, we 
recall a piecewise Korn inequality for GSBD functions proved in [22].

2.1. Basic definitions

For a bounded, measurable set E ⊂R
N we define

diam(E) = ess sup{|x − y| : x, y ∈ E}.
The above definition is independent of the particular Lebesgue representative. If U is an open set in RN , and u : U →
R

m is a LN -measurable function, u is said to have an approximate limit a ∈ R
m at a point x ∈ U if and only if

lim
	→0+

LN
({|u − a| ≥ ε} ∩ B	(x)

)
	N

= 0 for every ε > 0 ,

where B	(x) is the ball of radius 	 centered at x. In this case, one writes ap limy→x u(y) = a. The approximate jump 
set Ju is defined as the set of points x ∈ U such that there exist a = b ∈ R

m and ν ∈ SN−1 := {ξ ∈ R
N : |ξ | = 1} with

ap lim
y→x

(y−x)·ν>0

u(y) = a , ap lim
y→x

(y−x)·ν<0

u(y) = b .

The triplet (a, b, ν) is uniquely determined up to a permutation of (a, b) and a change of sign of ν, and is denoted by 
(u+(x), u−(x), νu(x)). The jump of u is the function [u] : Ju → R

m defined by [u](x) := u+(x) − u−(x) for every 
x ∈ Ju. It follows from Lusin’s Theorem that u has u(x) as approximate limit at LN -a.e. x ∈ U , in which case one says 
that u is approximately continuous at x, and therefore Ju is a LN -null set. Given x ∈ U such that u is approximately 
continuous at x, an m × N matrix ∇u(x) is said to be an approximate gradient of u at x if and only if

ap lim
y→x

u(y) − u(x) − ∇u(x)(y − x)

|y − x| = 0 .

We say that u has an approximate symmetric differential e(u)(x) ∈R
N×N
sym at x if

ap lim
y→x

(u(y) − u(x) − e(u)(x)(y − x)) · (y − x)

|y − x|2 = 0 .

We will make use of the following measure-theoretical result from [20]. A short proof is reported for the reader’s 
convenience.

Lemma 2.1. Let F ⊂R
N with LN(F ) < +∞ and let (sn)n, (tn)n be nonnegative, monotone sequences with sn → ∞

and tn → 0 as n → ∞. Then there is a nonnegative, increasing, concave function ψ with

lim
s→+∞ψ(s) = +∞ (6)

only depending on F , (sn)n, (tn)n such that for every sequence (un)n ⊂ L1(F ; Rm) with

‖un‖L1(F ) ≤ sn, LN
(⋂

m≥n
{|um − un| ≥ 1}

)
≤ tn

for all n ∈N there is a not relabeled subsequence such that
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sup
n≥1

ˆ

F

ψ(|un|)dx ≤ 1 .

Proof. Let An = ⋂
m≥n{|un −um| ≤ 1} and set B1 = A1 as well as Bn = An \⋃n−1

m=1 Bm for all n ∈N. The sets (Bn)n

are pairwise disjoint with 
∑

n LN(Bn) = LN(F ). We choose 0 = n1 < n2 < . . . such that 
∑

1≤n≤ni

LN(Bn)

LN(F )
≥ 1 − 4−i . 

We let Bi = ⋃ni+1
n=ni+1 Bn and observe LN(Bi) ≤ 4−iLN(F ).

From now on we consider the subsequence (ni)i∈N and observe that the choice of (ni)i∈N only depends on the 
sequence (tn)n. Choose Ei ⊃ Bi such that LN(Ei) = 4−iLN(F ). Let bi = sni+1

LN(Ei)
+ 2 = 4i sni+1

LN(F )
+ 2 for i ∈ N and 

note that (bi)i is increasing with bi → ∞. By an elementary construction (see [20, Lemma 4.1]) we find an increasing 
concave function ψ : [0, ∞) → [0, ∞) with lims→∞ ψ(s) = ∞ and ψ(bi) ≤ 2i

LN(F )
for all i ∈ N.

For B̂i := � \ ⋃ni

n=1 Bn we have LN(B̂i) ≤ 4−iLN(F ) and choose Êi ⊃ B̂i with LN(Êi) = 4−iLN(F ). We then 
obtain 

sni

LN(Êi )
= 4i sni

LN(F )
≤ bi . Now let l = ni . Using Jensen’s inequality, the definition of the sets Bi , ‖ul‖1 ≤ sl and 

the monotonicity of ψ we computeˆ

F

ψ(|ul |) =
∑

1≤j≤i−1

ˆ

Bj

ψ(|ul |)dx +
ˆ

B̂i

ψ(|ul |)dx

≤
∑

1≤j≤i−1

ˆ

Bj

ψ(|unj+1 | + 2)dx +
ˆ

B̂i

ψ(|ul |)dx

≤
∑

1≤j≤i−1
LN(Ej )ψ

(
−
ˆ

Ej

|unj+1 | + 2
)

+LN(Êi)ψ
(
−
ˆ

Êi

|ul |
)

≤
∑

1≤j≤i−1
LN(F )4−j 2j

LN(F )
+LN(F )4−i 2i

LN(F )
≤

∑
j∈N 2−j = 1.

As the estimate is independent of l ∈ (ni)i , this yields 
´
F

ψ(|ul |)dx ≤ 1 uniformly in l, as desired. �
Remark 2.2. Let u be a measurable function and (un)n ⊂ L1(F ; Rm) a sequence such that un → u in measure. Then 
it follows from the previous lemma that there exist a subsequence (unk

)k of (un)n and a nonnegative, increasing, 
concave function ψ satisfying (6), such that

sup
k≥1

ˆ

F

ψ(|unk
|)dx ≤ 1 .

Indeed, by definition of convergence in measure we can always find a subsequence (unk
)k with the property that, 

setting Ek := {|unk
− u| ≥ 1

2k }, one has LN(Ek) ≤ 1
2k . Now, for all k ∈ N we have by the triangle inequality that⋃

m≥k

{|unm − unk
| ≥ 1} ⊆

⋃
m≥k

Em

and therefore

LN
(⋃

m≥k
{|unm − unk

| ≥ 1}
)

≤
∑+∞

m=k

1

2m
= 1

2k−1
.

Now it suffices to apply the previous lemma with sk := max{max1≤i≤k ‖uni
‖L1(F ), k} and tk := 1

2k−1 .

In a two-dimensional setting, we will often make use of the following simple lemma.

Lemma 2.3. Let A ∈R
2×2
skew, b ∈ R

2.
(a) There is a universal constant c > 0 independent of A and b such that for all measurable E ⊂ R

2 we have 
(L2(E))

1
2 |A| ≤ c‖A · +b‖L∞(E;R2).
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(b) Let F be a bounded measurable subset of R2, δ > 0 and let a continuous nondecreasing function ψ : R+ → R
+

satisfying (6) be given. Consider a measurable subset E ⊂ F with L2(E) ≥ δ. Then, if

M ≥
ˆ

E

ψ(|Ax + b|)dx ,

there exists a constant C only depending on M , δ, ψ , and F such that

|A| + |b| ≤ C . (7)

If ψ(s) = sp for p ∈ [1, ∞) we get |A| + |b| ≤ C̃M
1
p for a constant C̃ only depending on δ, p and F .

Proof. (a) It suffices to consider the case A = 0. If A = 0, the assumption A ∈ R
2×2
skew implies that A is invertible and 

that |Ay| =
√

2
2 |A||y| for all y ∈ R

2. We notice that for all z ∈ R
2 there exists x ∈ E with |x − z| ≥ 1

4 diam(E). For 

the special choice z = −A−1b we obtain |A x + b| = |A (x − z)| =
√

2
2 |A||x − z| ≥

√
2

8 |A|diam(E) which implies the 
result due to the isodiametric inequality.

(b) If A = 0, we have

M

δ
≥ ψ(|b|)

and the result follows from (6). If A = 0, we set z := −A−1b and λ :=
√

δ
2π

. Then we have that L2(E \ Bλ(z)) ≥ δ
2 . 

Since ψ is nonnegative and increasing, we get

M ≥
ˆ

E

ψ

(√
2

2
|A||x − z|

)
dx

≥
ˆ

E\B(z,λ)

ψ

(√
2

2
|A||x − z|

)
dx ≥ δ

2
ψ

(√
2

2
|A|λ

)
.

By this and (6) it exists a constant Ĉ only depending on M , δ, and ψ such that

|A| ≤ Ĉ. (8)

It also follows that |Ax| ≤ C′ for all x ∈ F , where C′ is allowed to depend on F , too. If now |b| ≤ C′ we are done, 
otherwise it holds |Ax + b| ≥ |b| − C ′ > 0 for all x ∈ F . The monotonicty of ψ yields then

M

δ
≥ ψ(|b| − C′)

and again (6) implies the conclusion. The case ψ(s) = sp may be proved along similar lines taking into account that 

(8) can be replaced by |A| ≤ C̃M
1
p for C̃ independent of M . �

2.2. Function spaces

In the whole paper we use standard notations for the spaces SBV and SBD. We refer the reader to [4] and [3,6,32], 
respectively, for definitions and basic properties. In this section we only give the definition and some properties of 
generalized functions of bounded deformation introduced in [13], being the setting of our existence result. For fixed 
ξ ∈ SN−1, we set

�ξ := {y ∈ R
N : y · ξ = 0} , Uξ

y := {t ∈R : y + tξ ∈ U} for y ∈ �ξ .

Definition 2.4. An LN -measurable function u : U → R
N belongs to GBD(U) if there exists a positive bounded 

Radon measure λu such that, for all τ ∈ C1(RN) with − 1
2 ≤ τ ≤ 1

2 and 0 ≤ τ ′ ≤ 1, and all ξ ∈ SN−1, the distributional 
derivative Dξ(τ(u · ξ)) is a bounded Radon measure on U whose total variation satisfies
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∣∣Dξ(τ(u · ξ))
∣∣ (B) ≤ λu(B)

for every Borel subset B of U . A function u ∈ GBD(U) belongs to the subset GSBD(U) of special functions of 
bounded deformation if in addition for every ξ ∈ SN−1 and HN−1-a.e. y ∈ �ξ , the function uξ

y(t) := u(y + tξ )

belongs to SBVloc(U
ξ
y ).

By [13, Remark 4.5] one has the inclusions BD(U) ⊂ GBD(U) and SBD(U) ⊂ GSBD(U), which are in general 
strict. Some relevant properties of functions with bounded deformation can be generalized to this weak setting: in par-
ticular, in [13, Theorem 6.2 and Theorem 9.1] it is shown that the jump set Ju of a GBD-function is HN−1-rectifiable 
and that GBD-functions have an approximate symmetric differential e(u)(x) at LN -a.e. x ∈ U , respectively. The 
space GSBD2(U) is defined through:

GSBD2(U) := {u ∈ GSBD(U) : e(u) ∈ L2(U ;RN×N
sym ) , HN−1(Ju) < +∞} .

Furthermore, the following compactness theorem has been proved in [13], which we slightly adapt for our purposes.

Theorem 2.5. Let � be a measurable set with HN−1(�) < +∞. Let (yk)k be a sequence in GSBD2(U). Suppose that 
there exist a constant M > 0 and an increasing continuous functions ψ : [0, ∞) → [0, ∞) with lims→∞ ψ(s) = +∞
such thatˆ

U

ψ(|yk|)dx +
ˆ

U

|e(yk)|2dx +HN−1(Jyk
) ≤ M

for every k ∈N. Then there exist a subsequence, still denoted by (yk)k , and a function y ∈ GSBD2(U) such that

yk → y in measure in U,

e(yk) ⇀ e(y) weakly in L2(U ;RN×N
sym ), (9)

HN−1(Jy \ �) ≤ lim inf
k→∞ HN−1(Jyk

\ �).

Proof. In [13] the assertion has been proved in the case � = ∅. We briefly indicate the necessary adaption for the 
derivation of (9)(iii) following the argumentation in [14, Theorem 2.8]. If � is compact, it suffices to replace �
by � \ �. In the general case let K ⊂ � compact with H1(� \ K) ≤ ε. Since Jy \ � ⊂ Jy \ K and Jyk

\ K ⊂
(Jyk

\ �) ∪ (� \ K) we have

H1(Jy \ �) ≤ H1(Jy \ K) ≤ lim infk→∞ H1(Jyk
\ K)

≤ lim infk→∞ H1(Jyk
\ �) +H1(� \ K) ≤ lim infk→∞ H1(Jyk

\ �) + ε.

We conclude by letting ε → 0. �
We now define a class of displacements with regular jump set. We say that u ∈ L1(U ; RN) is a displacements with 

regular jump set if the following properties are satisfied

(i) u ∈ SBV 2(U ;RN),

(ii) Ju =
m⋃

k=1

�k, �k closed connected pieces of C1-hypersurfaces, (10)

(iii) u ∈ H 1(U \ Ju;RN).

Displacements with regular jump set are dense in GSBD2(U) ∩ L2(U ; RN) in the sense given by the following 
statement, proved in [27] (cf. also [10, Theorem 3, Remark 5.3])).

Theorem 2.6. Let U ⊂ R
N open, bounded with Lipschitz boundary. Let u ∈ GSBD2(U) ∩ L2(U ; RN). Then there 

exists a sequence (uk)k of displacements with regular jump set so that
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(i) ‖uk − u‖L2(�;RN) → 0

(ii) ‖e(uk) − e(u)‖
L2(�;RN×N

sym )
→ 0,

(iii) HN−1(Juk
�Ju) → 0.

2.3. Caccioppoli partitions

We say that a partition P = (Pj )j of an open set U ⊂R
N is a Caccioppoli partition of U if∑

j
H1(∂∗Pj ) < +∞,

where ∂∗Pj denotes the essential boundary of Pj (see [4, Definition 3.60]). We say a partition is ordered if LN (Pi) ≥
LN

(
Pj

)
for i ≤ j . In the whole article, when dealing with infinite partitions, we will always tacitly assume that they 

are ordered. Moreover, we say that a set of finite perimeter Pj is indecomposable if it cannot be written as P 1 ∪ P 2

with P 1 ∩ P 2 = ∅, LN(P 1), LN(P 2) > 0 and HN−1(∂∗Pj ) = HN−1(∂∗P 1) + HN−1(∂∗P 2). The local structure of 
Caccioppoli partitions can be characterized as follows (see [4, Theorem 4.17]).

Theorem 2.7. Let (Pj )j be a Caccioppoli partition of U . Then⋃
j
(Pj )

1 ∪
⋃

i =j
(∂∗Pi ∩ ∂∗Pj )

contains HN−1-almost all of U .

Here (P )1 denote the points where P has density one (see again [4, Definition 3.60]). Essentially, the theorem 
states that HN−1-a.e. point of U either belongs to exactly one element of the partition or to the intersection of exactly 
two sets ∂∗Pi , ∂∗Pj . We now state a compactness result for ordered Caccioppoli partitions (see [4, Theorem 4.19, 
Remark 4.20]) slightly adapted for our purposes.

Theorem 2.8. Let U ⊂R
N open, bounded with Lipschitz boundary. Let Pi = (Pj,i)j , i ∈N, be a sequence of ordered 

Caccioppoli partitions of U with

supi≥1

∑
j≥1

HN−1(∂∗Pj,i) < +∞.

Then there exists a Caccioppoli partition P = (Pj )j and a not relabeled subsequence such that 
∑

j≥1 LN(Pj,i�Pj ) →
0 as i → ∞.

Proof. In [4] it was proved that Pj,i → Pj in measure for all j ∈ N as i → ∞. We briefly show that this 
already implies 

∑
j LN

(
Pj,i�Pj

) → 0 as i → ∞. Let ε > 0 and choose j0 ∈ N sufficiently large such that ∑
j<j0

LN
(
Pj

) ≥ LN (U) − ε. Then the convergence in measure implies that for i0 large enough depending on 
j0 we have 

∑
j<j0

LN
(
Pj,i�Pj

) ≤ ε for all i ≥ i0. Moreover, this overlapping property and the choice j0 imply ∑
j≥j0

LN
(
Pj,i

) ≤ 2ε for i ≥ i0. Consequently, we find 
∑

j LN
(
Pj,i�Pj

) ≤ 4ε for i ≥ i0. As ε > 0 was arbitrary, 
the assertion follows. �
2.4. Piecewise Korn inequality in GSBD

In this section we recall a piecewise Korn inequality for GSBD functions, proved in the planar setting in [22] (cf. 
also [12] and [21] for previous results) and being one of the major ingredients of our proofs. It implies in particular a 
density result Theorem 2.10 which in the planar case improves upon Theorem 2.6. Here and henceforth we will call 
an affine mapping of the form aA,b(x) := Ax + b with A ∈R

2×2
skew and b ∈R

2 an infinitesimal rigid motion.

Theorem 2.9. Let � ⊂R
2 open, bounded with Lipschitz boundary. Let p ∈ [1, 2). Then there is a constant c = c(p) >

0 and Ckorn = Ckorn(p, �) > 0 such that for each u ∈ GSBD2(�) there is a Caccioppoli partition � = ⋃∞
j=1 Pj and 

corresponding infinitesimal rigid motions (aj )j = (aAj ,bj
)j such that
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v := u −
∑∞

j=1
ajχPj

∈ SBV p(�;R2) ∩ L∞(�;R2)

and

(i)
∑∞

j=1
H1(∂∗Pj ) ≤ c(H1(Ju) +H1(∂�)),

(ii) ‖v‖L∞(�;R2) ≤ Ckorn‖e(u)‖
L2(�;R2×2

sym )
, (11)

(iii) ‖∇v‖Lp(�;R2×2) ≤ Ckorn‖e(u)‖
L2(�;R2×2

sym )
.

Below in Section 4 we prove a refined version of Theorem 2.9 which (a) provides a sharp estimate for the boundary 
of the partition in (11)(i) and (b) takes into account boundary data. This refined result will then be fundamental in 
proving the jump transfer lemma and the existence theorem for the time-incremental minimum problems.

Applying the above result, approximating u by the sequence vn := u − ∑∞
j=n+1 ajχPj

∈ GSBD2(�) ∩
L∞(�; R2), and using Theorem 2.6, we obtain the following density result for GSBD functions (see again [22]).

Theorem 2.10. Let � ⊂R
2 open, bounded with Lipschitz boundary. Let u ∈ GSBD2(�). Then there exists a sequence 

(uk)k of displacements with regular jump set such that

(i) uk → u in measure,

(ii) ‖e(uk) − e(u)‖
L2(�;R2×2

sym )
→ 0,

(iii) H1(Juk
�Ju) → 0.

Note that in contrast to the original density result reported in Theorem 2.6 the assumption that u ∈ L2(�) is not 
needed in the planar setting.

3. The model and statement of the main result

In this section we introduce the model we study and we fix the related notations. This preliminary discussion is 
still conducted in a general N -dimensional setting, while our main result, given at the end of the section, is stated and 
proved only in the planar case N = 2.

We analyze the evolution of a brittle material in the sense of Griffith [26] whose total energy consists of a linear 
elastic bulk term and a surface term proportional to the (N − 1)-dimensional measure of the crack. The body is under 
the action of a time-dependent prescribed boundary displacement g(t) on a relatively open part ∂D� of the boundary 
(Dirichlet part) of the reference configuration � ⊂R

N , which is supposed to be open, bounded with Lipschitz bound-
ary. The rest of the boundary will be instead assumed to be force-free for simplicity. The variables of the model are a 
GSBD-valued displacement u and a (not a priori prescribed) crack � with finite HN−1 measure. The uncracked part 
of the body has a linear elastic stored energy of the formˆ

�\�
Q(e(u))dx.

In the above expression e(u) is the approximate symmetrized gradient of u and Q :RN×N
sym → R is the quadratic form 

associated to a symmetric bounded and positive definite stiffness tensor C :RN×N
sym →R

N×N
sym , that is

Q(e) := 1

2
Ce : e, (12)

with the colon denoting the Euclidean product between matrices.
The prescribed boundary displacement g is a time dependent function g ∈ W

1,1
loc ([0, +∞); H 1(RN ; RN)). As it 

is typical for the weak formulation of evolutionary problems in spaces of functions of bounded deformation, the 
boundary condition will be relaxed as follows. We will assume that it exists an open, bounded Lipschitz set �′ ⊃ �

such that
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�′ ∩ � = ∂D� �′ \ � has Lipschitz boundary (13)

and impose, for every time t , that an admissible displacement u(t) satisfies u(t) = g(t) a.e. in �′ \ �. A competing 
crack may choose indeed to run alongside ∂D�, in which case the boundary condition is not attained in the sense of 
traces, at the expense of a crack energy.

The energy of a crack � ⊂ � will be proportional to its (N − 1)-dimensional Hausdorff measure, namely of the 
form

κHN−1(� ∩ �′),

where the material parameter κ represents the toughness of the material. Within this choice, and because of (13), 
formation of cracks along ∂D� is penalized, while no energy is spent for a crack sitting on the load-free part of the 
boundary ∂� \ ∂D�. In the following we will set κ = 1 without loss of generality.

The quasistatic evolution problem associated to the model with the prescribed boundary displacement g(t) consists 
in finding a displacement and crack path (u(t), �(t)) with Ju(t) ⊂ �(t) ⊂ � and u(t) = g(t) a.e. in �′ \ � such that 
�(t) is irreversible, namely �(t) ⊃ �(s) whenever t > s, and the following two conditions hold:

• global stability. For each t , u(t) minimizesˆ

�

Q(e(v))dx +HN−1(Jv \ �(t)) (14)

among all v ∈ GSBD2(�′) such that v = g(t) on �′ \ �;
• energy-dissipation balance. The total energy

E(t) :=
ˆ

�

Q(e(u(t)))dx +HN−1(�(t) ∩ �′) (15)

is absolutely continuous and satisfies for all t > 0

E(t) = E(0) +
tˆ

0

〈σ(s), e(ġ(s))〉ds, (16)

where σ(s) = Ce(u(s)), 〈·, ·〉 is the duality pairing in L2(�; RN×N
sym ), and ġ(s) denotes the Frèchet derivative of 

g with respect to s.

Notice that even for a given �, the existence of a minimizer for the problem considered in (14) is a nontrivial issue, 
which we are able to overcome for the moment only in the planar case N = 2 (Theorem 6.2). Indeed, in the planar case 
we are able to show the existence of a quasistatic evolution according to the following statement, which constitutes 
the main result of the paper.

Theorem 3.1. Let N = 2. Let � ⊂ �′ be bounded domains in R2 with Lipschitz boundary satisfying (13), g ∈
W

1,1
loc ([0, +∞); H 1(R2; R2)), and consider Q as in (12). Then, for all t ≥ 0 it exists an H1-rectifiable crack �(t) ⊂ �

and a field u(t) ∈ GSBD2(�′) such that

• �(t) is nondecreasing in t ;
• u(0) minimizesˆ

�

Q(e(v))dx +H1(Jv)

among all v ∈ GSBD2(�′) such that v = g(0) on �′ \ �;
• for all t > 0, u(t) satisfies the global stability (14) for N = 2;
• Ju(0) = �(0) and Ju(t) ⊂ �(t) up to a set of H1-measure 0.
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Furthermore, the total energy E(t) defined by (15) satisfies the energy dissipation balance (16). Finally, for any 
countable, dense subset I ⊂ [0, +∞) containing zero, we have

�(t) =
⋃

τ∈I , τ≤t

Ju(τ)

for all t > 0.

4. A sharp piecewise Korn inequality in GSBD

In this section we derive a piecewise Korn inequality with a sharp estimate for the surface energy and also prove a 
version taking Dirichlet boundary conditions into account.

4.1. A refined piecewise Korn inequality

The goal of this section is to prove the following result.

Theorem 4.1. Let � ⊂ R
2 open, bounded with Lipschitz boundary and 0 < θ < 1. Then there is a universal con-

stant c > 0, some C� = C�(�) > 0 and some Cθ,� = Cθ,�(θ, �) > 0 such that the following holds: For each 
u ∈ GSBD2(�) we find uθ ∈ SBV (�; R2) ∩ L∞(�; R2) such that {u = uθ } is a set of finite perimeter with

(i) L2({u = uθ }) ≤ cθ(H1(Ju) +H1(∂�))2,

(ii) H1((∂∗{u = uθ } ∩ �) \ Ju) ≤ cθ(H1(Ju) +H1(∂�)), (17)

a (finite) Caccioppoli partition � = ⋃I
i=0 Pi , and corresponding infinitesimal rigid motions (ai)

I
i=0 such that v :=

uθ − ∑I
i=0 aiχPi

∈ SBV (�; R2) ∩ L∞(�; R2) and

(i)
∑I

i=0
H1((∂∗Pi ∩ �) \ Ju) ≤ cθ(H1(Ju) +H1(∂�)),

(ii) L2(Pi) ≥ C�θ2 for all 1 ≤ i ≤ I, L2({u = uθ }�P0) = 0, (18)

(iii) ‖v‖L∞(�;R2) + ‖∇v‖L1(�;R2×2) ≤ Cθ,�‖e(u)‖
L2(�;R2×2

sym )
.

Note that the refined estimate (18)(i) comes at the expense of the fact that we have to pass to a slightly modified 
function (see (17)) and that in (17)(iii) only the L1-norm of the derivative is controlled.

Remark 4.2. Let CQ1 and Cθ,Q1 be the constants in Theorem 4.1 for the unit square � = Q1 = (0, 1)2. Using a 
rescaling argument, (18)(ii),(iii) in Theorem 4.1 applied for any square � = Q ⊂ R

2 read as

(i) L2(Pi) ≥ CQ1L2(Q)θ2 for 1 ≤ i ≤ I,

(ii) ‖v‖L∞(Q;R2) + (diam(Q))−1‖∇v‖L1(Q;R2×2) ≤ Cθ,Q1‖e(u)‖
L2(Q;R2×2

sym )
. (19)

Below after the proof of Theorem 4.1 we briefly indicate how Remark 4.2 can be derived from (18) for convenience 
of the reader. As a preparation we formulate two lemmas. Recall the notion of decomposable sets in Section 2.3 and 
the definition of diam in Section 2.1.

Lemma 4.3. Let B ⊂R
2 be an indecomposable, bounded set with finite perimeter. Then diam(B) ≤ H1(∂∗B).

The proof can be found in [28, Proposition 12.19, Remark 12.28]. The following lemma investigates some proper-
ties of the jump set of a piecewise-defined function on the interface of two sets of finite perimeter.

Lemma 4.4. Let � ⊂R
2 open, bounded and y ∈ SBV (�; R2) ∩L∞(�; R2). Let P1, P2 ⊂ � be sets of finite perimeter 

and ai = aAi,bi
, i = 1, 2, infinitesimal rigid motions. Then there is a ball B ⊂R

2 with
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(i) diam(B) ≤ 4diam(P2)‖a1 − a2‖−1
L∞(P2;R2)

∑
i=1,2

‖y − ai‖L∞(Pi ;R2),

(ii) H1((∂∗P1 ∩ ∂∗P2) \ (B ∪ Jy)
) = 0.

Proof. We define γ = ‖a1 − a2‖L∞(P2;R2) and δ = ∑
i=1,2 ‖y − ai‖L∞(Pi ;R2) for shorthand. First, if δ ≥ 1

2γ , we can 
choose B as a ball containing P2 with diam(B) ≤ 2diam(P2). Consequently, it suffices to assume δ < 1

2γ .
For i = 1, 2 we denote by Tiy the trace of y on ∂∗Pi , which exists by [4, Theorem 3.77] and satisfies

|Tiy(x) − ai(x)| ≤ ‖y − ai‖L∞(Pi ;R2) for H1-a.e. x ∈ ∂∗Pi.

Assume the statement was wrong. Then we would find two points x1, x2 with |x1 − x2| > 4γ −1δdiam(P2) such that 
x1, x2 ∈ (∂∗P1 ∩ ∂∗P2) \ Jy and for i, j = 1, 2

|Tiy(xj ) − ai(xj )| ≤ ‖y − ai‖L∞(Pi ;R2).

Since x1, x2 /∈ Jy and thus T1y(x1) = T2y(x1), T1y(x2) = T2y(x2) we compute

|a1(xj ) − a2(xj )| ≤ |T1y(xj ) − a1(xj )| + |T2y(xj ) − a2(xj )| ≤ δ

for j = 1, 2. Combining the estimates for j = 1, 2 we get

|x1 − x2||A1 − A2| ≤ 2|(A1 x1 + b1) − (A2 x1 + b2) − (A1 x2 + b1) + (A2 x2 + b2)|
≤ 2(|a1(x1) − a2(x1)| + |a1(x2) − a2(x2)|) ≤ 2δ

and therefore |A1 − A2| ≤ 1
2 (diam(P2))

−1γ as well as

γ = ‖a1 − a2‖L∞(P2;R2) ≤ |a1(x1) − a2(x1)| + diam(P2)|A1 − A2| ≤ δ + 1
2γ,

which contradicts γ > 2δ. �
Proof of Theorem 4.1. Let u ∈ GSBD2(�) be given and set for shorthand E = ‖e(u)‖

L2(�;R2×2
sym )

and J ′
u = Ju ∪

∂�. Without restriction we can assume θ−1 ∈ N and that � is connected as otherwise the following arguments are 
applied for each connected component of �. Moreover, we may suppose that H1(Ju) ≤ (θ−1L2(�))

1
2 as otherwise 

the assertion trivially holds with uθ = 0.
In the following c > 0 stands for a universal constant and C� = C�(�) > 0, Cθ,� = Cθ,�(θ, �) > 0 represent 

generic constants which may vary from line to line. We may further assume that θ is chosen (depending on �) such 
that θ ≤ θ0 := 1

16C−1
korn, where Ckorn is the constant from (11).1

Step 0 (Overview of the proof). The general idea behind the proof is to modify suitably the infinitesimal rigid motions 
provided by Theorem 2.9 so that all the sets Pj of the Caccioppoli partition are almost completely disconnected by Ju: 
by this we mean that the interface between different components will be contained in the jump set of u up to a small 
(in area and perimeter) exceptional set. In doing this, we must anyway be able not to lose the estimate in (11)(iii). 
These are the main observations that allow us to pursue this strategy:

(O1) If the L∞ distance between two infinitesimal rigid motions aj1 and aj2 , that are subtracted from u on two sets 
Pj1 and Pj2 , respectively, lies below a fixed threshold depending on the error parameter θ (see (21)(iii)), we 
can replace aj2 with aj1 on Pj2 . Indeed, by construction and using Lemma 2.3(a), (11)(iii) will still hold up to 
enlarging Cθ,� suitably.

(O2) If the L∞ distance between two infinitesimal rigid motions aj1 and aj2 , that are subtracted from u on two 
sets Pj1 and Pj2 , respectively, lies above an (even larger) fixed threshold depending on θ (see (21)(iv)), using 
Lemma 4.4 the interface between Pj1 and Pj2 not contained in Ju can be covered by a small ball. This will 
lead to neglecting a small exceptional set with small perimeter, provided this is not done ‘too often’. Some 
combinatorial arguments will indeed be needed (cf., for instance, the derivation of (27) later in the proof).

1 If θ > θ0, the result holds for uθ = uθ0 , upon replacing C� by C�θ2
0 in (18)(ii).
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Fig. 1. Illustration of the constructions in the proof of Theorem 4.1. (a) The partition (P ′
j
)11
j=1 is sketched (for convenience only the indices are 

given). Note that in general the jump set (depicted in light gray) is not a subset of 
⋃11

j=1 ∂∗P ′
j

. (b) The large components of (P 1
j
)6
j=1 are given by 

P 1
1 = P ′

1 ∪ P ′
9, P 1

2 = P ′
2 ∪ P ′

10, P 1
3 = P ′

3 ∪ P ′
8, P 1

4 = P ′
4 (i.e. I ′ = 4), the exceptional set is R1 = P ′

6 ∪ P ′
11 and the small components are P ′

5, P ′
7. 

Observe that P 1
1 , depicted in light gray, is not connected. (c) The union of balls R2 is illustrated and the set �good = ⋃4

j=1 P 1
j

\ R2 = ⋃4
j=1 P 2

j

is given in light gray. (d) In this example we have R4 = ∅. The set �bad is depicted in dark gray and � \ �bad = P 3
1 ∪ P 3

2 = P1 ∪ P2 consists of 
two components, i.e. I ′′ = 2. We further have Z1 = ∅, Z2 = {(1, 2), (1, 3), (1, 4), (3, 4)} and Z3 = {(2, 3), (2, 4)}.

(O3) On neighboring components Pj1 and Pj2 , whose size lies above a fixed threshold depending on θ , and that are not
almost completely disconnected by Ju, the L∞ estimate in (11)(iii), the continuity of u on part of the interface, 
together with Lemma 2.3(a), allow us to estimate the L∞ distance between the corresponding infinitesimal rigid 
motions aj1 and aj2 basically only in terms of θ , and therefore we may apply (O1) to remove the artificially 
introduced boundaries.

Guided by these observations, the proof is organized as follows (the steps of the construction are depicted in Fig. 1).

In Step I we reorganize the partition given by Theorem 2.9 into large sets, of size at least θ2L2(�), small sets, 
covering only a small part of � and a rest set, denoted by R1, which has small perimeter (see (20)). Using (O1) the 
partition has now the property that the infinitesimal rigid motions given on large and small components, respectively, 
differ very much (see (21)(iv)). This is the starting point for Step II, where, in the spirit of (O2), we show that the part 
of the interfaces between large and small components not contained in Ju can be covered by an exceptional set which 
is small in area and perimeter. In Step III we then investigate the difference of the infinitesimal rigid motions given on 
large components, again employing Lemma 4.4 to completely disconnect various components, and using (O3) on the 
others. In Step IV we collect all estimates and conclude the proof.
Step I (Identification of large components). The goal of this step is to define a set R1 ⊂ � with

H1(∂∗R1) ≤ θH1(J ′
u), L2(R1) ≤ cθ2(H1(J ′

u))
2, (20)

an (ordered) Caccioppoli partition � \ R1 = ⋃∞
j=1 P 1

j and corresponding infinitesimal rigid motions (a1
j )j such that 

v1 := u − ∑
j≥1 a1

j χP 1
j

satisfies for an index I ′ ∈N with I ′ ≤ θ−2 and some Kθ ∈N, Kθ ≤ θ−1,

(i) L2(P 1
j ) ≥ θ2L2(�) for all 1 ≤ j ≤ I ′, L2(� \

⋃I ′

j=1
P 1

j

) ≤ cθ(H1(J ′
u))

2,

(ii)
∑

j≥1
H1(∂∗P 1

j ) ≤ cH1(J ′
u),

(iii) ‖v1‖L∞(�\R1;R2) ≤ 2Ckornθ
−4Kθ E, ‖∇v1‖L1(�\R1;R2×2) ≤ Cθ,�E,

(iv) min1≤i≤I ′ ‖a1
i − a1

j‖L∞(P 1
j ;R2) ≥ θ−4(Kθ+1)E for all j > I ′. (21)

Moreover, the sets (P 1)j>I ′ are indecomposable, while the sets (P 1)I
′

are possibly not indecomposable.
j j j=1
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We first apply Theorem 2.9 to find an ordered Caccioppoli partition (P ′
j )j≥1 of � and corresponding infinitesi-

mal rigid motions (a′
j )j = (aA′

j ,b′
j
)j such that v′ := u − ∑

j≥1 a′
jχP ′

j
∈ SBV (�; R2) ∩ L∞(�; R2) satisfies (11), in 

particular

‖v′‖L∞(�;R2) + ‖∇v′‖L1(�;R2×2) ≤ CkornE . (22)

Without restriction we assume that the sets (P ′
j )j≥1 are indecomposable. Let I ′ ∈ N be the largest index such that 

L2(P ′
I ′) ≥ θ2L2(�). (Recall that the partition is assumed to be ordered.) Then I ′ ≤ θ−2 and by the isoperimetric 

inequality and (11)(i)

(i)
∑

j≥1
(L2(P ′

j ))
1
2 ≤ c

∑
j≥1

H1(∂∗P ′
j ) ≤ cH1(J ′

u) ≤ Cθ,�,

(ii)
∑

j>I ′ L
2(P ′

j ) ≤ θ(L2(�))
1
2
∑

j>I ′(L
2(P ′

j ))
1
2 (23)

≤ cθH1(∂�)
∑

j>I ′ H
1(∂∗P ′

j ) ≤ cθ(H1(J ′
u))

2,

where in the last step of (i) we used the assumption H1(Ju) ≤ (θ−1L2(�))
1
2 . We introduce a decomposition for the 

small components according to the difference of infinitesimal rigid motions as follows. For k ∈N we introduce the set 
of indices

J 0 = {j > I ′ : min1≤i≤I ′ ‖a′
j − a′

i‖L∞(P ′
j ;R2) ≤ Eθ−4},

J k = {j > I ′ : Eθ−4k < min1≤i≤I ′ ‖a′
j − a′

i‖L∞(P ′
j ;R2) ≤ Eθ−4(k+1)} (24)

and define sk = ∑
j∈J k H1(∂∗P ′

j ) for k ∈ N0. In view of (23)(i) we find some Kθ ∈ N, Kθ ≤ θ−1, such that sKθ ≤
cθH1(J ′

u).
We let R1 := ⋃

j∈J Kθ P ′
j and the choice of Kθ together with the isoperimetric inequality shows (20). We introduce 

the Caccioppoli partition (P 1
j )j≥1 of � \ R1 by combining different components of (P ′

j )j≥1. We decompose the 

indices in 
⋃Kθ−1

k=0 J k into sets J ′
i with 

⋃I ′
i=1 J ′

i = ⋃Kθ−1
k=0 J k according to the following rule: an index j ∈ J k is 

assigned to J ′
i whenever i is the smallest index such that the minimum in (24) is attained.

Define the large components P 1
i = P ′

i ∪⋃
j∈J ′

i
P ′

j for 1 ≤ i ≤ I ′ and by (P 1
i )i>I ′ we denote the small components

{
P ′

j : j > I ′, j ∈
⋃∞

k=Kθ+1
J k

}
. (25)

Then (21)(i) holds by (20), (23)(ii) and we see that the sets (P 1
j )j>I ′ are indecomposable. Likewise, (21)(ii) follows 

from (23)(i). Moreover, we define a1
j = a′

j for 1 ≤ j ≤ I ′ and let a1
j = a′

kj
for j > I ′, where kj ∈ N such that P 1

j = P ′
kj

. 

We introduce v1 = u − ∑
j≥1 a1

j χP 1
j

and observe that by (22), (24) and the definition of P 1
j for 1 ≤ j ≤ I ′ we have

‖v1‖L∞(P 1
j ;R2) ≤ ‖v′‖L∞(P 1

j ;R2) + ‖v1 − v′‖L∞(P 1
j ;R2) ≤ CkornE + θ−4Kθ E

≤ 2Ckornθ
−4Kθ E .

Moreover, by Lemma 2.3, (22), (23)(i), (24) and the definition of J ′
i we find

∑I ′

i=1
‖∇v1‖L1(P 1

i ;R2×2) ≤
∑I ′

i=1

(
‖∇v′‖L1(P 1

i ;R2×2) +
∑

j∈J ′
i

L2(P ′
j )|A′

j − A1
i |

)

≤ ‖∇v′‖L1(�;R2×2) + c

I ′∑
i=1

∑
j∈J ′

i

(L2(P ′
j ))

1
2 ‖a′

j − a′
i‖L∞(P ′

j ;R2)

≤ CkornE + cθ−4Kθ E
∑

(L2(P ′
j ))

1
2 ≤ Cθ,�E .
j≥1
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Note that the last constant Cθ,� indeed only depends on θ and � since Kθ ≤ θ−1 and Ckorn only depends on �. The 
last two estimates together with (22) show (21)(iii). Finally, the definition of the small components in (25) together 
with (24) implies (21)(iv).

Step II (Interface between large and small components). We now show that there is a union of balls R2 ⊂ � and a 
Caccioppoli partition 

⋃I ′
j=1 P 2

j of �good := ⋃I ′
j=1(P

1
j \ R2) and corresponding infinitesimal rigid motions (a2

j )
I ′
j=1

such that with v2 := u − ∑I ′
j=1 a2

j χP 2
j

we have

(i) L2(� \ �good) ≤ cθ(H1(J ′
u))

2,

(ii) H1(∂∗�good \ J ′
u) ≤ cθH1(J ′

u), (26)

(iii)
∑I ′

j=1
H1(∂∗P 2

j ) ≤ cH1(J ′
u),

(iv) ‖v2‖L∞(�good;R2) + ‖∇v2‖L1(�good;R2×2) ≤ Cθ,�E .

First, for each 1 ≤ i ≤ I ′ and j > I ′ we apply Lemma 4.4 for P1 = P 1
i and P2 = P 1

j and obtain a ball Bi,j with 

H1((∂∗P 1
i ∩ ∂∗P 1

j ) \ (Bi,j ∪ Ju)) = 0 such that by (21)(iii),(iv)

diam(Bi,j ) ≤ 16Ckorn diam(P 1
j ) · θ−4Kθ · (θ−4(Kθ+1))−1 ≤ θ3 diam(P 1

j ),

where the last step follows from the fact that θ ≤ 1
16C−1

korn. Then by Lemma 4.3 and the fact that P 1
j is indecomposable 

(see below (21)) we get diam(Bi,j ) ≤ θ3H1(∂∗P 1
j ).

Define R2 = ⋃
i≤I ′<j Bi,j and compute by (21)(ii) and I ′ ≤ θ−2 (cf. (21)(i))∑

i≤I ′<j
H1(∂Bi,j ) ≤ θ3I ′ ∑

j>I ′ H
1(∂∗P 1

j ) ≤ cθH1(J ′
u). (27)

Then the isoperimetric inequality yields L2(R2) ≤ cθ2(H1(J ′
u))

2 and this together with (21)(i) shows (26)(i). Let 
P 2

j = P 1
j \ R2 and a2

j = a1
j for 1 ≤ j ≤ I ′. Then (26)(iii) follows from (21)(ii) and (27). To see (26)(ii), we calculate 

by Theorem 2.7, (20) and (27) recalling that �good ∪ ⋃
j>I ′(P 1

j \ R2) ∪ (R1 \ R2) ∪ R2 is a partition of �

H1(∂∗�good \ (Ju ∪ ∂�)) ≤
∑

i≤I ′<j

(
H1((∂∗P 1

i ∩ ∂∗P 1
j ) \ (Ju ∪ Bi,j )

) +H1(∂Bi,j )
)

+H1(∂∗R1) ≤ 0 + cθH1(J ′
u) = cθH1(J ′

u).

Finally, (26)(iv) follows from (21)(iii), the definition of v2 and the fact that Kθ ≤ θ−1.

Step III (Interface between large components). We now investigate the difference of the infinitesimal rigid motions 
(a2

j )
I ′
j=1. We show that there is a union of balls R3 ⊂ � and a Caccioppoli partition �good \ R3 = ⋃I ′′

i=1 P 3
i with 

I ′′ ≤ I ′ and corresponding infinitesimal rigid motions (a3
i )

I ′′
i=1 such that with v3 := u − ∑I ′′

i=1 a3
i χP 3

i
we have

(i) H1(∂∗R3) ≤ cθH1(J ′
u), L2(R3) ≤ cθ2(H1(J ′

u))
2,

(ii)
∑I ′′

i=1
H1(∂∗P 3

i \ J ′
u) ≤ cθH1(J ′

u), (28)

(iii) ‖v3‖L∞(�good\R3;R2) + ‖∇v3‖L1(�good\R3;R2×2) ≤ Cθ,�E .

In the following we denote the constant given in (26)(iv) by C̄ = C̄(θ, �) to distinguish it from other generic 
constants Cθ,�. We introduce the set of indices Z1 = {1 ≤ j ≤ I ′ : diam(P 2

j ) ≤ θ3H1(∂�)} 2 and let Z2 = {(i, j) :
1 ≤ i < j ≤ I ′, i, j /∈ Z1} be the collection of pairs with

maxk=i,j ‖a2
i − a2

j ‖L∞(P 2
k ;R2) > C̄θ−5E . (29)

Finally, let Z3 = {(i, j) : 1 ≤ i < j ≤ I ′, i, j /∈ Z1, (i, j) /∈ Z2}.

2 The introduction of Z1 is only a technical point due to the fact that by the previous step some large components may have become small after 
cutting of R2.
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For each j ∈ Z1 we find a ball B1
j with H1(∂B1

j ) ≤ cθ3H1(∂�) and P 2
j ⊂ B1

j . Moreover, by Lemma 4.4 we find 

for each (i, j) ∈Z2 a ball B2
i,j satisfying H1

(
(∂∗P 2

i ∩ ∂∗P 2
j ) \ (B2

i,j ∪ Ju)
) = 0 and by (26)(iv)

diam(B2
i,j ) ≤ c max

k=i,j
diam(P 2

k )
(

max
k=i,j

‖a2
i − a2

j ‖L∞(P 2
k ;R2)

)−1 ‖v2‖L∞(�good;R2)

≤ cdiam(�)(C̄θ−5E)−1C̄E ≤ cθ5H1(∂�),

where in the last step diam(�) ≤ H1(∂�) follows from the fact that � is assumed to be connected.
We define R3 = ⋃

j∈Z1
B1

j ∪ ⋃
(i,j)∈Z2

B2
i,j and the fact that #Z1 ≤ θ−2, #Z2 ≤ I ′(I ′ − 1) ≤ θ−4 yields∑

j∈Z1
H1(∂B1

j ) +
∑

(i,j)∈Z2
H1(∂B2

i,j ) ≤ cθH1(∂�), (30)

which together with the isoperimetric inequality gives (28)(i). We now combine different components (P 2
j )I

′
j=1: we 

can find a decomposition I1∪̇ . . . ∪̇II ′′ of the indices {1, . . . , I ′} \ Z1 with the property that for each pair i1, i2 ∈ Ij , 
i1 < i2, we find a chain i1 = l1 < l2 < . . . < ln = i2 such that (lk, lk+1) ∈ Z3 for all k = 1, . . . , n − 1.

Then we introduce a partition of �good \ R3 consisting of the sets P 3
i = ⋃

j∈Ii
(P 2

j \ R3), 1 ≤ i ≤ I ′′. (Note that 

this is indeed a partition of �good \ R3 since, by construction, P 2
j ⊂ �good for j ∈ Ii and P 2

j ⊂ R3 for j ∈Z1.) To see 

(28)(ii), we now compute using the property of the balls B1
j , B2

i,j , as well as (26)(ii), (30) and Theorem 2.7

∑I ′′

i=1
H1(∂∗P 3

i \ J ′
u) ≤ H1(∂∗�good \ J ′

u) +
∑

j∈Z1
H1(∂B1

j )

+
∑

(i,j)∈Z2

(
H1((∂∗P 2

i ∩ ∂∗P 2
j ) \ (B2

i,j ∪ Ju

) +H1(∂B2
i,j )

)
≤ cθH1(J ′

u) + cθH1(∂�) + 0 ≤ cθH1(J ′
u).

It remains to define v3 and to show (28)(iii). Fix (i, j) ∈ Z3. Then by the fact that (29) does not hold and 
mink=i,j diam(P 2

k ) ≥ θ3H1(∂�) ≥ θ3diam(�) a short calculation implies ‖a2
i − a2

j ‖L∞(�;R2) ≤ CE for some C =
C(�, θ, C̄). Then the triangle inequality together with #Ij ≤ I ′ ≤ θ−2 yields

maxi1,i2∈Ij
‖a2

i1
− a2

i2
‖L∞(�;R2) ≤ Cθ,�E

for all 1 ≤ j ≤ I ′′, which by Lemma 2.3 implies maxi1,i2∈Ij
|A2

i1
−A2

i2
| ≤ Cθ,�E . For each P 3

j , 1 ≤ j ≤ I ′′, we choose 

an infinitesimal rigid motion a3
j , which coincides with an arbitrary a2

i , i ∈ Ij . Then (28)(iii) follows from (26)(iv).

Step IV (Conclusion). We are now in a position to prove the assertion of the theorem. Suppose that the partition 
(P 3

j )I
′′

j=1 is ordered and choose the smallest index I such that L2(P 3
I+1) ≤ (θH1(J ′

u))
2. Define R4 = ⋃I ′′

j=I+1 P 3
j and 

compute by the isoperimetric inequality and (28)(ii)

L2(R4) ≤ θH1(J ′
u)

I ′′∑
j=I+1

(L2(P 3
j ))

1
2 ≤ cθH1(J ′

u)

I ′′∑
j=I+1

H1(∂∗P 3
j ) ≤ cθ(H1(J ′

u))
2.

Then we define �bad := (� \ �good) ∪ (R3 ∪ R4) and by (26)(i),(ii), (28)(i),(ii) we get H1(∂∗�bad \ J ′
u) ≤ cθH1(J ′

u)

and L2(�bad) ≤ cθ(H1(J ′
u))

2.
We define uθ ∈ SBV (�; R2) ∩ L∞(�; R2) by uθ = uχ�\�bad + t0χ�bad for some t0 ∈ R

2 such that L2({u =
t0}) = 0, which is possible since u is measurable. With this, L2({uθ = u}��bad) = 0. Observe that the previous 
calculation yields (17). Let (Pi)

I
i=0 be the Caccioppoli partition consisting of the sets P0 = �bad and Pi = P 3

i for 
1 ≤ i ≤ I . Set ai = a3

i for 1 ≤ i ≤ I and a0 = t0. Then (18)(iii) follows from (28)(iii) and (28)(ii) yields (18)(i). 
Finally, the choice of the index I together with the fact that H1(J ′

u) ≥ H1(∂�) implies (18)(ii). �
Proof of Remark 4.2. Let Qλ = x + (0, λ)2 be given and u ∈ GSBD2(Qλ). After translation we may assume x = 0. 
Define ū ∈ GSBD2(Q1) by ū(x) = u(λx) and also note that ∇ū(x) = λ∇u(λx) and H1(Jū) = λ−1H1(Ju). Applying 
the above theorem for ū on Q1 we obtain ūθ ∈ SBV (Q1; R2) ∩ L∞(Q1; R2) such that
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(i) L2({ū = ūθ }) ≤ cθ(H1(Jū) +H1(∂Q1))
2,

(ii) H1((∂∗{ū = ūθ } ∩ Q1) \ Jū) ≤ cθ(H1(Jū) +H1(∂Q1)),

a (finite) Caccioppoli partition Q1 = ⋃I
i=0 P̄i , and corresponding infinitesimal rigid motions (āi)

I
i=0 such that v̄ :=

ūθ − ∑I
i=0 āiχP̄i

∈ SBV (Q1; R2) ∩ L∞(Q1; R2) is constant on P̄0 and satisfies

(i)
∑I

i=0
H1((∂∗P̄i ∩ Q1) \ Jū) ≤ cθ(H1(Jū) +H1(∂Q1)),

(ii) L2(P̄i) ≥ CQ1θ
2 = CQ1θ

2L2(Q1), 1 ≤ i ≤ I,

(iii) ‖v̄‖L∞(Q1;R2) + ‖∇v̄‖L1(Q1;R2×2) ≤ Cθ,Q1‖e(ū)‖
L2(Q1;R2×2

sym )
.

Set Pi = λP̄i , uθ (x) = ūθ (λ−1x) and v(x) = v̄(λ−1x) ∈ SBV (Qλ; R2). The estimates for the modification in (17)
follow since the estimate in (i) is two homogeneous and the estimate in (ii) is one homogeneous. For the same reason 
(18)(i) and (19)(i) hold. We finally show (19)(ii).

By transformation formula and the fact that ∇ū(x) = λ∇u(λx) we have ‖e(u)‖2
L2(Qλ)

= ‖e(ū)‖2
L2(Q1)

. Like-
wise, ‖∇v‖L1(Qλ) = λ‖∇v̄‖L1(Q1)

and finally we clearly have ‖v‖∞ = ‖v̄‖∞. Then (ii) follows as diam(Qλ) =√
2λ ≥ λ. �

4.2. A version with Dirichlet boundary conditions

We now state a version of the piecewise Korn inequality with Dirichlet boundary conditions, which will be needed 
for the general existence result in Section 6, but not for the jump transfer lemma in Section 5. The reader more 
interested in the derivation of the latter may therefore wish to skip the remainder of this section and to proceed 
directly with Section 5.

Theorem 4.5. Let � ⊂ �′ be bounded domains in R2 with Lipschitz boundary such that (13) holds. Let θ > 0. Then 
there is a constant c̄ = c̄(�, �′) > 0 and some Cθ,�′ = Cθ,�′(θ, �′) > 0 such that for each w ∈ H 1(�′; R2) and 
u ∈ GSBD2(�′) with u = w on �′ \ � there is a modification uθ ∈ SBV (�′; R2) satisfying

(i) L2({u = uθ }) ≤ c̄θ(H1(Ju) + 1)2, H1(Juθ \ Ju) ≤ c̄θ(H1(Ju) + 1)

(ii) ‖e(uθ )‖2
L2(�;R2×2

sym )
≤ ‖e(u)‖2

L2(�;R2×2
sym )

+ ‖∇w‖2
L2({u =uθ };R2×2)

, (31)

a Caccioppoli partition �′ = ⋃∞
j=1 Pj and corresponding infinitesimal rigid motions (aj )j = (aAj ,bj

)j such that 
v := uθ − ∑∞

j=1 ajχPj
∈ SBV (�′; R2) ∩ L2(�′; R2), and

(i)
∑∞

j=1
H1((∂∗Pj ∩ �′) \ Ju) ≤ c̄θ(H1(Ju) + 1),

(ii) v = w on �′ \ �, (32)

(iii) ‖v‖L2(�′;R2) + ‖∇v‖L1(�′;R2×2) ≤ Cθ,�′ ‖e(u)‖
L2(�′;R2×2

sym )
+ Cθ,�′ ‖w‖H 1(�′;R2).

As a preparation, we need the following lemma.

Lemma 4.6. Let A ⊂ R
2 open, bounded with Lipschitz boundary. Then there exists δ = δ(A) such that for all inde-

composable sets E ⊂ A with finite perimeter satisfying H1(∂∗E ∩ A) ≤ δ(A) one has either

(i) L2(E) > 1
2L

2(A) or (ii) diam(E) ≤ CAH1(∂∗E ∩ A)

for some constant CA only depending on A.

Proof. Fix ε > 0. By [8] (see also [5]) there is a constant K = K(A) and a Borel set Bε ⊂ R2 with Bε ∩ A = E such 
that H1(∂∗Bε) ≤ KH1(∂∗E ∩A) + ε. It is not restrictive to assume that Bε is indecomposable as otherwise we simply 
take the component containing E. By the isoperimetric inequality we derive
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min{L2(Bε),L2(R2 \ Bε)} ≤ c(H1(∂∗Bε))
2 < 1

2L
2(A),

where the last inequality holds provided that δ = δ(A, c) is small enough. If L2(R2 \ Bε) < 1
2L2(A), we find

L2(E) = L2(Bε ∩ A) = L2(A) −L2(A \ Bε) ≥ L2(A) −L2(R2 \ Bε) > 1
2L

2(A)

and (i) holds. Otherwise, we particularly obtain L2(R2 \Bε) = +∞ and L2(Bε) < +∞. Since Bε has finite perimeter, 
by an approximation argument we may assume that Bε is bounded. As Bε is also indecomposable, Lemma 4.3 yields

diam(E) ≤ diam(Bε) ≤ H1(∂∗Bε) ≤ KH1(∂∗E ∩ A) + ε.

The claim follows with ε → 0. �
Proof of Theorem 4.5. By Theorem 4.1 applied with �′ in place of � we obtain a Caccioppoli partition (P ′

i )
I
i=0, 

corresponding (a′
i )

I
i=0 as well as ūθ ∈ SBV (�′; R2) and v′ := ūθ − ∑I

i=0 a′
iχP ′

i
∈ SBV (�′; R2) ∩ L∞(�′; R2) such 

that (17)–(18) hold. Define uθ = uχ�\P ′
0
+ wχP ′

0
. Then (31) follows directly from (17) and (18)(ii).

Let P ′ = (P ′
j )

I
j=1. Let P1 ⊂ P ′ be the components completely contained in � and let P2 ⊂ P ′ be the components 

P ′
j satisfying L2(P ′

j ∩ (�′ \�)) ≥ θ . Moreover, we set P3 =P ′ \ (P1 ∪P2). We now define the partition P = (Pj )
∞
j=1

consisting of the components

{P ′
0} ∪P1 ∪P2 ∪ {P ′

j ∩ � : P ′
j ∈ P3} ∪ {P ′

j \ � : P ′
j ∈P3}.

(Strictly speaking, the number of components is even finite.) For P1 := P ′
0 we let a1 = 0. For Pj = P ′

k ∈ P1 we set 
aj = a′

k and for Pj = P ′
k ∈ P2 we set aj = 0. If Pj ∈ P with Pj = P ′

k ∩ � for some P ′
k ∈ P3, we let aj = a′

k . Finally, 
if Pj ∈ P with Pj = P ′

k \ � for some P ′
k ∈P3, we set aj = 0.

Now define v = uθ − ∑∞
j=1 ajχPj

. By construction we get v = w on �′ \ �. It remains to confirm (32)(i),(iii). To 
see (iii), we first note that, since uθ = v = w on the open Lipschitz set �′ \ �, by (18)(iii) with v′ in place of v and 
[4, Corollary 3.89], it suffices to show that the restriction of v to � belongs to SBV (�; R2) ∩ L2(�; R2) and that

‖v − v′‖L2(�;R2) + ‖∇v − ∇v′‖L1(�;R2×2) ≤ Cθ,�′ ‖e(u)‖
L2(�′;R2×2

sym )
+ Cθ,�′ ‖w‖H 1(�′;R2). (33)

By construction we have that {v = v′} ∩ � ⊂ (P ′
0 ∩ �) ∪ ⋃

Pj ∈P2
Pj (up to a set of negligible measure). First, (33)

with P ′
0 ∩ � in place of � follows directly from (18)(iii) and the fact that v = w on P ′

0. Fix Pj ∈ P2. We first observe 
that u = ūθ by (18)(ii) and thus (v − v′)χPj

= (u − v′)χPj
= a′

kχPj
with k such that Pj = P ′

k . Since u = w on �′ \�, 
we then deduce

a′
kχ(�′\�)∩Pj

= (w − v′)χ(�′\�)∩Pj

and therefore

‖a′
k‖L2((�′\�)∩Pj ;R2) ≤ ‖w‖L2(�′\�;R2) + ‖v′‖L2(�′\�;R2).

Consequently, using L2(Pj ∩ (�′ \ �)) ≥ θ , (18)(iii) and Lemma 2.3 for ψ(s) = s2 we find

|A′
k| + |b′

k| ≤ Cθ,�′ ‖e(u)‖
L2(�′;R2×2

sym )
+ Cθ,�′ ‖w‖L2(�′;R2).

Since #P2 ≤ θ−1L2(�′) = C(�′, θ), this yields∑
Pj ∈P2

‖a′
k‖L2(Pj ;R2) + ‖A′

k‖L1(Pj ;R2×2
skew)

≤ Cθ,�′(‖e(u)‖
L2(�′;R2×2

sym )
+ ‖w‖L2(�′;R2)) ,

where for each j the index k is chosen such that Pj = P ′
k . This implies v ∈ SBV (�; R2) ∩L2(�; R2), as well as (33), 

and establishes (32)(iii).
We now show (32)(i). To this end, we fix θ0 = θ0(�, �′) > 0 to be specified below and we first observe that it 

suffices to treat the case where H1(Ju) +H1(∂�′) ≤ θ0θ
−1. In fact, otherwise (32)(i) follows directly from (18)(i) for 

c̄ = c̄(�, �′) large enough.
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Without restriction we suppose that each P ′
j ∩ (�′ \ �), P ′

j ∈ P3, is indecomposable as otherwise we consider the 

indecomposable components. We show that each P ′
j ∩ (�′ \ �) is contained in some ball of diameter C̄H1(∂∗P ′

j ∩
(�′ \ �)) for C̄ = C̄(�, �′) large enough. To see this, we first observe that due to the fact that Ju ⊂ � we have

H1(∂∗P ′
j ∩ (�′ \ �)) ≤ cθH1(Ju) + cθH1(∂�′) ≤ cθ0

by (18)(i). Choose θ0 so small that cθ0 ≤ δ(�′ \ �) with δ(�′ \ �) as in Lemma 4.6. Then Lemma 4.6 and the fact 
that L2(P ′

j ∩ (�′ \ �)) ≤ θ imply for θ small

diam(∂∗P ′
j ∩ (�′ \ �)) ≤ C̄H1(∂∗P ′

j ∩ (�′ \ �)) ≤ cC̄θ0. (34)

We cover � := ∂(�′ \�) with sets U1, . . . , Un such that Ui ∩� is the graph of a Lipschitz function for i = 1, . . . , n
and the sets pairwise overlap such that each ball with radius cC̄θ0 and center in � is contained in one Ui provided 
that θ0 is chosen sufficiently small. Consequently, recalling (34), each P ′

j ∩ (�′ \ �) is contained in some Ui . Since 

Ui ∩ � is the graph of a Lipschitz function fi and P ′
j ∩ (�′ \ �) ⊂⊂ Ui , it follows that

H1(∂� ∩ P ′
j ) ≤ Lipfi

diam(∂∗P ′
j ∩ (�′ \ �)) ≤ ĈC̄H1(∂∗P ′

j ∩ (�′ \ �)),

where Ĉ = maxi Lipfi
. For the last inequality we again used (34). Finally, noting that 

⋃∞
j=1 ∂∗Pj \ ⋃I

j=0 ∂∗P ′
j ⊂⋃

P ′
j ∈P3

(∂� ∩ P ′
j ) we find using (18)(i)

∑∞
j=1

H1((∂∗Pj ∩ �′) \ Ju) ≤ (1 + ĈC̄)
∑I

j=0
H1((∂∗P ′

j ∩ �′) \ Ju) ≤ c̄θ(H1(Ju) + 1)

for c̄ = c̄(�, �′) large enough. �
5. Jump transfer lemma in GSBD

In this section we prove a jump transfer lemma which will be essential for the stability of the static equilibrium 
condition in the derivation of the existence result (Theorem 3.1).

Theorem 5.1. Let � ⊂ �′ be bounded domains in R2 with Lipschitz boundary such that (13) holds. Let � ∈ N and 
let (wl

n)n ⊂ H 1(�′; R2) be bounded sequences for l = 1, . . . , �. Let (ul
n)n be sequences in GSBD2(�′) and ul ∈

GSBD2(�′) such that

(i) ‖e(ul
n)‖L2(�′;R2×2

sym )
+H1(Jun) ≤ M for all n ∈N,

(ii) ul
n → ul in measure in �′, ul

n = wl
n on �′ \ �, (35)

for l = 1, . . . , �. Then it exists a (not relabeled) subsequence of n ∈ N with the following property: For each φ ∈
GSBD2(�′) there is a sequence (φn)n ⊂ GSBD2(�′) with φn = φ on �′ \ � such that for n → ∞

(i) φn → φ in measure in �,

(ii) e(φn) → e(φ) strongly in L2(�;R2×2
sym ), (36)

(iii) H1((Jφn \
⋃�

l=1
Jul

n
) \ (Jφ \

⋃�

l=1
Jul )

) → 0.

5.1. Proof of the jump transfer lemma

The general strategy is to follow the proof of the SBV jump transfer (see [19, Theorem 2.1]) with the essential 
difference that (a) in the definition of φn we transfer the jump not by a reflection but by a suitable extension and (b) the 
control of the derivatives, which is needed for the application of the coarea formula, is recovered from (35)(i) by means 
of the piecewise Korn inequality in Theorem 4.1. The auxiliary results, allowing us to overcome such difficulties, are 
the following Lemmas 5.2 and 5.7, as well as Theorem 5.5. We postpone their proofs to the next subsection and first 
show that with these additional techniques Theorem 5.1 can be derived following the lines of [19].

For problem (a) we need the following extension lemma, based on an argument of [31].
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Lemma 5.2. Let R ⊂ R
2 be an open rectangle, let R− be the reflection of R with respect to one of its sides, and let 

R̂ be the open rectangle obtained by joining R, R− and their common side. Let φ ∈ GSBD2(R). Then it exists an 
extension φ̂ ∈ GSBD2(R̂) of φ satisfying

(i) H1(J
φ̂
) ≤ cH1(Jφ)

(ii) ‖e(φ̂)‖
L2(R̂;R2×2

sym )
≤ c‖e(φ)‖

L2(R;R2×2
sym )

(37)

for some universal constant c independent of R and φ.

We concern ourselves with problem (b). A key point in the proof of the jump transfer lemma is to write the jump 
set of a limiting function ul as a countable union of pairwise intersections of boundaries of super-level sets by the 
BV coarea formula. Thus, as a first ingredient we state that the jump set of an GSBD2 function can be approximated 
suitably by the jump set of an SBV function.

Lemma 5.3. Let �′ ⊂ R
2 open, bounded with Lipschitz boundary and ε > 0. For each u ∈ GSBD2(�′) there is 

v ∈ SBV (�′; R2)∩GSBD2(�′) with H1(Ju−v) ≤ ε and H1(Ju�Jv) ≤ ε. If in addition there exist an open subset 
� ⊂ �′ and w ∈ H 1(�′; R2) with u = w on �′ \ �, the function v can be also taken with v = w on �′ \ �.

Recall that the main assumption in the SBV jump transfer lemma (see [19, Theorem 2.1]) was that the derivatives 
|∇ul

n|, n ∈N, are equiintegrable. Although Theorem 4.1 allows us to reduce the problem to the SBV setting, we need 
further arguments since Theorem 4.1 only provides an L1-bound for the derivatives and the bound is not given in 
terms of the displacement field, but holds only after subtraction of a piecewise infinitesimal rigid motion.

To overcome this difficulty, given a fine covering of the jump set of ul , we have to construct explicitly modifications 
of the functions ul

n on the given covering which have almost the same jump set and whose gradients are small. Notice 
that this differs substantially from the proof strategy devised in [19] where, due to equiintegrability, one could ensure 
a priori that gradients do not concentrate on small neighborhoods of the jump set of ul.

In the following, for u ∈ GSBD2 and x ∈ Ju with unit normal ν(x) we denote by Qr(x) the square with sidelength 
2r , center x and two faces perpendicular to ν(x).

Definition 5.4. Let u ∈ GSBD2(�), x ∈ Ju and η > 0. We say r is an η-fine radius and Qr(x) an η-fine square of u
at x if there are two sets Kr+, Kr− ⊂ Qr(x) such that

L2(Kr±) ≥ 1

2
(1 − η)L2(Qr(x)), ‖u − u±(x)‖L∞(Kr±;R2) ≤ 1

2
η.

For given x, u, and η we set r(u, x, η) as the maximal radius such that r is an η-fine radius of u at x for all r <

r(u, x, η). Observe that both notions are well defined for almost every jump point and that r(u, x, η) > 0 for H1-a.e. 
x ∈ Ju.

We have the following approximation result.

Theorem 5.5. Let �′ ⊂ R
2 open, bounded with Lipschitz boundary. Let M > 0, 0 < θ, δ < 1 with δ ≤ 1

4CQ1θ
8 with 

the constant CQ1 from Remark 4.2. Consider a sequence (un)n in GSBD2(�′) and u ∈ GSBD2(�′) with

(i) ‖e(un)‖2
L2(�′;R2×2

sym )
+H1(Jun) ≤ M for all n ∈N,

(ii) un → u in measure in �′. (38)

Let Q∗ = ⋃m
i=1 Qri (xi) be a union of pairwise disjoint δ-fine squares for u at xi ∈ Ju with 

∑m
i=1 ri ≤ M and ri ≤ δ2. 

Then there exist a sequence (vδ,θ
n )n ⊂ SBV (Q∗; R2), a universal constant c > 0, and Cθ = Cθ(θ) > 0 independent of 

the sequence (un)n and δ, such that
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(i) lim sup
n→∞

H1(J
v

δ,θ
n

\ Jun) ≤ cMθ,

(ii) lim sup
n→∞

‖∇vδ,θ
n ‖L1(Q∗;R2×2) ≤ CθMδ, (39)

(iii) lim inf
n→∞ ‖vδ,θ

n − u‖L1(Qri
(xi )\Fi ;R2) = 0 for i = 1, . . . ,m,

where Fi , i = 1, . . . , m, are Borel sets with

L2(Fi) ≤ cθ2(r2
i + θ2 lim infn→∞(H1(Jun ∩ Qri (xi)))

2). (40)

For the proof of the jump transfer lemma we will need the following extension to the case with boundary conditions.

Corollary 5.6. Under the assumptions of Theorem 5.5, suppose in addition that there is an open subset � of �′ so 
that un = wn in �′ \ �, for a bounded sequence (wn)n ⊂ H 1(�′; R2). Then the sequence (vδ,θ

n )n can be taken such 
that J

v
δ,θ
n

⊂ Q∗ ∩ �, provided the constant Cθ is allowed to additionally depend on supn ‖wn‖H 1(�′;R2).

We now proceed with the proof of Theorem 5.1.

Proof of Theorem 5.1. We first consider the case � = 1 and drop the superscript. Let (un)n, u and φ be given as in 
the hypothesis.

Step 0. We first show that it is not restrictive to assume that the limiting function u additionally satisfies u ∈
SBV (�′; R2). Indeed, assume the theorem has been proved in this case. Then, in the general case of u ∈ GSBD2(�′), 
for a fixed ε > 0 we choose vε ∈ SBV (�′; R2)∩GSBD2(�′) with vε = u on �′ \ � such that H1(Ju−vε ) ≤ ε and 
H1(Ju�Jvε ) ≤ ε, thanks to Lemma 5.3. We notice that the sequence vn,ε := un + (vε − u) converges in measure to 
vε and satisfies the assumptions (35). Furthermore,

H1(Jvn,ε�Jun) ≤H1(Jvε−u) ≤ ε. (41)

If we apply the theorem to the function vε and the sequence (vn,ε)n, we find a sequence φn,ε satisfying (i) and (ii) in 
(36) as well as

lim sup
n→+∞

H1((Jφn,ε \ Jvn,ε ) \ (Jφ \ Jvε )
) = 0 .

From (41) we then get

lim sup
n→+∞

H1((Jφn,ε \ Jun) \ (Jφ \ Ju)
) ≤ 2ε ,

whence the conclusion follows, by arbitrariness of ε, through a diagonal argument.

Step 1. We now prove the theorem for � = 1 and u ∈ SBV (�′; R2), mainly following the proof of the SBV jump 
transfer (see [19, Theorem 2.1]) employing additionally our auxiliary results.

Let θ > 0. In the following all appearing generic constants c are always independent of θ . As a shortcut, for 
λ ∈R we introduce the scalar, auxiliary function uλ := u1 + λu2, where u1 and u2 denote the two components of the 
function u, respectively. We may fix λ ∈ (0, 1) such that

H1(Juλ�Ju) = 0. (42)

This follows from the fact that Aλ := {x ∈ Ju : [u1(x)] + λ[u2(x)] = 0} satisfies H1(Aλ) = 0 except for a countable 
number of λ’s. We further denote by Et the set of all Lebesgue-density 1 points for {x ∈ �′ : uλ(x) > t}. Let L =
{t ∈ R : L2({x ∈ �′ : uλ(x) = t}) = 0}. Then there is a countable, dense subset D ⊂ L such that Juλ (and thus, Ju) 
coincides up to a set of negligible H1-measure with

G :=
⋃

t1,t2∈D,t1<t2

(∂∗Et1 ∩ ∂∗Et2 ∩ �′).

For x ∈ G we can choose t1(x) < t2(x) in D such that x ∈ ∂∗Et1(x) ∩ ∂∗Et2(x) and t2(x) − t1(x) ≥ 1
2 |[uλ(x)]|. It 

can be shown that ∂∗Et1(x), ∂∗Et2(x) have a common outer unit normal ν(x). Let N be the set of points, where ∂� is 
not differentiable. We define
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Gj =
{
x ∈ G \ N : |[uλ(x)]| ≥ 1

j
, limr→0

H1((Ju \ ∂∗Et1(x)) ∩ Qr(x))

2r
= 0

}
,

where Qr(x) is a square with sidelength 2r and faces perpendicular to the normal ν(x). As in the proof of [19, 
Theorem 2.1], and recalling (42) we have that for fixed θ > 0 and j = j (θ) large enough

H1(Ju \ Gj) =H1(Juλ \ Gj) ≤ θ. (43)

We also fix the half squares

Q+
r (x) := {y ∈ Qr(x) : (y − x) · ν(x) > 0}, Q−

r (x) := Qr(x) \ Q+
r (x)

and the one-dimensional faces

Hr(x, s) = {y ∈ Qr(x) : (y − x) · ν(x) = s}, Hr(x) := Hr(x,0).

Let δ = θ(2
√

2MjCθ)
−1 ∧ 1

4CQ1θ
8, with the constant Cθ from (39)(ii) and CQ1 from Remark 4.2. Following [19, 

(2.3),(2.5)–(2.6)] and covering Gj using the Morse–Besicovitch Theorem (see e.g. [18]) we find a finite number of 
pairwise disjoint squares Qi := Qri (xi), i = 1, . . . , m, with xi ∈ Ju, ri<r(u, xi, δ) ∧ δ2 (cf. Definition 5.4) such that

(i) L2(⋃m

i=1
Qi

)
< θ, H1(Gj \

⋃m

i=1
Qi) < θ,

(ii) H1((Jφ \ Ju) ∩ Qi) ≤ θri,

(iii) ri ≤ H1(Ju ∩ Qi) ≤ 3ri ,

(iv) H1((Ju \ ∂∗Et1(xi )) ∩ Qi

) ≤ θri, (44)

(v) H1({y ∈ ∂∗Et1(xi ) ∩ Qi : dist(y,Hri (xi)) ≥ θ
2 ri}

) ≤ θri,

(vi) L2((Etk(xi ) ∩ Qi)�Q−
i )

) ≤ θ2r2
i , k = 1,2,

(vii) Qi ⊂ � if xi ∈ �, H1(∂� ∩ Qi) ≤ cri if xi ∈ ∂�,

where Q−
i := Q−

ri
(xi). Recall that ri is a δ-fine radius of u at xi in the sense of Definition 5.4 since ri < r(u, xi, δ). 

Thus, each Qi is a δ-fine square. By (44)(iii) we can now apply Theorem 5.5 and Corollary 5.6 to obtain a sequence 
(v

δ,θ
n )n ⊂ SBV (Q∗; R2) with Q∗ = ⋃m

i=1 Qi satisfying (39), in particular we have

H1(J
v

δ,θ
n

\ Jun) ≤ cMθ, J
v

δ,θ
n

⊂ �. (45)

For brevity we write vn instead of vδ,θ
n in the following. For the same λ that we fixed in (42) we analogously define 

the scalar-valued auxiliary functions vλ
n and we denote by En

t the set of all Lebesgue-density 1 points for {x ∈ �′ :
vλ
n(x) > t}. By construction, and applying (39)(ii) we obtain, recalling δ ≤ θ(2

√
2MjCθ)

−1

‖∇vλ
n‖L1(Q∗;R2) ≤ √

2‖∇vn‖L1(Q∗;R2×2) ≤ √
2CθMδ ≤ θ

2j
.

In view of the coarea formula in BV this implies that there are ti ∈ [t1(xi), t2(xi)] with (see [19, (2.7)])∑m

i=1
H1((∂∗En

ti
∩ Qi) \ Jvλ

n

) ≤ θ. (46)

By construction it holds that Jvλ
n
⊂ Jvn : combining with (45), we deduce∑m

i=1
H1((∂∗En

ti
∩ Qi) \ Jun

) ≤ (1 + cM)θ. (47)

We now denote with I ⊂ {1, . . . , m} the subset of good squares such that

lim infn→∞ H1(Jun ∩ Qi) ≤ θ−1ri (48)

if and only if i ∈ I . For t ∈ L, (39)(iii), (40), and (48) imply that

lim infn→∞ L2((En
t �Et) ∩ Qi) ≤ cθ2r2

i

for i ∈ I . Then taking (44)(vi) into account and following [19, (2.8)–(2.9)] we find N(θ) such that for n ≥ N(θ)
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L2((En
ti

∩ Qi)�Q−
i ) +L2((Eti ∩ Qi)�Q−

i ) ≤ cθ2r2
i .

Following [19, (2.10)–(2.14)] and using (44)(i),(iii)–(v) we get s+
i , s−

i ∈ [ θ
2 ri, θri] for i ∈ I such that for n ≥ N(θ)

(i) H1(H−
i \ En

ti
) ≤ cθri, H1(H+

i ∩ En
ti
) ≤ cθri, i ∈ I,

(ii) H1(Gj \ (⋃
i∈I Ri ∪

⋃
i /∈I Qi

)) ≤ cθ, (49)

where H+
i = Hri (xi, s

+
i ), H−

i = Hri (xi, s
−
i ) and Ri the open rectangle between H+

i and H−
i .

On the bad squares Qi with i /∈ I the above estimates are not available. On the other hand, there is not much jump 
of u in those squares. Indeed, since H1(Jun ∩ Qi) > θ−1ri for all i /∈ I and n ∈ N large enough, we derive, using 
(44)(iii)∑

i /∈I H
1(Ju ∩ Qi) ≤

∑
i /∈I 3ri ≤ 3θ

∑
i /∈I H

1(Jun ∩ Qi) ≤ 3θM. (50)

Therefore, our aim is now to transfer the jump set Jφ in Gj ∩⋃
i∈I Qi to 

⋃
i∈I(∂∗En

ti
∩Qi). Assume first xi /∈ ∂�. 

We set φ− = φχQ−
i \Ri

extended to Ri according to Lemma 5.2. (This is possible when θ is small enough since Ri is 

a small neighborhood of Hri (xi).) In a similar way we define φ+ on (Qi \ Q−
i ) ∪ Ri .

Now we let

φn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ− on Q−
i \ Ri,

φ+ on Qi \ (Q−
i ∪ Ri),

φ− on Ri ∩ En
ti
,

φ+ on Ri \ En
ti
.

If xi ∈ ∂�, we proceed similarly using (44)(vii) and modifying φ to φn only in the part contained in �.3 We repeat 
the modification for all Qi , i ∈ I , so φn is defined on 

⋃
i∈I Qi . Outside this union we let φn = φ. By the construction 

and (37) we observe

(i) {φn = φ} ⊂ (⋃
i∈I Ri

) ∩ �,

(ii) H1(Jφn ∩
⋃

i∈I(Ri \ ∂∗En
ti
)
) ≤ cH1(Jφ ∩

⋃
i∈I(Qi \ Ri)

)
, (51)

(iii) ‖e(φn)‖L2(
⋃

i∈I Qi ;R2×2
sym )

≤ c‖e(φ)‖
L2(

⋃
i∈I Qi ;R2×2

sym )
.

Taking a sequence θk → 0 generates a sequence φn by choosing φn as above using θk for n ∈ [N(θk), N(θk+1)). With 
(44)(i) and (51) we immediately deduce (36)(i),(ii).

Finally, to see (36)(iii) we again follow the argumentation in [19] and refer therein for details. By (43), (49)(ii), 
(50), and (51)(i) we find

H1
((

(Jφn \ Jun) \ (Jφ \ Ju)
) \ (⋃

i∈I Ri

)) ≤ O(θ).

Consequently, to conclude it suffices to show

H1
(
(Jφn \ Jun) ∩

⋃
i∈I Ri

)
≤ O(θ) . (52)

To this end, we consider (Jφn \ Jun) ∩ Ri for a fixed i ∈ I and assume xi ∈ � (the case xi ∈ ∂� is similar). We break 
Ri into the parts

Ri =
⋃4

k=1
P k

i := (Ri ∩ ∂∗En
ti
) ∪ (Ri \ ∂∗En

ti
) ∪ ((H+

i ∪ H−
i ) \ ∂∗En

ti
)

∪ (∂Ri \ (H+
i ∪ H−

i ∪ ∂∗En
ti
)).

First, by (47) we have

3 See again the proof of [19, Theorem 2.1] for details. Let us just mention that in this context it is crucial that the jump sets of Ju, Jvn are 
contained in �, cf. (45), as hereby the function has to be indeed only modified in �.
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∑
i∈I H

1(P 1
i \ Jun) ≤ O(θ).

Moreover, by (43), (44)(ii),(iii), (49)(ii), and (51)(ii) we derive∑
i∈I H

1(P 2
i ∩ Jφn) ≤ cH1(Jφ ∩

⋃
i∈I(Qi \ Ri))

≤ cH1((Jφ ∩ Ju) ∩
⋃

i∈I(Qi \ Ri)
) + cH1((Jφ \ Ju) ∩

⋃
i
Qi)

≤ O(θ).

By our construction the only possible jumps of φn in H+
i ∪ H−

i are H+
i ∩ En

ti
and H−

i \ En
ti

so that∑
i∈I H

1(Jφn ∩ P 3
i ) =

∑
i∈I

(
H1(H+

i ∩ En
ti
) +H1(H−

i \ En
ti
)
) ≤ O(θ),

where the last inequality follows from (44)(iii) and (49)(i). Finally, the estimate 
∑

i∈I H1(P 4
i ) ≤ O(θ) is a conse-

quence of (44)(iii) and |s+
i |, |s−

i | ≤ θri . Collecting the previous estimates we obtain (52). This concludes the proof 
for � = 1.

Step 2. In the general case � > 1 it suffices to observe that the same trick in (42) can be inductively applied also to a 
finite number of GSBD functions. If there are sequences (ul

n)n in GSBD2(�′) and ul ∈ GSBD2(�′), one can find a 
single sequence (ūn)n ⊂ GSBD2(�′) converging to some ū in measure with

H1(Jūn�
⋃�

l=1
Jul

n

) =H1(Jū�
⋃�

l=1
Jul

) = 0.

With this, we reduce the problem to a single sequence (ūn)n for which the hypotheses of the theorem are satisfied for 
a suitable bounded sequence (w̄n)n of boundary data. �
5.2. Proof of the auxiliary results

We begin with the Proof of Lemma 5.2.

Proof of Lemma 5.2. We can assume R = (−l, l) × (0, h) with l, h > 0 and R− = (−l, l) × (−h, 0). For a given 
parameter 0 < ξ < 1 and a distribution T on (−l, l) × (0, ξh) the symbol T ξ denotes the distribution on R− ob-
tained by composition of T with the diffeomorphism (x, y) → (x, − 1

ξ
y). We first assume φ := (φ1, φ2) is a regular 

displacement in the sense of (10). Given 0 < λ < μ < 1 and p > 0 we set for all (x, y) ∈ R−

φ̂1(x, y) = pφ1(x,−λy) + (1 − p)φ1(x,−μy)

φ̂2(x, y) = −λpφ2(x,−λy) + (1 + λp)φ2(x,−μy) .
(53)

Furthermore, φ and φ̂ have by construction the same trace on the common boundary (−l, l) × {0} so that no jump 
occurs there. With this, (37)(i) follows. In order to show (ii), we calculate the component (Eφ̂)12 of the symmetrized 
distributional gradient of φ̂. A direct computation gives

2(Eφ̂)12 = −λp(∂1φ2 + ∂2φ1)
λ + (1 + λp)(∂1φ2)

μ − μ(1 − p)(∂2φ1)
μ .

Choosing p = 1+μ
μ−λ

we get

2(Eφ̂)12 = −λp(∂1φ2 + ∂2φ1)
λ + (1 + λp)(∂1φ2 + ∂2φ1)

μ .

Taking the absolutely continuous parts with respect to the Lebesgue measure we derive that the L2 norm of (e(φ̂))12
can be controlled with the L2 norm of (e(φ))12 independently of R and φ, which was the only thing to be shown to 
get (ii).

Before coming to the general case, we notice that the function φ̂ has the following property: If ψ : [0, +∞) →
[0, +∞) is an increasing continuous subadditive function satisfying (6) and 

´
R

ψ(|φ|) dx ≤ 1, then
ˆ

ψ(|φ̂|)dx ≤ c (54)
R̂
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again for an absolute constant c independent of R and φ. Indeed, it follows from the construction and the properties 
of ψ that (54) holds for a constant c only depending on λ, μ, and p.

In the general case φ ∈ GSBD2(R) we consider an approximating sequence of displacements with regular jump 
set (φk)k in the sense of Theorem 2.10. (Again the reader willing to assume an L2-bound may replace Theorem 2.10
by Theorem 2.6.) It follows by Remark 2.2 that there exists a nonnegative concave (thus, continuous and subadditive) 
increasing function ψ satisfying (6) and such thatˆ

R

ψ(|φk|)dx ≤ 1

for all k ∈ N. To the functions φk we associate extensions φ̂k ∈ GSBD2(R̂) satisfying (37) and (54). In particular, 
there is a constant C independent of k such thatˆ

R̂

ψ(|φ̂k|) + |e(φ̂k)|2 dx +H1(J
φ̂k

) ≤ C,

so that (9) implies the existence of φ̂ ∈ GSBD2(R̂) such that φ̂k → φ̂ in measure in R̂ and

H1(J
φ̂
) ≤ lim inf

k→+∞H1(J
φ̂k

) ‖e(φ̂)‖
L2(R̂;R2×2

sym )
≤ lim inf

k→+∞‖e(φ̂k)‖L2(R̂;R2×2
sym )

. (55)

Passing to the limit and using (55), Theorem 2.10, and the corresponding inequalities for φk we get (37).4 �
We go further by proving Lemma 5.3.

Proof of Lemma 5.3. We apply Theorem 2.9 to u and find a Caccioppoli partition �′ = ⋃∞
j=1 Pj and infinitesimal 

rigid motions (aj )
∞
j=1 such that u −∑

j≥1 ajχPj
lies in SBV (�′; R2) ∩L∞(�′; R2). Using 

∑+∞
j=1 H1

(
∂∗Pj

)
< +∞

and Theorem 2.7, we choose j0 as the smallest index j such that

H1(⋃
j≥j0

∂∗Pj

) +H1(Ju ∩
⋃

j≥j0
(Pj )

1) ≤ ε. (56)

Then we define �good = ⋃j0−1
j=1 Pj and see that the function v := uχ�good lies in SBV (�′; R2)∩GSBD2(�′) ∩

L∞(�′; R2). Since by construction we have

Ju−v ⊆
⋃

j≥j0
∂∗Pj ∪

(
Ju ∩

⋃
j≥j0

(Pj )
1
)

,

we get H1(Ju−v) ≤ ε. As Ju�Jv ⊆ Ju−v , the first part of the statement follows.
For the second part, observe that, since v = uχ�good , it holds v = u on the set {u = 0}. Therefore, if w = 0, the 

proof is concluded. In the general case we set û = u − w and apply the above procedure to û to construct a function v̂
with H1(Jû−v̂) ≤ ε and v̂ = 0 in �′ \ �, since û = 0 there. We then conclude setting v = v̂ + w. �

For the proof of Theorem 5.5 we need the following preliminary lemma, which is a consequence of the piecewise 
Korn inequality in Theorem 4.1.

Lemma 5.7. Let θ, δ > 0 with δθ−2 ≤ 1
4CQ1 with the constant CQ1 from Remark 4.2. Consider a square Q ⊂R

2 and 
u ∈ GSBD2(Q), and assume that there are two sets K1, K2 ⊂ Q and t1, t2 ∈R

2 with

L2(Km) ≥ ( 1
2 − δ)L2(Q), ‖u − tm‖L∞(Km;R2) ≤ δ, m = 1,2. (57)

Then there is a universal constant c > 0, some Cθ = Cθ(θ) > 0, both independent of Q and u, and a modification 
uθ ∈ SBV (Q; R2) ∩ L∞(Q; R2) such that uθ is constant on {u = uθ } and

4 Notice that by the explicit construction of φ̂k in (53) and the convergence in measure of φk one can also show that φ and φ̂ have the same trace 
on the common boundary (−l, l) × {0}.
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(i) L2({u = uθ }) ≤ cθ(H1(Ju ∩ Q) + diam(Q))2,

(ii) H1(∂∗{u = uθ } \ Ju) ≤ cθ(H1(Ju ∩ Q) + diam(Q)),

(iii) ‖∇uθ‖L1(Q;R2×2) ≤ Cθ diam(Q)
(‖e(u)‖

L2(Q;R2×2
sym )

+ δ
)
,

(iv) ‖uθ‖L∞(Q;R2) ≤ Cθ

(‖e(u)‖
L2(Q;R2×2

sym )
+ δ

) + c(t1 + t2).

(58)

Remark 5.8. The essential point is that (58)(iii), differently from (18)(iii), holds now for the modification uθ , coin-
ciding with u outside a small set. Moreover, the estimate for ∇uθ scales with the diameter of the square which is 
fundamental for the proof of (39)(ii).

Proof of Lemma 5.7. We apply Theorem 4.1 and obtain uθ ∈ SBV (Q; R2) ∩ L∞(Q; R2) as well as v = uθ −∑I
j=0 ajχPj

∈ SBV (Q; R2) for a partition (Pj )
I
j=0 and infinitesimal rigid motions (aj )

I
j=0 such that (17), (18)(i) 

hold. Recall that P0 = {u = uθ } (see (18)(ii)) and that uθ can be defined constantly on P0. Now (58)(i),(ii) follow 
from (17). From Remark 4.2 we get

(i) L2(Pj ) ≥ CQ1L2(Q)θ2 for 1 ≤ j ≤ I,

(ii) ‖v‖L∞(Q;R2) + (diam(Q))−1‖∇v‖L1(Q;R2×2) ≤ Cθ,Q1‖e(u)‖
L2(Q;R2×2

sym )
. (59)

By (57), (59)(i) and the assumption that δθ−2 ≤ 1
4CQ1 , we find

L2((K1 ∪ K2) ∩ Pj ) ≥ L2(Pj ) −L2(Q \ (K1 ∪ K2))

≥ (CQ1θ
2 − 2δ)L2(Q) ≥ 1

2
CQ1θ

2L2(Q)

for each Pj , 1 ≤ j ≤ I . Fix now 1 ≤ j ≤ I . By the above argument it holds that maxm=1,2 L2(Km ∩ Pj ) ≥
1
4CQ1θ

2L2(Q). Assuming without loss of generality that the maximum is achieved by K1, we then have by the 
previous and the isodiametric inequality, Lemma 2.3, (57), and (59)(ii), that

θdiam(Q)|Aj | ≤ c‖aj − t1‖L∞(Pj ∩K1;R2) ≤ c‖v‖L∞(Pj ∩K1;R2) + c‖u − t1‖L∞(Pj ∩K1:R2)

≤ cCθ,Q1‖e(u)‖
L2(Q;R2×2

sym )
+ cδ

for c = c(CQ1) universal, where we used that u = uθ on Pj . Since L2(Pj ) ≤ (diam(Q))2 and #I ≤ cθ−2 by (59)(i), 
we calculate by (59)(ii)

‖∇uθ‖L1(Q;R2×2) = ‖∇u‖L1(Q\P0;R2×2) ≤ ‖∇v‖L1(Q;R2×2) +
∑I

j=1
L2(Pj )|Aj |

≤ Cθ diam(Q)
(‖e(u)‖

L2(Q;R2×2
sym )

+ δ
)
.

This gives (58)(iii) and finally (58)(iv) can be seen along similar lines using that, for a fixed 1 ≤ j ≤ I ,

min
m=1,2

‖aj − tm‖L∞(Q;R2) ≤ cCθ,Q1‖e(u)‖
L2(Q;R2×2

sym )
+ cδ. �

We now proceed with the proof of Theorem 5.5.

Proof of Theorem 5.5. Let Q∗ := ⋃m
i=1 Qi be given as in the statement. By Definition 5.4, for each i we find two 

subsets K+
ri

(xi) and K−
ri

(xi) of Qi such that

L2(K+
ri

(xi)) ≥ 1

2
(1 − δ

)
L2(Qi), L2(K−

ri
(xi)) ≥ 1

2
(1 − δ)L2(Qi), (60)

where ‖u − u+(xi)‖L∞(K+
ri

(xi );R2) ≤ 1
2δ and ‖u − u−(xi)‖L∞(K−

ri
(xi );R2) ≤ 1

2δ, respectively. For each i and n we set 

K±
i,n = {y ∈ Qi : |un(y) − u±(x)| ≤ δ} and observe that due to (60) and the fact that un → u in measure, we obtain 

for n large enough
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L2(K+
i,n) ≥

(1

2
− δ

)
L2(Qi), L2(K−

i,n) ≥
(1

2
− δ

)
L2(Qi).

Since δθ−8 ≤ 1
4CQ1 , we can now apply Lemma 5.7 on the sequence (un)n and on each Qi with θ4 in place of θ , 

with K1 and K2 being given by K+
i,n, and K−

i,n, respectively, t1 = u+(xi), and t2 = u−(xi). Therefore, we obtain a 

sequence of functions vδ,θ,i
n ∈ SBV (Qi; R2) ∩ L∞(Qi; R2) such that (58) holds (with θ4 in place of θ ). Recall that 

the constants in (58) are independent of i and n. The functions vδ,θ
n are then defined as being given by vδ,θ,i

n on each 
of the disjoint squares Qi .

By (38)(i) and (58)(ii) for each i the perimeter of the sets {vδ,θ,i
n = un} is uniformly bounded in n and by a compact-

ness theorem for sets of finite perimeter together with (58)(i) we thus obtain a set Fi ⊂ Qi such that χ{vδ,θ,i
n =un} → χFi

in measure as n → ∞, after passing to a suitable (not relabeled) subsequence. Therefore, we obtain by (58)(i) (again 
with θ4 in place of θ )

L2(Fi) ≤ lim inf
n→∞ L2({vδ,θ,i

n = un}) ≤ c lim inf
n→∞ θ4(H1(Jun ∩ Qi) + diam(Qi))

2,

which implies (40). Notice that by construction, the sequence (vδ,θ,i
n )n converges to u in measure on Qi \ Fi . By 

(58)(iv), vδ,θ,i
n is bounded uniformly in L∞ so that we deduce

lim inf
n→∞ ‖vδ,θ,i

n − u‖L1(Qi\Fi ;R2) = 0.

Recall that, by Lemma 5.7, vδ,θ,i
n are constant on the sets {vδ,θ,i

n = un}, which therefore contain no jump of them. 
With this, (58)(ii) together with 

∑m
i=1 ri ≤ M yields (39)(i). Finally, to confirm (39)(ii), we use (58)(iii) to compute 

by Hölder’s inequality and the fact that ri ≤ δ2, 
∑m

i=1 ri ≤ M

‖∇vδ,θ
n ‖L1(Q∗;R2×2) =

m∑
i=1

‖∇vδ,θ,i
n ‖L1(Qi ;R2×2) ≤ Cθ

m∑
i=1

ri

(
‖e(un)‖L2(Qi ;R2×2

sym )
+ δ

)

≤ Cθ(
∑m

i=1
r2
i )

1
2 ‖e(un)‖L2(�′;R2×2

sym )
+ CθδM ≤ CθδM. �

We conclude with the proof of Corollary 5.6.

Proof of Corollary 5.6. Consider the functions vδ,θ
n constructed above. By (58)(ii) and the assumption 

∑m
i=1 ri ≤ M

it holds

H1(∂∗{vδ,θ
n = un} \ Jun) ≤ cθ

∑m

i=1
(H1(Jun ∩ Qi) + diam(Qi)) ≤ 2Mcθ. (61)

We now set

v̂δ,θ
n := (wn − vδ,θ

n )χ{vδ,θ
n =un} + vδ,θ

n .

These functions satisfy v̂δ,θ
n = wn on Q∗ \ � and thus J

v
δ,θ
n

⊂ Q∗ ∩ �. Since the sets Fi were constructed as limits of 

{vδ,θ
n = un} ∩ Qi , the new sequence still satisfies (39)(iii). From J

v̂
δ,θ
n

\ J
v

δ,θ
n

⊂ ∂∗{vδ,θ
n = un} and (61) we get (39)(i).

Finally, the assumptions 
∑m

i=1 ri ≤ M and ri ≤ δ2 imply that L2(Q∗) ≤ 4δ2M , so that by Hölder’s inequality 
‖∇wn‖L1(Q∗;R2×2) ≤ 2δ

√
M‖∇wn‖L2(Q∗;R2×2). With this and the trivial inequality

‖∇v̂δ,θ
n ‖L1(Q∗;R2×2) ≤ ‖∇vδ,θ

n ‖L1(Q∗;R2×2) + ‖∇wn‖L1(Q∗;R2×2)

we get (39)(ii) for a constant also depending on supn ‖wn‖H 1(�′;R2). �
6. A general compactness and existence result

Notice that for the compactness theorem in GSBD (see Theorem 2.5) it is necessary that the integral for some 
integrand ψ with lims→∞ ψ(s) = ∞ is uniformly bounded. However, in many application, e.g. in our model presented 
below, such an a priori bound is not available. Partially following ideas in [20] we now show that by means of 
Theorem 4.5 it is possible to establish a compactness and existence result for suitably modified functions.

We first prove the following general compactness result.
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Theorem 6.1. Let � ⊂ �′ ⊂ R
2 open, bounded with Lipschitz boundary such that (13) holds. Let M > 0, w ∈

H 1(�′, R2) and � be a rectifiable set with H1(�) ≤ M . Define

E(u) =
ˆ

�′
Q(e(u))dx +H1(Ju \ �) (62)

for u ∈ GSBD2(�′), where Q is a positive definite quadratic form on R2×2
sym .

Then there is an increasing concave function ψ : [0, ∞) → [0, ∞) satisfying (6) only depending on �, �′, M such 
that for every sequence (uk)k ⊂ GSBD2(�′) with supk≥1 E(uk) ≤ M and uk = w on �′ \� we find a (not relabeled) 
subsequence and modifications (yk)k ⊂ GSBD2(�′) with yk = w on �′ \ � and

E(yk) ≤ E(uk) + 1
k
, supk≥1

ˆ

�′
ψ(|yk|)dx ≤ 1. (63)

Moreover, there is a function y ∈ GSBD2(�′) with y = w on �′ \ � such that 
´
�′ ψ(|y|) dx ≤ 1 and for k → ∞

(i) yk → y in measure on �′,
(ii) e(yk) ⇀ e(y) weakly in L2(�′,R2×2

sym ), (64)

(iii) H1(Jy \ �) ≤ lim infk→∞ H1(Jyk
\ �).

Note that properties (64)(ii),(iii) also hold with uk in place of yk . Moreover, observe that in general a passage to 
modifications is indispensable since the behavior on components completely detached from the rest of the body cannot 
be controlled.

Proof. Let be given a sequence (uk)k with E(uk) ≤ M and uk = w on �′ \ �. This implies ‖e(uk)‖2
L2(�′;R2×2

sym )
+

H1(Juk
) ≤ cM for all k ∈ N. Let θl = 2−2l for all l ∈ N. By Theorem 4.5 we find functions (vl

k)k ⊂ SBV (�′; R2) ∩
L2(�′; R2) of the form

vl
k = ul

k −
∑∞

j=1
a

k,l
j χ

P
k,l
j

, (65)

where ul
k are modifications, (P k,l

j )j are partitions of �′ and (ak,l
j )j infinitesimal rigid motions. In particular, for all 

l ∈N, k ∈N we have vl
k = w on �′ \ � and by (31) the modifications satisfy

(i) L2(El
k) ≤ c̄θl, H1(Jul

k
\ Juk

) ≤ c̄θl,

(ii) ‖e(ul
k)‖2

L2(�;R2×2
sym )

≤ ‖e(uk)‖2
L2(�;R2×2

sym )
+ εl

(66)

for some c̄ = c̄(M, �, �′) > 0, where El
k := {u = ul

k} and (εl)l is a null sequence only depending on w. Moreover, 
by (32) we get

(i) ‖vl
k‖L2(�′;R2) ≤ Ĉl, (ii) ‖e(vl

k)‖2
L2(�′,R2×2

sym )
≤ cM, (iii) H1(Jvl

k
\ Juk

) ≤ c̄θl (67)

for Ĉl = Ĉl(θl, M, �, �′). Here we used, possibly passing to a larger M , that εl ≤ M for all l ∈N. Without restriction 
we assume that Ĉl is increasing in l.

Using a diagonal argument we get a (not relabeled) subsequence of (k)k∈N such that by Theorem 2.5 for every 
l ∈N we find a function vl ∈ GSBD2(�′) with vl

k → vl in L1(�′; R2) for k → ∞ and

e(ul
k) = e(vl

k) ⇀ e(vl) weakly in L2(�′;R2×2
sym ), H1(Jvl \ �) ≤ lim inf

k→∞ H1(Jvl
k
\ �).

In particular, by (67) we have

‖vl‖L1(�′;R2) ≤ Ĉl, ‖e(vl)‖2
2 ′ 2×2 +H1(Jvl ) ≤ cM + c̄. (68)
L (� ;Rsym )
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Likewise, we can establish a compactness result for the Caccioppoli partitions. By construction (see (65)) and (67)(iii) 
we have∑

j
H1(∂∗P k,l

j ∩ �′) ≤ 2H1(Juk
∪ Jvl

k
) ≤ 2cM + 2c̄ (69)

for all k, l ∈ N. Thus, by Theorem 2.8 we find for all l ∈ N an (ordered) partition (P l
j )j with 

∑
j H1(∂∗P l

j ∩ �′) ≤
2cM + 2c̄ such that for a suitable subsequence one has P k,l

j → P l
j in measure for all j ∈ N as k → ∞ and ∑

j L2
(
P

k,l
j �P l

j

)
→ 0 for k → ∞. As 

∑
j H1(∂∗P l

j ∩ �′) ≤ 2cM + 2c̄ for all l ∈ N, we can repeat the arguments 

and obtain a partition (Pj )j such that 
∑

j L2
(
P l

j�Pj

)
→ 0 for l → ∞ after extracting a suitable subsequence. Con-

sequently, using a diagonal argument we can choose a (not relabeled) subsequence of (l)l∈N and afterwards of (k)k∈N
such that∑

j
L2

(
P l

j�Pj

)
≤ 2−l ,

∑
j
L2

(
P

k,l
j �P l

j

)
≤ 2−l for all k ≥ l. (70)

We now want to pass to the limit l → ∞ for the sequence (vl)l . However, we see that the compactness result in GSBD

cannot be applied directly as the L1 bound depends on θl (cf. (68)). We show that by choosing the infinitesimal rigid 
motions on the elements of the partitions appropriately (see (65)) we can construct the sequence (vl)l such that

L2
(⋂

m≥n
{|vn − vm| ≥ 1}

)
≤ ĉ2−n for all n ∈N (71)

for a constant ĉ = ĉ(M, �, �′) > 0, whence Lemma 2.1 is applicable.
We fix k ∈N and describe an iterative procedure to redefine ak,l

j = a
A

k,l
j ,b

k,l
j

for all l, j ∈N. Let v̂1
k = v1

k as defined 

in (65) and assume v̂l
k as well as (âk,l

j )j have been chosen (which may differ from (ak,l
j )j ) such that (67)(i) still holds 

possibly passing to a larger constant Ĉl . Fix some P k,l+1
j , j ∈ N. If L2(P

k,l
j ∩P

k,l+1
j ) > 3c̄θl , we define âk,l+1

j = â
k,l
j

on P k,l+1
j . Otherwise, we set âk,l+1

j = a
k,l+1
j . In the first case we then obtain by the triangle inequality and the fact 

that ul
k = u on �′ \ El

k

‖âk,l+1
j − a

k,l+1
j ‖

L2((P
k,l
j ∩P

k,l+1
j )\(El

k∪El+1
k );R2)

≤ ‖u − â
k,l
j ‖L2(�′\El

k;R2) + ‖u − a
k,l+1
j ‖

L2(�′\El+1
k ;R2)

≤ ‖v̂l
k‖L2(�′;R2) + ‖vl+1

k ‖L2(�′;R2) ≤ Ĉl + Ĉl+1 ≤ 2Ĉl+1.

In the penultimate step we have used that (67)(i) holds for v̂l
k and vl+1

k . By (66)(i) we get L2((P
k,l
j ∩ P

k,l+1
j ) \ (El

k ∪
El+1

k )) ≥ c̄θl . Consequently, by Lemma 2.3 for ψ(s) = s2 we find |Âk,l+1
j − A

k,l+1
j | + |b̂k,l+1

j − b
k,l+1
j | ≤ Cl+1∗ for 

a constant Cl+1∗ only depending on �, �′, Ĉl+1, θl and M . We define v̂l+1
k as in (65) replacing ak,l+1

j by âk,l+1
j and 

summing over all components we derive

‖v̂l+1
k ‖L2(�′;R2) ≤ ‖vl+1

k ‖L2(�′;R2) + C�′Cl+1∗ ≤ Ĉl+1 + C�′Cl+1∗

for a constant C�′ depending only on �′. I.e., (67)(i) is also satisfied for v̂l+1
k after possibly passing to a larger constant 

Ĉl+1 = Ĉl+1(θl+1, M, �, �′).
For simplicity the modified functions and the infinitesimal rigid motions will still be denoted by vl

k and ak,l
j in the 

following. We now show that (71) holds. To this end, we define An
k,l = ⋂

n≤m≤l{vm
k = vn

k } for all n ∈N and n ≤ l ≤ k. 
If we show

L2 (
�′ \ An

k,l

) ≤ ĉ2−n, (72)

then (71) follows. Indeed, for given l ≥ n we can choose K = K(l) ≥ l so large that L2
(
{|vm

K − vm| > 1
2 }

)
≤ 2−m for 

all n ≤ m ≤ l since vm → vm in L1(�′; R2) for k → ∞. This implies
k
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L2
(⋂

n≤m≤l
{|vm − vn| ≥ 1}

)
≤ L2 (

�′ \ An
K,l

) +
∑

n≤m≤l
L2

(
{|vm

K − vm| > 1
2 }

)
≤ ĉ2−n.

Passing to the limit l → ∞ we then derive L2
(⋂

m≥n{|vm − vn| ≥ 1}) ≤ ĉ2−n, as desired.
We now confirm (72). To this end, fix k ≥ l and first observe that by (65) and (66)(i)

L2(⋂
n≤m≤l

{T n
k = T m

k } \ An
k,l

) ≤
∑

n≤m≤l
L2(Em

k ) ≤ 2c̄θn ≤ c̄2−n, (73)

where T n
k = ∑

j a
k,n
j χ

P
k,n
j

. We consider {T m
k = T m+1

k } for n ≤ m ≤ l − 1 and from (70) we deduce

∑
j

L2
(
P

k,m+1
j �P

k,m
j

)
≤ 3 · 2−m.

Define J1 ⊂ N such that L2
(
P

k,m+1
j

)
≤ 6c̄θm for j ∈ J1. Then let J2 ⊂ N \ J1 such that L2

(
P

k,m+1
j ∩ P

k,m
j

)
>

1
2L2

(
P

k,m+1
j

)
for all j ∈ J2. Finally, we observe that L2

(
P

k,m+1
j

)
≤ 2L2

(
P

k,m+1
j \ P

k,m
j

)
for j ∈ J3 := N \ (J1 ∪

J2). Using the isoperimetric inequality and (69) we derive

∑
j∈J1

L2
(
P

k,m+1
j

)
≤ √

6c̄θm

∑
j∈J1

L2
(
P

k,m+1
j

) 1
2

≤ c2−m
∑

j∈J1
H1(∂∗P k,m+1

j ) ≤ c(M + c̄)2−m.

Due to the above construction of the infinitesimal rigid motions we obtain {T m
k = T m+1

k } ⊃ ⋃
j∈J2

(P
k,m+1
j ∩ P

k,m
j )

and therefore

L2
(
�′ \ {T m

k = T m+1
k }

)
≤

∑
j∈J2

L2
(
P

k,m+1
j \ P

k,m
j

)
+

∑
j∈J1∪J3

L2
(
P

k,m+1
j

)

≤
∑
j∈J2

L2
(
P

k,m+1
j \ P

k,m
j

)
+

∑
j∈J3

2L2
(
P

k,m+1
j \ P

k,m
j

)
+ c(M + c̄)2−m ≤ c2−m

for c only depending on M, �, �′. Summing over n ≤ m ≤ l − 1 and recalling (73), we establish (72) and conse-
quently (71).

In view of (68) and (71) we can apply Lemma 2.1 on the sequences sl = Ĉl and tl = ĉ2−l to obtain an increasing, 
concave function ψ̃ with (6) such that supl≥1

´
�′ ψ̃(|vl |) dx ≤ 1. Define ψ(s) = 1

2 min{ψ̃(s), s} and observe that 
ψ has the desired properties. In particular, the choice of ψ only depends on �, �′ and M . Recalling vl

k → vl in 
L1(�′; R2), (66) and (67)(iii) we can now select a subsequence of (uk)k and a diagonal sequence (yk) ⊂ (vl

k)k,l such 
that ‖yk − vl‖L1(�′;R2) ≤ 1 for some vl and E(yk) ≤ E(uk) + 1

k
. Then we get that (63) holds.

The existence of a function y ∈ GSBD2(�′) with y = w on �′ \ � and 
´
�′ ψ(|y|) dx ≤ 1 as well as the conver-

gence (64) now directly follow from Theorem 2.5. �
As a consequence we now obtain the following existence result.

Theorem 6.2. Let � ⊂ �′ ⊂ R2 open, bounded with Lipschitz boundary such that (13) holds. Let w ∈ H 1(�′, R2)

with ‖w‖H 1(�′;R2) ≤ M and E as given in (62). Then the following holds:

(i) There is a minimizer of E(u) among all functions u ∈ GSBD2(�′) with u = w on �′ \ �.
(ii) There is an increasing concave function ψ : [0, ∞) → [0, ∞) with (6) only depending on �, �′, M such that ´

�′ ψ(|u|) dx ≤ 1 for at least a minimizer u of the minimization problem in (i).

Proof. Let A := {u ∈ GSBD(�′) : u = w on �′ \ �} and (uk)k ⊂ A with E(uk) → infu∈A E(u). We employ Theo-
rem 6.1 and let (yk)k be a (sub-)sequence of modifications converging to u ∈A in the sense of (64). Then we find by 
(63), (64)
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E(u) ≤ lim infk→∞ E(yk) = lim infk→∞ E(uk) = infu∈A E(u).

Consequently, u is a minimizer for the problem (i). Moreover, by Theorem 6.1 we find a function ψ with the desired 
properties such that 

´
�′ ψ(|u|) dx ≤ 1. �

Remark 6.3. By inspection of the proof, the above compactness and existence result also holds for more general 
energies in GSBD2 of the formˆ

�′
f (x, e(u)(x))dx +

ˆ

Ju\�
g(x, ν)dH1

which are lower semicontinuous with respect to the convergence in measure. Here, it is crucial that the surface den-
sity g, while possibly depending on the material point and the orientation of the jump, is insensitive to the jump height. 
Likewise, the existence result stated in Section 3 may be generalized in this direction.

We also mention that, in the same spirit, a derivation of an existence result in the realm of finite elasticity (see [14]) 
without a-priori bounds on the deformations or applied body forces is possible. We defer a more thorough analysis of 
these issues to a subsequent work.

We later will use property (ii) to derive compactness in GSBD2 of the minimizers of our incremental problems. 
Concerning the stability of minimizers with respect to converging sequences of boundary data we have the following 
corollary being a consequence of the jump transfer lemma. As before Q is a strictly positive quadratic form on R2×2

sym .

Corollary 6.4. Let � ⊂ �′ ⊂ R
2 open, bounded with Lipschitz boundary such that (13) holds. Let � ⊂ R

2 be a 
measurable set with H1(�) < ∞, let (un)n, u ∈ GSBD2(�′) and un = wn in �′ \ � for (wn)n ⊂ H 1(�′; R2) such 
that un → u in measure, e(un) ⇀ e(u) weakly in L2(�′; R2×2

sym ). If un minimize
ˆ

�

Q(e(v))dx +H1(Jv \ (Jun ∪ �))

among all functions with the same Dirichlet data, then u minimizesˆ

�

Q(e(v))dx +H1(Jv \ (Ju ∪ �))

among all functions v such that v = u on �′ \ �. If furthermore (wn)n is a constant sequence, we have e(un) → e(u)

strongly in L2(�′; R2×2
sym ).

The proof is omitted as it is completely analogous to Corollary 2.10 in [19] provided one substitutes the Dirichlet 
energy with the linearized elastic energy and the gradient by the symmetrized gradient.

7. Proof of the existence result

Equipped with the theoretical results in the previous section, we can obtain the announced existence result Theo-
rem 3.1 by passing to the limit in the usual scheme of time-incremental minimization. The discussion in this section 
will closely follow the analogous one in [19, Section 3] and therefore not all the proofs will be detailed. For the 
reader’s convenience we will only focus on some points where our GSBD2 setting involves some modifications of 
the arguments developed there. Through all this section we will write H1(�) in place of H1(� ∩ �′), since all the 
cracks we consider in the proof will have by construction no intersection with ∂� \ ∂D�.

We fix a time interval [0, T ] and consider a countable dense subset I∞ thereof. We can assume that 0 and T belong 
to I∞. For each n ∈ N we choose a subset In := {0 = tn0 < tn1 < · · · < tnn = T } such that (In)n form an increasing 
sequence of nested sets whose union is I∞. Setting �n := sup

1≤k≤n

(tnk − tnk−1), we have that �n → 0 when n → +∞. 

As discussed in Section 3, we consider a boundary datum g ∈ W 1,1([0, T ]; H 1(R2; R2)) and the corresponding left-
continuous piecewise constant interpolation
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gn(t) := g(tnk ) for all t ∈ [tnk , tnk+1)

which satisfies g(t) = gn(t) for all t ∈ I∞, when n is large enough. Moreover, gn(t) → g(t) strongly in H 1 for all 
t ∈ [0, T ]. We set un(0) = u(0), the given initial datum, while for all k = 1, . . . , n we recursively define un

k as a 
minimizer of the problem

ˆ

�

Q(e(v))dx +H1

⎛
⎝Jv \

⋃
0≤j≤k−1

Jun
j

⎞
⎠ (74)

among the functions v ∈ GSBD2(�′) satisfying v = g(tnk ) in �′ \�. The existence of such a minimizer follows from 
Theorem 6.2. We then construct left-continuous piecewise constant interpolation

un(t) := un
k for all t ∈ [tnk , tnk+1) .

The following a-priori estimates on the interpolations can be then derived combining similar arguments as those 
developed in [15] and [19] with the additional property (ii) of Theorem 6.2.

Lemma 7.1. There exists an increasing concave function ψ : [0, ∞) → [0, ∞), satisfying (6), which only depends on 
�, �′ and supt∈[0,T ] ‖g(t)‖H 1 , such that the interpolations un(t) satisfy

ˆ

�′
ψ(|un(t)|)dx + ‖e(un(t))‖

L2(�′;R2×2
sym )

+H1

⎛
⎝ ⋃

τ∈I∞ , τ≤t

Jun(τ)

⎞
⎠ ≤ M (75)

for a constant M independent of t ∈ [0, T ]. Furthermore, setting σn(t) := Ce(un(t)) with C as in (12), it exists a 
modulus of continuity ω such that the following energy inequality holds at every t ∈ [0, T ]:

ˆ

�

Q(e(un(t))dx +H1

⎛
⎝ ⋃

τ∈I∞ , τ≤t

Jun(τ)

⎞
⎠

≤
ˆ

�

Q(e(u(0)))dx +H1 (
Ju(0)

) +
tˆ

0

〈σn(s), e(ġ(s))〉ds + ω(�n) . (76)

Proof. The bound on ‖e(un(t))‖
L2(�′,R2×2

sym )
is simply obtained by comparing the minimizer un(t) with the admissible 

competitor gn(t), while the existence of a ψ as in (75) follows from (ii) in Theorem 6.2 and the assumptions on g. 
Fix now t ∈ [0, T ], and for fixed n, let k be such that t ∈ [tnk , tnk+1). By construction, since In ⊂ I∞, one has

⋃
τ∈I∞,τ≤t

Jun(τ) =
k⋃

j=0

Jun
j
.

Testing for every 1 ≤ j ≤ k the minimality of un(tnj ) with the admissible competitor un(tnj−1) + g(tnj ) − g(tnj−1), 
summing up all steps until step k and using the above equality, we obtain (76) (for the details, use the same arguments 
leading to [19, (3.4)], upon replacing the Dirichlet energy with the linearized elastic energy). Once (76) is proved, the 
uniform a-priori bound on H1

(⋃
τ∈I∞,τ≤t Jun(τ)

)
simply follows by the Cauchy–Schwarz inequality and the already 

proven bound on σn(t). �
The following lower semicontinuity result will be needed in order to pass to the limit in the previous bounds. We 

do not report the proof, which is verbatim the same as in [19, Lemma 3.1], provided one uses the GSBD compactness 
and lower semicontinuity theorem in place of the one in SBV .

Lemma 7.2. Let A ⊂ R
2 be open, bounded. For all � ∈ N, let (vn

� )n be a sequence of functions in GSBD2(A)

satisfying the assumptions of Theorem 2.5, and let v� ∈ GSBD2(A) be such that vn
� → v� in measure when n → +∞. 

Then
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H1

(+∞⋃
�=0

Jv�

)
≤ lim inf

n→+∞H1

(+∞⋃
�=0

Jvn
�

)
.

Using the bounds in (75), we will initially define u(t) only for t ∈ I∞. This will already allow us to define a crack 
set �(t) for all t ∈ [0, T ] with Ju(t) ⊂ �(t) for t ∈ I∞. The function u(t) will be later extended to all t in a way that 
the inclusion Ju(t) ⊂ �(t) still holds.

Theorem 7.3. There exists a (not relabeled) subsequence (un(t))n independently of t ∈ I∞ and a function u : I∞ →
GSBD2(�′) such that un(t) → u(t) in measure for all t ∈ I∞ and, setting

�(t) :=
⋃

τ∈I∞ , τ≤t

Ju(τ) for all t ∈ [0, T ] , (77)

the following properties are satisfied:

(i) u(t) = g(t) in �′ \ � for all t ∈ I∞,

(ii) e(un(t)) → e(u(t)) strongly in L2(�′,R2×2
sym ) for all t ∈ I∞, (78)

(iii) H1(�(t)) ≤ lim inf
n→∞ H1

⎛
⎝ ⋃

τ∈I∞ , τ≤t

Jun(τ)

⎞
⎠ for all t ∈ [0, T ] .

Furthermore, for all t ∈ I∞, u(t) minimizesˆ

�

Q(e(v))dx +H1(Jv \ �(t)) (79)

among all functions v such that v = g(t) on �′ \ �.

Proof. By (75) the sequence (un(t))n satisfies the assumptions of Theorem 2.5 for every t ∈ I∞. With this, up to 
extracting a diagonal sequence, there exists u : I∞ → GSBD2(�′) such that un(t) → u(t) in measure and e(un(t)) ⇀
e(u(t)) weakly in L2(�′, R2×2

sym ) for all t ∈ I∞. Since un(t) = gn(t) in �′ \ � and gn(t) = g(t) for n large enough, 
(78)(i) follows. At the expense of a numbering of I∞, (78)(iii) follows from Lemma 7.2.

From the definition of un(t) and gn(t) (cf. (74)), for all t ∈ [0, T ] we have that un(t) is minimizing

ˆ

�

Q(e(v))dx +H1

⎛
⎝Jv \

⋃
τ∈In , τ≤t

Jun(τ)

⎞
⎠ (80)

among the functions v ∈ GSBD2(�′) satisfying v = gn(t) in �′ \ �. A fortiori, we deduce that un(t) is a minimizer 
with respect to its own jump set, that is with Jun(t) in place of 

⋃
τ∈In
τ≤t

Jun(τ) in the above problem. If additionally 

t ∈ I∞, we can choose n so large that t ∈ In ∩ I∞, and thus gn(t) = g(t). With this, Corollary 6.4 gives (78)(ii).
We now fix δ > 0 and t ∈ I∞. Since H1(�(t)) is finite, we can find � ∈ N so that t ∈ I� and the subset ��(t) of 

�(t) defined by

��(t) =
⋃

τ∈I� , τ≤t

Ju(τ)

satisfies H1(�(t) \��(t)) < δ. For all n ≥ �, we similarly define �n
� (t) with un(τ) in place of u(τ). Notice that Ju(t) ⊂

��(t) and Jun(t) ⊂ �n
� (t) since t ∈ I�. With this and using (80) we have that un(t) is minimizing 

´
�

Q(e(v)) dx +
H1

(
Jv \ �n

� (t)
)

among the functions v ∈ GSBD2(�′) which satisfy v = g(t) in �′ \ �.
We observe that by Lemma 7.1 the sequences (un(τ ))n with τ ∈ I�, τ ≤ t , and the corresponding limiting functions 

u(τ) defined above satisfy (35). Consequently, for any v with v = g(t) in �′ \ � we can apply Theorem 5.1 to 
φ = v − u(t) and to the finite unions of jump sets �n

� (t) and ��(t). Therefore, we get the existence of a sequence 
(φn)n such that φn = v − u(t) = 0 in �′ \ � satisfying, by (36) and (78)(ii),
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‖e(un(t) + φn) − e(v)‖
L2(�′,R2×2

sym )
→ 0, lim sup

n→+∞
H1(Jφn \ �n

� (t)) ≤H1(Jφ \ ��(t)) (81)

as n → +∞. Furthermore, since t ∈ I∞, when n is so big that gn(t) = g(t) in �′ \ � we have that un(t) + φn = g(t)

in �′ \ �. The minimality of un(t), (78)(ii), and (81) then imply thatˆ

�

Q(e(u(t)))dx = lim
n+∞

ˆ

�

Q(e(un(t)))dx

≤ lim sup
n→+∞

ˆ

�

Q(e(un(t) + φn))dx +H1 (
Jun(t)+φn \ �n

� (t)
)

≤
ˆ

�

Q(e(v))dx +H1 (Jv \ ��(t)) ≤
ˆ

�

Q(e(v))dx +H1 (Jv \ �(t)) + δ ,

where in the third step we used that Ju(t) ⊂ ��(t) and Jun(t) ⊂ �n
� (t). This concludes the proof of (79) since δ is 

arbitrary. �
Remark 7.4. Let t /∈ I∞ and let w ∈ GSBD2(�′) be such that (un(t))n has a subsequence, possibly depending on t , 
which converges to w in the sense of (9). Fix δ > 0 and ��(t) and �n

� (t) as in the previous proof, without the request 
t ∈ I�. We can apply Theorem 5.1 for the finite number of sequences (un(t))n and (un(τ ))n with τ ∈ I�, τ ≤ t , and 
thus for any v with v = g(t) in �′ \ �, we can apply (36) to φ = v to obtain a corresponding sequence (φn)n. It 
follows now from (80) that (with vn := φn + gn(t) − g(t))ˆ

�

Q(e(un(t)))dx ≤
ˆ

�

Q(e(vn))dx +H1(Jvn \ (
�n

� (t) ∪ Jun(t)

)
) .

By (9)(ii), the strong convergence of gn(t) to g(t) in H 1, (36) and the arbitrariness of δ we deduce the minimality 
propertyˆ

�

Q(e(w))dx ≤
ˆ

�

Q(e(v))dx +H1(Jv \ (�(t) ∪ Jw)) . (82)

For v = w one also gets lim
n→+∞

ˆ

�

Q(e(un(t))) dx =
ˆ

�

Q(e(w)) dx, which implies

‖e(un(t)) − e(w)‖
L2(�′,R2×2

sym )
→ 0 (83)

by the strict convexity of Q.

In the next theorem we extend u from I∞ to a function defined on all of [0, T ]. We prove that this extension satisfies 
the inclusion Ju(t) ⊂ �(t) for all t ∈ [0, T ] (notice that, at this stage of the proof, the crack set �(t) is already defined 
on the whole interval [0, T ]), the global minimality condition, as well as the “≤”-inequality in the energy balance of 
Theorem 3.1. The proof follows very closely in the footsteps of [19, Lemma 3.8]: A sketch is reported for the reader’s 
convenience.

Theorem 7.5. There exists a function u : [0, T ] → GSBD2(�′) with u(t) = g(t) in �′ \ � and an H1-rectifiable 
crack �(t) ⊂ �, nondecreasing in t , such that Ju(t) ⊂ �(t) up to an H1-negligible set for all t ∈ [0, T ] and:

• (global stability) for all t ∈ [0, T ], u(t) minimizesˆ

�

Q(e(v))dx +H1 (Jv \ �(t))

among the functions v ∈ GSBD2(�′) which satisfy v = g(t) in �′ \ �.



62 M. Friedrich, F. Solombrino / Ann. I. H. Poincaré – AN 35 (2018) 27–64
• (energy inequality) defining the stress σ(t) and the total energy E(t) as in Theorem 3.1, it holds

E(t) ≤ E(0) +
tˆ

0

〈σ(s), e(ġ(s))〉ds .

Proof. We consider u : I∞ → GSBD2(�′) as in Theorem 7.3. Accordingly, we define �(t) as in (77) for all 
t ∈ [0, T ]. Thus, we simply have to define u when t /∈ I∞. We fix t /∈ I∞ and an increasing sequence (tk)k ⊂ I∞
converging to t . Notice that for the interpolants un(t) the inequality (75) holds with a constant M and a function ψ
which are not depending on k. Since, for all k, un(tk) → u(tk) in measure when n → +∞ and thus also un(tk) → u(tk)

a.e. for a not relabeled subsequence, by Fatou’s lemma and (9), also the sequence (u(tk))k satisfies (75). Then, it ex-
ists a limit point u(t) ∈ GSBD2(�′) with u(tk) → u(t) in measure and e(u(tk)) ⇀ e(u(t)) weakly in L2 as k → ∞. 
It is obvious that, u(t) = g(t) in �′ \ � while an application of (79) together with the arguments leading to [19, 
(3.24)], again simply using GSBD in place of SBV compactness, shows that the inclusion Ju(t) ⊂ �(t) holds up to 
an H1-negligible set.

We now prove the global stability property. Notice that for all k one has by definition �(tk) ⊂ �(t) and, since 
the sequence of cracks �(tk) is nondecreasing, it holds that H1(�(t) \ �(tk)) → 0 when k → +∞. For each v ∈
GSBD2(�′) with v = g(t) in �′ \ �, the sequence vk = v + g(tk) − g(t) has the same jump set as v and clearly 
satisfies e(vk) → e(v) in L2(�′, R2×2

sym ). By Theorem 7.3 we have
ˆ

�

Q(e(u(tk)))dx ≤
ˆ

�

Q(e(vk))dx +H1(Jv \ �(tk)) .

Taking the limit we get the global stability because of the inclusion Ju(t) ⊂ �(t). We also get, for v = u(t) in the above 
argument, that

lim
n→+∞

ˆ

�

Q(e(un(t)))dx =
ˆ

�

Q(e(u(t)))dx,

which implies the strong convergence of e(u(tk)) to e(u(t)). Furthermore, due to the strict convexity of Q, the function 
e(u(t)) is uniquely determined by the global stability and the condition Ju(t) ⊂ �(t). Thus, e(u(t)) is uniquely deter-
mined once I∞ is fixed. This implies the strong convergence of e(u(tk)) to e(u(t)) on the whole sequence (tk)k and not 
only along a subsequence, and that the mapping t → e(u(t)) is strongly left continuous in L2 at any t ∈ [0, T ] \ I∞.

The energy inequality immediately follows from (76) and (78)(iii), once the following claim is proved:

e(un(t)) → e(u(t)) strongly in L2(�′,R2×2
sym )

for a.e. t ∈ [0, T ]. In fact, one can then pass to the limit in (76) also in the term associated to the work of the external 
loads. Because of (78), it suffices to show the claim for t ∈ [0, T ] \ I∞. Notice that because of (75) the L2-norm of 
the sequence e(un(t)) is bounded. Furthermore, again (75), together with Theorem 2.5 imply that any weak accumu-
lation point of e(un(t)) must be of the form e(w), where w is a GSBD2 function such that a subsequence, possibly 
depending on t , of un(t) converges to w in the sense of (9). Therefore, to prove the claim it suffices to show that 
e(w) = e(u(t)) for a.e. t , so that the limit is independent of the chosen subsequence and the strong convergence holds 
because of (83).

Let us a consider a weak accumulation point w. Notice that u(t) is an admissible competitor for the problem (82), 
which as shown above additionally satisfies Ju(t) ⊂ �(t). Therefore, if we prove

ˆ

�

Q(e(u(t)))dx ≤
ˆ

�

Q(e(w))dx (84)

for a.e. t , we will get e(w) = e(u(t)) as requested, otherwise, using the strict convexity of Q, we would contradict (82)
with v = 1

2 (w + u(t)). Now, using (83) and the left continuity of t → e(u(t)) at t /∈ I∞, the inequality (84) follows 
from the minimality of un(t) arguing exactly as in the proof of part (d) in [24, Lemma 4.3], again upon substituting 
the Dirichlet with the linear elastic energy. We omit the details. �
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We are finally in a position to give the proof of Theorem 3.1.

Proof of Theorem 3.1. Defining u(t) as in Theorems 7.3 and 7.5 and �(t) as in (77), the only thing left to show 
is the “≥”-inequality in the energy balance. This follows from global stability by a well-known argument (see [24, 
Lemma 4.6]) that we sketch for the reader’s convenience. We first notice that the map t �→ H1 (�(t)) is bounded 
monotone increasing, so that it is continuous at each t ∈ [0, T ] \ N , where N has 0-Lebesgue measure. At each 
t ∈ [0, T ] \ (I∞ ∪N ) we already now that e(u(·)) is left continuous with respect to the L2-norm. We can show that it 
is indeed continuous, arguing as follows. Fixing a decreasing sequence tk → t , any weak-L2 accumulation point e(w)

of e(u(tk)) satisfies, because of (9), the inclusion �(t) ⊂ �(tk), and the continuity of H1 (�(·)) at time t , that

H1 (Jw \ �(t)) ≤ lim inf
k→+∞H1 (

Ju(tk) \ �(tk)
) = 0 .

Consequently, Jw ⊂ �(t) up to an H1-negligible set. With this, testing the global stability of u(tk) with v+g(tk) −g(t)

for any v with v = g(t) in �′ \ � and arguing as in the proof of Theorem 7.5, we obtain e(w) = e(u(t)) as well as the 
claimed strong convergence.

Fix now t ∈ [0, T ]. Setting for every k ∈ N and every i = 0, . . . , k, si
k = i

k
t and uk(s) = u(si+1

k ) whenever 
t ∈ (si

k, s
i+1
k ], we have that ‖e(uk(s))‖L2(�′,R2×2

sym )
is uniformly bounded because of the energy inequality (see The-

orem 7.5), and

‖e(uk(s)) − e(u(s))‖
L2(�′,R2×2

sym )
→ 0 for all s ∈ [0, t] \ (I∞ ∪N ) , (85)

that is a.e. in [0, t]. Testing the global stability of u(si
k) with u(si+1

k ) −g(si+1
k ) +g(si

k), summing up on i and exploiting 
the absolute continuity of t �→ g(t), one obtains

E(t) ≥ E(0) +
tˆ

0

〈σk(s), e(ġ(s))〉ds + ηk ,

where σk(s) := Ce(uk(s)) and ηk is an infinitesimal remainder. The thesis now follows by dominated convergence 
and (85) when taking the limit k → +∞. �
Conflict of interest statement

The authors state that there is no conflict of interests.

Acknowledgements

This work has been funded by the Vienna Science and Technology Fund (WWTF) through Project MA14-009. 
Manuel Friedrich’s research has been supported by the Alexander von Humboldt Stiftung. Francesco Solombrino’s 
work is part of the project “Quasistatic and Dynamic Evolution Problems in Plasticity and Fracture” (P.I. Prof. G. Dal 
Maso), financed by ERC under Grant No. 290888. The authors wish to thank Gilles Francfort for helpful suggestions 
on the first version of this paper.

References

[1] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Unione Mat. Ital., B (7) 3 (1989) 857–881.
[2] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Ration. Mech. Anal. 111 (1990) 291–322.
[3] L. Ambrosio, A. Coscia, G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Ration. Mech. Anal. 139 (1997) 201–238.
[4] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000.
[5] A. Baldi, F. Montefalcone, A note on the extension of BV functions in metric measure spaces, J. Math. Anal. Appl. 340 (2008) 197–208.
[6] G. Bellettini, A. Coscia, G. Dal Maso, Compactness and lower semicontinuity properties in SBD(�), Math. Z. 228 (1998) 337–351.
[7] D. Bucur, N. Varchon, Boundary variation for a Neumann problem, Ann. Sc. Norm. Super., Cl. Sci. 29 (4) (2000) 807–821.
[8] Yu.D. Burago, V.G. Maz’ja, Potential Theory and Function Theory for Irregular Regions, translated from Russian, Semin. Mat., vol. 3, 

V.A. Steklov Math. Ins., Leningrad, 1969.
[9] A. Chambolle, A density result in two-dimensional linearized elasticity, and applications, Arch. Ration. Mech. Anal. 167 (2003) 211–233.

http://refhub.elsevier.com/S0294-1449(17)30040-9/bib416D62726F73696F3A3839s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib416D62726F73696F3A3930s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib414344s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib414650s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib62616C6469s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib424344s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4275632D5661723A32303030s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib6D617A6A61s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib6D617A6A61s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4368616D626F6C6C653A32303033s1


64 M. Friedrich, F. Solombrino / Ann. I. H. Poincaré – AN 35 (2018) 27–64
[10] A. Chambolle, An approximation result for special functions with bounded deformation, J. Math. Pures Appl. 83 (2004) 929–954.
[11] A. Chambolle, F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets, Commun. Partial 

Differ. Equ. 22 (1997) 811–840.
[12] S. Conti, M. Focardi, F. Iurlano, Integral representation for functionals defined on SBDp in dimension two, Arch. Ration. Mech. Anal. 223 

(2017) 1337–1374.
[13] G. Dal Maso, Generalised functions of bounded deformation, J. Eur. Math. Soc. (JEMS) 15 (2013) 1943–1997.
[14] G. Dal Maso, G.A. Francfort, R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal. 176 (2005) 165–225.
[15] G. Dal Maso, R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Ration. Mech. 

Anal. 162 (2002) 101–135.
[16] E. De Giorgi, Free-discontinuity problems in calculus of variations, in: R. Dautray (Ed.), Frontiers in Pure and Applied Mathematics, a Col-

lection of Papers Dedicated to J.-L. Lions on the Occasion of His 60th Birthday, North-Holland, 1991, pp. 55–62.
[17] E. De Giorgi, M. Carriero, A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal. 108 

(1989) 195–218.
[18] I. Fonseca, G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces, Springer, New York, 2007.
[19] G.A. Francfort, C.J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture, Commun. Pure Appl. Math. 56 (2003) 

1465–1500.
[20] M. Friedrich, A derivation of linearized Griffith energies from nonlinear models, preprint, arXiv:1504.01671, 2015.
[21] M. Friedrich, A Korn-type inequality in SBD for functions with small jump sets, preprint, arXiv:1505.00565, 2015.
[22] M. Friedrich, A piecewise Korn inequality in SBD and applications to embedding and density results, preprint, arXiv:1604.08416, 2016.
[23] G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46 (1998) 1319–1342.
[24] A. Giacomini, M. Ponsiglione, Discontinuous finite element approximation of quasi-static growth of brittle fractures, Numer. Funct. Anal. 

Optim. 24 (2003) 813–850.
[25] S. Gołab, Sur quelques points de la théorie de la longueur, Ann. Soc. Pol. Math. 7 (1928) 227–241.
[26] A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. Lond. 221-A (1920) 163–198.
[27] F. Iurlano, A density result for GSBD and its application to the approximation of brittle fracture energies, Calc. Var. Partial Differ. Equ. 51 

(2014) 315–342.
[28] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Camb. Stud. Adv. 

Math., vol. 135, Cambridge University Press, Cambridge, 2012.
[29] D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math. 

42 (1989) 577–684.
[30] F. Murat, The Neumann sieve, in: Nonlinear Variational Problems, Isola d’Elba, 1983, in: Res. Notes Math., vol. 127, Pitman, Boston, 1985.
[31] J.A. Nitsche, On Korn’s second inequality, RAIRO. Anal. Numér. 15 (1981) 237–248.
[32] R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985.

http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4368616D626F6C6C653A32303034s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4368616D622D446F763A31393937s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4368616D622D446F763A31393937s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib436F6E74692D466F63617264692D4975726C616E6F3A3135s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib436F6E74692D466F63617264692D4975726C616E6F3A3135s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib444Ds1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib444654s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib444D2D546F61s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib444D2D546F61s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib64673931s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib64673931s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib446547696F7267692D436172726965726F2D4C656163693A31393839s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib446547696F7267692D436172726965726F2D4C656163693A31393839s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib666F6E73656361s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4672616E63666F72742D4C617273656E3A32303033s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4672616E63666F72742D4C617273656E3A32303033s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4672696564726963683A31352D32s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4672696564726963683A31352D33s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4672696564726963683A31352D34s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib66726D613938s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4769612D506F6E73s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4769612D506F6E73s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib476F6C61623A3238s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib47726966666974683A3230s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib497572s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib497572s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib6D61676769s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib6D61676769s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4D756D2D5368613A31393839s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4D756D2D5368613A31393839s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4D75726174s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib4E6974s1
http://refhub.elsevier.com/S0294-1449(17)30040-9/bib54656Ds1

	Quasistatic crack growth in 2d-linearized elasticity
	1 Introduction
	1.1 Existence results for continuous-time evolution
	1.2 Challenges for linear elastic models
	1.3 The present paper

	2 Preliminaries
	2.1 Basic deﬁnitions
	2.2 Function spaces
	2.3 Caccioppoli partitions
	2.4 Piecewise Korn inequality in GSBD

	3 The model and statement of the main result
	4 A sharp piecewise Korn inequality in GSBD
	4.1 A reﬁned piecewise Korn inequality
	4.2 A version with Dirichlet boundary conditions

	5 Jump transfer lemma in GSBD
	5.1 Proof of the jump transfer lemma
	5.2 Proof of the auxiliary results

	6 A general compactness and existence result
	7 Proof of the existence result
	Conﬂict of interest statement
	Acknowledgements
	References


