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Abstract

We study the elastic behaviour of incompatibly prestrained thin plates of thickness h whose internal energy Eh is governed by 
an imposed three-dimensional smooth Riemann metric G only depending on the variable in the midsurface ω. It is already known 
that h−2 infEh converges to a finite value c when the metric G restricted to the midsurface has a sufficiently regular immersion, 
namely W2,2(ω, R3). The obtained limit model generalizes the bending (Kirhchoff) model of Euclidean elasticity. In the present 
paper, we deal with the case when c equals 0. Then, equivalently, three independent entries of the three-dimensional Riemann 
curvature tensor associated with G are null. We prove that, in such regime, necessarily inf Eh ≤ Ch4. We identify the �-limit of 
the scaled energies h−4Eh and show that it consists of a von Kármán-like energy. The unknowns in this energy are the first order 
incremental displacements with respect to the deformation defined by the bending model and the second order tangential strains. 
In addition, we prove that when infh−4Eh → 0, then G is realizable and hence minEh = 0 for every h.
© 2017 Elsevier Masson SAS. All rights reserved.

Résumé

On s’intéresse au comportement de structures minces d’épaisseur h dont l’énergie interne Eh est régie par une métrique rieman-
nienne tridimensionnelle G imposée, constante dans l’épaisseur, n’admettant pas nécessairement d’immersion isométrique. On sait 
que lorsque la restriction de G à la surface moyenne ω possède une immersion isométrique suffisamment régulière, c’est-à-dire 
appartenant à W2,2(ω, R3), alors h−2 infEh admet une limite finie c quand h tend vers 0. Le modèle limite correspondant géné-
ralise le modèle de flexion non linéaire, classique pour la métrique euclidienne. Nous nous plaçons ici dans le cas où c vaut 0, ce 
qui équivaut à la nullité de trois des six coeffiecients du tenseur de courbure associé à G. Nous montrons qu’alors infEh ≤ Ch4. 
Nous identifions la �-limite de h−4Eh et montrons qu’elle généralise l’énergie de von Kármán. Elle s’exprime en fonction des 
déplacements incrémentaux par rapport à la surface définie par le modèle de flexion et de déformations tangentielles généralisées. 
De plus, nous montrons que l’infimum de ce modèle limite à l’ordre 4 n’est nul que si G admet une immersion isométrique, auquel 
cas minEh = 0 pour tout h.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The purpose of this paper is to study the elastic behaviour of pre-stressed thin plates �h, characterized by non-
immersable Riemannian metrics G on their reference configurations. To such metrics (and the prestrain they generate), 
we refer as “incompatible”; the incompatibility is measured by infimizing the energy Eh given below, sometimes 
called the “non-Euclidean” elastic energy. We will be concerned with the regimes of curvatures of G resulting in the 
incompatibility of “high order”. By this we mean that infEh ∼ hβ as the plate’s thickness h goes to 0, and that the 
scaling exponent β satisfies: β > 2.

In paper [5] we analyzed the scaling infEh ∼ h2 and proved that it only occurs when the metric G2×2 on the 
mid-plate has an isometric immersion in R3 with the regularity W 2,2 and when, at the same time, the three tangential 
Riemann curvatures of G do not vanish identically. The two-dimensional limiting energy, obtained from the sequence 
h−2Eh via �-convergence, as h → 0, was an extension of the classical nonlinear bending energy.

In the present paper we assume that:

h−2 infEh → 0 (1.1)

and prove that the only nontrivial two-dimensional limiting theory in this regime is a von Kármán-like energy, valid 
when infEh ∼ h4. It further turns out that this scaling is automatically implied by (1.1) and infEh �= 0. Indeed, 
we show that (1.1) implies h−4 infEh ≤ C, and that h−4 infEh → 0 if and only if G is immersable, in which case 
minEh = 0 for all h.

Let us observe that this scale separation is different from the findings of [29] valid in the Euclidean case of G = Id3, 
where the possible limiting energies are distinguished by the scaling of the applied forces f h ∼ hα . In that context, 
three distinct limiting theories have been obtained for infEh ∼ hβ with β > 2 (corresponding to α > 2). Namely: 
β ∈ (2, 4) yielded the linearized bending model subject to a nonlinear constraint on the limiting displacements; β = 4
yielded the classical von Kármán model; and β > 4 corresponded to the linear elasticity.

The present results differ as well from the higher order hierarchy of scalings and the elastic theories of shells, as 
derived through an asymptotic expansion in [46]. These differences are due to the fact that while the magnitude of 
external forces is adjustable at will, it is not so for the six sectional curvatures (together with their covariant derivatives) 
of a given metric G. As we show, the six curvatures of G = G(x′) depending only on the mid-plate variables fall into 
two categories: including or excluding the thin direction variable. Then, the simultaneous vanishing of curvatures in 
the first category or in both categories correspond to the two scenarios at hand in terms of the scaling of infEh.

1.1. Some background in dimension reduction for thin structures

Early attempts for replacing the three-dimensional model of a thin elastic structure with planar mid-surface at 
rest, by a two-dimensional model, were based on a priori simplifying assumptions on the deformations and on the 
stresses. Later, the natural idea of using the thickness as a small parameter and of establishing a limit model was 
largely explored; we refer in particular to the works by Ciarlet and Destuynder who set the method in the appropriate 
framework of the weak formulation of boundary value problems [11,12], proved convergence to the linear plate model 
[22] in the context of linearized elasticity, and obtained formally the von Kármán plate model from finite elasticity 
[8]. See also [55,56] for the time-dependent case and [9] for a comprehensive list of references.

The issue of deriving two-dimensional models valid for large deformations, by means of an asymptotic formal-
ism, was subsequently tackled by Fox, Simo and the second author in [26]. They showed, in the context of the Saint 
Venant–Kirchhoff materials subject to appropriate boundary conditions, how to recover a hierarchy of four models. 
This hierarchy, driven by the order of magnitude of the applied loads, consisted of: the nonlinear membrane model, 
the inextensional bending model, the von Kármán model and the linear plate model. The models thus obtained still 
required a justification through rigorous convergence results. In [35], Le Dret and the second author used the varia-
tional point of view and proved �-convergence of the 3-dimensional elastic energies to a nonlinear membrane energy, 
valid for loads of magnitude of order 1. We remark that the expression of the limiting stored energy therein consisted 
of quasiconvexification of the 3d energy, first minimized with respect to normal stretches. This allowed to recover the 
degeneracy under compression; a feature that is otherwise missed by formal expansions. We further mention that for 
3d → 1d reduction, a similar point of view had been introduced by Acerbi, Buttazzo and Percivale in [1].
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A key-point for deriving rigorously the above mentioned nonlinear bending model has been the geometric rigidity 
result due to Friesecke, James and Müller [28]. In a similar spirit, the same authors justified the von Kármán model, 
the linear model [29] and also they introduced novel intermediate models, in particular in the range of energies – or 
equivalently of loadings – between the scaling responsible for bending (β = 2) and the von Kármán scaling (β = 4). 
In this range of models, the three-dimensional stored energy appears in the limit stored energy through its second 
derivative at rest. Scaling the energy with exponents β other than integers had been explored for the membrane to 
bending range in [18] leading to convergence results for 0 < β < 5/3 while the regime 5/3 ≤ β < 2 remains open 
and is conjectured to be relevant for crumpling of elastic sheets. Other significant extensions concern derivation 
of limit theories for incompressible materials [16,17,64,47], for heterogeneous materials [61], through establishing 
convergence of equilibria rather than strict minimizers [51,53,37,52,38], and finally for shallow shells [40].

Extension of the above variational method valid in the framework of the large deformation model was conducted 
in parallel for slender structures whose midsurface at rest is non-planar. The first result by the second author and Le 
Dret [36] relates to scaling β = 0 and models membrane shells: the limit stored energy depends then only on the 
stretching and shearing produced by the deformation on the midsurface. Another study is due to Friesecke, James, 
Mora and Müller [27] who analyzed the case β = 2. This scaling corresponds to a flexural shell model, where the only 
admissible deformations are those preserving the midsurface metric. The limit energy depends then on the change of 
curvature produced by the deformation. Further, the first author, Mora and Pakzad derived the relevant linear theories 
(β > 4) and the von Kármán-like theories (β = 4) in [42], and subsequently proceeded to finalize the analysis for 
elliptic shells in the full regime β > 2 in [43]. A similar analysis has been performed in the case of developable shells 
in [31] leading to the proof of the collapse of all two-dimensional limiting theories to the linear theory when β > 2. 
Following these findings, a conjecture was made in [46] about the infinite hierarchy of shell models and the various 
possible limiting scenarios differentiated by rigidity properties of shells. Let us recall that a comprehensive body of 
work had been previously devoted to the asymptotic derivation of shell models in the small displacement regime under 
clear hypotheses on the model taken for granted, three-dimensional or already two-dimensional and containing the 
thickness as a parameter. Several models were recovered by Ciarlet and coauthors [13–15], by Destuynder [21,23] and 
by Sanchez-Palencia and coauthors [59,60,7,6,50]. Sanchez-Palencia, in particular, theorized the role and interplay 
of the midsurface geometry and of the boundary conditions [58], as well as underlined the singular perturbation 
behaviour. We refer to [10] for additional references.

Most recently, there has been a sustained interest in studying similar problems where the shape formation is not 
driven by exterior forces but rather by the internal prestrain caused by e.g. growth, swelling, shrinkage or plasticity [33,
25,63]. Variants of a thin plate theory can be used in the self-similar structures which form due to variations in an in-
trinsic metric that is asymptotically flat at infinity [2], and also in the case of a circular disk with edge-localized growth 
[25], or in the shape of a long leaf [48]. Ben Amar and coauthors formally derived a variant of the Föppl–von Kármán 
equilibrium equations from finite incompressible elasticity [19,20]: they use the multiplicative decomposition of the 
gradient proposed in [57] similar to ours, and study cockling of paper, grass blades and sympetalous flowers [20,4].

Experimentalists, working in close connection with mathematicians, are presently building devices that produce 
thin deformable structures with target metrics exhibiting a high level of inhomogeneities. One of the first efforts to 
reproduce the effect of the prestrain on the shape of thin films in an artificial setting was reported in [33]. The authors 
manufactured thin gel films that underwent nonuniform lateral radially symmetric shrinkage when activated in a hot 
bath. Large-scale buckling, multi-scale wrinkling structures and symmetry-breaking patterns appeared in the sheets, 
depending on the nature of the “programmed in” metric and of the thickness. Another approach to controlling of 
shape through prestrain was suggested in [32]: by photopatterning polymer films, the authors produce temperature-
responsive flat gel sheets that can transform into prescribed curved surfaces when the in-built metric is activated. 
Finally, an experimental setup for shape control of thin films of liquid crystal elastomers is described in [65]. For 
other experimental results, see [62,63,34,30,2,54].

A systematic study of the possible limits when a target metric is prescribed was undertaken by the first author 
and collaborators: a generalized version of the nonlinear bending model was rigorously derived in [45] under the 
assumption that the target metric is independent of thickness and block-diagonal. This analysis was completed in [5]
by removing the block-diagonal assumption and by giving a necessary and sufficient condition for Eh to scale as h2. 
The objective of the present paper is to study higher order prestrains.

Let us also mention that in [40,41,44] similar derivations were carried out under a different assumption on the 
asymptotic behaviour of the prescribed metric, which also implied energy scaling hβ in different regimes of β > 2. 
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In [40] it was shown that the resulting equations are identical to those postulated to account for the effects of growth 
in elastic plates [48] and used to describe the shape of a long leaf. In [44] a model with a Monge–Ampère constraint 
was derived and analyzed from various aspects. Other results concerning the energy scaling for the materials with 
prescribed metric are derived in [3], where by imposing suitable boundary data, conditions of [45,5] are not satisfied 
and hence the energy scales larger than h2 (see also [63]).

1.2. The set-up and notation

Let ω be an open, bounded, connected and simply connected subset of R2, with Lipschitz continuous boundary.1

For 0 < h 	 1 we consider thin films �h with midsurface ω:

�h = {
x = (x′, x3); x′ ∈ ω, x3 ∈ (−h/2, h/2)

}
. (1.2)

Let G : �̄h → R
3×3 be a given smooth Riemann metric on �h, uniform through the thickness:

G(x′, x3) = G(x′) for every (x′, x3) ∈ �h,

and let A = √
G denote the unique positive definite symmetric square root of G. Consider the energy functional 

Eh : W 1,2(�h, R3) → R̄+ defined as:

Eh(uh) = 1

h

ˆ

�h

W(∇uhA−1)dx. (1.3)

The nonlinear elastic energy density W : R3×3 → R̄+ is a Borel measurable function, assumed to be C2 in a neigh-
bourhood of SO(3) and to satisfy, for every F ∈ R

3×3, every R ∈ SO(3) and with a uniform constant c > 0, the 
conditions:

W(R) = 0, W(RF) = W(F), W(F) ≥ c dist2 (F,SO(3)) . (1.4)

The first condition states that the energy of a rigid motion is 0, while the second is the frame invariance. They imply 
that DW(Id3) = 0 and that D2W(Id3)(T , ·) = 0 for all skew symmetric matrices T ∈ so(3). The third assumption 
above reflects the quadratic growth of the density W away from the energy well SO(3). Note that these assumptions 
are not contradictory with the physical condition W(F) = ∞ for detF ≤ 0.

Throughout the paper, we use the following notation. Given a matrix F ∈ R
3×3, we denote its transpose by F t , its 

symmetric part by symF = 1
2 (F + F t ), and its skew part by skewF = F − symF . By SO(n) = {R ∈ R

n×n; Rt =
R−1 and detR = 1} we denote the group of special rotations, while so(n) = {F ∈ R

n×n; symF = 0} is the space 
of skew-symmetric matrices. We use the matrix norm |F | = (trace(F tF ))1/2, which is induced by the inner product 
〈F1 : F2〉 = trace(F t

1F2). The 2 × 2 principal minor of a matrix F ∈ R
3×3 is denoted by F2×2. All limits are taken 

as the thickness parameter h vanishes, i.e. when h → 0. Finally, by C we denote any universal constant, independent 
of h.

1.3. Some previous directly related results

Recall that, according to a classical theorem of Riemannian geometry, the given metric G on �h admits an (auto-
matically smooth) isometric immersion if and only if the Riemann curvature tensor of G vanishes identically. In other 
words, condition: minuh∈W 1,2(�h,R3) E

h(uh) = 0 is equivalent to: Riem(G) ≡ 0.
In [45], it has been proved that already the vanishing of the infimum:

inf
uh∈W 1,2(�h,R3)

Eh(uh) = 0

is sufficient for (and thus equivalent to): Riem(G) ≡ 0. But, even when Riem(G) �≡ 0, the non-zero sequence 
{infEh(uh)} still converges to 0 with h → 0. Even more, it can be checked that the generalized membrane energy 

1 In most intermediary results of this paper, the simple connectedness of ω is not needed. However, it is so in order that the vanishing of the 
Riemann tensor of a metric G implies existence of an equidimensional isometric immersion of G.
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obtained as the �-limit of Eh, vanishes on W 1,2 immersions of ω in R3, isometric with respect to G2×2. The Nash 
and Kuiper’s famous results assert then that such immersions (even with regularity C1,α where α < 1/5, see [24]) exist 
for every G. In particular, it follows that: limh→0 infEh = 0.

Investigating a higher order level of the energy, it has been proved in [5] that the �-limit of the rescaled energies 
h−2Eh is given by:

I2(y) = 1

24

ˆ

ω

Q2,A

(
x′, (∇y)t∇�b)

dx′,

on the set of all y ∈ W 2,2(ω, R3) such that (∇y)t∇y = G2×2; when no W 2,2(ω, R3) isometric immersion of G2×2
exists, then the �-limit is +∞. The quadratic forms Q2,A(x′, ·) are given in terms of the second order derivative of 
the energy density W at Id3, as in (3.4). The Cosserat vector �b ∈ (W 1,2 ∩ L∞)(ω, R3) is uniquely determined from 
the isometric immersion y by:

QtQ = G where Qe1 = ∂1y, Qe2 = ∂2y, Qe3 = �b, with detQ > 0. (1.5)

The functional I2 is a fully nonlinear bending energy. In case of Ge3 = e3, it reduces to the classical bending content 
quantifying the second fundamental form (∇y)t∇�b = (∇y)t∇ �N on the deformed surface y(ω) with the unit normal 
vector �N ; this classical bending energy is also known as the nonlinear Kirchhoff energy. It has also been proved that

lim
h→0

inf
uh∈W 1,2(�h,R3)

h−2Eh(uh) = 0 (1.6)

if and only if three specific Riemann curvatures of G vanish, namely:

R1212 = R1213 = R1223 ≡ 0 in �h. (1.7)

Finally, it has been shown that (1.7) (or equivalently (1.6)) is satisfied if and only if there exists a mapping y0 : ω → R
3

such that:{
(∇y0)

t∇y0 = G2×2,

sym
(
(∇y0)

t∇�b0
) = 0,

(1.8)

where the vector field �b0 is defined in terms of y0 as in (1.5):

Qt
0Q0 = G, Q0e1 = ∂1y0, Q0e2 = ∂2y0 and Q0e3 = �b0 with detQ0 > 0. (1.9)

The isometric immersion y0 is smooth, the vector field b0 is smooth and y0 is unique up to overall rigid motions. This 
is a consequence of the observation that under (1.8), the second fundamental form of the surface y0(ω) is uniquely 
given in terms of G. The second equation in (1.8) follows from the fact that the kernel of each quadratic form Q2,A

coincides with so(2).
For future use, let us remark that, denoting the inverse matrix G−1 = [Gij ]i,j :1..3, we have:

�b0 = − 1

G33

(
G13∂1y0 + G23∂2y0

) + 1√
G33

�N. (1.10)

1.4. New results of this work

In this paper we investigate the higher energy scalings and the limiting behaviour of the minimizing configurations 
to Eh under condition (1.7). We first prove (in Lemma 2.1) that (1.7), which as we recall is equivalent to (1.1), implies:

infEh ≤ Ch4.

We then derive (in Theorem 3.1 and Theorem 4.1) the �-limit I4 of the rescaled energies h−4Eh, together with 
their compactness properties. Namely, let y0 be the unique immersion satisfying (1.8), where �b0 is as in (1.9). Let 
�d0 : ω → R

3 be the smooth vector field given in terms of y0 by:

〈Qt
0
�d0, e1〉 = −〈∂1 �b0, �b0〉, 〈Qt

0
�d0, e2〉 = −〈∂2 �b0, �b0〉, 〈Qt

0
�d0, e3〉 = 0. (1.11)
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The limit I4 is then given by the following energy functional:

I4(V , e) = 1

2

ˆ

ω

Q2,A

(
x′, e + 1

2
(∇V )t∇V + 1

24
(∇�b0)

t∇�b0

)
dx′ + 1

24

ˆ

ω

Q2,A

(
x′, (∇y0)

t∇ �p + (∇V )t∇�b0

)
dx′

+ 1

1440

ˆ

ω

Q2,A

(
x′, (∇y0)

t∇ �d0 + (∇�b0)
t∇�b0

)
dx′, (1.12)

acting on the space of extended strains2:

e ∈ clL2

{
sym

(
(∇y0)

t∇w); w ∈ W 1,2(ω,R3)} (1.13)

and the space of first order infinitesimal isometries:

V ∈ W 2,2(ω,R3) such that: sym
(
(∇y0)

t∇V ) = 0. (1.14)

In (1.13), the notation clL2 stands for the closure of the indicated set of 2 × 2 tensors on ω, in the space L2(ω, R2×2
sym). 

In (1.12), the vector field �p ∈ W 1,2(ω, R3) depends linearly on the gradient of V and is uniquely associated with it 
by:

(∇y0)
t �p = −(∇V )t �b0 and 〈 �p , �b0〉 = 0. (1.15)

The spaces consisting of e and V contain the information about the admissible error displacements, relative to the 
leading order immersion y0, under the energy scaling Eh ∼ h4. We discuss their geometrical significance, together 
with the bending and stretching tensors in the first two terms of I4(V , e), in section 5. We further prove in Theorem 6.2
that the last term in (1.12), which is constant and as such does not play a role in the minimization process, is precisely 
given by the only potentially nonzero (in view of (1.7)) curvatures of G, namely:

sym
(
(∇y0)

t∇ �d0
) + (∇�b0)

t∇�b0 =
[

R1313 R1323
R1323 R2323

]
.

We may thus write, informally:

I4(V , e) = 1

2

ˆ

ω

Q2,A(x′, stretching of order h2)dx′ + 1

24

ˆ

ω

Q2,A(x′,bending of order h)dx′

+ 1

1440

ˆ

ω

Q2,A(x′,Riemann curvature of G)dx′.

In particular, since all three terms above are nonnegative, this directly implies that the condition limh→0
1
h4 infEh = 0, 

which is equivalent to minI4 = 0, is further equivalent to the immersability G, i.e. the vanishing of all its Riemann 
curvatures Riem(G) ≡ 0 in �h.

1.5. An asymptotic expansion argument

We now sketch a heuristic derivation of the energy I4(V , e), by matching the asymptotic expansion of the metric 
(∇uh)t∇uh generated by the deformation uh : �h →R

3 below, with the prescribed target metric G.
Given the fields V, w, �p as in (1.13), (1.14) and (1.15), we make an ansatz:

uh(x′, x3) = y0(x
′) + hV (x′) + h2w(x′) + x3 �b0(x

′) + x2
3

2
�d0(x

′)

and compute the tangential minor of the pull-back metric:

2 We call e an extended strain because it is a limit of the usual strains.
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(
(∇uh)t∇uh

)
2×2 = (∇y0)

t∇y0 + 2h sym
(
(∇y0)

t∇V
) + 2h2( sym((∇y0)

t∇w) + 1

2
(∇V )t∇V

)
+ 2x3 sym

(
(∇y0)

t∇�b0
) + 2hx3

(
sym((∇y0)

t∇ �p) + 1

2
(∇V )t∇�b0

)
+ 2x2

3

(1

2
sym((∇y0)

t∇ �d0) + 1

2
(∇�b0)

t∇�b0
) + O(h3).

Note that the first term on the right hand side above equals G2×2, while the second and fourth terms are 0, in view 
of (1.8) and (1.14), so that:(

(∇uh)t∇uh − G
)

2×2(x
′, x3) = 2h2I1(x

′) + 2hx3I3(x
′) + 2x2

3I2(x
′) + O(h3),

where: I1 = sym((∇y0)
t∇w) + 1

2
(∇V )t∇V, I2 = 1

2
sym((∇y0)

t∇ �d0) + 1

2
(∇�b0)

t∇�b0,

and: I3 = sym((∇y0)
t∇ �p) + (∇V )t∇�b0.

Writing:

dist2
(∇uhA−1,SO(3)

) = ∣∣(A−1(∇uh)t∇uhA−1)1/2 − Id
∣∣2

∼ ∣∣1

2

(
A−1(∇uh)t∇uhA−1 − Id

)∣∣2 ∼ 1

4

∣∣(∇uh)t∇uh − G
∣∣2

,

and recalling the minimization over the normal portion of the strain in the two-dimensional energy density (3.4), we 
arrive at:

1

h4
Eh(uh) ∼ 1

4h4

1

h

ˆ

�h

∣∣((∇uh)t∇uh
)

2×2 − G2×2
∣∣2

∼ 1

h4

(
h4

ˆ

ω

|I1|2 + h2

h/2 

−h/2

x2
3

ˆ

ω

|I3|2 +
h/2 

−h/2

x4
3

ˆ

ω

|I2|2 + 2h2

h/2 

−h/2

x2
3

ˆ

ω

〈I1 : I2〉
)

=
ˆ

ω

(|I1 + 1

12
I2|2 + 1

2
|I3|2 + 1

180
|I2|2

)
dx′.

The three integral terms above correspond, in order of appearance, to the three terms in I4(V , e), after setting:

e = sym
(
(∇y0)

t (∇w + 1

24
∇ �d0)

)
.

The same calculation, with all details regarding the error terms, is carried out in the construction of the recovery 
sequence in the proof of Theorem 4.1.

2. The scaling and approximation lemmas

Let B0(x
′) be the matrix field defined by:

B0e1 = ∂1 �b0, B0e2 = ∂2 �b0 and B0e3 = �d0, (2.1)

where �d0 is as in (1.11). Observe that Qt
0B0 is skew symmetric and that it has the form:

Qt
0B0 =

[
(∇y0)

t ∇�b0 (∇y0)
t �d0

(�b0)
t∇�b0 〈�b0, �d0〉

]
. (2.2)

Indeed, (∇y0)
t ∇�b0 ∈ so(2) by (1.8), while by (1.11): (∇y0)

t �d0 = −(∇�b0)
t �b0 and 〈�b0, �d0〉 = 0.

Lemma 2.1. Condition (1.7) implies: inf
1,2 h 3

Eh ≤ Ch4.

W (� ,R )
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Proof. Let us construct a sequence uh ∈ W 1,2(�h, R3) that has low energy. Define:

uh(x′, x3) = y0(x
′) + x3 �b0(x

′) + x2
3

2
�d0(x

′), (2.3)

in fact each uh is the restriction to �h of the same deformation. We have:

∇uh(x′, x3) = Q0(x
′) + x3B0(x

′) + x2
3

2
D0(x

′),

where the matrix field D0(x
′) ∈ R

3×3 is given through:

D0(x
′)e1 = ∂1 �d0, D0(x

′)e2 = ∂2 �d0, D0(x
′)e3 = 0,

so that:

∇uhA−1 = Q0A
−1 + x3B0A

−1 + x2
3

2
D0A

−1.

For brevity, denote Fh = ∇uhA−1 and further:

Fh(x′, x3) = Q0A
−1(x′)(Id3 + x3T1(x

′) + x2
3T2(x

′)) = (Q0A
−1(x′))Gh(x′, x3) (2.4)

with T1 = A−1Qt
0B0A

−1, T2 = 1
2A−1Qt

0D0A
−1 and Gh = Id3 + x3T1 + x2

3T2. Since Q0A
−1 ∈ SO(3), frame indif-

ference implies that W(Fh) = W(Gh). Thanks to the boundedness and smoothness of T1 and T2, we have detGh > 0
in �h for h 	 1, and thus polar factorization of Gh further yields: W(Fh) = W

(
((Gh)tGh)1/2

)
. Note that T1 is skew 

symmetric, by the same property of Qt
0B0. Consequently, (Gh)tGh and the expansion of its square root do not contain 

terms linear in x3. Indeed, letting K = T2 + T t
2 − T 2

1 :

((Gh)tGh)(x′, x3) = Id3 + x2
3K(x′) +O(x3

3) and ((Gh)tGh)1/2(x′, x3) = Id3 + x2
3

2
K(x′) +O(x3

3).

As a consequence, by W(Id3) = 0 and DW(Id3) = 0, we obtain:

W(Fh) = W
(
((Gh)tGh)1/2

)
= x4

3

8
D2W(Id3)(K,K) +O(x5

3).

Using (1.3), we get:

Eh(uh) = 1

h

ˆ

�h

W(Fh) dx ≤ Ch4,

which concludes the proof. �
In Lemma 2.1 we constructed deformations whose gradient was close enough to Q0 + x3B0 to result in the energy 

order h4. Conversely, in Corollary 2.4, we establish that the gradients of deformations uh whose energy scales like h4

are close to Q0 + x3B0 modulo local multiplications by Rh(x′) ∈ SO(3). Corollary 2.4 makes this statement precise 
and also gives an estimate of ∇Rh. We first give local estimates in Lemma 2.3. To this end, recall the geometric 
rigidity estimate [29]:

Theorem 2.2. ([29]) Let � ⊂R
3 be a bounded, connected, Lipschitz domain. Then:

∀u ∈ W 1,2(�,R3) ∃R̄ ∈ SO(3)

ˆ

�

|∇u − R̄|2 ≤ C

ˆ

�

dist2(∇u,SO(3)).

The constant C is uniform for all bi-Lipschitz equivalent domains � with controlled Lipschitz constants.
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Lemma 2.3. Assume (1.7). For all sufficiently small h 	 1 and all open sets U ⊂ ω, there exists a constant C =
C(U × (−h/2, h/2)) with the following property. Calling Uh = U × (−h/2, h/2), for any uh ∈ W 1,2(Uh, R3) there 
exists R̄h ∈ SO(3) such that:

1

h

ˆ

Uh

∣∣∇uh(x) − R̄h(Q0(x
′) + x3B0(x

′))
∣∣2 dx ≤ C

( 1

h

ˆ

Uh

dist2(∇uhA−1,SO(3)) dx + h3|Uh|
)
. (2.5)

The constant C is uniform for all bi-Lipschitz equivalent Uh with controlled Lipschitz constants.

Proof. In order to use the geometric rigidity estimate, we perform a change of variables. For any uh ∈ W 1,2(Uh, R3), 
we let vh = uh ◦ Y−1 with Y : Uh → Y(Uh) = Vh ⊂R

3 given as in (2.3):

Y(x′, x3) = y0(x
′) + x3 �b0(x

′) + x2
3

2
�d0(x

′).

We note that vh ∈ W 1,2(Vh, R3) and:

∇uhA−1(x′, x3) = ∇vh(z)(∇YA−1)(x′, x3), z := Y(x′, x3). (2.6)

Let T ′
1 = B0Q

−1
0 and T ′

2 = 1
2D0Q

−1
0 . From Qt

0B0 ∈ so(3), it is immediate that T ′
1 is skew symmetric as well, since 

T ′
1 = Q−t

0 (Qt
0B0)Q

−1
0 . Computations as in Lemma 2.1 now give:

∇Y(x′, x3) = Q0(x
′) + x3B0(x

′) + x2
3

2
D0(x

′), (2.7)

and:

∇YA−1 =
(

Id3 + x3T
′
1(x

′) + x2
3T ′

2(x
′)
)

(Q0A
−1).

We see that det(∇YA−1) > 0 for h 	 1. Further, ∇YA−1 = (∇YA−1(∇YA−1)t
)1/2

R by the left polar decomposi-
tion, and hence for some symmetric matrix field M =O(1) and a rotation R ∈ SO(3), we get:

∇YA−1 = (Id3 + x2
3M(x′, x3))R(x′, x3).

Therefore:

dist
(
∇vh∇YA−1,SO(3)

)
= dist

(
∇vh(Id3 + x2

3M)R,SO(3)
)

= dist
(
∇vh(Id3 + x2

3M),SO(3)
)

≥ c dist
(
∇vh,SO(3)(Id3 + x2

3M)−1
)

≥ c dist
(
∇vh,SO(3)

)
+O(x2

3).

Here and in the remainder of the proof, c denotes a constant that only depends on ω and G. Let J = ∣∣(det∇Y) ◦ Y−1
∣∣−1

. 
By (2.6) and the above computation, we obtain:ˆ

Uh

dist2
(
∇uhA−1,SO(3)

)
dx ≥ c

ˆ

Vh

dist2
(
∇vh,SO(3)

)
J dz − c

ˆ

Uh

x4
3 dx.

In other words, since J ≥ c > 0, we get:

1

h

ˆ

Uh

dist2
(
∇uhA−1,SO(3)

)
dx + h3|Uh| ≥ c

h

ˆ

Vh

dist2
(
∇vh,SO(3)

)
dz.

By Theorem 2.2, there exists C > 0 such that for any vh ∈ W 1,2(Vh, R3), there is R̄h ∈ SO(3) with:

C

ˆ

Vh

dist2
(
∇vh,SO(3)

)
dz ≥

ˆ

Vh

∣∣∣∇vh − R̄h
∣∣∣2

dz.

By the reverse change of variables which satisfies J−1 ≥ c > 0 and |∇Y | ≤ C, we obtain, again with a uniform 
constant C:



1892 M. Lewicka et al. / Ann. I. H. Poincaré – AN 34 (2017) 1883–1912
C

(
1

h

ˆ

Uh

dist2
(
∇uhA−1,SO(3)

)
dx + h3|Uh|

)
≥ 1

h

ˆ

Uh

∣∣∣∇uh − R̄h∇Y

∣∣∣2
dx.

This accomplishes the proof of the lemma in view of (2.7). �
Using the third assumption in (1.4), we now pass to global estimates.

Corollary 2.4. Assume (1.7) and let uh be a sequence of deformations such that:

Eh(uh) ≤ Ch4.

Then, there exist matrix fields Rh ∈ W 1,2(ω, SO(3)) such that:

1

h

ˆ

�h

∣∣∣∇uh(x) − Rh(x′)
(
Q0(x

′) + x3B0(x
′)
)∣∣∣2

dx ≤ Ch4 (2.8)

and: ˆ

ω

∣∣∣∇Rh(x′)
∣∣∣2

dx′ ≤ Ch2. (2.9)

The proof follows the lines of [29,45,39], with necessary modifications. For completeness, we present the details 
in the Appendix.

3. The lower bound

In the theorem below, we prove that the deformations uh with energy of order h4 converge, together with their 
properly defined increments of order 1 or 2.

Theorem 3.1. Let uh ∈ W 1,2(�h, R3) be a sequence of deformations satisfying Eh(uh) ≤ Ch4. Then there exists a 
sequence of translations ch ∈ R

3 and rotations R̄h ∈ SO(3) such that the associated renormalizations:

yh(x′, x3) = (R̄h)tuh(x′, hx3) − ch ∈ W 1,2(�1,R3) (3.1)

have the properties below. Recall that y0 and �b0 are the unique solutions to (1.8), (1.9). All convergences hold up to 
a subsequence.

(i) yh → y0 in W 1,2(�1, R3) and 1
h
∂3y

h → �b0 in L2(�1, R3);
(ii) the scaled average displacements:

V h(x′) = 1

h

1
2 

− 1
2

(
yh(x′, x3) − (

y0(x
′) + hx3 �b0(x

′)
))

dx3 (3.2)

converge in W 1,2(ω, R3) to a limiting field V ∈ W 2,2(ω, R3), satisfying the constraint:

sym
(
(∇y0)

t∇V
) = 0; (3.3)

(iii) the scaled tangential strains:

1

h
sym

(
(∇y0)

t∇V h
)

converge weakly in L2(ω, R2×2) to some e ∈ L2(ω, R2×2
sym).
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(iv) Further, defining the quadratic forms Q3 and Q2,A by:

Q3(F ) = D2W(Id3)(F,F ),

Q2,A(x′,F2×2) = min
{
Q3

(
A(x′)−1F̃A(x′)−1); F̃ ∈ R

3×3 with F̃2×2 = F2×2

}
,

(3.4)

we have:

lim inf
h→0

1

h4
Eh(uh) ≥ I4(V , e) = 1

2

ˆ

ω

Q2,A

(
x′, e + 1

2
(∇V )t∇V + 1

24
(∇�b0)

t∇�b0

)
dx′

+ 1

24

ˆ

ω

Q2,A

(
x′, (∇y0)

t∇ �p + (∇V )t∇�b0

)
dx′

+ 1

1440

ˆ

ω

Q2,A

(
x′, (∇y0)

t∇ �d0 + (∇�b0)
t∇�b0

)
dx′,

(3.5)

where the vector field �p ∈ W 1,2(ω, R3) is uniquely associated with V by:

(∇y0)
t �p = −(∇V )t �b0 and 〈 �p , �b0〉 = 0. (3.6)

Proof. We split the proof into several steps. In the first four steps, we establish the existence of convergent subse-
quences for the quantities under consideration and obtain properties of their limits. In the final step, we prove the 
lower bound in (3.5).

Step 1. To prove the claimed convergence properties for (3.1), we first set:

R̄h = PSO(3)

 

�h

∇uh(x)Q0(x
′)−1 dx.

Note that the projection above is well defined, because for every x′ ∈ ω we have, in view of (2.8):

dist2
(  

�h

∇uhQ−1
0 dx,SO(3)

)
≤

∣∣∣∣∣
 

�h

∇uhQ−1
0 dx − Rh(x′)

∣∣∣∣∣
2

≤ C

∣∣∣∣∣
 

�h

(∇uhQ−1
0 − Rh)dx

∣∣∣∣∣
2

+ C

∣∣∣∣∣
 

�h

Rh dx − Rh(x′)
∣∣∣∣∣
2

≤ C

∣∣∣∣∣
 

�h

(
∇uh − Rh(Q0 + x3B0)

)
Q−1

0

∣∣∣∣∣
2

dx + C

∣∣∣∣∣Rh(x′) −
 

ω

Rh

∣∣∣∣∣
2

≤ C

 

�h

|∇uh − Rh(Q0 + x3B0)|2 dx + C|Rh(x′) −
 

ω

Rh|2

≤ Ch4 + C|Rh(x′) −
 

ω

Rh|2,

so that, taking the average on ω, by the Poincaré-Wirtinger inequality and (2.9), we get:

dist2
(  

�h

∇uhQ−1
0 dx,SO(3)

)
≤ Ch4 + C

ˆ

ω

|∇Rh|2 ≤ Ch2.

In particular, we observe that:
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|
 

�h

∇uhQ−1
0 dx − R̄h|2 ≤ Ch2. (3.7)

Moreover, by (2.8), (2.9) and (3.7): 

ω

|Rh − R̄h|2 dx =
 

�h

|Rh − R̄h|2 dx

≤ C

 

�h

(
|Rh −

 

ω

Rh|2 + |(
 

ω

Rh) −
 

�h

∇uhQ−1
0 |2

)
+
 

�h

|R̄h −
 

�h

∇uhQ−1
0 |2 (3.8)

≤ C

 

�h

|∇Rh|2 dx + C

 

�h

|∇uh − Rh(Q0 + x3B0)|2 dx + Ch2 ≤ Ch2.

Let now ch ∈ R
3 be such that 

´
ω

V h = 0 where V h is defined as in (3.2). Denote by ∇hy
h the matrix whose 

columns are given by ∂1y
h, ∂2y

h and ∂3y
h/h, so that:

∇hy
h(x′, x3) = (R̄h)t∇uh(x′, hx3). (3.9)

Observe that by (2.8) and (3.8):ˆ

�1

|∇hy
h − Q0|2 dx ≤ C

 

�h

|∇uh − R̄hQ0|2 dx

≤ C(

 

�h

|∇uh − Rh(Q0 + x3B0)|2 dx +
 

�h

|x3R
hB0|2 dx +

 

�h

|Rh − R̄h|2 dx) ≤ Ch2.

Therefore, ∇hy
h converges in L2(�1) to Q0. Observe that the sequence {yh} is bounded in W 1,2(�1), by the choice 

of ch. Passing to a subsequence, if necessary, we get that yh converges weakly in W 1,2(�1) and so, in fact:

yh → y0 in W 1,2(�1,R3) and
1

h
∂3y

h → �b0 in L2(�1,R3).

Step 2. Note that, for every x′ ∈ ω:

∇V h(x′) = 1

h

⎛
⎜⎝

1/2 

−1/2

∇hy
h(x) − Q0(x

′)dx3

⎞
⎟⎠

3×2

= 1

h

⎛
⎜⎝

1/2 

−1/2

∇hy
h − (R̄h)tRh(Q0 + hx3B0)dx3

⎞
⎟⎠

3×2

+ 1

h

(
((R̄h)tRh − Id3)Q0

)
3×2

= Ih
1 + Ih

2 .

(3.10)

The first term above converges to 0. Indeed:

‖Ih
1 ‖2

L2(ω)
≤ C

h2

 

�1

|(R̄h)t∇uh(x′, hx3) − (R̄h)tRh(Q0(x
′) + hx3B0)|2 dx

≤ C

h2

 

�h

|∇uh(x′, x3) − Rh(Q0 + x3B0)|2 dx ≤ Ch2.

(3.11)

Towards estimating the second term in (3.10), denote:

Sh = 1
((R̄h)tRh − Id3).
h
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By (3.8) and (2.9), it follows that:

‖Sh‖2
L2(ω)

≤ C

h2

ˆ

ω

|Rh − R̄h|2 ≤ C and ‖∇Sh‖2
L2(ω)

≤ C

h2

ˆ

ω

|∇Rh|2 ≤ C.

Passing to a subsequence, we can assume that:

Sh ⇀ S weakly in W 1,2(ω), (3.12)

which implies:

Ih
2 → (SQ0)3×2 in L2(ω,R3×2). (3.13)

Consequently, by (3.10):

∇V h → (SQ0)3×2 in L2(ω,R3×2). (3.14)

As before, we conclude that V h converges in W 1,2(ω) and that its limit V belongs to W 2,2(ω, R3), since ∇V =
(SQ0)3×2 ∈ W 1,2(ω). We now prove (3.3). By definition of Sh:

symSh = −h

2
(Sh)tSh, (3.15)

so in view of the boundedness of {Sh} in W 1,2:

‖ symSh‖L2(ω)≤ Ch‖Sh‖2
L4(ω)

≤ Ch‖Sh‖2
W 1,2(ω)

≤ Ch.

Consequently, S is a skew symmetric field. But (∇y0)
t∇V = (Qt

0SQ0)2×2, hence (3.3) follows.
For future use, let us define �p ∈ W 1,2(ω, R3) by:

[∇V | �p] = SQ0. (3.16)

Since Qt
0[∇V | p] ∈ so(3), it is easily checked that �p is given solely in terms of V by:{
(∇y0)

t �p = −(∇V )t �b0

〈 �p , �b0〉 = 0.
(3.17)

Step 3. We now want to establish convergence in (iii). In view of (3.10) we write:

1

h
sym (Qt

0∇V h)2×2(x
′) = 1

h
sym (Qt

0I
h
1 )2×2 + 1

h
sym

(
Qt

0S
hQ0

)
2×2

= Jh
1 + Jh

2 . (3.18)

We first deal with the sequence Jh
2 . By (3.12), Sh → S in L4(�) and so (3.15) implies:

1

h
symSh → −1

2
StS = 1

2
S2 in L2(ω).

Therefore:

Jh
2 → −1

2

(
Qt

0S
tSQ0

)
2×2 = −1

2
(∇V )t∇V in L2(ω). (3.19)

We now prove that Jh
1 converges. Recall that by (3.18), (3.10) and (3.9):

Jh
1 = 1

h
sym (Qt

0I
h
1 )2×2 = sym

(
Qt

0(R̄
h)t

1/2 

−1/2

Zh(x′, x3)dx3

)
2×2

(3.20)

where the rescaled strains Zh are defined by:

Zh(x′, x3) = 1
2

(
∇uh(x′, hx3) − Rh(x′)(Q0(x

′) + hx3B0(x
′))

)
. (3.21)
h
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By (2.8), the sequence {Zh} is bounded in L2(�1, R3). Therefore, up to a subsequence:

Zh ⇀ Z weakly in L2(�1,R3). (3.22)

The following convergence yields (iii) by (3.18) and (3.19):

Jh
1 ⇀ J1 := sym

(
Qt

0(R̄)t

1/2 

−1/2

Z(x′, x3)dx3

)
2×2

weakly in L2(ω). (3.23)

Step 4. We now aim at giving the structure of the weak limit e of 1
h

sym (Qt
0∇V h)2×2 in terms of the limiting fields V

and Z. We have just seen that:

e = J1 − 1

2
(∇V )t∇V, (3.24)

where J1 is given by (3.23). As a tool, consider the difference quotients f s,h:

f s,h(x′, x3) = 1

h2s

(
yh(x′, x3 + s) − yh(x′, x3) − hs

(�b0 + h
(
x3 + s

2

) �d0

))
.

We will show that f s,h ⇀ �p weakly in W 1,2(�1, R3), as h → 0, for any s. Write:

f s,h(x′, x3) = 1

h2

s 

0

∂3y
h(x′, x3 + t) − h(�b0 + h(x3 + t) �d0)dt,

and observe that:

1

h2

(
∂3y

h − h(�b0 + hx3 �d0)
)

= 1

h

(
(R̄h)t∇uh(x′, hx3) − (Q0 + hx3B0)

)
e3

= 1

h
(R̄h)t

(
∇uh(x′, hx3) − Rh(Q0 + hx3B0)

)
e3 + Sh(Q0 + hx3B0)e3

= h(R̄h)tZh(x′, x3)e3 + Sh(Q0 + hx3B0)e3.

The first term on the right-hand side above converges to 0 in L2(�1) because {Zh} is bounded in L2(�1, R3), while 
the second term converges to SQ0e3 = S �b0 in L2(�1) by (3.12). Note that SQ0e3 = �p by (3.16). Therefore, f s,h → �p
in L2(�1).

We now deal with the derivatives of the studied sequence. Firstly:

∂3f
s,h(x′, x3) = 1

s

( 1

h2

(
∂3y

h(x′, x3 + s) − h(�b0 + h(x3 + s) �d0)
)

− 1

h2

(
∂3y

h(x′, x3) − h(�b0 + hx3 �d0)
))

converges to 0 in L2(�1). For i = 1, 2, the in-plane derivatives read as:

∂if
s,h(x′, x3) = 1

h2s

(
(R̄h)t ∂iu

h(x′, h(x3 + s)) − (R̄h)t ∂iu
h(x′, hx3) − hs

(
∂i

�b0 + h
(
x3 + s

2

))
∂i

�d0

)
= 1

s

(
(R̄h)tZh(x′, x3 + s) − (R̄h)tZh(x′, x3)

)
ei

+ 1

h2s

(
(R̄h)tRh(Q0 + h(x3 + s)B0) − (R̄h)tRh(Q0 + hx3B0)

)
ei − 1

h

(
B0ei + h

(
x3 + s

2

)
∂i

�d0

)
.

The last two terms above can be written as: ShB0ei − (
x3 + s

2

)
∂i

�d0, hence by (3.22):

∂if
s,h(x′, x3) ⇀

1

s
(R̄)t

(
Z(x′, x3 + s) − Z(x′, x3)

)
ei + SB0ei −

(
x3 + s

2

)
∂i

�d0 weakly in L2(�1,R3),

where R̄ ∈ SO(3) is an accumulation point of the rotations R̄h.
Consequently, f s,h ⇀ �p weakly in W 1,2(�1, R3) and, for i = 1, 2:

s∂i �p = (R̄)t
(
Z(x′, x3 + s) − Z(x′, x3)

)
ei + sSB0ei − s

(
x3 + s )

∂i
�d0, (3.25)
2
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which proves that Z(x′, ·)ei has polynomial form and that:

(
R̄tZ(x′, x3)

)
3×2 = (

R̄tZ(x′,0)
)

3×2 + x3 (∇ �p − (SB0)3×2) + x2
3

2
∇ �d0. (3.26)

By (3.22), it follows that:

J1 = sym
(
Qt

0(R̄)tZ(x′,0)
)

2×2 + 1

24
sym (Qt

0∇ �d0)2×2.

With (3.24), we finally arrive at the following identity that links e, V and Z:

e(x′) = sym
(
Qt

0(R̄)tZ(x′,0)
)

2×2 + 1

24
sym (Qt

0∇ �d0)2×2 − 1

2
(∇V )t∇V. (3.27)

Step 5. We now prove the lower bound in (iv). Recall that by (3.21):

∇uh(x′, hx3) = Rh(x′)(Q0(x
′) + hx3B0(x

′)) + h2Zh(x′, x3).

Since Q0A
−1 ∈ SO(3) we have:

W(∇uhA−1) = W
(
(Q0A

−1)t (Rh)t∇uhA−1) = W
(
Id3 + hJ + h2Gh

)
,

where:

J (x′, x3) = x3A
−1(Qt

0B0)A
−1(x′) ∈ so(3), Gh(x′, x3) = A−1Qt

0(R
h)tZh(x′, x3)A

−1.

Note that by (3.22):

Gh(x′, x3) ⇀ G = A−1Qt
0(R̄

t )Z(x′, x3)A
−1 weakly in L2(�1,R3×3).

Define the “good sets”:

�h = {x ∈ �1; h|Gh| < 1}.
By the above, the characteristic functions 1�h

converge to 1 in L1(�1). Further, by frame invariance and Taylor 
expanding W on �h:

W
(
Id3 + hJ + h2Gh

) = W
(
e−hJ (Id3 + hJ + h2Gh)

) = W(Id3 + h2(Gh − 1

2
J 2) + o(h2))

= 1

2
Q3

(
h2(Gh − 1

2
J 2)

)
+ o(h4),

where the remainder o(h4) is uniform in the set �h. Therefore:

lim inf
h→0

1

h4
Eh(uh) ≥ lim inf

h→0

1

h4

ˆ

�1

1�h
W

(
Id3 + hJ + h2Gh

)
dx

= lim inf
h→0

1

2

ˆ

�1

Q3

(
1�h

sym
(
Gh − 1

2
J 2

))
dx ≥ 1

2

ˆ

�1

Q3

(
sym

(
G − 1

2
J 2

))
dx,

(3.28)

by the weak sequential lower semi-continuity of the quadratic form Q3 in L2 and in view of:

1�h sym
(
Gh − 1

2
J 2

)
⇀ symG − 1

2
J 2 weakly in L2(�1).

Note that by (3.16) we have: 
(
Qt

0SB0
)

2×2 = −(∇V )t∇�b0 and that:

J 2 = −J tJ = −x2
3A−1Bt

0B0A
−1.

Thus, using (3.26), the right-hand side of (3.28) is bounded below by:
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1

2

ˆ

�1

Q2,A

(
x′, sym

(
Qt

0(R̄)tZ(x′,0) + x3
(
Qt

0∇ �p + (∇V )t∇�b0
) + x2

3

2

(
Qt

0∇ �d0 + (∇�b0)
t∇�b0

))
2×2

)
dx

= 1

2

ˆ

�1

Q2,A

(
x′, I (x′) + x3III (x′) + x2

3II (x′)
)

dx.

Above we used (3.27) and we denoted:

I (x′) = e − 1

24
sym ((∇y0)

t∇ �d0) + 1

2
(∇V )t∇V

II (x′) = 1

2
sym ((∇y0)

t∇ �d0) + 1

2
(∇�b0)

t∇�b0

III (x′) = sym((∇y0)
t∇ �p) + sym((∇V )t∇�b0).

(3.29)

Let L2,A(x′) be the symmetric bilinear form generating the quadratic form Q2,A(x′). Since the odd powers of x3
integrate to 0 on the symmetric interval (−1/2, 1/2), we get:

ˆ

�1

Q2,A

(
x′, I (x′) + x3III (x′) + x2

3II (x′)
)

dx

=
ˆ

ω

Q2,A(x′, I (x′)) dx′ + (

1/2ˆ

−1/2

x2
3 dx3)

ˆ

ω

Q2,A(x′, I II (x′)) dx′

+ (

1/2ˆ

−1/2

x4
3 dx3)

ˆ

ω

Q2,A(x′, I I (x′)) dx′ + 2(

1/2ˆ

−1/2

x2
3 dx3)

ˆ

ω

L2,A(x′, I (x′), I I (x′)) dx′

=
ˆ

ω

Q2,A(x′, I ) + 1

12

ˆ

ω

Q2,A(x′, I II ) + 1

80

ˆ

ω

Q2,A(x′, I I ) + 2

12

ˆ

ω

L2,A(x′, I, I I ) dx′

=
ˆ

ω

Q2,A

(
x′, I + 1

12
II

)
dx′ + 1

12

ˆ

ω

Q2,A(x′, I II ) dx′ + 1

180

ˆ

ω

Q2,A(x′, I I ) dx′ = 2I4(V , e),

by a direct calculation. This completes the proof of Theorem 3.1 in view of (3.28). �
4. The upper bound

We now complete the proof of I4 being the �-limit of h−4Eh, by showing the optimality of (3.5).

Theorem 4.1. Let V ∈ W 2,2(ω, R3) and e ∈ L2(ω, R2×2
sym) satisfy:

sym
(
(∇y0)

t∇V
) = 0,

e ∈ S := clL2

{
sym ((∇y0)

t∇w); w ∈ W 1,2(ω,R3)
}
.

(4.1)

Then there exists a sequence uh ∈ W 1,2(�h, R3) such that assertions (i), (ii) and (iii) of Theorem 3.1 are satisfied with 
Rh = Id and ch = 0, and:

lim sup
h→0

1

h4
Eh(uh) ≤ I4(V , e). (4.2)

Proof. In the construction below, we will use the following notation. Let F ∗
2×2 denote the R3×3 matrix whose principal 

2 × 2 minor equals F2×2 and other entries are 0. By (3.4), for every F2×2 ∈R
2×2 one can write:

Q2,A(x′,F2×2) = min
3

{
Q3

(
A−1(F ∗

2×2 + sym(c ⊗ e3))A
−1)}. (4.3)
c∈R
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We will denote by c(x′, F2×2) the unique minimizer in (4.3). Note that c(x ′, ·) is a linear function of F2×2 and it 
depends only on its symmetric part (symF2×2). We divide the proof into several steps.

Step 1. Since e ∈ S , there exists a sequence wh ∈ W 1,2(ω, R3) such that:

sym
(
(∇y0)

t∇(wh + 1

24
�d0)

) → e in L2(ω,R2×2) (4.4)

and without loss of generality we can assume that each wh is smooth up to ∂ω, together with:

lim
h→0

√
h‖wh‖W 2,∞ = 0. (4.5)

Fix a small ε0 ∈ (0, 1) and let vh ∈ W 2,∞(ω, R3) be a sequence of Lipschitz deformations satisfying:

vh → V in W 2,2(ω,R3), h‖vh‖W 2,∞ ≤ ε0, lim
h→0

1

h2

∣∣{x′ ∈ ω; vh(x′) �= V (x′)
}∣∣ = 0. (4.6)

We refer to [49] and [29] for the construction of such truncated sequence vh. Define �ph ∈ W 1,∞(ω, R3):

�ph = (Qt
0)

−1
[ −(∇vh)t �b0

0

]
, (4.7)

and also define the fields �qh ∈ W 1,∞(ω, R3), �k0 smooth and r̃h ∈ L∞(ω, R3) such that:

Qt
0 �qh = 1

2
c
(
x′,2(∇y0)

t∇wh + (∇vh)t∇vh
) −

[
(∇wh)t �b0

0

]
−

[
(∇vh)t �ph

1
2 | �ph|2

]
,

Qt
0
�k0 = c

(
x′, (∇y0)

t∇ �d0 + (∇�b0)
t∇�b0

) −
[

(∇�b0)
t �d0

| �d0|2
]

,

Qt
0r̃

h = c
(
x′, (∇y0)

t∇ �ph + (∇vh)t∇�b0
) −

[
(∇vh)t �d0

〈 �ph, �d0〉
]

.

Finally, let �rh ∈ W 1,∞(ω, R3) be such that:

lim
h→0

‖�rh − r̃h‖L2 = 0, lim
h→0

√
h ‖�rh‖W 1,∞ = 0. (4.8)

It follows from the definition of the minimizing map c, that:

Q3

(
A−1(2Qt

0[∇wh | �qh] + [∇vh | �ph]t [∇vh | �ph])A−1
)

= Q2,A

(
x′,2(∇y0)

t∇wh + (∇vh)t∇vh
)
,

Q3

(
A−1(Qt

0[∇ �d0 | �k0] + [∇ �b0 | �d0]t [∇ �b0 | �d0]
)
A−1

)
=Q2,A

(
x′, (∇y0)

t∇ �d0 + (∇�b0)
t∇�b0

)
, (4.9)

Q3

(
A−1(2Qt

0[∇ �ph | r̃h] + 2[∇vh | �ph]t [∇ �b0 | �d0]t
)
A−1

)
=Q2,A

(
x′, (∇y0)

t∇ �ph + (∇vh)t∇�b0

)
.

Moreover, we have the following pointwise bounds:

| �ph| ≤ C|∇vh|, |∇ �ph| ≤ C(|∇vh| + |∇2vh|),
|�qh| ≤ C(|∇wh| + |∇vh|2 + |∇vh|| �ph| + | �ph|2) ≤ C(|∇wh| + |∇vh|2),

|∇ �qh| ≤ C(|∇wh| + |∇2wh| + |∇2vh||∇vh| + |∇vh|2).
(4.10)

Step 2. Consider the sequence uh ∈ W 1,∞(�h, R3) defined as:

uh(x′, x3) = y0(x
′) + hvh(x′) + h2wh(x′) + x3 �b0(x

′) + x2
3

2
�d0(x

′)

+ x3
3

6
�k0(x

′) + hx3 �ph(x′) + h2x3 �qh(x′) + hx2
3

2
�rh(x′).

For every (x′, x3) ∈ �1 we write:
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∇uh(x′, hx3) = Q0(x
′) + Zh

1 (x′, x3) + Zh
2 (x′, x3),

where:

Zh
1 (x′, x3) = h[∇vh | �ph] + h2[∇wh | �qh] + hx3[∇ �b0 | �d0] + h2x2

3

2
[∇ �d0 | �k0] + h2x3[∇ �ph | �rh],

Zh
2 (x′, x3) = h3x3

3

6
[∇�k0 | 0] + h3x3[∇ �qh | 0] + h3x3

2
[∇�rh | 0].

Since Q0A
−1 ∈ SO(3), we get:

∇uhA−1(x′, hx3) = Q0A
−1

(
Id3 + A−1Qt

0Z
h
1 A−1 + A−1Qt

0Z
h
2 A−1

)
and, in view of (4.6), (4.8) and (4.10), there follows for h sufficiently small:

‖A−1Qt
0Z

h
1 A−1 + A−1Qt

0Z
h
2 A−1‖L∞

≤ C
(
h‖∇vh‖L∞ + h‖ �ph‖L∞ + h2‖∇wh‖L∞ + h2‖�qh‖L∞ + h‖∇�b0‖L∞ + h‖ �d0‖L∞

+ h2‖∇ �d0‖L∞ + h2‖�k0‖L∞ + h2‖∇ �ph‖L∞ + h2‖�rh‖L∞ + h3‖∇�k0‖L∞

+ h3‖∇ �qh‖L∞ + h3‖∇�rh‖L∞
)

≤ Cε0.

By the left polar decomposition, there exists a further rotation R ∈ SO(3) such that:

R∇uhA−1 =
(
(Id3 + A−1Qt

0Z
h
1 A−1 + A−1Qt

0Z
h
2 A−1)t (Id3 + A−1Qt

0Z
h
1 A−1 + A−1Qt

0Z
h
2 A−1)

)1/2

=
(

Id3 + 2A−1 sym(Qt
0Z

h
1 )A−1 + A−1(Zh

1 )tZh
1 A−1 +O(|Zh

2 |)
)1/2

= Id3 + A−1 sym(Qt
0Z

h
1 )A−1 + 1

2
A−1(Zh

1 )tZh
1 A−1

+O
(
| sym(Qt

0Z
h
1 ) + (Zh

1 )tZh
1 |2

)
+O(|Zh

2 |).
Step 3. Consider the set:

�h = {
(x′, x3) ∈ �1; vh(x′) = V (x′)

}
.

Note that on �h we have: �ph = �p and Qt
0[∇vh | �ph] ∈ so(3). By Taylor’s expansion, it follows that:

1

h4

ˆ

�h

W
(∇u(x′, hx3)A

−1)dx = 1

2h4

ˆ

�h

Q3

(
A−1(Qt

0Z
h
1 + 1

2
(Zh

1 )tZh
1

)
A−1

)
dx + Eh

1 ,

where the error term Eh
1 can be estimated by:

|Eh
1 | ≤ C

h4

ˆ

�h

∣∣2 sym(Qt
0Z

h
1 ) + (Zh

1 )tZh
1

∣∣3 + |Zh
2 |2 + ∣∣2 sym(Qt

0Z
h
1 ) + (Zh

1 )tZh
1

∣∣|Zh
2 |dx.

Now on �h we also have, by (4.10):

∣∣2 sym(Qt
0Z

h
1 ) + (Zh

1 )tZh
1

∣∣ ≤ C
(
h2|∇wh| + h2|∇vh|2 + h2 + h2|∇vh| + h2|∇2vh| + h2|�rh|

)
,

|Zh
2 | ≤ Ch3(1 + |∇�qh| + |∇�rh|)

≤ Ch3
(

1 + |∇wh| + |∇2wh| + |∇2vh||∇vh| + |∇vh|2 + |∇�rh|
)
,

and therefore, in view of (4.5), (4.8), (4.6) and V ∈ W 2,2:
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1

h4

ˆ

�h

∣∣2 sym(Qt
0Z

h
1 ) + (Zh

1 )tZh
1

∣∣3 dx

≤ C

h4

ˆ

�h

h6|∇wh|3 + h6|∇vh|6 + h6 + h6|∇vh|3 + h6|∇2vh|3 + h6|�rh|3 dx

≤ C

h4

(
h2‖∇wh‖L∞(h2‖∇wh‖L2)

2 + h6‖∇V ‖6
L6 + h6|ω| + h6‖∇V ‖3

L3

+ h6‖∇2vh‖L∞‖∇2V ‖2
L2 + (

√
h‖�rh‖L∞)3h9/2

)
→ 0 as h → 0.

In a similar manner:

1

h4

ˆ

�h

|Zh
2 |2 dx ≤ C

h4

ˆ

�h

h5 + (h‖∇vh‖L∞)2h4|∇2vh|2 + h6|∇vh|4 dx → 0 as h → 0,

1

h4

ˆ

�h

∣∣2 sym(Qt
0)Z

h
1 + (Zh

1 )tZh
1

∣∣|Zh
2 |dx

≤ C

h4

ˆ

�h

(
h5|∇wh|2 + h5|∇2wh|2 + h5|∇vh|2 + h5 + h5|∇V | + h5|∇2V | + h5|�rh|

+ h5|∇V |2|∇2V | + h5|∇V ||∇2V |2
)

dx ≤ Cε0.

We therefore conclude that:

lim sup
h→0

|Eh
1 | ≤ Cε0. (4.11)

Step 4. Consider now the error due to integrating on the residual subdomain:

Eh
2 = 1

h4

ˆ

�1\�h

W
(
∇uhA−1(x′, hx3)

)
dx ≤ C

h4

ˆ

�1\�h

∣∣2 sym(Qt
0Z

h
1 ) + (Zh

1 )tZh
1

∣∣2 + |Zh
2 |2 dx.

Observe that, since the matrix field [∇vh | �ph] is Lipschitz, we have:∣∣∣ sym(Qt
0[∇vh | �ph])(x′)

∣∣∣ ≤ C‖∇vh‖W 1,∞ dist
(
x′, {vh = V }) ≤ Cε0

h
dist

(
x′, {vh = V }) → 0 in L∞(ω).

The last inequality above follows by a standard argument by contradiction. If there were a sequence x′h ∈ ω such that 
dist(x′ h, {vh = V }) ≥ ch, this would imply that: |{x′; vh(x′) �= V (x′)}| ≥ ∣∣� ∩ B(xh, ch)

∣∣ ≥ ch2, contradicting (4.6). 
Consequently, by (4.5), (4.8), (4.6):

|Eh
2 | ≤ C

h4

ˆ

�1\�h

h2
∣∣ sym(Qt

0[∇vh | �ph])∣∣dx

+ C

h4

ˆ

�1\�h

h4|∇wh|2 + h4|∇vh|4 + h4|∇2vh|2 + h4|�rh|2 + h4 + h6|∇vh|4 dx

≤ C

h4
o(h2)|�1 \ �h| + C

h4

√
h‖∇wh‖L∞h7/2|�1 \ Uh|1/2‖∇wh‖L2

+ C|�1 \ Uh|‖∇vh‖4
L8 + Ch‖∇2vh‖L∞

1

h
‖∇2vh‖L2 |�1 \ Uh|1/2 + 1

h
(
√

h‖�rh‖L∞)2|�1 \ Uh|
+ (h‖∇2vh‖L∞)2‖∇vh‖2

L4 |�1 \ Uh|1/2 → 0 as h → 0.

Thus:
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lim sup
h→0

1

h4
Eh(uh) ≤ lim sup

h→0

1

h4

ˆ

�h

1

2
Q3

(
A−1( sym(Qt

0Z
h
1 ) + 1

2
(Zh

1 )tZh
1

)
A−1

)
dx + Cε0.

Now on �h we have:

2 sym(Qt
0Z

h
1 ) + (Zh

1 )tZh
1

= 2h2
(

sym(Qt
0[∇wh | �qh]) + x2

3

2
sym(Qt

0[∇ �d0 | �k0]) + x3 sym(Qt
0[∇ �p | �rh])

)
+ h2

(
[∇V | �p]t [∇V | �p] + x2

3 [∇ �b0 | �d0]t [∇ �b0 | �d0] + 2x3 sym([∇V | �p]t [∇ �b0 | �d0])
)

+ Eh,

where the present error Eh is estimated by:

|Eh| ≤ C
(
h3|∇V ||∇wh| + h3|∇V | + h3|∇V ||∇ �p| + h3|∇V ||�rh|

+ h4|∇wh|2 + h3|∇wh| + h4|∇wh||∇ �p + h4|∇wh||�rh| + h3

+ h3|∇ �p| + h3|�rh| + h4 + h4|∇ �p| + h4|�rh| + h4|∇ �p|2 + h4|�rh|2
)

≤ Ch2
(
o(1)

√
h|∇V | + ε2

0 |∇2V | + o(1)
√

h + o(1)ε0
√

h
)
.

(4.12)

Consequently:

lim sup
h→0

1

h4
Eh(uh)

≤ lim sup
h→0

1

2

ˆ

�h

Q3

(
A−1( sym(Qt

0[∇wh | �qh]) + 1

2
x2

3 sym(Qt
0[∇ �d0 | �k0]) + x3 sym(Qt

0[∇ �p | �rh])

+ 1

2
[∇V | �p]t [∇V | �p] + 1

2
x2

3 [∇ �b0 | �d0]t [∇ �b0 | �d0] + x3 sym([∇V | �p]t [∇ �b0 | �d0])
)
A−1

)
dx + Cε0

= lim sup
h→0

1

2

ˆ

�h

Q3

(
A−1( sym(Qt

0[∇wh | �qh]) + 1

2
[∇V | �p]t [∇V | �p]

+ 1

2
x2

3 sym(Qt
0[∇ �d0 | �k0]) + 1

2
x2

3 [∇ �b0 | �d0]t [∇ �b0 | �d0]
)
A−1

)
+Q3

(
A−1(x3 sym(Qt

0[∇ �p | �rh]) + x3 sym([∇V | �p]t [∇ �b0 | �d0])
)
A−1

)
dx + Cε0.

Denoting:

I1(x
′) = sym((∇y0)

t∇wh) + 1

2
(∇vh)t∇vh, I2(x

′) = 1

2
sym((∇y0)

t∇ �d0) + 1

2
(∇�b0)

t∇�b0,

we have:

Q3

(
A−1(I ∗

1 (x′) + sym(c(x′, I1(x
′)) ⊗ e3) + x2

3I ∗
2 (x′) + x2

3 sym(c(x′, I2(x
′)) ⊗ e3)

)
A−1

)
=Q3

(
A−1((I1(x

′) + x2
3I2(x

′))∗ + sym(c(x′, I1(x
′) + x2

3I2(x
′)) ⊗ e3)

)
A−1

)
=Q2,A

(
I1(x

′) + x2
3I2(x

′)
)
,

where we have used the definition and linearity of the minimizing map c. Recalling the definitions of the curvature 
forms I (x′), II (x′) and III (x′) in (3.29), observe that I2(x

′) = II (x′) and that I1 converges to I in L2 by (4.4). 
Hence:

lim sup
h→0

1

h4
Eh(uh) ≤ 1

2

ˆ

�1

Q2,A

(
I (x′) + x2

3II (x′)
)

dx + 1

2

ˆ

�1

Q2,A

(
x3III (x′)

)
dx + Cε0

= I4(V , e) + Cε0.

Since ε0 > 0 was arbitrary, the proof is completed by a diagonal argument. �
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5. Discussion of the von Kármán-like functional (3.5)

Theorems 3.1 and 4.1 imply, as usual in this setting, convergence of almost-minimizers:

Corollary 5.1. If uh ∈ W 1,2(�h, R3) is a minimizing sequence to h−4Eh, that is:

lim
h→0

(
1

h4
Eh(uh) − inf

1

h4
Eh

)
= 0,

then the appropriate renormalizations yh = (R̄h)tuh(x′, hx3) − ch ∈ W 1,2(�1, R3) obey the convergence statements 
of Theorem 3.1 (i), (ii), (iii). The convergence of h−1sym

(
(∇y0)

t∇V h
)

to e in (iii) is strong in L2(ω). Moreover, any 
limit (V , e) minimizes the functional I4 on the product of spaces in (1.14) and (1.13).

Proof. The proof is standard. The only possibly nontrivial part is the strong convergence of the scaled tangential 
strains in (iii), which can be deduced as in Theorem 2.5 in [42]. �

Let us now compare the functional (3.5) with the von-Kármán energy of thin shells that has been derived in [42]. We 
will see that the arguments and the stretching and bending terms in both energies are related via the parametrization y0
of the surface y0(ω) in (1.8).

Recall that when S is a smooth 2d surface in R3, the �-limit of the scaled elastic energies h−4
( 1

h

´
Sh W(∇uh)

)
on 

thin shells Sh with mid-surface S, is:

Ĩ4,S(Ṽ , ẽ) = 1

2

ˆ

S

Q2
(
ẽ − 1

2
(Ã2)tan

)
dy + 1

24

ˆ

S

Q2
(
(∇(Ã �N) − Ã
)tan

)
dy. (5.1)

Above, 
 stands for the shape operator of S and �N is the unit normal vector to S. The subscript tan means taking the 
restriction of a quadratic form (or an operator) to the tangent space TyS. The arguments of Ĩ4,S are:

(i) First order infinitesimal isometries Ṽ on S. These are vector fields Ṽ ∈ W 2,2(S, R3) with skew symmetric 
covariant derivative, so that one may define:

Ã ∈ W 1,2(S, so(3)) with Ã(y)τ = ∂τ Ṽ (y) ∀y ∈ S ∀τ ∈ TyS; (5.2)

(ii) Finite strains ẽ on S. These are tensor fields ẽ ∈ L2(S, R2×2
sym) such that:

ẽ = L2 − lim
h→0

sym(∇w̃h)tan for some w̃h ∈ W 1,2(S,R3). (5.3)

In the present setting, denote S = y0(ω) and observe that the 1–1 correspondence between Ṽ in (5.2) and V in (3.3)
is given by the change of variables V = Ṽ ◦ y0. The skew symmetric tensor field Ã on TyS is then uniquely given by:

Ã(y0(x
′))∂ey0 = ∂eV (x′) and Ã�b0 = �p ∀e ∈ R

2, (5.4)

and the extended strains in (5.3) are related to (4.1) by:

〈ẽ(y0(x
′))∂ey0, ∂ey0〉 = 〈e(x′)e, e〉 ∀e ∈R

2.

Recall that the first term in the functional (5.1) measures the difference of order h2, between the (Euclidean) metric 
on S and the metric of the deformed surface. Indeed, the amount of stretching of S in the direction τ ∈ TyS, induced 
by the deformation uh = id + hṼ + h2w̃, has the expansion:

|∂τ uh|2 − |τ |2 = h2
(

2〈∂τ w̃, τ 〉 + |∂τ Ṽ |2
)

+O(h3) = 2h2
(
〈(sym∇w̃)τ, τ 〉 − 1

2
〈Ã2τ, τ 〉

)
+O(h3).

The leading order quantity on the right hand side above coincides with:

〈(sym∇w)e, e〉 + 1 〈∂eV, ∂eV 〉 =
〈(

sym∇w + 1
(∇V )t∇V

)
e, e

〉
,

2 2
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where we write τ = ∂ey0, for any e ∈ R
2. This is precisely the argument of the first term in I4(V , e), modulo the 

correction (∇�b0)
t∇�b0 (equal to the third fundamental form on S in case �b0 = �N ), due to the incompatibility of the 

ambient Euclidean metric of Sh with the given prestrain G on �h.
The second term in (5.1) measures the difference of order h, between the shape operator 
 on S and the shape 

operator 
h on the deformed surface (id + hṼ )(S) whose unit normal we denote by �Nh. The amount of bending 
of S, in the direction τ ∈ TyS, induced by the deformation uh = id + hṼ can be estimated by [42]:

(Id + hÃ)−1
h(Id + hÃ)τ − 
τ = (Id + hÃ)−1(∂τ
�Nh +O(h2)

)
τ − 
τ

= (Id + hÃ)−1
(
(Id + hÃ)
τ + h(∂τA) �N +O(h2)

)
− 
τ

= (Id − hÃ)h(∂τ Ã) �N +O(h2)

= h(∂τ Ã) �N +O(h2) = h
(
∇(Ã �N) − Ã


)
+O(h2).

The leading order term in this expansion coincides with (∇y0)
t∇ �p + (∇V )t∇�b0 when �b0 = �N , as:

〈(∂τ Ã)�b0, τ 〉 = 〈(∂e(Ã�b0), ∂ey0〉 − 〈(Ã∂e
�b0, ∂ey0〉 = 〈(∂e �p,∂ey0〉 + 〈(∂e

�b0, Ã∂ey0〉
= 〈

(∇y0)
t∇ �p e, e

〉 − 〈
(∇V )t∇�b0 e, e

〉
,

in view of (5.4), where again τ = ∂ey0 ∈ Ty0(x
′)S, for any e ∈R

2. This is the argument in the second term in I4(V , e). 
In the section 6 we identify geometric significance of the last term in (3.5).

6. Scaling optimality and examples

In this section, we prove the following result, asserting in particular that under conditions (1.7) and Riem(G) �≡ 0, 
the scaling h4 is optimal, i.e.:

∃c,C > 0 ch4 ≤ inf
uh∈W 1,2(�h,R3)

Eh(uh) ≤ Ch4 as h → 0.

In addition, we complete the study of two examples already mentioned in [5], where computations illustrate the 
content of Theorem 6.1.

Theorem 6.1. Assume (1.7), together with:

sym
(
(∇y0)

t∇ �d0
) + (∇�b0)

t∇�b0 = 0, (6.1)

where y0, �b0 and �d0 are defined in (1.8), (1.9), (1.11). Then the metric G is flat, i.e. Riem(G) ≡ 0 in �h. Equivalently: 
minEh = 0 for all h.

Observe that when �b0 = �N , then by (1.11) there must be �d0 = 0, and hence condition (6.1) means that �N is 
constant. This is consistent with our previous observation that when Ge3 = e3, then already condition (1.8) is enough 
to conclude immersability of G in R3. Equivalently, G2×2 is immersible in R2, so that indeed y0(ω) must be planar 
in this case.

Towards a proof of Theorem 6.1, recall that Riem(G) is the covariant Riemann curvature tensor, whose components 
Riklm and their relation to the contravariant–covariant curvatures in Rp

stq are:

Riklm = 1

2

(
∂klGim + ∂imGkl − ∂kmGil − ∂ilGkm

) + Gnp

(
�n

kl�
p
im − �n

km�
p
il

)
Riklm = GisR

s
klm,

where we used the Einstein summation convention and the Christoffel symbols:

�n
kl = 1

2
Gns

(
∂kGsl + ∂lGsk − ∂sGkl

)
. (6.2)

In view of the symmetries in Riem(G) of a 3-dimensional metric G, its flatness is equivalent to the vanishing of the 
following curvatures:
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R1212, R1213, R1223, R1313, R1323, R2323.

The proof of Theorem 6.1 is a consequence of the following observation.

Theorem 6.2. Assume (1.7) and let y0, �b0 and �d0 be defined as in (1.8), (1.11). Then:

sym
(
(∇y0)

t∇ �d0
) + (∇�b0)

t∇�b0 =
[

R1313 R1323
R1323 R2323

]
. (6.3)

Proof. Step 1. We have:

R1313 = −1

2
∂11G33 + Gnp

(
�n

13�
p

13 − �n
11�

p

33

)
,

R2323 = −1

2
∂22G33 + Gnp

(
�n

23�
p

23 − �n
22�

p

33

)
,

R1323 = −1

2
∂12G33 + Gnp

(
�n

13�
p

23 − �n
12�

p

33

)
.

Besides, in view of (1.11):

i, j = 1,2
1

2

(
〈∂iy0, ∂j

�d0〉 + 〈∂j y0, ∂i
�d0〉

)
= 1

2

(
∂j 〈∂iy0, �d0〉 + ∂i〈∂j y0, �d0〉

)
− 〈∂ij y0, �d0〉

= −1

2
∂ijG33 − 〈∂ij y0, �d0〉

since: ∂j 〈∂iy0, �d0〉 + ∂i〈∂j y0, �d0〉 = −∂ij |�b0|2 = −∂ijG33. Consequently, (6.3) will follow provided that:

∀i, j = 1,2 〈∂ij y0, �d0〉 = Gnp�n
ij�

p

33 and 〈∂i
�b0, ∂j

�b0〉 = Gnp�n
i3�

p

j3. (6.4)

Step 2. Before proving (6.4) we gather some useful formulas. Note that ∂iG = 2 sym ((∂iQ)tQ) for i = 1, 2. There-
fore, by direct inspection:

∀i, j, k = 1,2 〈∂ij y0 , ∂ky0〉 = 1

2
(∂iGkj + ∂jGki − ∂kGij ). (6.5)

Also, recall that condition (1.8) is equivalent to (see [5], proof of Theorem 5.3, formula (5.8)):

∀i, j = 1,2 〈∂ij y0 , �b0〉 = 1

2
(∂iGj3 + ∂jGi3). (6.6)

Therefore, for all i, j = 1, 2:

〈∂j y0 , ∂i
�b0〉 = ∂i〈∂j y0 , �b0〉 − 〈∂ij y0 , �b0〉 = 1

2
(∂iGj3 − ∂jGi3),

〈∂i
�b0, �b0〉 = 1

2
∂iG33.

(6.7)

We now express ∂ij y0, ∂i
�b0 and �d0 in the basis {∂1y0, ∂2y0, �b0}, writing:

∂ij y0 = α1
ij ∂1y0 +α2

ij ∂2y0 +α3
ij

�b0, ∂i
�b0 = β1

i ∂1y0 +β2
i ∂2y0 +β3

i
�b0, �d0 = γ 1∂1y0 +γ 2∂2y0 +γ 3 �b0.

(6.8)

By (6.5), (6.6), (6.7) and (1.11), it follows that:

G
(
α1

ij , α
2
ij , α

3
ij

)t = GQ−1
0 ∂ij y0 = Qt

0∂ij y0

= 1

2

(
∂iG1j + ∂jG1i − ∂1Gij , ∂iG2j + ∂jG2i − ∂2Gij , ∂iG3j + ∂jG3i

)
,

G
(
β1

i , β2
i , β3

i

)t = GQ−1
0 ∂i

�b0 = Qt
0∂

�b0 = Qt
0∂i

�b0 = 1

2

(
∂iG13 − ∂1Gi3, ∂iG23 − ∂2Gi3, ∂iG33

)t

,

G
(
γ 1, γ 2, γ 3)t = GQ−1

0
�d0 = Qt

0
�d0 = −1(

∂1G33, ∂2G33,0
)t

.

2
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In view of (6.2) we then obtain, for all i, j = 1, 2:

(α1
ij , α

2
ij , α

3
ij ) = (�1

ij ,�
2
ij ,�

3
ij ), (β1

i , β2
i , β3

i ) = (�1
i3,�

2
i3,�

3
i3), (γ 1, γ 2, γ 3)t = (�1

33,�
2
33,�

3
33),

so that (6.8) becomes:

∂ij y0 = �1
ij ∂1y0 + �2

ij ∂2y0 + �3
ij

�b0, ∂i
�b0 = �1

i3∂1y0 + �2
i3∂2y0 + �3

i3
�b0, �d0 = �1

33∂1y0 + �2
33∂2y0 + �3

33
�b0.

(6.9)

Step 3. We now prove (6.4). Recalling QT
0 Q0 = G, the scalar products of expressions in (6.9) are:

〈∂ij y0 , �d0〉 = 〈
�n

ij ∂ny0 + �3
ij

�b0,�
p

33∂py0 + �3
33

�b0
〉 = Gnp�n

ij�
p

33,

〈∂i
�b0 , ∂j

�b0〉 = 〈
�n

i3∂ny0 + �3
i3

�b0,�
p

j3∂py0 + �3
j3

�b0
〉 = Gnp�n

i3�
p

j3,

exactly as claimed in (6.4). This ends the proof of Theorem 6.2 and also of Theorem 6.1. �
We now compute the energy I4(V , e) in two particular cases:

G(x′, x3) = diag(1,1, λ(x′)) and G(x′, x3) = λ(x′)Id3,

corresponding to the prestrain with differential shrinking factor only in the normal direction (in the first case), and to 
the isotropic prestrain (in the second case).

Let �p be as in the definition (3.6). Writing: �p = α1∂1y0 + α2∂2y0 + α3 �b0, we obtain:

G
(
α1, α2, α3)t = −(〈∂1V , �b0〉, 〈∂2V , �b0〉,0

)t
.

Consequently:

�p = −G1i〈∂iV , �b0〉∂1y0 − G2i〈∂iV , �b0〉∂2y0 − G3i〈∂iV , �b0〉�b0. (6.10)

Lemma 6.3. Let λ : ω̄ → R be smooth and strictly positive. Consider the metric of the form: G(x′, x3) =
diag(1, 1, λ(x′)). Then:

(i) G is immersible in R3 if and only if:

Mλ = ∇2λ − 1

2λ
∇λ ⊗ ∇λ ≡ 0 in ω,

while the condition Mλ �≡ 0 is equivalent to: ch4 ≤ infEh ≤ Ch4.
(ii) The �-limit energy functional I4 in (3.5) becomes:

∀w ∈ W 1,2(ω,R2) ∀v ∈ W 2,2(ω,R)

I4(v,w) = 1

2

ˆ

ω

Q2
(
sym∇w + 1

2
∇v ⊗ ∇v + 1

96λ
∇λ ⊗ ∇λ

)
dx′

+ 1

24

ˆ

ω

Q2
(√

λ∇2v
) + 1

5760

ˆ

ω

Q2
(
Mλ

)
dx′,

where Q2 is independent of x′ and it is defined by Q2,Id in (3.4).

Proof. Part (i) of the assertion has been shown in [5]. For (ii), note first that:

y0(x
′) = x′ and Q0 = A = diag(1,1,

√
λ).

Consequently, directly from (3.4) we see that Q2,A =Q2,Id , which we denote simply by Q2.
Further, in view of (4.1), every admissible limiting strain e ∈ S has the form e = sym∇w for some w ∈

W 1,2(ω, R2). Also, without loss of generality, every admissible limiting displacement V is of the form: V = (0, 0, v)

for some v ∈ W 2,2(ω, R). We now compute, using (1.10), (6.9), (6.10):



M. Lewicka et al. / Ann. I. H. Poincaré – AN 34 (2017) 1883–1912 1907
�b0 = √
λe3, �d0 = −1

2
(∂1λ, ∂2λ,0), �p = −√

λ(∂1v, ∂2v,0).

Therefore:

(∇�b0)
t∇�b0 = 1

4λ
∇λ ⊗ ∇λ, (∇y0)

t∇ �d0 = −1

2
∇2λ,

(∇y0)
t∇ �p = − 1

2
√

λ
∇v ⊗ ∇λ − √

λ∇2v, (∇V )t∇�b0 = 1

2
√

λ
∇v ⊗ ∇λ.

This ends the proof of Lemma 6.3 in view of (3.5). �
Lemma 6.4. Let λ : ω̄ → R be smooth and strictly positive. Consider the metric G(x′, x3) = λ(x′)Id3. Denote f =
1
2 logλ. Then:

(i) Condition (1.8) is equivalent to �f = 0, which is also equivalent to the immersability of the metric G2×2 in R2.
(ii) Under condition (1.8), condition (6.1) can be directly seen as equivalent to Ric(G) = 0 and therefore to the 

immersability of G.
(iii) The �-limit energy functional in (3.5) has the following form:

I4(V , e) = 1

2

ˆ

ω

e−2fQ2
(
e + 1

2
(∇V )t∇V + 1

24
e2f ∇f ⊗ ∇f

)
dx′

+ 1

24

ˆ

ω

Q2
(
2∇V3 ⊗ ∇f − ∇2V3 − 〈∇V3 , ∇f 〉Id2

)
dx′ + 1

1440

ˆ

ω

Q2
(
ef Ric(G)2×2

)
dx′,

where Q2 is as in Lemma 6.3, and where Ric(G)2×2 denotes the tangential part of the Ricci curvature tensor 
of G, i.e.:

Ric(G)2×2 =
[

R11 R12
R12 R22

]
.

Proof. The part (i) has been deduced in [5], together with the expression:

Ric(G) = −(∇2f − ∇f ⊗ ∇f )∗ − (�f + |∇f |2)Id3. (6.11)

We now consider the case when (1.8) holds. By (i) the metric G2×2 is immersible in R2 and in particular �N = e3. 
Writing V = (V1, V2, V3), from (1.10), (6.9) and (6.10) we obtain:

�b0 = √
λe3, �d0 = −(

∂1f ∂1y0 + ∂2f ∂2y0
)
, �p = − 1√

λ

(
∂1V3∂1y0 + ∂2V3∂2y0

)
.

(∇�b0)
t∇�b0 = e2f ∇f ⊗ ∇f, (∇V )t∇�b0 = ef ∇V3 ⊗ ∇f.

Further, observe that: ∂i
�d0 = −(∂1if ∂1y0 + ∂2if ∂2y0 + ∂1f ∂1iy0 + ∂2f ∂2iy0), and so:

1

λ
〈∂1y0 , ∂1 �d0〉 = −1

λ

(
λ∂11f + 1

2
∂1λ∂1f + 1

2
∂2λ∂2f

) = −(∂11f + |∇f |2).
In the same manner, we arrive at:

1

λ
〈∂2y0 , ∂2 �d0〉 = −(∂22f + |∇f |2), 1

λ
〈∂2y0 , ∂1 �d0〉 = −∂12f,

1

λ
〈∂1y0 , ∂2 �d0〉 = −∂21f.

Consequently, (∇y0)
t∇ �d0 is already a symmetric matrix, and:

(∇y0)
t∇ �d0 = −e2f (∇2f + |∇f |2Id2).

In particular, under condition �f = 0, the formula (6.11) yields:

sym (∇y0)
t∇ �d0 + (∇�b0)

t∇�b0 = e2f Ric(G)2×2,

which we see to be equivalent with ∇f = 0 and hence with Ric(G) = 0. This establishes (ii).
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We now compute the remaining quantities appearing in the expression of I4. Firstly:

∇ �p = 1

2λ3/2
∇y0(∇V3 ⊗ ∇λ) − 1√

λ
∇y0∇2V3 − 1√

λ

(
∂1V3(∂11y0, ∂12y0) + ∂2V3(∂12y0, ∂22y0)

)
.

Using the relations between 〈∂ijy0 , ∂ky0〉 and ∂lG in (6.5), we obtain:

(∇y0)
t∇ �p = 1

2λ3/2
G2×2∇V3 ⊗ ∇λ − 1√

λ
G2×2∇2V3 − 1

2
√

λ

[
〈∇V3 , ∇λ〉 〈∇V3 , ∇λ⊥〉

−〈∇V3 , ∇λ⊥〉 〈∇V3 , ∇λ〉

]
,

and therefore:

sym(∇y0)
t∇ �p = √

λ sym
(∇V3 ⊗ ∇f

) − √
λ∇2V3 − √

λ〈∇V3 , ∇λ〉Id2.

In a similar manner, it follows that:

sym(∇y0)
t∇ �d0 = −λ

(
∇2f + |∇f |2Id2

)
.

Since Q2,A(x′) = λ−1Q2, the formula in (3.5) becomes:

I4(V , e) =1

2

ˆ

ω

e−2fQ2
(
e + 1

2
(∇V )t∇V + 1

24
e2f ∇f ⊗ ∇f

)
dx ′

+ 1

24

ˆ

ω

e−2fQ2
(
2ef ∇V3 ⊗ ∇f − ef ∇2V3 − ef 〈∇V3 , ∇f 〉Id2

)
dx′

+ 1

1440

ˆ

ω

e−2fQ2
(
e2f Ric(G)2×2

)
dx′,

(6.12)

which implies the result. �
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Appendix A. A proof of Corollary 2.4

Let us show that for any sequence of deformations uh such that limh→0 h−2Eh(uh) = 0, there exist matrix fields 
Rh ∈ W 1,2(ω, SO(3)) such that:

1

h

ˆ

�h

∣∣∣∇uh(x) − Rh(x′)
(
Q0(x

′) + x3B0(x
′)
)∣∣∣2

dx ≤ C
(
Eh(uh) + h4

)
(A.1)

and: ˆ

ω

∣∣∣∇Rh(x′)
∣∣∣2

dx′ ≤ C

h2

(
Eh(uh) + h4

)
. (A.2)

This will prove Corollary 2.4. For Uh as in Lemma 2.3, we let:

Eh(uh,Uh) = 1

h

ˆ

h

W(∇uhA−1)dx
U
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and we obtain:

1

h

ˆ

Uh

∣∣∣∇uh(x) − R̄h(Q0(x
′) + x3B0(x

′))
∣∣∣2

dx ≤ C
(
Eh(uh,Uh)dx + h3|Uh|

)
. (A.3)

Step 1. For every x′ ∈ ω, denote Dx′,δ = B(x′, δ) ∩ω and Bx′,δ,h = Dx′,δ × (−h/2, h/2). For short, we write Bx′,2h =
Bx′,2h,h and Bx′,h = Bx′,h,h. Apply (A.3) to the set Uh = Bx′,2h to get a rotation Rx′,2h ∈ SO(3) such that, with a 
universal constant C:

1

h

ˆ

Bx′,2h

∣∣∣∇uh(z) − Rx′,2h

(
Q0(z

′) + z3B0(z
′)
)∣∣∣2

dz ≤ C
(
Eh(uh,Bx′,2h) + h3

∣∣Bx′,2h

∣∣) . (A.4)

Consider a family of mollifiers ηx′ ∈ C∞(ω, R), parametrized by x′ ∈ ω:
ˆ

ω

ηx′ = 1

h
, ‖ηx′ ‖L∞(ω) ≤ C

h3
, ‖∇x′ηx′ ‖L∞(ω) ≤ C

h4
and (suppηx′) ∩ ω ⊂ Dx′,h.

Define R̃h ∈ W 1,2(ω, R3×3) as:

R̃h(x′) =
ˆ

�h

ηx′(z′)∇uh(z)
(
Q0(z

′) + z3B0(z
′)
)−1 dz. (A.5)

We then have:

1

h

ˆ

Bx′,h

|∇uh(z) − R̃h(z′)
(
Q0(z

′) + z3B0(z
′)
) |2 dz

≤ C

h

ˆ

Bx′,2h

∣∣∣∇uh(z) − Rx′,2h

(
Q0(z

′) + z3B0(z
′)
)∣∣∣2

dz + C

h

ˆ

Bx′,h

|R̃h(z′) − Rx′,2h|2|Q0(z
′) + z3B0(z

′)|2 dz

≤ C
(
Eh(uh,Bx′,2h) + h3

∣∣Bx′,2h

∣∣) + C

h

ˆ

Bx′,h

|R̃h(z′) − Rx′,2h|2 dz, (A.6)

where we have used (A.4) and 
∥∥Q0(z

′) + z3B0(z
′)
∥∥

L∞ ≤ C. Now, for every z′ ∈ Bx′,h we have:

|R̃h(z′) − Rx′,2h|2 =

∣∣∣∣∣∣∣
ˆ

�h

ηz′(y′)∇uh(y)
(
Q0(y

′) + y3B0(y
′)
)−1 dy − Rx′,2h

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
ˆ

�h

ηz′(y′)
(
∇uh(y) − Rx′,2h

(
Q0(y

′) + y3B0(y
′)
)) (

Q0(z
′) + y3B0(z

′)
)−1

dy

∣∣∣∣∣∣∣
2

≤ C

( ˆ

Bz′,h

ηz′(y′)2 dy

)( ˆ

Bz′,h

∣∣∣∇uh(y) − Rx′,2h

(
Q0(y

′) + y3B0(y
′)
)∣∣∣2

dy

)

≤ C

h2

ˆ

Bx′,2h

∣∣∣∇uh(y)−Rx′,2h

(
Q0(y

′)+y3B0(y
′)
)∣∣∣2

dy ≤ C

h2

(
Eh(uh,Bx′,2h)+h3

∣∣Bx′,2h

∣∣) .

(A.7)

In a similar way, in view of 
´

h ∇z′ηz′(y′) dy = 0, it follows that:

�
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|∇R̃h(z′)|2 =
⎛
⎜⎝ˆ

�h

∇z′ηz′(y′)∇uh(y)
(
Q0(y

′) + y3B0(y
′)
)−1 dy

⎞
⎟⎠

2

=
⎛
⎜⎝ ˆ

Bx′,2h

∇z′ηz′(y′)
(
∇uh(y)

(
Q0(y

′) + y3B0(y
′)
)−1 − Rx′,2h

)
dy

⎞
⎟⎠

2

≤ C

ˆ

�h

∣∣∇z′ηz′(y′)
∣∣2 dy

ˆ

Bx′,2h

∣∣∣∇uh(y) − Rx′,2h

(
Q0(y

′) + y3B0(y
′)
)∣∣∣2

dy

≤ C

h4

(
Eh(uh,Bx′,2h) + h3

∣∣Bx′,2h

∣∣) .

From (A.7) we obtain:ˆ

Bx′,h

|R̃h(z′) − Rx′,2h|2 dz ≤ C

h2

ˆ

Bx′,h

(
Eh(uh,Bx′,2h) + h4|Bx′,2h|

)
dz

≤ Ch
(
Eh(uh,Bx′,2h) + h3|Bx′,2h|

)
,

and therefore by (A.6) we further see that:

1

h

ˆ

Bx′,h

|∇uh(z) − R̃h(z′)
(
Q0(z

′) + z3B0(z
′)
) |2 dz ≤ C

(
Eh(uh,Bx′,2h) + h3|Bx′,2h|

)
. (A.8)

Step 2. Covering �h by a finite family of sets {Bx′,h}, such that the intersection number of the doubled covering 
{Bx′,2h} is independent of h, applying (A.8) and summing over the covering, it follows that:

1

h

ˆ

�h

|∇uh(z) − R̃h(z′)
(
Q0(z

′) + z3B0(z
′)
) |2 dz ≤ C

(
Eh(uh) + h4

)
.

In a similar fashion we obtain:ˆ

Dx′,h

|∇R̃h(z′)|2 dz ≤ C

h4

ˆ

Dx′,h

(
Eh(uh,Bx′,2h) + h3|Bx′,2h|

)
dz ≤ C

h2

(
Eh(uh,Bx′,2h) + h3|Bx′,2h|

)
,

and by the same covering argument:ˆ

�h

|∇R̃h(z′)|2 dz ≤ C

h2

(
Eh(uh) + h4

)
.

Step 3. Note that, in the above two estimates, we can replace R̃h by Rh = PSO(3)R̃
h ∈ W 1,2(ω, SO(3)). Firstly, the 

projection in question is well defined in view of (A.7), since:

dist2
(
R̃h,SO(3)

)
≤ |R̃h − Rx′,2h| ≤ C

h2

(
Eh(uh) + h4

)
,

which is small because of the hypothesis α < 2. Moreover:

1

h

ˆ

Bx′,h

|∇uh(z) − Rh(z′)
(
Q0(z

′) + z3B0(z
′)
) |2 dz

≤ C

h

ˆ

Bx′,h

∣∣∣∇uh(z) − R̃h(z′)
(
Q0(z

′) + z3B0(z
′)
)∣∣∣2

dz + C

h

ˆ

Bx′,h

|R̃h(z′) − Rh(z′)|2|Q0(z
′) + z3B0(z

′)|2 dz

≤ C
(
Eh(uh,Bx′,2h) + h3|Bx′,2h|

)
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because of (A.8) and (A.7). Finally, the previous covering argument clearly implies (A.1), and 
´
ω

|∇Rh|2 dz ≤
C
´
ω

|∇R̃h|2 dz yields (A.2).
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