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Abstract

We prove, under the exterior geometric control condition, the Kato smoothing effect for solutions of an inhomogeneous and 
damped Schrödinger equation on exterior domains.
© 2017 Elsevier Masson SAS. All rights reserved.
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1. Introduction and results

This paper is devoted to the study of a smoothing effect for a damped Schrödinger equation on exterior domain. In 
order to formulate the results, we shall begin by recalling some results for Schrödinger equation linking the regularity 
of solutions and the geometry of domain where these equations are posed.

It is well known that the free Schrödinger equation enjoys the property of the C ∞ smoothing effect, which can be 
described as follows: For any distribution u0 of compact support, the solution of the Cauchy problem{

(i∂t + �)u = 0 in R×R
d

u|t=0 = u0

is infinitely differentiable with respect to t and x when t �= 0 and x ∈R
d .
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Another type of smoothing effect says that if u0 ∈ L2(Rd) then the solution of the Schrödinger equation satisfies 
the Kato 1

2 -smoothing effect (H 1/2-smoothing effect):∫
R

∥∥∥〈x〉−s�1/4u

∥∥∥2

L2(Rd )
≤ C‖u0‖2

L2, s > 1/2.

This property of gain of regularity has been first observed in the case of Rd in the works of Constantin-Saut [12], 
Sjölin [32] and Vega [34] and it has been extended locally in time to variable coefficient operators with non-trapping 
metric by Doi [14,16].

In the case of domains with boundary Burq, Gérard and Tzvetkov [11] proved a local smoothing estimate for 
exp(it�) in the exterior domains with non-trapping assumption. Using the T T � argument, the proof of the smoothing 
effect with respect to initial data in [11] is reduced to the non-homogeneous bound which, by performing Fourier 
transform in time, can be deduced from the bounds on the cut-off resolvent:

‖χ(λ2 − �)−1χ‖L2→L2 ≤ C, ∀λ � 1.

The resolvent bound, for which the non-trapping assumption plays a crucial role, is proven for |λ| >> 1 in greater 
generality by Lax–Phillips [22], Melrose–Sjöstrand [25,26], Vainberg [33] and Vazy–Zworski [36]

The Kato effect has been extended by Robbiano and Zuily in [31] to variable coefficients operators with unbounded 
potential in exterior domains with non-trapping metric. The proof of their result is reduced to an estimate localized 
in frequency which has been established by contradiction using in a crucial way the semiclassical defect measure 
introduced by P. Gerard [18] (see also [23]). The use of the microlocal defect measure to prove an estimate by contra-
diction method (Wilcox [37]) goes back to Lebeau [23]. This idea has been followed with success by several authors 
(see Burq [8–10], Aloui and Khenissi [3,4,21]).

In [10], Burq proved that the non-trapping condition is necessary for the H 1/2 smoothing effect and showed, in the 
case of several convex obstacles satisfying certain assumptions, the smoothing effect with an ε > 0 loss:

‖χu‖L2(H 1/2−ε(�)) ≤ C‖u0‖L2(�),

where χ is compactly supported.
On the other hand, the non-trapping assumption is also equivalent to the uniform decay of the local energy for 

the wave equation (see [7,20,22,27,29,24]). For the trapping domains, when no such decay is hoped, the idea of 
stabilization for the wave equation is to add a dissipative term to the equation to force the energy of the solution 
to decrease uniformly. There is a large literature on the problem of stabilization of wave equation. In the case of 
bounded domains, we quote essentially the work of J. Rauch and M. Taylor [30] and the one of C. Bardos, G. Lebeau 
and J. Rauch [6] who introduced and developed the geometric control condition (GCC). This condition that asserts, 
roughly speaking, that every ray of geometric optics enters the region where the damping term is effective in a uniform 
time, turns out to be almost necessary and sufficient for the uniform exponential decay of waves. In [3], Aloui and 
Khenissi introduced the Exterior Geometric control condition (see below Definition 1.1) and hence extended the result 
of [6] to the case of exterior domains (see also [4,28]).

Recently, by analogy with the stabilization problem the first author [1,2] has introduced the forced smoothing effect 
for Schrödinger equation in bounded domains; it consists in acting on the equation to produce some smoothing effects. 
More precisely he considered the following equation⎧⎨⎩ i∂tu − �Du + ia(x)(−�D)

1
2 a(x)u = 0 in ]0,+∞) × �,

u(0, .) = f in �,

u|R+×∂� = 0,

(1.1)

where � is a bounded domain and �D is the Dirichlet–Laplace operator on �.
For Schrödinger equation, Aloui and Khenissi [3] used ia instead of ia(−�)−1/2a to prove the stabilization result 

in exterior domain. We quote also the work of Dehman Gérard, Lebeau [13] who stabilized the non-linear equation by 
adding the term ia(−�)−1aDt . In these both works the damping is of order 0 (the principal part of equation suggests 
to count with the same weight Dt and �) and is too weak to obtain smoothing effect.
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Using the strategy of [11], Aloui [2] proved the following smoothing effect:

‖v‖
L2([ε,T ],Hα+1

D (�))
≤ c ‖v0‖Hα

D(�) , (1.2)

where 0 < ε < T < ∞ and v0 ∈ Hα
D(�) (see [2] for the definition of Hα

D).
By iteration of the last result, Aloui deduced also a C ∞-smoothing effect for the regularized Schrödinger equation 

(1.1). Recently, Aloui, Khenissi and Vodev [5] have proved that the Geometric control condition is not necessary to 
obtain the forced C ∞-smoothing effect.

On the other hand, using the arguments of [11], we can prove, for the equation (1.1) in exterior domains, the cut-off 
resolvent bound, which is sufficient to deduce the non-homogeneous bound. But, unfortunately, the generator operator 
�D − ia(x)(−�D)

1
2 a(x) is not self-adjoint and then the T T � argument fails. For this reason, we can not prove (with 

this strategy) the weak Kato smoothing effect (1.2) for exterior domains.
The question now is the following:
Can we establish the Kato smoothing effect for the regularized Schrödinger equation (1.1) for which the Geometric 

Control Condition is necessary? And if so, does this result still hold for exterior problems?
In this paper, we give an affirmative answer. Indeed, under the Exterior Geometric Control condition, we prove the 

Kato smoothing effect and the non-homogeneous bound for the regularized Schrödinger equation in exterior domains. 
Notice that the case of bounded domains can be treated by the same method.

Our approach for deriving such results is to combine the strategies of Robbiano–Zuily in [31] and Aloui–Khenissi 
in [3,21].

In order to state our results, we give several notations and assumptions.
Let K be a compact obstacle in Rd whose complement � an open set with C ∞ boundary ∂� and P̃ be a second-

order differential operator of the form

P̃ =
d∑

j,k=1

Dj(b
jkDk) + V (x), Dj = ∂

i∂xj

, (1.3)

where coefficients bjk and V are assumed to be in C ∞(Rd), real valued, and bjk = bkj , 1 ≤ j , k ≤ d .

Throughout this paper, 〈x〉 := (1 + |x|2) 1
2 and we denote by S�(M, g) the Hörmander’s class of symbols if M is a 

weight and the metric

g = dx2

〈x〉2
+ dξ2

〈ξ 〉2
.

We shall denote by p the principal symbol of P̃ , namely

p(x, ξ) =
d∑

j,k=1

bjk(x)ξj ξk,

and we assume that

∃ c > 0 : p(x, ξ) ≥ c|ξ |2, for x in R
d and ξ in R

d, (1.4){
(i) bjk ∈ S�(1, g), ∇xb

jk(x) = o( 1
|x| ), |x| → +∞, 1 ≤ j, k ≤ d.

(ii) V ∈ S�(〈x〉2 , g), V ≥ −C0 for some positive constant C0.
(1.5)

Under the assumptions (1.4) and (1.5), the operator P̃ is essentially self-adjoint on C ∞
0 (�) and we denote by P its 

self-adjoint extension.
Now we set

� = ((1 + C0)Id + P)1/2,

which is well defined by functional calculus of self-adjoint positive operators.
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We consider the following regularized Schrödinger equation⎧⎪⎨⎪⎩
(Dt + P)u − ia�au = f in ]0,+∞) × �

u = 0 on [0,+∞) × ∂�,

u|t=0 = u0,

(1.6)

where (u0, f ) ∈ C ∞
0 (�) × C ∞

0 (]0, +∞) × �) and a ∈ C ∞
0 (�).

Let’s recall the Exterior Geometric Control (E.G.C.) condition [3]

Definition 1.1 (E.G.C.). Let R > 0 be such that K ⊂ BR = {|x| < R} and ω be a subset of �. We say that ω ver-
ifies the Exterior Geometric Control condition on BR (E.G.C.) if there exists TR > 0 such that every generalized 
bicharacteristic γ starting from BR at time t = 0, is such that:

• γ leaves R+ × BR before the time TR , or
• γ meets R+ × ω between the times 0 and TR .

We assume also that the bicharacteristics have no contact of infinite order with the boundary (see, for a precise 
statement, Definition 2.11).

Under this condition on ω = {x ∈ �, a2(x) > 0}, we can state our main result.

Theorem 1.2. Let T > 0, α ∈ (−1/2, 1/2) and s ∈ (1/2, 1]. Let P defined by (1.3) satisfying the assumptions (1.4)
and (1.5). Then under, the E.G.C on ω one can find a positive constant C(T , α, s) = C such that

T∫
0

∥∥∥�α+1/2〈x〉−su

∥∥∥2

L2(�)
dt + sup

t∈[0,T ]
‖�αu(t)‖2

L2(�)
≤ C

⎛⎝‖�αu0‖2
L2(�)

+
T∫

0

∥∥∥�α−1/2〈x〉sf
∥∥∥2

L2(�)
dt

⎞⎠ (1.7)

for all u0 in C ∞
0 (�), f in C ∞

0 (� ×R
+), where u denotes the solution of (1.6).

Working with ũ = ei(1+C0)tu, one may assume V ≥ 1 in (1.5) and � = P 1/2, which will be assumed in the sequel. 
It turns into the following equation⎧⎪⎨⎪⎩

(Dt + P)u − iaP 1/2au = f in [0,+∞) × �

u = 0 on [0,∞) × ∂�,

u|t=0 = u0,

(1.8)

where P ≥ 1.

Remarks 1.3.

1. When the obstacle is nontrapping, we obtain the result of Robbiano and Zuily [31] by taking a(x) = 0 and 
moreover, we improve their result to non-homogeneous bound.

2. If we consider the equation in a bounded domain � of Rd , and replace the exterior geometric condition (E.G.C) 
by the classical microlocal condition of Bardos–Lebeau–Rauch [6], we can still prove the Kato effect and then 
we improve the result of Aloui [2].

3. If there is a trapped ray which does not intersect the regularized region, due to Burq [10], the Kato effect does not 
hold. In this context, our result is thus optimal.

4. It is well known that (1.7) is not true for s = 1/2 (see [35] for optimality). The range of α is only technical and 
could be improved by commutation between �β and 〈x〉±s for an adapted β . But the commutator is not so easy 
to estimate (see for instance Lemma A.8).

The rest of the paper is organized as follows: Section 2 is devoted to the proof of Theorem 1.2 while in the 
Appendix A we shall prove some Lemmata used in Section 2.
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2. Proofs

Let’s describe the strategy of the proof of Theorem 1.2. In a first step, we reduce the estimate (1.7) to an analogue 
one localized in frequencies. By following a contradiction argument, we can construct an adapted microlocal defect 
measure. Our aim in the rest of the proof is to obtain a contradiction on this measure. First, we prove that this measure 
is not identically null. Next, we show that it is null on incoming set and on {a2 > 0}. Finally, using the geometrical 
assumption (E.G.C.) and that the support of this measure is propagated along the generalized flow, we conclude that 
the measure is identically null. This gives the contradiction.

2.1. Reduction to an estimate localized in frequency

We recall the Paley–Littlewood decomposition. Let � ∈ C ∞
0 ([0, +∞)) be a decreasing function such that

�(s) = 1 if s ≤ 1/2, �(s) = 0 if s ≥ 1.

Let ψ(s) = �(4−1s) − �(s), ψ(s) = 0 if s ≤ 1/2 or s ≥ 4, 0 ≤ ψ ≤ 1. For s ≥ 0 we have

1 = �(s) +
+∞∑
n=0

ψ(4−ns),

and using P ≥ 1, we have

u =
+∞∑
n=0

ψ(4−nP )u.

For support reason

ψ(4−ns)ψ(4−ks) = 0 if |k − n| ≥ 2,

thus there exists C > 0 such that for all u ∈ L2(�),

‖u‖2
L2(�)

≤ C

+∞∑
n=0

‖ψ(4−nP )u‖2
L2(�)

≤ C2‖u‖2
L2(�)

.

In the sequel we denote by hn = 2−n and un = uhn = ψ(h2
nP )u.

If u satisfies

Dtu + Pu − iaP 1/2(au) = f, (2.1)

thus un is a solution of the following semi-classical Schrödinger equation:

h2
n(Dt + P)un − ihna(h2

nP )1/2(aun) = hngn, (2.2)

where

gn = ghn = hnψ(h2
nP )f + i[ψ(h2

nP ), a](h2
nP )1/2(au) + ia(h2

nP )1/2[ψ(h2
nP ), a]u. (2.3)

Proposition 2.1. Let s ∈ (1/2, 1], T > 0 and α ∈ (−1/2, 1/2). Assume there exists C > 0 such that for un = ψ(h2
nP )u

satisfying (2.2), we have, for all n ≥ 1

‖〈x〉−sun‖2
L2([0,T ]×�)

+ hn sup
t∈[0,T ]

‖un(t)‖2
L2(�)

≤ C
(
hn‖un(0)‖2

L2(�)
+ ‖〈x〉sgn‖2

L2([0,T ]×�)

)
, (2.4)

then there exists C′ > 0 such that for all u satisfying (2.1) we have

‖P α/2+1/4〈x〉−su‖2
L2([0,T ]×�)

+ sup
t∈[0,T ]

‖P α/2u(t)‖2
L2(�)

≤ C′ (‖P α/2u(0)‖2
L2(�)

+ ‖P α/2−1/4〈x〉sf ‖2
L2([0,T ]×�)

)
.

(2.5)
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Proof. We multiply (2.4) by h−2α−1
n and we sum over n ∈N, we obtain,∑

n∈N
h−2α−1

n ‖〈x〉−sun‖2
L2([0,T ]×�)

+
∑
n∈N

h−2α
n sup

t∈[0,T ]
‖un(t)‖2

L2(�)

≤ C

(∑
n∈N

h−2α
n ‖un(0)‖2

L2(�)
+

∑
n∈N

h−2α−1
n ‖〈x〉sgn‖2

L2([0,T ]×�)

)
.

(2.6)

Now, let us estimate each term appearing in inequality (2.5). We have,

sup
t∈[0,T ]

‖P α/2u(t)‖2
L2(�)

≤ C sup
t∈[0,T ]

∑
n∈N

‖ψ(h2
nP )P α/2u(t)‖2

L2(�)

≤ C sup
t∈[0,T ]

∑
n∈N

h−2α
n ‖ψ0(h

2
nP )u(t)‖2

L2(�)
where ψ0(σ ) = σα/2ψ(σ)

≤ C
∑
n∈N

h−2α
n sup

t∈[0,T ]
‖ψ(h2

nP )u(t)‖2
L2(�)

. (2.7)

We have also with ψ1(σ ) = σα/2+1/4ψ(σ),

‖P α/2+1/4〈x〉−su‖2
L2([0,T ]×�)

≤ C
∑
n∈N

h−2α−1
n ‖ψ1(h

2
nP )〈x〉−su‖2

L2([0,T ]×�)

≤ C
∑
n∈N

h−2α−1
n ‖〈x〉−sψ(h2

nP )u‖2
L2([0,T ]×�)

(by Lemma A.8)

≤ C
∑
n∈N

h−2α−1
n ‖〈x〉−sun‖2

L2([0,T ]×�)
. (2.8)

Now we can estimate, with ψ2(σ ) = σ−α/2ψ(σ),∑
n∈N

h−2α
n ‖un(0)‖2

L2(�)
≤ C

∑
n∈N

‖ψ2(h
2
nP )P α/2u(0)‖2

L2(�)

≤ C‖P α/2u(0)‖2
L2(�)

. (2.9)

The term gn contains three terms (see (2.3)). For the first, we have, with ψ3(σ ) = σ−α/2+1/4ψ(σ),∑
n∈N

h−2α+1
n ‖〈x〉sψ(h2

nP )f ‖2
L2([0,T ]×�)

≤
∑
n∈N

h−2α+1
n ‖ψ(h2

nP )〈x〉sf ‖2
L2([0,T ]×�)

≤ C
∑
n∈N

‖ψ3(h
2
nP )P α/2−1/4〈x〉sf ‖2

L2([0,T ]×�)

≤ C‖P α/2−1/4〈x〉sf ‖2
L2([0,T ]×�)

. (2.10)

For the second and the third terms of gn we can apply the Lemmata A.9 and A.11, to obtain with (2.10),∑
n∈N

h−2α−1
n ‖〈x〉sgn‖2

L2([0,T ]×�)
≤ C‖P α/2−1/4〈x〉sf ‖2

L2([0,T ]×�)
+ C‖P α/2u‖2

L2([0,T ]×�)
. (2.11)

Then following (2.6) (2.7), (2.8), (2.9) and (2.11), we obtain

‖P α/2+1/4〈x〉−su‖2
L2([0,T ]×�)

+ sup
t∈[0,T ]

‖P α/2u(t)‖2
L2(�)

≤ C
(
‖P α/2u(0)‖2

L2(�)
+ ‖P α/2−1/4〈x〉sf ‖2

L2([0,T ]×�)
+ ‖P α/2u‖2

L2([0,T ]×�)

)
.

By Gronwall’s Lemma, we can remove the last term in the previous inequality and we obtain (2.5). �
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2.2. Construction of microlocal defect measure

In this section we will prove the localized frequency estimate (2.4) by a contradiction argument and using microlo-
cal defect measure.

More precisely, let uh solution of

h2(Dt + P)uh − iha(h2P)1/2(auh) = hgh. (2.12)

We will prove by contradiction the following estimate,

‖〈x〉−suh‖2
L2([0,T ]×�)

+ h sup
t∈[0,T ]

‖uh(t)‖2
L2(�)

≤ Ch‖uh(0)‖2
L2(�)

+ C‖〈x〉sgh‖2
L2([0,T ]×�)

. (2.13)

Assuming it is false. Taking C = k ∈ N, we deduce sequences hk →
k→+∞ 0, u0

k = uhk
(0) ∈ L2(�) and gk = ghk

∈
L2(�) such that,

hk

∥∥∥u0
k

∥∥∥2

L2(�)
→

k→+∞ 0,
∥∥〈x〉s gk

∥∥2
L2([0,T ]×�)

→
k→+∞ 0. (2.14)

We normalize by the left term in (2.13), thus∥∥〈x〉−s uk

∥∥2
L2([0,T ]×�)

+ hk sup
t∈[0,T ]

‖uk(t)‖2
L2(�)

= 1,

where, for simplicity, we have denoted uhk
= uk . By the Lemma A.1 we have

hk sup
t∈[0,T ]

‖uk(t)‖2
L2(�)

→
k→+∞ 0, (2.15)

then ∥∥〈x〉−s uk

∥∥2
L2([0,T ]×�)

→
k→+∞ 1. (2.16)

The sequence (uk) is bounded in L2
loc(Rt , L2

loc(�)). Indeed, for R > 0, there exists c > 0 such that 〈x〉−2s ≥ c, ∀x ∈
B(0, R) and then we have

T∫
0

∫
�∩BR

|uk|2dtdx ≤ 1

c

T∫
0

∫
�∩BR

〈x〉−2s |uk|2dtdx ≤ 1

c
. (2.17)

We set{
wk = 1�uk(t)

Wk = 1[0,T ]wk.
(2.18)

It follows from (2.17) that the sequence (Wk) is bounded in L2(Rt , L2
loc(R

d)).
We associate to a symbol b = b(x, t, ξ, τ) ∈ C ∞

0 (T ∗
R

d+1) the semiclassical pseudo-differential operator (pdo) by 
the formula

Op(b)(y, s, hDx,h
2Dt)v(x, t) = 1

(2πh)d+1

∫∫
e
i
(

x−y
h

ξ+ t−s

h2 τ
)
ϕ(y)b(x, t, ξ, τ )v(y, s)dydsdξdτ,

where ϕ ∈ C ∞
0 (Rd) is equal to one on a neighborhood of the x-projection of the support of b. As in [31] we can 

associate to (Wk) a semi-classical measure μ. More precisely,

Proposition 2.2. There exists a subsequence (Wσ(k)) and a Radon measure μ on T ∗
R

d+1 such that for every b ∈
C ∞

0 (T ∗
R

d+1) one has

lim
k→+∞

(
Op(b)

(
x, t, hσ(k)Dx,h

2
σ(k)Dt

)
Wσ(k),Wσ(k)

)
L2(Rd+1)

= 〈μ,b〉 .
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We prove first that the measure μ satisfies the following property.

Proposition 2.3. The support of μ is contained in the characteristic set of the operator Dt + P

� = {(x, t, ξ, τ ) ∈ T ∗
R

d+1 : x ∈ �, t ∈ [0, T ] and τ + p(x, ξ) = 0}. (2.19)

Proof. According to (2.18), it is obvious that

suppμ ⊂ {(x, t, ξ, τ ) ∈ T ∗
R

d+1 : x ∈ �, t ∈ [0, T ]}.
Therefore it remains to show that if m0 = (x0, t0, ξ0, τ0) with x0 ∈ �, t0 ∈ [0, T ], and τ0 + p(x0, ξ0) �= 0 then m0 /∈
suppμ. For simplicity, we shall denote the sequence Wσ(k) by Wk .

Case 1. Assume that x0 ∈ �.
Let ε > 0 be such that B(x0, ε) ⊂ �, ϕ ∈ C ∞

0 (B(x0, ε)), ϕ = 1 on B(x0, ε2 ) and ϕ̃ ∈ C ∞
0 (�), ϕ̃ = 1 on suppϕ. Let 

b ∈ C ∞
0 (Rd

x ×R
d
ξ ) such that πx suppb ⊂ B(x0, ε2 ) and χ ∈ C ∞

0 (Rt ×Rτ ). Recall that we have Wk = 1[0,T ]1�uk and 
that (uk) is bounded sequence in L2([0, T ], L2

loc(�)). We set

Ik = (b(x,hkDx)χ(t, h2
kDt )ϕ(x)h2

k(Dt + P(x,Dx))Wk, ϕ̃Wk)L2(Rd+1).

As in [31] we have

lim
k→+∞ Ik = 〈μ, (τ + p)bχ〉 . (2.20)

On the other hand, since we have

h2
k(Dt + P(x,Dx))uk = hkia(h2

kP )1/2auk + hkgk,

and ϕ ∈ C ∞
0 (�),

ϕ(h2
kDt + h2

kP (x,Dx))Wk = ϕ(ihka(h2
kP )1/2auk + hkgk) + h2

kϕ(uk(0)δt=0 − h2
kuk(T )δt=T ). (2.21)

Then Ik is a sum of four terms,

Ik = I 1
k + I 2

k + I 3
k + I 4

k ,

I 1
k = ihk (b(x,hkDx)χ(t, h2

kDt )ϕ(x)a(h2
kP )1/2auk, ϕ̃Wk)L2(Rd+1)

I 2
k = hk (b(x,hkDx)χ(t, h2

kDt )ϕ(x)gk, ϕ̃Wk)L2(Rd+1)

I 3
k = (b(x,hkDx)χ(t, h2

kDt )h
2
kϕ(x)uk(0)δt=0, ϕ̃Wk)L2(Rd+1)

I 4
k = −(b(x,hkDx)χ(t, h2

kDt )h
2
kϕ(x)uk(T )δt=T , ϕ̃Wk)L2(Rd+1).

For the first term I 1
k , we use the Lemma A.6, we have,∥∥∥(h2

kP )1/2auk

∥∥∥2

L2(�)
≤ Ch2

k‖uk‖2
L2(�)

+ C‖auk‖2
L2(�)

, (2.22)

and we deduce,

|I 1
k | ≤ c(h2

k sup
t∈[0,T ]

‖uk‖2
L2(�)

+ hk sup
t∈[0,T ]

‖uk‖2
L2(�)

). (2.23)

Then we obtain, that I 1
k goes to zero by (2.15). For the second term I 2

k ,∣∣∣I 2
k

∣∣∣ ≤ hk ‖gk‖L2([0,T ],B(x0,ε))
‖ϕ̃Wk‖L2(Rd+1)

≤ Chk

∥∥〈x〉s gk

∥∥
L2([0,T ]×�)

∥∥〈x〉−s uk

∥∥
L2([0,T ]×�)

.

Using (2.14) and (2.16), we deduce that

lim I 2
k = 0. (2.24)
k→+∞



L. Aloui et al. / Ann. I. H. Poincaré – AN 34 (2017) 1759–1792 1767
The third and fourth terms in (2.21) have the following form,

Jk =
(
b(x,hkDx)χ(t, h2

kDt )ϕh2
kuk(s)δt=s , ϕ̃Wk

)
L2(Rd+1)

, s = 0 or T .

Since (ϕ̃Wk) is bounded in L2(Rd+1), we see that

|Jk|2 ≤ c ‖bϕwk(s)‖2
L2(Rd )

∥∥∥h2
kχ(t, h2

kDt )δt=s

∥∥∥2

L2(R)
sup

t∈[0,T ]
‖uk(t)‖2

L2(�)
,

so, using [31, Lemma A.5] with p = 2 and l = 2, we deduce that,

|Jk|2 ≤ ch2
k ‖uk(s)‖2

L2(�)
sup

t∈[0,T ]
‖uk(t)‖2

L2(�)
≤ c h2

k sup
t∈[0,T ]

‖uk(t)‖4
L2(�)

. (2.25)

It follows from (2.23), (2.24), (2.25) and (2.15) that

lim
k→∞ Ik = 0. (2.26)

As the linear combination of χ(t, τ)b(x, ξ) are dense in C ∞
0 (T �(Rd+1)), using (2.20) and (2.26), we deduce that 

m0 = (x0, t0, ξ0, τ0) /∈ suppμ.

Case 2. Assume that x0 ∈ ∂�.
We would like to show that one can find a neighborhood Ux0 of x0 in Rd such that for any b ∈ C ∞

0 (Ux0 × Rt ×
R

d
ξ ×Rτ ), we have

〈μ, (τ + p)b〉 = 0. (2.27)

Indeed this will imply that the point m0(x0, t0, ξ0, τ0) (with τ0 + (x0, ξ0) �= 0) does not belong to the support of μ as 
claimed. Formula (2.27) will be implied, by{

lim
k→+∞ Ik = 0 where

Ik = (
b(x, t, hkDx,h

2
kDt )ϕh2

k(Dt + P)Wk,Wk

)
L2(Rd+1)

,
(2.28)

where ϕ ∈ C ∞
0 (Ux0), ϕ = 1 on πx suppb. Let Ux0 a neighborhood of x0 such that there exists a C ∞ diffeomorphism 

F from Ux0 to a neighborhood U0 of the origin in Rd satisfying,⎧⎨⎩
F(Ux0 ∩ �) = {y ∈ U0 : y1 > 0}
F(Ux0 ∩ ∂�) = {y ∈ U0 : y1 = 0}

(P (x,D)Wk) ◦ F−1 = (D2
1 + R(y,D′) + L(x,D))(Wk ◦ F−1),

(2.29)

where R is a second-order differential operator, D′ = (D2, ..., Dd) and L(x, D) a first order differential operator. Let 
us set

vk = uk ◦ F−1, Vk = 1[0,T ]1y1>0vk, (2.30)

then we will have{ (
Dt + D2

1 + R(y,D′) + L(x,D)
)
vk = iaP 1/2(auk) ◦ F−1 + h−1

k gk ◦ F−1 := fk

vk|y1=0 = 0.
(2.31)

Making the change of variable x = F−1(y) on the right-hand side of the second line of (2.28), we see that

Ik =
(
b̃(y, t, hkDy,h

2
kDt )ψh2

k(Dt + D2
1 + R(y,D′) + L(x,D))Vk,Vk

)
L2(Rd+1)

,

where b̃ ∈ C ∞
0 (U0 ×Rt ×R

d
η ×Rτ ), and ψ ∈ C ∞

0 (U0), ψ = 1 on πy supp b̃. To prove (2.28) it is sufficient to prove 
that,

lim Jk = lim
(
T ψ0(y1)ψ1(y

′)h2
k(Dt + D2

1 + R(y,D′) + L(x,D))Vk,Vk

)
2 d+1

= 0,

k→+∞ k→+∞ L (R )
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where T = θ(y1, hkD1)�(y′, hkD
′)χ(t, h2

kDt ), θ�χ ∈ C ∞
0 (U0 × Rt × R

d
η × Rτ ), ψ0ψ1 ∈ C ∞

0 (U0), ψ0ψ1 = 1 on 
πy supp θ�χ ; According to (2.31) we have,

(Dt + D2
1 + R(y,D′) + L(x,D))Vk = fk − i1y1>0vk(0, .)δt=0 + i1y1>0vk(T , .)δt=T

− i1[0,T ](D1vk|y1=0) ⊗ δy1=0.

Therefore (2.28) will be proved if we can prove that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim

k→+∞A
j
k = 0, j = 1,2,3, where

A1
k = (

θ(y1, hkD1)�(y′, hkD
′)χ(t, h2

kDt )ψ0ψ1h
2
k1y1>0vk(s, .)δt=s , Vk

)
, s = 0, T ,

A2
k = (

θ(y1, hkD1)�(y′, hkD
′)χ(t, h2

kDt )ψ0ψ1h
2
k1[0,T ](D1vk|y1=0) ⊗ δy1=0,Vk

)
,

A3
k = (

θ(y1, hkD1)�(y′, hkD
′)χ(t, h2

kDt )ψ0ψ1h
2
kfk,Vk

)
.

(2.32)

As in [31, A.18]

lim
k→+∞A1

k = 0. (2.33)

To estimate the term A2
k we need a Lemma. With U0 introduced in (2.29), we set U+

0 = {y ∈ U0 : y1 > 0}. We consider 
a smooth solution of the problem:{ (

Dt + D2
1 + R(y,D′) + L(x,D)

)
u = g in U+

0 ×Rt

u|y1=0 = 0.
(2.34)

Lemma 2.4. Let χ ∈ C ∞
0 (U0) and χ1 ∈ C ∞

0 (U0) χ1 = 1 on suppχ . There exists C > 0 such that for any solution u
of (2.34) and all h in ]0, 1], we have

T∫
0

∥∥(χh∂1u)|y1=0 (t)
∥∥2

L2 dt ≤ C

( T∫
0

∑
|α|≤1

∥∥χ1(hD)αu(t)
∥∥2

L2(U+
0 )

dt

+
∥∥∥h

1
2 χu(0)

∥∥∥
L2(U+

0 )

∥∥∥h
1
2 (h∂1u)(0)

∥∥∥
L2(U+

0 )

+
∥∥∥h

1
2 χu(T )

∥∥∥
L2(U+

0 )

∥∥∥h
1
2 (h∂1u)(T )

∥∥∥
L2(U+

0 )
+ ‖χ1hg‖2

L2

)
.

Proof of the Lemma. It is analogue to the proof of [31, Lemma A.6]. �
We replace in the previous Lemma g by iaP 1/2(auk) ◦ F−1 + h−1

k gk ◦ F−1 and by (2.30), we obtain easily the 
following corollary.

Corollary 2.5. One can find a constant C > 0 such that

T∫
0

∥∥(χhk∂1vk)|y1=0 (t)
∥∥2

L2 dt ≤ C

⎛⎝ T∫
0

‖χ̃uk(t)‖2
L2(�)

dt +
∥∥∥h

1/2
k uk(0)

∥∥∥2

L2(�)
dt

+
T∫

0

(∥∥∥χ̃a(h2
kP )1/2auk

∥∥∥2

L2
+ ‖χ̃gk‖2

L2

)
dt

⎞⎠
≤ C,

where vk has been defined in (2.30) and χ̃ ∈ C ∞(Rd).
0
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Let us go back to the estimate of A2
k defined in (2.32). We have

∣∣∣A2
k

∣∣∣2 ≤ Ch2
k

∥∥θ(y1, hkD1)δy1=0
∥∥2

L2(R)
‖(ψ2Vk)‖2

L2(Rd+1)

T∫
0

∥∥(ψ1hkD1vk)|y1=0 (t)
∥∥2

L2(Rd−1)
dt.

Applying (2.17), [31, Lemma A.5] with p = 2, l = 1 and Corollary 2.5, we obtain∣∣∣A2
k

∣∣∣ ≤ chk −→ 0. (2.35)

The term 
∣∣A3

k

∣∣ can be treated as the first and the second term in the case 1.
Using (2.33) and (2.35), we deduce (2.32), which implies (2.28) thus (2.27). The proof of Proposition 2.3 is 

complete. �
2.3. The microlocal defect measure does not vanish identically

First let us prove that the sequence (uk) have mass in a compact domain.

Lemma 2.6. There exists a subsequence kν , there exists R > 0 such that

T∫
0

‖ukν (t)‖2
L2(x∈�, |x|<R)

dt ≥ 1/2.

Proof of Lemma. We prove the Lemma by contradiction. Assume that

∀R > R0, lim sup
k

T∫
0

‖uk(t)‖2
L2(x∈�, |x|≤2R+1)

dt ≤ 3/4, (2.36)

where R0 is large enough such that suppa ⊂ {|x| ≤ R0/2}.
Let χ ∈ C ∞(Rd) such that χ = 1 for |x| > 2 and χ = 0 for |x| < 1. We set χR(x) = χ(x/R) and by the choice of 

R0 we have aχR = χRa = 0. The function vk := χRuk satisfies

Dtvk + Pvk = h−1
k χRgk + [P,χR]uk.

From [17, Theorem 2.8], we have

T∫
0

‖〈x〉−svk‖2
L2(Rd )

≤ C(‖E− 1
2
vk(0)‖2

L2(Rd )
+

T∫
0

‖〈x〉sE−1

(
h−1

k χRgk + [P,χR]uk

)
‖2
L2(Rd )

dt), (2.37)

where Es is the pseudo-differential operator with symbol es = (1 + p(x, ξ) + |x|2) s
2 which belongs to

S((|ξ |+ < x >)s, g).
For the first term of the right hand side of (2.37) we have, where (·, ·) means the scalar product in L2(�),

‖E− 1
2
vk(0)‖2

L2 = hk‖E− 1
2
χRP

1
4 (h2

kP )−
1
4 ψ1(h

2
kP )ψ(h2

kP )u(0)‖2
L2 ,

= hk(Sψ2(h
2
kP )uk(0), Sψ2(h

2
kP )uk(0)), where S = E− 1

2
χRP

1
4 , and ψ2(t) = t−

1
4 ψ1

= hk(ψ2(h
2
kP )S�Sψ2(h

2
kP )uk(0), uk(0))

= hk(ψ2(h
2
kP )(h2

kP )−
1
4 QχR(h2

kP )
1
4 ψ2(h

2
kP )uk(0), uk(0))

≤ Chk‖uk(0)‖2
L2 ,

where ψ1 ∈ C ∞
0 (0, +∞) and ψ1 = 1 on supp(ψ), S�S = P − 1

4 QχRP
1
4 , Q = P

1
2 χRA−1, and A−1 = E�

− 1
2
E− 1

2
. We 

have used that the operator Q is bounded from L2(Rd) to L2(�) (see [31, Lemma 4.2]).
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Then from (2.15), we deduce that

lim
k→+∞‖E− 1

2
vk(0)‖2

L2 = 0. (2.38)

Concerning the term 

T∫
0

‖〈x〉sE−1h
−1
k χRgk‖2

L2dt , we will prove that it tends to zero.

Let ψ1 ∈ C ∞
0 (R), such that ψ1 = 1 on suppψ .

Since ψ1(h
2
kP )uk = uk then applying 1 − ψ1(h

2
kP ) to Formula (2.12), we obtain

h−1
k gk = h−1

k ψ1(h
2
kP )gk − ih−1

k a(h2
kP )1/2aψ1(h

2
kP )uk + ih−1

k ψ1(h
2
kP )a(h2

kP )1/2auk.

Using that χRa = 0, we have

h−1
k χRgk = h−1

k χRψ1(h
2
kP )gk + ih−1

k χRψ1(h
2
kP )a(h2

kP )1/2auk.

And then
T∫

0

‖〈x〉sE−1h
−1
k χRgk‖2

L2dt

≤
T∫

0

‖〈x〉sE−1χRh−1
k ψ1(h

2
kP )gk‖2dt +

T∫
0

‖〈x〉sE−1χRh−1
k ψ1(h

2
kP )a(h2

kP )1/2auk‖2dt

≤
T∫

0

‖〈x〉sE−1χRP 1/2ψ2(h
2
kP )gk‖2dt +

T∫
0

‖〈x〉sE−1χRh−1
k ψ1(h

2
kP )a(h2

kP )1/2auk‖2dt,

where ψ2(t) = t−1/2ψ1(t). We have,
T∫

0

‖〈x〉sE−1χRP 1/2ψ2(h
2
kP )gk‖2dt ≤ I + II, (2.39)

where

I =
T∫

0

‖〈x〉sE−1〈x〉−sχRP 1/2ψ2(h
2
kP )〈x〉sgk‖2dt

and

II = h−2
k

T∫
0

‖〈x〉sE−1χR[(h2
kP )1/2ψ2(h

2
kP ), 〈x〉−s]〈x〉sgk‖2dt.

It follows that the symbol of 〈x〉sE−1〈x〉−s belongs to S((|ξ | + 〈x〉)−1) then 〈x〉sE−1〈x〉−sχRP 1/2 is bounded on 
L2(�) (see [31, Lemma 4.2]) and we have

I ≤ C

T∫
0

‖〈x〉sgk‖2dt.

According to Lemma A.4, h−1
k 〈x〉s[(h2

kP )1/2ψ2(h
2
kP ), 〈x〉−s] is bounded on L2(�) and we get

II ≤ C

T∫
‖〈x〉sgk‖2dt.
0
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To estimate
T∫

0

‖〈x〉sE−1χRh−1
k ψ1(h

2
kP )a(h2

kP )1/2auk‖2dt,

we have with ψ2(s) = s−1ψ1(s) and χ̃ a smooth function such that, χ̃ = 1 for |x| ≥ 1 and χ̃ = 0 for |x| ≤ 1/2, 
χ̃R(x) = χ̃(x/R),

〈x〉sE−1χRh−1
k ψ1(h

2
kP )a = 〈x〉sE−1χRPhkψ2(h

2
kP )a = 〈x〉sE−1χRP χ̃Rhkψ2(h

2
kP )a

= 〈x〉sE−1〈x〉−sχRP 1/2(h2
kP )1/2〈x〉s[χ̃R,ψ2(h

2
kP )]a

+ 〈x〉sE−1〈x〉−sχR[〈x〉s ,P ]χ̃Rhk[ψ2(h
2
kP ), a], (2.40)

where we have used aχ̃R = 0 if R large enough.
By the [31, Lemma A.5] and Lemma A.3 the first term of (2.40) is bounded on L2(�) by Chk . As [〈x〉s , P ] is a 

sum of term α∂xj
where α is bounded, 〈x〉sE−1〈x〉−sχR[〈x〉s , P ] is bounded on L2(�), and [ψ2(h

2
kP ), a] is bounded 

on L2(�) by [31, Lemma 6.3]. Then the second term of (2.40) is bounded on L2(�) by Chk . Finally, we yield by 
Lemma A.6,

T∫
0

‖〈x〉sE−1χRh−1
k ψ1(h

2
kP )a(h2

kP )1/2auk‖2dt ≤ CRh2
k

T∫
0

‖(h2
kP )1/2auk‖2dt

≤ CRh2
k sup

t∈[0,T ]
‖uk(t, .)‖2. (2.41)

According to (2.14) and (2.15), we conclude that the second term of the right hand side of (2.37) goes to zeros when 
k tend to +∞

lim
k→∞

T∫
0

‖〈x〉sE−1h
−1
k χRgk‖2

L2dt = 0. (2.42)

Now we estimate the term 

T∫
0

‖〈x〉sE−1[P, χR]uk‖2
L2dt .

Let χ1 ∈ C ∞
0 (R − 1 < |x| < 2R + 1), χ1 ≥ 0, χ1 = 1 on supp(∇χR),

T∫
0

‖〈x〉sE−1[P,χR]uk‖2
L2)dt ≤

T∫
0

‖〈x〉sχ1E−1[P,χR]χ1uk]‖2
L2(�)

dt

+
T∫

0

‖〈x〉s(1 − χ1)E−1[P,χR]χ1uk]‖2
L2(�)

dt,

≤ CR2(s−1)

T∫
0

‖uk‖2
L2(R−1<|x|<2R+1)

dt ≤ CR2(s−1), (2.43)

where we have used, first that E−1∂x is bounded on L2, 〈x〉s is estimate by CRs on support of χ1 and ∂xχR is 
the product of a bounded function by R−1, second, the symbol of 〈x〉s(1 − χ1)E−1[P, χR] is uniformly bounded in 
R−1S((〈x〉 + |ξ |)−N, g) for all N . The last inequality uses the contradiction assumption (2.36).

Following (2.37), (2.38), (2.42) and (2.43), we have,

T∫
‖〈x〉−suk‖2

L2(|x|>2R)
dt ≤

T∫
‖〈x〉−svk‖2

L2(Rd )
≤ CRδk + CR2(s−1),
0 0
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where δk → 0 when k → +∞, C is independent of R and CR may depend of R. Then we have

T∫
0

‖uk‖2
L2(x∈�, |x|<2R)

≥
T∫

0

‖〈x〉−suk‖2
L2(x∈�, |x|<2R)

≥
T∫

0

‖〈x〉−suk‖2
L2(x∈�)

−
T∫

0

‖〈x〉−suk‖2
L2(|x|>2R)

≥
T∫

0

‖〈x〉−suk‖2
L2(x∈�)

− CRδk − CR2(s−1).

This with (2.16) implies a contradiction with (2.36) and proves the Lemma. �
In the sequel, for simplicity, we shall denote the sequence ukν found in Lemma 2.6 by uk . Thus there exist R0 > 0, 

k0 > 0 such that

T∫
0

‖uk(t)‖2
L2(|x|<R)

dt ≥ 1

2
,

when R > R0 and k > k0.
We consider χ1 ∈ C ∞

0 (Rd) such that

0 ≤ χ1 ≤ 1, χ1(x) = 1 if |x| ≤ R1 + 2 and suppχ1 ⊂ {|x| ≤ R1 + 3},

with R1 > R0.
Let A ≥ 1, R ≥ 1, ψA ∈ C ∞

0 (R), φR ∈ C ∞
0 (R) be such that 0 ≤ ψA, φR ≤ 1 and

ψA(τ) = 1 if |τ | ≤ A,φR(t) = 1 if |t | ≤ R.

We recall that wk(t) = 1�uk(t).

Proposition 2.7. There exist positive constants A0, R0, k0 such that∫
R

‖ψA(h2
kDt )φR(h2

k�)1[0,T ]χ1wk(t)‖2
L2(Rd )

dt ≥ 1

4
,

when A ≥ A0, R ≥ R0, k ≥ k0.

Corollary 2.8. The measure μ does not vanish identically.

Proof of Proposition . Set I = (Id −ψA(h2
kDt ))1[0,T ]χ1uk and ψ̃(τ ) = 1 − ψA(τ)

τ
. It is easy to see that ψ̃ ∈ L∞(R)

and |ψ̃(τ )| ≤ 1
A

for all τ ∈R.
We have

I = ψ̃A(h2
kDt )h

2
kDt (1[0,T ]χ1wk)

= h2
k

i
ψ̃A(h2

kDt )χ1(uk(0)δt=0 − uk(T )δt=T )

ψ̃A(h2
kDt )χ11[0,T ](−h2

kPuk + ihka(h2
kP )1/2auk + hkgk)

= B1
k + B2

k + B3
k + B4

k .
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From [31, See the proof of Proposition 6.1] we know that ‖ψ̃A(h2
kDt )δt=a‖L2(R) ≤ Ch−1

k , then we deduce that

lim
k→+∞

∫
R

‖B1
k ‖2

L2(�)
dt ≤ lim

k→+∞Ch4
kh

−2
k (‖uk(0)‖2

L2(�)
+ ‖uk(T )‖2

L2(�)
) = 0.

Using (2.22) and (2.15), we can prove easily that

lim
k→+∞

∫
R

‖B3
k ‖2

L2(�)
dt ≤ C lim

k→+∞

T∫
0

hk‖(h2
kP )1/2auk‖2

L2(�)
dt = 0.

From (2.14) we can see that

lim
k→+∞

∫
R

‖B4
k ‖2

L2(�)
dt ≤ C lim

k→+∞

T∫
0

‖χ1gk‖2
L2(�)

dt = 0.

Now, for B2
k we argue as in [31, See the proof of Proposition 6.1]. Let θ̃ ∈ C ∞

0 (0, +∞) such θ̃ = 1 on the support of 
ψ and let θ̃1(s) = sθ̃ (s). We have

B2
k = −ψ̃A(h2

kDt )χ11[0,T ]h2
kP θ̃(h2

kP )uk

= −ψ̃A(h2
kDt )1[0,T ][χ1, θ̃1(h

2
kP )]uk − ψ̃A(h2

kDt )1[0,T ]θ̃1(h
2
kP )χ1uk.

Using Lemma 6.3 in [31] and the fact that

‖ψ̃A(h2
kDt )‖L2(R)→L2(R) = O

(
1

A

)
, ‖θ̃1(h

2
kP )‖L2(�)→L2(�) = O(1),

uniformly in k, we deduce that

∫
R

‖B2
k‖2

L2(�)
dt ≤ C(h2

k sup
t∈[0,T ]

‖uk(t)‖2
L2(�)

dt + 1

A

T∫
0

‖χ1uk‖2
L2(�)

dt).

Taking k and A sufficiently large we obtain∫
R

‖ψA(h2
kDt )1[0,T ]χ1wk(t)‖2

L2(Rd )
dt ≥ 1

3
. (2.44)

Now, we set

II = (Id − φR(h2
k�))ψA(h2

kDt )1[0,T ]χ1wk.

It is proved in [31] that∫
R

‖II‖2
L2(Rd )

dt ≤ CR1

R
(1 + h2

k), (2.45)

where CR1 depends on R1 and The proof does not depend on the equation, so it remains valid in our case. Never-
theless we recall the proof in the sequel for the convenience of the reader. Before we give the end of the proof of 
Proposition 2.7.

Taking R sufficiently large and using (2.44), we obtain∫
‖φR(h2

k�)ψA(h2
kDt )1[0,T ]χ1wk(t)‖2

L2(Rd )
dt ≥ 1

4
.

R
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Return to the proof of (2.45). We have |1 − φR(t)| ≤ C
h|ξ |√

R
then we obtain,∫

R

‖II‖2
L2(Rd )

dt ≤ C
h2

k

R

∫
R

∑
j

‖∂jψA(h2
kDt )1[0,T ]χ1wk‖2

L2(Rd )
dt

≤ C
h2

k

R

∫
R

∑
j

‖∂jψA(h2
kDt )1[0,T ]χ1uk‖2

L2(�)
dt

≤ h2
k

R

∑
j

⎛⎝∫
R

‖∂j θ̃(h2
kP )ψA(h2

kDt )1[0,T ]χ1uk‖2
L2(�)

dt

+
∫
R

‖∂j (1 − θ̃ (h2
kP ))ψA(h2

kDt )1[0,T ]χ1uk‖2
L2(�)

dt

⎞⎠
:= h2

k

R
(C1

k + C2
k ), (2.46)

where ̃θ ∈ C ∞
0 (R) satisfying ̃θ(t) = 1 if t ∈ supp(θ1) and ̃θθ1 = θ1.

We have by Lemma 6.3 [31]

C1
k ≤ Ch−2

k

T∫
0

‖χ1uk‖2
L2(�)

dt ≤ ch−2
k , (2.47)

and

C2
k ≤

∫
R

‖∂j [θ̃ (h2
kP ),χ1]ψA(h2

kDt )1[0,T ]χ̃1uk‖2
L2(�)

dt

≤
∫
R

‖ψA(h2
kDt )1[0,T ]χ̃1uk‖2

L2(�)
dt

≤ C

T∫
0

‖χ̃1uk‖2
L2(�)

dt ≤ CR1

T∫
0

‖〈x〉−suk‖2
L2(�)

dt, (2.48)

where χ̃1 ∈ C ∞
0 (�), χ̃1 = 1 on supp(χ1).

Combining (2.46), (2.47) and (2.48), we obtain (2.45). �
2.4. The microlocal defect measure vanishes in the incoming set

In this section we prove that the microlocal defect measure μ vanishes in the incoming set.
First remind some notation introduced in [31], section 7. We keep the same notation when it is possible.
We denote by

b(x, ξ) =
d∑

j,k=1

bjk(x)xj ξk.

Proposition 2.9. Let m0 = (x0, t0, ξ0, τ0) ∈ T �(Rd+1) be such ξ0 �= 0, τ0 + p(x0, ξ0) = 0, |x0| ≥ 3R0, b(x0, ξ0) ≤
−3δ|x0||ξ0| for some δ > 0 small enough. Then m0 /∈ suppμ.

We remind the results proved in [31], section 7, Lemma 7.5 and Corollary 7.6. A part of the proof is in Doi [16]. 
We use the Weyl quantification of symbol which is denoted by Opw.
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There exists a symbol � ∈ S(1, g) such that 0 ≤ � ≤ 1 and a symbol λ1 ∈ S(1, g) such that,

suppλ1 ⊂ supp� ⊂ {(x, ξ) ∈ T ∗(Rd), |x| ≥ 2R0, b(x, ξ) ≤ − δ

2
|x||ξ |, |ξ | ≥ |ξ0|

4
}, (2.49)

{(x, ξ) ∈ T ∗(Rd), |x| ≥ 5

2
R0, b(x, ξ) ≤ −δ|x||ξ |, |ξ | ≥ |ξ0|

2
} ⊂ {(x, ξ) ∈ T ∗(Rd), �(x, ξ) = 1},

�(x,hξ) = �(x, ξ) when |hξ | ≥ |ξ0|
2

, and 0 < h ≤ 1,

Hp�(x, ξ) ≤ 0 on the support of λ1,

λ1 ≥ 0,

[P̃ ,Opw(λ1)] − 1

i
Opw(Hpλ1) ∈ Opw(S(1, g)), (2.50)

there exist two positive constants C, C′ such that,

−Hpλ1 ≥ C〈x〉−2s�2(x, ξ)(|x| + |ξ |) − C′�2(x, ξ). (2.51)

Proof. Let ϕ1 ∈ C ∞
0 (Rd) such that

ϕ1(x) = 1 if |x| ≤ 4

3
R0, suppϕ1 ⊂ {x, |x| ≤ 3

2
R0}. (2.52)

Let M large enough such that,

|((1 − ϕ1)Opw(λ1)(1 − ϕ1)u|u)| ≤ M

2
‖u‖2.

Here and in the sequel (·|·) and ‖ · ‖ denote the L2(�) inner product and norm respectively. The cutoff make sense 
with this L2 product. We set,

N(t) = ((M − (1 − ϕ1)Op(λ1)(1 − ϕ1))uk(t)|uk(t)),

and we have

M

2
‖uk(t)‖2 ≤ N(t) ≤ 2M‖uk(t)‖2. (2.53)

Setting � = M − (1 − ϕ1)Op(λ1)(1 − ϕ1), we have,

d

dt
N(t) = (�

d

dt
uk(t)|uk(t)) + (�uk(t)| d

dt
uk(t)).

From (2.12) we have

d

dt
uk = −iPuk − h−1

k a(h2
kP )1/2(auk) + ih−1

k gk.

We obtain,

d

dt
N =(i[P,�]uk|uk)

− h−1
k (�a(h2P)1/2auk|uk) − h−1

k (�uk|a(h2
kP )1/2auk)

+ ih−1
k (�gk|uk) − ih−1

k (�uk|gk)

=A1 + A2 + A3. (2.54)

For support reasons, we have a(1 − ϕ1) = 0 thus we deduce,

A2 = −M

hk

[(a(h2
kP )1/2(auk)|uk) + (uk|a(h2

kP )1/2(auk))]

= −2M

hk

‖(h2
kP )1/4(auk)‖2 ≤ 0. (2.55)
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We have, for a constant C1 > 0

|A3| ≤ C1

hk

‖〈x〉sgk‖‖〈x〉−suk‖. (2.56)

To estimate A1 we remark that [P, �] = [P̃ , �] and

[P,�] = [P̃ , ϕ1]Opw(λ1)(1 − ϕ1) − (1 − ϕ1)[P̃ ,Opw(λ1)](1 − ϕ1) + (1 − ϕ1)Opw(λ1)[P̃ , ϕ1]. (2.57)

Following (2.49) and (2.52), the support of λ1 and ϕ1 are disjoint, thus, taking account of (2.53), we have

|([[P̃ , ϕ1]Opw(λ1)(1 − ϕ1) + (1 − ϕ1)Opw(λ1)[P̃ , ϕ1]
]
uk|uk)| ≤ C2N(t). (2.58)

Let d(x, ξ) ∈ C ∞
0 (R2d) supported in {|x − x0| ≤ 1, |ξ − ξ0| ≤ 1}, and d(x0, ξ0) = 1. According to (2.50), (2.51) and 

Gårding inequality, we get,

(−i(1 − ϕ1)[P̃ ,Opw(λ1)](1 − ϕ1)uk|uk) ≥ C3h
−1
k ‖〈x〉−sd(x,hkDx)uk‖2 − C4N(t). (2.59)

From (2.57), (2.58) and (2.59) we obtain,

A1 ≥ C3h
−1
k ‖〈x〉−sd(x,hkDx)uk‖2 − C5N(t). (2.60)

Following (2.54), (2.55), (2.56) and (2.60), we have

N ′(t) + C3h
−1
k ‖〈x〉−sd(x,hkDx)uk‖2 ≤ β(t) + C6N(t), (2.61)

where we have set

β(t) = C1

hk

‖〈x〉sgk(t)‖.‖〈x〉−suk(t)‖.

Integrating (2.61) between 0 and t for t ∈ [0, T ] we obtain,

N(t) + C3h
−1
k ‖〈x〉−sd(x,hkDx)uk‖2

L2([0,T ]×�)
≤

T∫
0

β(t)dt + N(0) + C8

t∫
0

N(s)ds. (2.62)

By Gronwall’s inequality we have for t ∈ [0, T ],

N(t) ≤ C7

T∫
0

β(t)dt + C8N(0). (2.63)

Using (2.63) in (2.62), we get

‖〈x〉−sd(x,hkDx)uk‖2
L2([0,T ]×�)

≤ C8‖〈x〉sgk‖L2([0,T ]×�)‖〈x〉−suk‖L2([0,T ]×�) + C9hk‖uk(0)‖2
L2(�)

.

Following (2.14) and (2.16) we obtain

‖〈x〉−sd(x,hkDx)uk‖2
L2([0,T ]×�)

→ 0 when k → +∞.

Let χ(t, τ) ∈ C ∞
0 (R2) supported in a neighborhood sufficiently small around (t0, τ0) and taking account that d is 

supported in a neighborhood of (x0, ξ0), we have

‖χ(t, h2
k)d(x,hkDx)uk‖L2([0,T ]×�) → 0 when k → +∞,

then 〈μ, χ2d2〉 = 0 thus (x0, t0, ξO, τ0) /∈ suppμ. �
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2.5. The microlocal defect measure vanishes on {a2 > 0}

The goal of this section is to prove that the microlocal defect measure vanishes on {a2 > 0}. More precisely we 
have the following proposition.

Proposition 2.10. Let uk = ψ(h2
kP )u satisfying

h2
k(Dt + P)uk − ihka(h2

kP )1/2(auk) = hkgk, (2.64)∥∥〈x〉s gk

∥∥2
L2([0,T ]×�)

+ hk sup
t∈[0,T ]

‖uk(t)‖2
L2(�)

+ hk →
k→+∞ 0, (2.65)

and ∥∥〈x〉−s uk

∥∥2
L2([0,T ]×�)

→
k→+∞ 1. (2.66)

We assume that the sequence (Wk) = (1[0,T ]1�uk) admits a microlocal defect measure μ then a2μ = 0.

Proof. Taking the imaginary part of the L2([0, T ] × �) inner product of (2.64) with uk/hk , we obtain,

�m[(hk(Dt + P)uk|uk) − i(a(h2
kP )1/2(auk)|uk) = �m(gk|uk). (2.67)

Using that P is self-adjoint, we get

�m(hk

T∫
0

∫
�

1

2
Dt |uk|2dxdt) − ((h2

kP )1/2(auk)|auk) = �m(〈x〉sgk|〈x〉−suk). (2.68)

From (2.65) and (2.66), we have

hk

T∫
0

∫
�

Dt |uk|2dxdt = ihk‖uk(0)‖2
L2(�)

− ihk‖uk(T )‖2
L2(�)

→
k→+∞ 0,

and

|(〈x〉sgk|〈x〉−suk)| ≤ ‖〈x〉sgk‖L2(�)‖〈x〉−suk‖L2(�) →
k→+∞ 0.

Following (2.68), we deduce

((h2
kP )1/2(auk)|auk) →

k→+∞ 0. (2.69)

Let θ ∈ C ∞
0 ((0, +∞)) with θ = 1 on the support of ψ . Thus we have θ(h2

kP )uk = uk . Let θ̃ (t) = t−1/4θ(t), we have 
θ̃ ∈ C ∞

0 ((0, +∞)) and,

(auk|auk) = (aθ2(h2
kP )uk|auk) = (a(h2

kP )1/2θ̃2(h2
kP )uk|auk)

= ((h2
kP )1/2θ̃2(h2

kP )auk|auk) + ([a, (h2
kP )1/2θ̃2(h2

kP )]uk|auk). (2.70)

From Lemma 6.3 [31], we have

‖[a, (h2
kP )1/2θ̃2(h2

kP )]uk‖L2(�) ≤ Chk‖uk‖L2(�). (2.71)

We have also,

((h2
kP )1/2θ̃2(h2

kP )auk|auk) = ‖(h2
kP )1/4θ̃ (h2

kP )auk‖2
L2([0,T ]×�)

≤ ‖(h2
kP )1/4auk‖2

L2([0,T ]×�)
= ((h2

kP )1/2auk|auk) →
k→+∞ 0, (2.72)

from (2.69). Following (2.70), (2.71) and (2.72), we obtain,

(auk|auk) → 0. (2.73)

k→+∞
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Let b(x, t, ξ, τ) ∈ C ∞
0 (Rd ×R ×R

d ×R), we have by standard symbolic semi-classical calculus

(a2(x)b(x, t, hkDx,h
2
kDt )Wk|Wk) =(b(x, t, hkDx,h

2
kDt )(aWk)|aWk)

+ hk(r(x, t, hkDx,h
2
kDt )Wk|Wk), (2.74)

where r(x, t, hkDx, h2
kDt ) is bounded on L2([0, T ] ×R

d). Thus from (2.65), we have,

hk|(r(x, t, hkDx,h
2
kDt )Wk|Wk)| ≤ Chk‖Wk‖2

L2([0,T ]×Rd )
→

k→+∞ 0. (2.75)

From (2.73) and using ‖aWk‖2
L2(R×Rd )

= ‖auk‖2
L2([0,T ]×�)

we obtain,

|(b(x, t, hDx,h
2Dt)(aWk)|aWk)L2(R×Rd )| ≤ C‖aWk‖2

L2(R×Rd )
→

k→+∞ 0. (2.76)

According to the definition of the microlocal defect measure μ, (2.74), (2.75) and (2.76) imply the Proposi-
tion 2.10 �
2.6. Propagation properties of microlocal defect measure and end of proof

The statement of our results requires some geometric notions which are classical in the microlocal study of bound-
ary problems (cf. [19], p. 424 and 430–432).

Let M = � ×Rt . We set

T ∗
b M = T ∗M\{0} ∪ T ∗∂M\{0}.

We have the natural restriction map

π : T ∗
R

d+1
M

→ T ∗
b M,

which is the identity on T ∗
R

d+1
M \{0} (see [31] for details). Consider, near a point of the boundary z = (x1, x′, t) ∈

∂M a geodesic system of coordinates given by the diffeomorphism F in (2.29), for which z = (0, 0, t), M =
{(x1, x′, t), x1 > 0)} and the operator Dt + P has the form (near z)

P = Dt + D2
x1

+ R(x1, x
′,Dx′) + S(x,Dx),

with R a second order tangential operator and S a first order operator. Denoting r(x1, x′, ξ ′) the principal symbol of 
R and r0 = r|x1=0, the cotangent bundle to the boundary T �∂M\{0} can be decomposed (in this coordinate system) 
as the disjoint union of the following regions:

• the elliptic region E = {(x′, t, ξ ′, τ) ∈ T �∂M\{0}; r0(x
′, ξ ′) + τ > 0},

• the hyperbolic region H = {(x′, t, ξ ′, τ) ∈ T �∂M\{0}; r0(x
′, ξ ′) + τ < 0},

• and the glancing region G = {(x′, t, ξ ′, τ) ∈ T �∂M\{0}; r0(x
′, ξ ′) + τ = 0}.

For the purpose of the proofs, it is important to consider the following subsets of the glancing region:

• the diffractive region Gd = {ζ ∈ G, ∂x1r|x1=0(ζ ) < 0},
• the gliding region Gg = {ζ ∈ G, ∂xnr|xn=0(ζ ) > 0}; we set G2 = Gd ∪ Gg ,

• and Gk = {ζ ∈ G, Hj
r0(∂x1r|x1=0)(ζ ) = 0, 0 ≤ j < k − 2, Hk−2

r0
(∂x1r|x1=0)(ζ ) �= 0} k ≥ 3, where

Hr0 = ∂r0

∂ξ ′
∂

∂x′ − ∂r0

∂x′
∂

∂ξ ′ .

Definition 2.11. We say that the bicharacteristics have no contact of infinite order with the boundary if G =
+∞⋃

Gk .

k=2
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Now, we recall the definition of ν the measure on the boundary. By the Lemma 2.4, we see that the sequence 
(1[0,T ]hk(

∂wk

∂n
)) is bounded in L2(Rt × L2(∂�)). Therefore with the notations in (2.18) and Proposition 2.2, we have 

the following Lemma.

Lemma 2.12. There exists a subsequence (Wσ1(k)) of (Wσ(k)) and a Radon measure ν on T �(∂� ×Rt ) such that for 
every b ∈ C ∞

0 (T ∗(∂� ×Rt )) we have

lim
k→+∞

(
Op(b)

(
x, t, hσ1(k)Dx,h

2
σ1(k)Dt

)
hσ1(k)

1

i

∂Wσ1(k)

∂n
, hσ1(k)

1

i

∂Wσ1(k)

∂n

)
L2(∂�×Rt )

= 〈ν, b〉 .

We give now two results on propagation of support of microlocal defect measure. The first, Proposition 2.13 for 
point inside T �M and the second, Proposition 2.15 at the boundary of M .

Proposition 2.13. Let m0 = (x0, ξ0, t0, τ0) ∈ T �M and Um0 be a neighborhood of this point in T �M . Then for every 
b ∈ C ∞

0 (Um0), we have

〈μ,Hpb〉 = 0. (2.77)

Proof. It is enough to prove (2.77) when b(x, t, ξ, τ) = �(x, ξ)χ(t, τ) with πx supp� ⊂ Vx0 ⊂ �. Let ϕ ∈ C ∞
0 (�)

be such that ϕ = 1 on Vx0 . We introduce

Ak = i

hk

[(�(x,hkDx)χ(t, h2
kDt )ϕh2

k(Dt + P)1[0,T ]wk,1[0,T ]wk)L2(�×R)

− (�(x,hkDx)χ(t, h2
kDt )ϕ1[0,T ]wk,h

2
k(Dt + P)1[0,T ]wk)L2(�×R)].

We claim that we have

lim
k→+∞Ak = 0. (2.78)

We have

Ak = i

hk

[(�(x,hkDx)χ(t, h2
kDt )ϕh2

k[Dt,1[0,T ]]wk,1[0,T ]wk)L2(�×R)

− (�(x,hkDx)χ(t, h2
kDt )ϕ1[0,T ]wk,h

2
k[Dt,1[0,T ]]wk)L2(�×R)]

− 2�(�(x,hkDx)χ(t, h2
kDt )ϕgk,1[0,T ]wk)L2(�×R)

− 2�(�(x,hkDx)χ(t, h2
kDt )ϕ1[0,T ]a(h2

kP )1/2awk,1[0,T ]wk)L2(�×R) + o(1),

where we used that (�(x, hkDx)χ(t, h2
kDt )ϕ) − (�(x, hkDx)χ(t, h2

kDt )ϕ)∗ = o(1) by pseudo-differential calculus. 
It was proved in [31, proof of Proposition A.9] that the first and the second terms tend to zero when k → +∞. Since 
gk → 0 in L2

loc, the third term tends also to zero when k → +∞.
For the fourth term, according to (2.74) and (2.76), it is easy to see that it tends to zero. Thus (2.78) is proved.
In another side, it was shown in the Proposition A.9 [31] that

lim
k→+∞Ak = −〈μ,Hp(�χ)〉.

It follows from (2.78), (2.77) that 〈μ, Hpb〉 = 0 if b = �χ , which implies our proposition. �
We consider now the case of point m0 = (x0, ξ0, t0, τ0) ∈ T �Rd+1 with x0 ∈ ∂�. We take, as in [31], a neighbor-

hood Ux0 so small that we can perform the diffeomorphism F described in (2.29).
Let μ and ν be the measures on T �Rd+1 and T �(∂� ×Rt ) defined in Proposition 2.2 and Lemma 2.12. We denote 

by μ̃ and ν̃ the measures on T �(Ux0 × Rt ) and T �(Ux0 ∩ {y1 = 0} × Rt ) which are the pullback of μ and ν by the 
diffeomorphism F̃ : (x, t) �→ (F (x), t).

We first recall the Lemma A.10 established in [31].
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Lemma 2.14. Let b ∈ C ∞
0 (T �(Ux0 × Rt )). We can find bj ∈ C ∞

0 (Ux0 × Rt × Rd−1
η′ × Rτ ), j = 0, 1 and b2 ∈

C ∞
0 (T �(Ux0 ×Rt )) with compact support in (y, t, η′, τ) such that with the notations of (2.29),

b(y, t, η, τ ) = b0(y, t, η′, τ ) + b1(y, t, η′, τ )η1 + b2(y, t, η, τ )(τ + η2
1 + r(y, η′)),

where r is the principal symbol of R(y, D′).

Proposition 2.15. With the notations of Lemma 2.14 for every b ∈ C ∞
0 (T �(U0 ×Rt )), we have

〈μ̃,Hpb〉 = −〈̃ν, b1|Y1=0〉.

Proof. This proof is similar to the one of Proposition A.12 [31]. We recall some results from [31] used to prove 
Proposition A.12. �
Lemma 2.16 (Lemma A.13 [31]). Let for j = 0, 1, bj = bj (Y, t, η′, τ) ∈ C ∞

0 (U0 × R
d+1) and ϕ ∈ C ∞

0 (U0), ϕ = 1
on πY suppaj . Then,

i

hk

[((b0(�k) + b1(�k)hkD1)ϕh2
k(Dt + P)1[0,T ]vk|1[0,T ]vk)L2+

−
∫

U+
0

〈(b0(�k) + b1(�k)hkD1)ϕ1[0,T ]vk,h
2
k(Dt + P)1[0,T ]vk〉dY ]

= − i

hk

([h2
k(Dt + P), (b0(�k) + b1(�k)hkD1)ϕ1[0,T ]]vk|1[0,T ]vk)L2+

− (a1(0, Y ′, t, hkDY ′ , h2
kDt )ϕ|Y1=01[0,T ](hkD1vk |Y1=0)|1[0,T ](hkD1vk |Y1=0))L2(Rd−1×R). (2.79)

Here 〈., .〉 denotes the bracket in D′(Rt ).

Lemma 2.17 (Lemma A.15 [31]). Let for j = 0, 1, 2, bj = bj (Y, t, η′, τ) ∈ C ∞
0 (U0 × R

d) and ϕ ∈ C ∞
0 (U0), ϕ = 1

on πY suppbj . Let us set

L
j
k = (bj (�k)ϕ(hkD1)

j 1[0,T ]vk,1[0,T ]vk)L2+ .

Then we have for j = 0, 1, 2

lim
k→+∞L

j

σ(k) = 〈μ̃, bj η
j

1〉.

The previous Lemmas still hold in our case, since they are independent of the equation.

Lemma 2.18. Let b = b(Y, t, η′, τ) ∈ C ∞
0 (U0 ×R

d+1) and ϕ ∈ C ∞
0 (U0), ϕ = 1 on πY suppbj . For j = 0, 1 we set,

I
j
k = (h−1

k b(�k)ϕ(hkD1)
jh2

k(Dt + P)1[0,T ]vk|1[0,T ]vk)L2+ ,

J
j
k =

∫
U+

0

〈h−1
k b(�k)ϕ(hkD1)

j 1[0,T ]vk|h2
k(Dt + P)1[0,T ]vk〉dY.

Then lim
k→+∞ I

j
k = lim

k→+∞J
j
k = 0.

Proof. The proof is similar to the one of Lemma A.14 [31]. We have,

I
j
k = 1

i
[(hkb(�k)δt=0ϕ(hkD1)

j vk(0, .)|1[0,T ]vk)L2+ − (hkb(�k)δt=T ϕ(hkD1)
j vk(0, .)|1[0,T ]vk)L2+]

+ (b(�k)ϕ(hkD1)
j 1[0,T ]gk|1[0,T ]vk)L2+ + (b(�k)ϕ(hkD1)

j 1[0,T ]a(h2
kP )1/2avk|1[0,T ]vk)L2+ .

From Lemma A.14 [31], the first and the second terms of the RHS in the previous identity tend to zero.
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Using that ‖gk‖L2 → 0, we can prove that the third term tends also to zero.
Following Lemma A.6 and (2.73) the forth term tends to zero. We conclude that I j

k tends to zero. For J j
k we argue 

as for I j
k . �

Proof of Proposition 2.15. From Proposition 2.3 (τ + p)μ = 0, so we have

〈μ̃,Hpb〉 = 〈μ̃,Hp(b0 + b1η1)〉.
Let consider the identity (2.79), by Lemma 2.18, the LHS tends to zero when k → +∞. By the semiclassical symbolic 
calculus, we have

i

hk

[k2(Dt + P), (b0(�k) + b1(�k)hkD1)ϕ] =
2∑

j=0

cj (�k)ϕ(hkD1)
j ,

where cj ∈ C ∞
0 (U0 × R

d+1), ϕ1 = 1 on suppϕ, and {p, b0 + b1η1} =
2∑

j=0
cjη

j

1 . Hence, using Lemma 2.17 and 

Lemma 2.12, the RHS of (2.79) tends to

−〈μ̃,Hp(b0 + b1η1)〉 − 〈̃ν, b1|Y1=0〉,
when k → +∞.

We conclude that

〈μ̃,Hpb〉 = 〈μ̃,Hp(b0 + b1η1)〉 = −〈̃ν, b1|Y1=0〉,
which proves the Proposition 2.15. �
Proposition 2.19. With the notations of [31], we have

ν̃(Gd ∪ (

+∞⋃
k=3

Gk)) = 0.

Proof. The proof is the same as of Lemma A.17 in [31]. �
By measure theory methods (see [8,9] and [31]), the propagation of the measure μ along the generalized bicharac-

teristic flow is equivalent to Propositions 2.13, 2.15 and 2.19.
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Appendix A

In this appendix, we prove some Lemmas used above.
We recall the Helffer–Sjöstrand formula (see [15]) used extensively in this section. To introduce it we recall some 

notations.
Let θ ∈ C ∞

0 (R) and let ϕ ∈ C ∞
0 (R) such that ϕ(t) = 1 if |t | ≤ 1 and ϕ(t) = 0 if |t | ≥ 2. Let N ≥ 2, we set

θ̃ (t, σ ) =
N∑

q=1

θ(q)(t)

q! (iσ )qϕ(σ ),

then θ̃ ∈ C ∞
0 (R2) and satisfies

|∂̄ θ̃ (t, σ )| ≤ C|σ |N where ∂̄ θ̃ (t, σ ) = 1
(∂t θ̃ + i∂σ θ̃)(t, σ ). (A.1)
2
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We call θ̃ an almost analytic extension of θ . Let P a self-adjoint operator. We have the following Helffer–Sjöstrand 
formula

θ(h2P) = − 1

π

∫
R2

∂̄ θ̃ (t, σ )(z − h2P)−1dtdσ where z = t + iσ. (A.2)

The formula does not depend of N and ϕ. We recall the estimates proved in [31], Lemma A.22, we have for f =
(z − h2P)−1u and �mz �= 0,

‖h2Pf ‖2
L2(�)

+ ‖hDjf ‖2
L2(�)

+ ‖hV 1/2f ‖2
L2(�)

+ ‖f ‖2
L2(�)

≤ C
〈|z|〉2

|�mz|2 ‖u‖2
L2(�)

. (A.3)

Let hn a sequence such that hn > 0 and hn → 0 when n → +∞. In the sequel, for simplicity we denote such a 
sequence by h. We say h → 0 instead of hn → 0 when n → +∞.

Lemma A.1. Let uh and gh satisfying{
h2(Dt + P)uh − iha(h2P)1/2(auh) = hgh in [0, T ] × �

uh = 0 on [0, T ] × ∂�

and we assume that ‖〈x〉−suh‖2
L2([0,T ]×�)

≤ 1, h‖uh(0)‖2
L2(�)

→ 0 and ‖〈x〉sgh‖2
L2([0,T ]×�)

→ 0 when h → 0. Then 

sup
t∈[0,T ]

h‖uh(t)‖2
L2(�)

→ 0.

Proof. Let k(t) = h‖uh(t)‖2
L2(�)

, using h∂tuh = −ihPuh − a(h2P)1/2(auh) + igh, we have

k′(t) = 2�e(h∂tuh(t)|uh(t))

= 2�e(−ihPuh(t)|uh(t)) − 2�e(a(h2P)1/2(auh)(t)|uh(t)) + 2�e(igh|uh).

Using

�e(iPuh(t)|uh(t)) = 0,

and

�e(a(h2P)1/2(auh)(t)|uh(t)) = �e((h2P)1/2(auh)(t)|auh(t)) ≥ 0,

we obtain

k′(t) ≤ 2‖〈x〉sgh(t)‖L2(�)‖〈x〉−suh(t)‖L2(�).

Thus

k(t) ≤ k(0) + 2‖〈x〉sgh‖L2([0,T ]×�)‖〈x〉−suh‖L2([0,T ]×�).

The assumptions and the definition of k imply the Lemma. �
Let ψ : R →R such that ψ(t) = 0 if t ≤ α or t ≥ β where 0 < α < β .

Lemma A.2. Let a ∈ C ∞
0 (Rd) and s ≤ 1, there exist C > 0, h0 such that, if 0 < h < h0 we have, for all u ∈ L2(�),

‖〈x〉s[a,ψ(h2P)](h2P)1/2u‖2
L2(�)

≤ Ch2‖u‖2
L2(�)

. (A.4)

Proof. We prove (A.4) for u ∈ C ∞
0 (�).

Taking the adjoint, (A.4) is equivalent to

‖(h2P)1/2[a,ψ(h2P)]〈x〉su‖2
L2(�)

≤ Ch2‖u‖2
L2(�)

,

which is equivalent to

|(〈x〉s[a,ψ(h2P)](h2
∑

∂xj
ajk(x)∂xk

+ h2V )[a,ψ(h2P)]〈x〉su|u) ≤ Ch2‖u‖2
2 .
L (�)
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Thus it is enough to prove

‖h∂xj
[a,ψ(h2P)]〈x〉su‖ ≤ Ch‖u‖L2(�), (A.5)

and

‖hV 1/2[a,ψ(h2P)]〈x〉su‖ ≤ Ch‖u‖L2(�). (A.6)

Now we prove (A.5). Following the Helffer–Sjöstrand formula, where ψ̃ is an almost analytic extension of ψ , we 
have

h∂xj
[a,ψ(h2P)]〈x〉s = − 1

π

∫
∂̄ψ̃(z)h∂xj

[a, (z − h2P)−1]〈x〉sdtdσ

= 1

π

∫
∂̄ψ̃(z)h∂xj

(z − h2P)−1[a, z − h2P ](z − h2P)−1〈x〉sdtdσ

= 1

π

∫
∂̄ψ̃(z)h∂xj

(z − h2P)−1[a, z − h2P ]〈x〉s(z − h2P)−1dtdσ + A, (A.7)

where A = 1

π

∫
∂̄ψ̃(z)h∂xj

(z − h2P)−1[a, z − h2P ](z − h2P)−1[〈x〉s , z − h2P ](z − h2P)−1dsdσ .

We have

[a, z − h2P ] = h2
d∑

j=1

αj (x)∂xj
+ h2c(x), (A.8)

where αj and c are compact supported. Following (A.7), we have two types of terms to control.
First we remark that

(h2
d∑

j=1

αj (x)∂xj
+ h2c(x))〈x〉s = h2βj∂xj

+ h2d(x),

where βj and d are compact supported, following (A.7) and estimates (A.3) (with N = 3) we obtain

‖h∂xj
(z − h2P)−1(h2βj∂xj

+ h2d(x))(z − h2P)−1u‖L2(�) ≤ Ch
〈|z|〉2

|�mz|2 ‖u‖L2(�). (A.9)

Thus following (A.1), we have

‖ ∫
∂̄ψ̃(z)h∂xj

(z − h2P)−1(h2βj∂xj
+ h2d(x))(z − h2P)−1udtdσ‖L2(�) ≤ Ch‖u‖L2(�). (A.10)

Second, we have

[〈x〉s , z − h2P ] = h2
d∑

k=1

γk(x)∂xk
+ h2γ (x),

where |γk(x)| + |γ (x)| ≤ C〈x〉s−1 ≤ C′, with the above notations, we have following (A.3),

‖h∂xj
(z − h2P)−1(h2αj (x)∂xj

+ h2c(x))(z − h2P)−1(h2γk(x)∂xk
+ h2γ (x))(z − h2P)−1u‖

≤ Ch2 〈|z|〉3

|�mz|3 ‖u‖L2(�),
(A.11)

thus, following the proof of (A.10), we prove (A.5).
To prove (A.6), following the Helffer–Sjöstrand formula we have,

hV 1/2[a,ψ(h2P)]〈x〉s = 1

π

∫
∂̄ψ̃(z)hV 1/2(z − h2P)−1[a, z − h2P ](z − h2P)−1〈x〉sdtdσ.

With the notation above, it is enough to prove

‖hV 1/2(z − h2P)−1(h2
d∑

αj (x)∂xj
+ h2c(x))(z − h2P)−1〈x〉su‖L2(�) ≤ Ch

〈|z|〉3

|�mz|3 ‖u‖L2(�). (A.12)

j=1
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Writing (z − h2P)−1〈x〉s = 〈x〉s(z − h2P)−1 + [(z − h2P)−1, 〈x〉s], the first term is estimated following the proof of 
(A.9). To estimate the second term, we follow the proof of (A.11). Thus we obtain (A.12) which achieve the proof of 
Lemma. �
Lemma A.3. Let s ∈ [0, 1] and χ a smooth function such that χ = 1 for |x| ≥ 1. We set χR(x) = χ(x/R). There exists 
C > 0 such that for all u ∈ L2(�),

‖(h2P)1/2〈x〉s[ψ(h2P),χR]u‖ ≤ Ch‖u‖.

Proof. The proof is very close to the one of Lemma A.2. By the same argument it is sufficient to prove

‖h∂xj
〈x〉s[ψ(h2P),χR]u‖ ≤ Ch‖u‖, (A.13)

‖hV 1/2〈x〉s[ψ(h2P),χR]u‖ ≤ Ch‖u‖. (A.14)

From the Helffer–Sjöstrand formula, we obtain (as in (A.7))

h∂xj
〈x〉s[ψ(h2P),χR] = 1

π

∫
∂̄ψ̃(z)h∂xj

(z − h2P)−1〈x〉s[(z − h2P),χR](z − h2P)−1dtdσ (A.15)

+ 1

π

∫
∂̄ψ̃(z)h∂xj

[〈x〉s , (z − h2P)−1][(z − h2P),χR](z − h2P)−1dtdσ.

Modulo negative power of �mz, in the first term of (A.15) h∂xj
(z − h2P)−1 is bounded on L2(�) and, because 

〈x〉s/R is bounded on the support of χ ′(x/R), we can write 〈x〉s[(z − h2P), χR] as a sum of term α(x)h2∂xj
. This 

yields that 〈x〉s[(z − h2P), χR](z − h2P)−1 is bounded on L2(�) by Ch modulo negative power of �mz. This gives 
the result for the first term in (A.15).

Writing

[〈x〉s , (z − h2P)−1] = −(z − h2P)−1[〈x〉s , z − h2P ](z − h2P)−1

and arguing as for the first term, we obtain (A.13). By the same arguments and using that hV 1/2(z − h2P)−1 is 
bounded on L2(�) modulo negative power of �mz (see [31, Lemma A.22]), we obtain (A.14). �
Lemma A.4. Let s such that |s| ≤ 1, let b ∈ C ∞(�) such that |b(x)| ≤ C〈x〉s and |∂xj

b(x)| + |∂2
xj xk

b| ≤ C〈x〉s−1, 

there exist C > 0, h0 > 0 such that, if 0 < h < h0 we have, for all u ∈ L2(�),

‖〈x〉−s[ψ(h2P), b]u‖L2(�) ≤ Ch‖u‖L2(�).

Proof. By Helffer–Sjöstrand formula, we have, with the notation of Lemma A.2,

〈x〉−s[ψ(h2P), b] = 1

π

∫
∂̄ψ̃(z)〈x〉−s(z − h2P)−1[z − h2P,b](z − h2P)−1dtdσ (A.16)

= 1

π

∫
∂̄ψ̃(z)〈x〉−s(z − h2P)−1(h2

d∑
k=1

γk(x)∂xk
+ h2γ (x))(z − h2P)−1dtdσ,

where |γk(x)| + |γ (x)| ≤ C〈x〉s−1.
If s ≥ 0, following (A.3), we have

‖〈x〉−s(z − h2P)−1(h2
d∑

k=1

γk(x)∂xk
+ h2γ (x))(z − h2P)−1u‖L2(�) ≤ Ch

〈|z|〉
|�mz| ‖u‖L2(�), (A.17)

thus, following the proof of (A.10), we achieve the proof of Lemma in this case.
If s < 0, we write

〈x〉−s(z − h2P)−1 = (z − h2P)−1〈x〉−s − (z − h2P)−1[〈x〉−s , (z − h2P)](z − h2P)−1.
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Putting this in (A.16), we obtain two terms. The first gives

‖(z − h2P)−1〈x〉−s(h2
d∑

k=1

γk(x)∂xk
+ h2γ (x))(z − h2P)−1u‖L2(�) ≤ Ch

〈|z|〉
|�mz| ‖u‖L2(�). (A.18)

The second gives

‖(z − h2P)−1(h2
d∑

k=1

γ̃k(x)∂xk
+ h2f̃ (x))(z − h2P)−1(h2

d∑
k=1

γk(x)∂xk
+ h2γ (x))(z − h2P)−1u‖

≤ Ch2 〈|z|〉2

|�mz|2 ‖u‖,
(A.19)

because |γ̃k(x)| + |γ̃ (x)| ≤ C〈x〉−s−1. Following (A.18), (A.19) and the Helffer–Sjöstrand formula, we obtain the 
Lemma. �
Remarks A.5. In the Lemma A.4, we can remove the assumption |s| ≤ 1, by commuting 〈x〉s with (z − h2P)−1

several times, but Lemma A.4 is sufficient for us in the sequel.

Lemma A.6. Let a ∈ C ∞
0 (Rd), there exist C > 0, h0 such that, if 0 < h < h0 we have, for all u ∈ L2(�),

‖(h2P)1/2aψ(h2P)u‖2
L2(�)

≤ Ch2‖u‖2
L2(�)

+ C‖au‖2
L2(�)

.

Proof. Writing

(h2P)1/2aψ(h2P)u = (h2P)1/2[a,ψ(h2P)]u + (h2P)1/2ψ(h2P)au,

then using the Lemma A.2 with s = 0,

‖(h2P)1/2aψ(h2P)u‖2
L2(�)

≤ ‖(h2P)1/2[a,ψ(h2P)]u‖2
L2(�)

+ ‖(h2P)1/2ψ(h2P)au‖2
L2(�)

≤ Ch2‖u‖2
L2(�)

+ C‖au‖2
L2(�)

,

which proves the Lemma. �
Lemma A.7. For all s ∈ [−1, 1], there exists C > 0 such that for all u ∈ C ∞

0 (�) and all h ∈ (0, 1], we have

‖〈x〉sψ(h2P)〈x〉−su‖L2(�) ≤ C‖u‖L2(�).

Proof. We have by Lemma A.4

‖〈x〉sψ(h2P)〈x〉−su‖L2(�) ≤ ‖ψ(h2P)u‖L2(�) + ‖〈x〉s[ψ(h2P), 〈x〉−s]u‖L2(�)

≤ ‖ψ(h2P)u‖L2(�) + Ch‖u‖L2(�),

which proves the Lemma. �
Lemma A.8. Let α ∈ (−1, 1) and s ∈ [−1, 1], then there exist C1 > and C2 > 0 such that for all u ∈ C ∞

0 (�), we 
have

C1

+∞∑
n=0

h−2α
n ‖〈x〉sψ(h2

nP )u‖2
L2(�)

≤
+∞∑
n=0

h−2α
n ‖ψ(h2

nP )〈x〉su‖2
L2(�)

≤ C2

+∞∑
n=0

h−2α
n ‖〈x〉sψ(h2

nP )u‖2
L2(�)

,

where ψ was defined in Section 2.1 and hn = 2−n.
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Proof. We have

‖ψ(h2
nP )〈x〉su‖2

L2(�)
= ‖ψ(h2

nP )〈x〉s
+∞∑
k=0

ψ(h2
kP )u‖2

L2(�)

≤ 2‖ψ(h2
nP )〈x〉s

n+1∑
k=0

ψ(h2
kP )u‖2

L2(�)

+ 2‖ψ(h2
nP )〈x〉s

+∞∑
k=n+2

ψ(h2
kP )u‖2

L2(�)
= 2A + 2B.

To estimate A, we can write

A ≤ 2‖〈x〉sψ(h2
nP )

n+1∑
k=0

ψ(h2
kP )u‖2

L2(�)
+ 2‖[ψ(h2

nP ), 〈x〉s]
n+1∑
k=0

ψ(h2
kP )u‖2

L2(�)
= 2A1 + 2A2.

By support properties of ψ and by the Lemma A.7, we have

A1 = ‖〈x〉sψ(h2
nP )

n+1∑
k=n−1

ψ(h2
kP )u‖2

L2(�)
≤ ‖〈x〉s

n+1∑
k=n−1

ψ(h2
kP )u‖2

L2(�)
. (A.20)

By Lemma A.4 we see easily that

A2 ≤ Ch2
n‖〈x〉s

n+1∑
k=0

ψ(h2
kP )u‖2

L2(�)
.

Summing with respect n, we obtain

+∞∑
n=0

h−2α
n h2

n‖〈x〉s
n+1∑
k=0

ψ(h2
kP )u‖2

L2(�)
≤

+∞∑
n=0

(
n+1∑
k=0

h−α+1
n hα

k

(
h−α

k ‖〈x〉sψ(h2
kP )u‖L2(�)

))2

. (A.21)

We have h−α+1
n hα

k = 2−(1−α)(n−k)2−k ≤ 2−(1−α)(n−k) and (2−(1−α)j )j≥0 ∈ �1 because 1 − α > 0. We can con-
sider the right hand side of (A.21) as a convolution �1 ∗ �2 and we obtain the estimation of this term by 

C
+∞∑
n=0

h−2α
n ‖〈x〉sψ(h2

nP )u‖2
L2(�)

which estimates, with (A.20), the term A.

Now we estimate B . By support properties of ψ and Lemma A.4 it follows that

B = ‖ψ(h2
nP )〈x〉s

+∞∑
k=n+2

ψ(h2
kP )

k+1∑
j=k−1

ψ(h2
jP )u‖2

L2(�)

= ‖ψ(h2
nP )

+∞∑
k=n+2

[〈x〉s ,ψ(h2
kP )]

k+1∑
j=k−1

ψ(h2
jP )u‖2

L2(�)

≤ C

⎛⎝ +∞∑
k=n+2

hk‖〈x〉s
k+1∑

j=k−1

ψ(h2
jP )u‖L2(�)

⎞⎠2

.

Summing with respect n, we obtain

+∞∑
n=0

h−2α
n

⎛⎝ +∞∑
k=n+2

hk‖〈x〉s
k+1∑

j=k−1

ψ(h2
jP )u‖L2(�)

⎞⎠2

≤
+∞∑
n=0

⎛⎝ +∞∑
k=n+2

h−α
n h1+α

k

⎛⎝h−α
k ‖〈x〉s

k+1∑
j=k−1

ψ(h2
jP )u‖L2(�)

⎞⎠⎞⎠2

.
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We have h−α
n h1+α

k = 2−(1+α)(k−n)2−n ≤ 2−(1+α)(k−n) and (2−(1+α)j ) ∈ �1 since 1 + α > 0. We can conclude as for 
the term A above. We have proved the right inequality of the Lemma.

We prove the other inequality.
We have,

‖〈x〉sψ(h2
nP )u‖2

L2(�)
= ‖〈x〉sψ(h2

nP )〈x〉−s
+∞∑
k=0

ψ(h2
kP )〈x〉su‖2

L2(�)

≤ 2‖〈x〉sψ(h2
nP )〈x〉−s

n+1∑
k=0

ψ(h2
kP )〈x〉su‖2

L2(�)

+ 2‖〈x〉sψ(h2
nP )〈x〉−s

+∞∑
k=n+2

ψ(h2
kP )〈x〉su‖2

L2(�)
= 2D + 2E.

We have by properties of support of ψ ,

D ≤ 2‖ψ(h2
nP )

n+1∑
k=n−1

ψ(h2
kP )〈x〉su‖2

L2(�)
+ 2‖[〈x〉s ,ψ(h2

nP )]〈x〉−s
n+1∑
k=0

ψ(h2
kP )〈x〉su‖2

L2(�)
.

The estimate of the first term is clear, for the second using Lemma A.4, we get

+∞∑
n=0

h−2α
n ‖[〈x〉s ,ψ(h2

nP )]〈x〉−s
n+1∑
k=0

ψ(h2
kP )〈x〉su‖2

L2(�)

≤
+∞∑
n=0

(
n+1∑
k=0

h−α+1
n hα

k

(
h−α

k ‖ψ(h2
kP )〈x〉su‖L2(�)

))2

.

We have h−α+1
n hα

k ≤ 2−(1−α)(n−k) and we can conclude as above by convolution argument.
For E, it follows from the support properties of ψ , Lemma A.7 and Lemma A.4,

E = ‖〈x〉sψ(h2
nP )〈x〉−s

+∞∑
k=n+2

ψ(h2
kP )

k+1∑
j=k−1

ψ(h2
jP )〈x〉su‖2

L2(�)

≤ ‖〈x〉sψ(h2
nP )

+∞∑
k=n+2

[〈x〉−s ,ψ(h2
kP )]

k+1∑
j=k−1

ψ(h2
jP )〈x〉su‖2

L2(�)

≤ C‖〈x〉s
+∞∑

k=n+2

[〈x〉−s ,ψ(h2
kP )]

k+1∑
j=k−1

ψ(h2
jP )〈x〉su‖2

L2(�)

≤ C

⎛⎝ +∞∑
k=n+2

hk‖
k+1∑

j=k−1

ψ(h2
jP )〈x〉su‖L2(�)

⎞⎠2

.

Summing with respect n, we obtain,

+∞∑
n=0

h−2α
n ‖〈x〉sψ(h2

nP )〈x〉−s
+∞∑

k=n+2

ψ(h2
kP )〈x〉su‖2

L2(�)

≤
+∞∑
n=0

⎛⎝ +∞∑
k=n+2

h−α
n h1+α

k

⎛⎝h−α
k ‖

k+1∑
j=k−1

ψ(h2
jP )〈x〉su‖L2(�)

⎞⎠⎞⎠2

.

We have h−α
n h1+α

k ≤ 2−(n−k)(1+α) and we can conclude by convolution argument. �
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Lemma A.9. Let s ∈ [−1, 1], α ∈ (−1, 3/2) there exists C > 0 such that for all u ∈ L2(�), we have

+∞∑
k=0

h−1
k ‖〈x〉s[ψ(h2

kP ), a](h2
kP )1/2a(h2

kP )−α/2u‖2
L2(�)

≤ C‖u‖2
L2(�)

.

Proof. Following the properties of ψ , we have

(h2
kP )1/2 =

+∞∑
j=0

hkh
−1
j ψ0(h

2
jP )

where ψ0(σ ) = σ 1/2ψ(σ) and

(h2
kP )−α/2 =

+∞∑
n=0

h−α
k hα

nψ1(h
2
nP )

where ψ1(σ ) = σ−α/2ψ(σ). Thus we must prove,

+∞∑
k=1

h−1
k ‖

∑
(j,n)∈N∗2

h1−α
k h−1

j hα
n〈x〉s[ψ(h2

kP ), a]ψ0(h
2
jP )aψ1(h

2
nP )u‖2

L2(�)
≤ C‖u‖2

L2(�)
. (A.22)

Let us introduce for each k the following partition of N2.

A1
k = {(j, n) ∈ N

2, k ≥ j − 2 or k ≥ n − 2, and j ≥ n − 2},
A2

k = {(j, n) ∈ N
2, k ≥ j − 2 or k ≥ n − 2, textandj ≤ n − 3},

A3
k = {(j, n) ∈ N

2, k ≤ j − 3 and k ≤ n − 3}.
In the sequel, for each set Ap

k we will prove (A.22).
Let ψ2 ∈ C ∞

0 (0, +∞) such that ψ2 = 1 on the support of ψ . We have,

+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A1

k

h1−α
k h−1

j hα
n〈x〉s[ψ(h2

kP ), a]ψ2(h
2
jP )ψ0(h

2
jP )aψ1(h

2
nP )u‖2

L2(�)
≤ 2A + 2B,

where

A =
+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A1

k

h1−α
k h−1

j hα
n〈x〉s[ψ(h2

kP ), a]ψ2(h
2
jP )aψ0(h

2
jP )ψ1(h

2
nP )u‖2

L2(�)

≤ C

+∞∑
k=0

h−1
k

⎛⎜⎜⎜⎝ ∑
(j,n)∈A1

k|j−n|≤1

h1−α
k h−1+α

n ‖〈x〉s[ψ(h2
kP ), a]ψ2(h

2
jP )aψ0(h

2
jP )ψ1(h

2
nP )u‖L2(�)

⎞⎟⎟⎟⎠
2

≤ C

+∞∑
k=0

⎛⎝ ∑
n≤k+4

h
3/2−α
k h−1+α

n ‖ψ1(h
2
nP )u‖L2(�)

⎞⎠2

(by Lemma A.4). (A.23)

We have h3/2−α
k h−1+α

n = 2−(k−n)(3/2−α)2−n/2 ≤ 2−(k−n)(3/2−α) and we can see (A.23) as a convolution �1 ∗ �2 if 
α < 3/2 which prove (A.22) for this term.

For B , we can see that

B =
+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A1

k

h1−α
k h−1

j hα
n〈x〉s[ψ(h2

kP ), a]ψ2(h
2
jP )[ψ0(h

2
jP ), a]ψ1(h

2
nP )u‖2

L2(�)

≤ 2C + 2D,
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where

C =
+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A1

k

h1−α
k h−1

j hα
n〈x〉s[ψ(h2

kP ), a][ψ0(h
2
jP ), a]ψ2(h

2
jP )ψ1(h

2
nP )u‖2

L2(�)
.

In the last sum |j − n| ≤ 1, then we can estimate this term as the term A.
We have

D =
+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A1

k

h1−α
k h−1

j hα
n〈x〉s[ψ(h2

kP ), a][ψ2(h
2
jP ), [ψ0(h

2
jP ), a]]ψ1(h

2
nP )u‖2

L2(�)

≤
+∞∑
k=0

⎛⎜⎝ ∑
(j,n)∈A1

k

hjh
3/2−α
k hα

n‖ψ1(h
2
nP )u‖L2(�)

⎞⎟⎠
2

(by Lemma A.4 and Lemma A.10).

In A1
k , we have j ≥ n − 2 then the sum over j gives a constant time hn. Then,

D ≤ C

+∞∑
k=0

⎛⎝ ∑
n≤k+4

h
3/2−α
k h1+α

n ‖ψ1(h
2
nP )u‖L2(�)

⎞⎠2

≤ C

+∞∑
k=0

h3−2α
k

⎛⎝ ∑
n≤k+4

h2+2α
n

⎞⎠⎛⎝ ∑
n≤k+4

‖ψ1(h
2
nP )u‖2

L2(�)

⎞⎠ ,

by Cauchy–Schwarz inequality and as all the sums converge if α ∈ (−1, 3/2), we obtain (A.22).
Now we will estimate the sum over A2

k . We have with the function ψ2 defined above, as ψ0(h
2
jP )ψ2(h

2
nP ) = 0, 

because j ≤ n − 2,

+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A2

k

h1−α
k h−1

j hα
n〈x〉s[ψ(h2

kP ), a]ψ0(h
2
jP )aψ2

2 (h2
nP )ψ1(h

2
nP )u‖2

L2(�)

=
+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A2

k

h1−α
k h−1

j hα
n〈x〉s[ψ(h2

kP ), a]ψ0(h
2
jP )[[a,ψ2(h

2
nP )],ψ2(h

2
nP )]ψ1(h

2
nP )u‖2

L2(�)

≤ C

+∞∑
k=0

⎛⎜⎝ ∑
(j,n)∈A2

k

h
3/2−α
k h−1

j h2+α
n ‖ψ1(h

2
nP )u‖L2(�)

⎞⎟⎠
2

(by Lemma A.4 and the Lemma A.10).

As 
∑

j≤n−3
h−1

j ≤ Ch−1
n , we can end the proof as for the term D above.

Finally we treat the sum over A3
k . We have, as ψ(h2

kP )ψ0(h
2
jP ) = 0.

+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A3

k

h1−α
k h−1

j hα
n〈x〉s[ψ(h2

kP ), a]ψ0(h
2
jP )aψ1(h

2
nP )u‖2

L2(�)

=
+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A3

k

h1−α
k h−1

j hα
n〈x〉sψ(h2

kP )aψ0(h
2
jP )ψ2(h

2
jP )aψ2(h

2
nP )ψ1(h

2
nP )u‖2

L2(�)

≤ 2E + 2F,

where
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E =
+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A3

k

h1−α
k h−1

j hα
n〈x〉sψ(h2

kP )[[a,ψ0(h
2
jP )],ψ2(h

2
jP )][a,ψ2(h

2
nP )]ψ1(h

2
nP )u‖2

L2(�)

≤
+∞∑
k=0

⎛⎜⎝ ∑
(j,n)∈A3

k

h
1/2−α
k hjh

1+α
n ‖ψ1(h

2
nP )u‖L2(�)

⎞⎟⎠
2

.

If (j, n) ∈ A3
k , we have j ≥ k + 3 then the sum over j is less than Chk . We obtain,

E ≤ C

+∞∑
k=0

⎛⎝ ∑
n≥k+3

h
3/2−α
k h1+α

n ‖ψ1(h
2
nP )u‖L2(�)

⎞⎠2

≤ C

+∞∑
k=0

h3−2α
k

⎛⎝ ∑
n≥k+3

h2+2α
n

⎞⎠⎛⎝ ∑
n≥k+3

‖ψ1(h
2
nP )u‖2

L2(�)

⎞⎠
≤ C

+∞∑
k=0

h5
k‖u‖2

L2(�)
≤ C‖u‖2

L2(�)
.

And we have

F =
+∞∑
k=0

h−1
k ‖

∑
(j,n)∈A3

k|j−n|≤1

h1−α
k h−1

j hα
n〈x〉sψ(h2

kP )[[a,ψ0(h
2
jP )],ψ2(h

2
jP )]ψ2(h

2
nP )aψ1(h

2
nP )u‖2

L2(�)

≤ C

+∞∑
k=0

h1−2α
k

⎛⎝ ∑
n≥k+3

h1+α
n ‖ψ1(h

2
nP )u‖L2(�)

⎞⎠2

(by Lemma A.10)

≤ C

+∞∑
k=0

h1−2α
k

⎛⎝ ∑
n≥k+3

h2+2α
n

⎞⎠⎛⎝ ∑
n≥k+3

‖ψ1(h
2
nP )u‖2

L2(�)

⎞⎠ ≤ C

+∞∑
k=0

h3
k‖u‖2

L2(�)
.

Which achieve the proof of Lemma. �
Lemma A.10. Let b ∈ C ∞(�) with support in {|x| ≤ R}, let θ1, θ2 ∈ C ∞

0 (R), let s ∈ [0, 1] there exist h0 > 0 and 
C > 0 such that for all u ∈ L2(�) and h ∈ (0, h0) we have,

‖〈x〉s[[θ1(h
2P), b], θ2(h

2P)]u‖L2(�) ≤ Ch2‖u‖L2(�).

Proof. We give only a sketch of proof, we use the same technic than before. By the Helffer–Sjöstrand formula, we 
have

[[θ1(h
2P), b]θ2(h

2P)]u = 1

π2

∫
R4

∂̄ θ̃1(t1, σ1)∂̄ θ̃2(t2, σ2)[[(z1 − h2P)−1, b], (z2 − h2P)−1]dtdσ,

where z = (z1, z2) and zj = tj + iσj .
First, we can write

[[(z1 − h2P)−1, b], (z2 − h2P)−1]
= (z1 − h2P)−1(z2 − h2P)−1[[z1 − h2P,b], z2 − h2P ](z1 − h2P)−1(z2 − h2P)−1,

and

[[z1 − h2P,b], z2 − h2P ] = h4
∑

γjk(x)∂2
jk + h4

∑
γj (x)∂j + h4γ0(x),
j,k j
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where the γ ’s are compactly supported. Second, as

〈x〉s(z1 − h2P)−1(z2 − h2P)−1 =(z1 − h2P)−1(z2 − h2P)−1〈x〉s
+ [〈x〉s , (z1 − h2P)−1](z2 − h2P)−1

+ (z1 − h2P)−1[〈x〉s , (z2 − h2P)−1],
and [〈x〉s , (z − h2P)−1] = −(z − h2P)−1[〈x〉s , (z − h2P)](z − h2P)−1, then we can obtain the Lemma by using the 
estimate (A.3) and writing the commutator [〈x〉s, (z − h2P)] as in the Formula (A.16). �
Lemma A.11. Let s ∈ [−1, 1], α < 3/2, there exists C > 0 such that for all u ∈ L2(�), we have

+∞∑
k=0

h−1
k ‖〈x〉sa(h2

kP )1/2[ψ(h2
kP ), a](h2

kP )−α/2u‖2
L2(�)

≤ C‖u‖2
L2(�)

.

Proof. We follow the same strategy than the one for the proof of Lemma A.9. We have to prove,

+∞∑
k=0

h−1
k ‖

∑
(j,n)∈N2

h1−α
k h−1

j hα
n〈x〉saψ0(h

2
jP )[ψ(h2

kP ), a]ψ1(h
2
nP )u‖2

L2(�)
≤ C‖u‖2

L2(�)
. (A.24)

If |j − k| ≥ 2 and |n − k| ≥ 2, the corresponding term in the sum is null. If |j − k| ≤ 1 (the case |n − k| ≤ 1 is 
symmetric and let to the reader). We consider two cases, the first if n ≥ k + 2, term A in the sequel, and the second if 
k ≥ n + 2 term B in the sequel.

A ≤ C

+∞∑
k=0

⎛⎜⎜⎝ ∑
|j−k|≤1
n≥k+2

h
−1/2−α
k hα

n‖〈x〉saψ0(h
2
jP )ψ(h2

kP )aψ2(h
2
nP )ψ1(h

2
nP )u‖L2(�)

⎞⎟⎟⎠
2

≤ C

+∞∑
k=0

⎛⎝ ∑
n≥k+2

h
−1/2−α
k hα

n‖ψ(h2
kP )[a,ψ2(h

2
nP )]ψ1(h

2
nP )u‖L2(�)

⎞⎠2

≤ C

+∞∑
k=0

⎛⎝ ∑
n≥k+2

h
−1/2−α
k h1+α

n ‖ψ1(h
2
nP )u‖L2(�)

⎞⎠2

≤ C

+∞∑
k=0

h−1−2α
k

⎛⎝ ∑
n≥k+2

h2+2α
n

⎞⎠⎛⎝ ∑
n≥k+2

‖ψ1(h
2
nP )u‖2

L2(�)

⎞⎠
≤ C

+∞∑
k=0

hk‖u‖2
L2(�)

≤ C‖u‖2
L2(�)

.

B ≤ C

+∞∑
k=0

⎛⎜⎜⎝ ∑
|j−k|≤1
k≥n+2

h
−1/2−α
k hα

n‖〈x〉saψ0(h
2
jP )ψ2(h

2
kP )ψ(h2

kP )aψ1(h
2
nP )u‖L2(�)

⎞⎟⎟⎠
2

≤ C

+∞∑
k=0

⎛⎝ ∑
k≥n+2

h
−1/2−α
k hα

n‖[ψ2(h
2
kP ), [ψ(h2

kP ), a]]ψ1(h
2
nP )u‖L2(�)

⎞⎠2

≤ C

+∞∑
k=0

⎛⎝ ∑
k≥n+2

h
3/2−α
k hα

n‖ψ1(h
2
nP )u‖L2(�)

⎞⎠2
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≤ C

+∞∑
k=0

⎛⎝ ∑
k≥n+2

2−(k−n)(3/2−α)‖ψ1(h
2
nP )u‖L2(�)

⎞⎠2

≤ C‖u‖2
L2(�)

,

because the last term can be seen as a convolution �1 ∗ �2 if α < 3/2. The estimations on A and B prove (A.24). �
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