
Available online at www.sciencedirect.com
ScienceDirect

Ann. I. H. Poincaré – AN 34 (2017) 571–591
www.elsevier.com/locate/anihpc

Global existence for reaction–diffusion systems with nonlinear 

diffusion and control of mass

El Haj Laamri a, Michel Pierre b,∗

a Institut Elie Cartan, Université de Lorraine, B.P 239, 54506 Vandœuvre-lès-Nancy, France
b Ecole Normale Supérieure de Rennes, IRMAR, UEB, Campus de Ker Lann, 35170 Bruz, France

Received 7 January 2015; received in revised form 20 November 2015; accepted 1 March 2016

Available online 17 March 2016

Abstract

We prove here global existence in time of weak solutions for some reaction–diffusion systems with natural structure conditions 
on the nonlinear reactive terms which provide positivity of the solutions and uniform control of the total mass. The diffusion 
operators are nonlinear, in particular operators of the porous media type ui �→ −di�u

mi

i
. Global existence is proved under the 

assumption that the reactive terms are bounded in L1. This extends previous similar results obtained in the semilinear case when 
the diffusion operators are linear of type ui �→ −di�ui .
© 2016 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The goal of this paper is the study of global existence in time of solutions to reaction–diffusion systems of the 
following type⎧⎪⎪⎨⎪⎪⎩

for all i = 1, . . . ,m,

∂tui − �ϕi(ui) = fi(u1, u2, · · · , um) in ]0,+∞[×�

ui(t, .) = 0, on ]0,+∞[×∂�,

ui(0, .) = ui0 ≥ 0 in �.

(1)

Here � is a bounded open subset of RN with a regular boundary, ϕi, i = 1, . . . , m are continuous increasing functions 
from [0, +∞) into [0, +∞) with ϕi(0) = 0 and the fi are regular functions such that the two following main properties 
occur:
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• (P ): the nonnegativity of the solutions is preserved for all time;
• (M): the total mass of the components is controlled for all time (sometimes even exactly preserved).

Properties (P ) and (M) are natural in applications: these systems are mathematical models for evolution phenom-
ena undergoing at the same time spatial diffusion and (bio-)chemical type of reactions. The unknown functions are 
generally densities, concentrations, temperature so that their nonnegativity is required. Moreover, often a control of the 
total mass, sometimes even preservation of the total mass, is naturally guaranteed by the model. Interest has increased 
recently for these models in particular for applications in biology, ecology, environment and population dynamics.

Mathematically speaking, (P ) is satisfied (like for systems of ordinary differential equations) if and only if f =
(fi)1≤i≤m is quasipositive whose meaning is recalled in (5).

Condition (M) is satisfied if for instance∑
1≤i≤m

fi ≤ 0 (2)

or, more generally, if this sum is reasonably controlled (see (6) for precise assumption).
These two conditions imply L1(�)-bounds on the solutions which are uniform on each finite time interval (see 

Lemma 2.3):

∀i = 1, . . . ,m, ∀T > 0, sup
t∈[0,T ]

‖ui(t)‖L1(�) < +∞.

Unlike uniform L∞(�)-estimates on each finite interval, such L1-estimates are not enough to imply existence of 
global solution on (0, +∞). More structure is needed for global existence.

Actually, many results of global existence are known for these systems in the semilinear case when the diffusions 
are linear and given for instance by ϕi(ui) = diui, di ∈ (0, +∞). Existence of regular bounded solutions on (0, +∞)

may be found for example in [25,16,27,26,19,18,36,10,9,22,39,14,17,3,4] and in several other articles whose refer-
ences may be found in the survey [31] or in the book [37]. However, it is well-known that the solutions may blow up 
in L∞(�) in finite time as proved in [33,34] where explicit finite time blow up in L∞(�) are given. Thus, even in the 
semilinear case, it is necessary to deal with weak solutions if one expects global existence.

Our main goal here is to exploit the good “L1-framework” provided by the two conditions (P ), (M) and to see 
how the main results of global existence of weak solutions extend from the semilinear case to the case when the ϕi

are nonlinear, in particular of the porous media type, namely ϕi(ui) = diu
mi

i , mi ≥ 1. In this case, degeneracy of the 
diffusion occurs at the same time for small ui and for large ui .

We are interested in looking for extensions to these nonlinear diffusions of the two following main results proved 
in the semilinear case:

– first the global existence result of weak solutions for (1) when (P ), (M) hold and when moreover an a priori 
L1-estimate holds for the nonlinear reactive part, namely (see [29,30] and the survey [31]).

∀i = 1, . . . ,m, ∀T > 0,

∫
(0,T )×�

|fi(u1, . . . , um)| < +∞. (3)

– next the fact that global existence of weak solutions hold for quadratic nonlinearities fi satisfying only (P ), (M). 
This is a consequence of the latter result and of a main a priori L2((0, T ) × �)-estimate on the solutions implied 
by (P ) + (M) and which is interesting for itself. This estimate was noticed in [12,28,33,34] and then widely 
exploited, see for example [11,6,7,35,32,8,5,9,31].

We will first see that these two results extend to the case when the ϕi are nonlinear but nondegenerate (that is when 
ϕ′

i is bounded from below and from above, see Proposition 2.4). But, the situation is more complicated and not so 
clear in the degenerate case ϕi(ui) = di(ui)

mi . More precisely:

1. We are able to prove global existence of solutions under the a priori estimate (3) if mi ∈ ( (N−2)+
N

, 2
)

for all i. We 
do not know whether the restriction mi < 2 is only technical or due to deeper phenomena. But, at least, it appears 
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as being necessary to extend the approach of the semilinear case as such. This is explained in more details next 
(see Theorem 2.6, Corollary 2.11 and their proofs).

2. On the other hand, we can prove that the a priori L2-estimate of the semilinear case has a natural extension 
to the degenerate case, this for any mi ≥ 1. Indeed, under the only assumptions (P ), (M), the solutions ui are 
a priori bounded in Lmi+1((0, T ) × �) for all T > 0. This allows in particular to prove global existence for 
System (1) with quadratic reactive terms or with growth less than mi + 1 and some other classical reactive terms 
(see Theorem 2.7, Corollary 2.8 and Corollary 2.9).

A main reason to try to exploit the “L1-framework” provided by (P ), (M) for System (1) is that, like in the 
semilinear case, the operator ui → ∂tui − di�u

mi

i has good L1-compactness properties in the sense that the following 
mapping is compact when m > (N − 2)+/N :

(w0,F ) ∈ L1(�) × L1((0, T ) × �) �→ w ∈ L1((0, T ) × �),

where w is the solution of

∂tw − d �wm = F in (0, T ) × �, w = 0 on (0, T ) × ∂�, w(0) = w0.

This provides compactness for the solutions of the adequate approximations of System (1). Next, the main difficulty—
which is actually serious—is to show that the limit of these approximate solutions is indeed solution of the limit 
system.

Note that, besides the semilinear case, this kind of L1-approach was also used with success in [20] for such systems 
with nonlinear diffusions of the p-Laplacian type ∂tui −∇ ·(|∇ui |p−2∇ui

)
. Let us also mention some global existence 

and finite time blow up in [15,27] and [21] for 2 × 2 systems with nonlinear diffusion ϕi(ui) = u
mi

i , i = 1, 2 and with 
growth conditions on the reactive terms like

f1(u1, u2) = uα
1 + u

β

2 + C1, f2(u1, u2) = uδ
1 + u

γ

2 , 1 ≤ α, δ ≤ m1, 1 ≤ β, γ ≤ m2.

A particular example of System (1) with

m = 2, ϕ1(u1) = u
m1
1 , ϕ2(u2) = d2u2, f1 ≤ 0, f2 = −f1

was also shown in [20] to have weak solutions for m1 ∈ [1, 2) and initial data (u10, u20) ∈ Lm1+1(�) × L2(�) and 
as well strong bounded global solutions for bounded initial data and polynomial growth of f1 (even for general ϕ1 in 
this case). Nondegenerate nonlinear diffusions were also considered in [12] and [32] with quadratic reactive terms.

2. Main results

Throughout this paper, we denote Q := (0, +∞) ×�, QT := (0, T ) ×�, 
 := (0, +∞) ×∂�, 
T := (0, T ) ×∂�

and, for p ∈ [1, +∞)

‖u(t)‖Lp(�) =
⎛⎝∫

�

|u(t, x)|p dx

⎞⎠1/p

, ‖u‖Lp(QT ) =
⎛⎝ T∫

0

∫
�

|u(t, x)|p dtdx

⎞⎠1/p

,

‖u(t)‖L∞(�) = ess supx∈�|u(t, x)|, ‖u‖L∞(QT ) = ess sup(t,x)∈QT
|u(t, x)|.

For i = 1, . . . , m, let fi : Q × [0, +∞)m →R be such that

Regularity:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fi is measurable,
∀T > 0, f (., .,0), g(., .,0) ∈ L1(QT ),

∃K : [0,+∞) → [0,+∞) nondecreasing such that:
|fi(t, x, r) − fi(t, x, r̂)| ≤ K(M)‖r − r̂‖,
for all M > 0, for all r, r̂ ∈ (0,M)m and a.e. (t, x) ∈ Q,

(4)

where ‖r‖ =∑1≤i≤m |ri | is the norm chosen in Rm.
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Quasipositivity: (P )

{
fi(t, x, r1, . . . , ri−1,0, ri+1, . . . , rm) ≥ 0,

for all r = (ri)1≤i≤m ≥ 0, a.e. (t, x) ∈ Q.
(5)

Control of mass: (M)

{ ∀r ∈ [0,+∞)m, for a.e. (t, x),
∑

i fi(t, x, r) ≤ σ‖r‖ + h(t, x)

for some σ ∈ [0,+∞), h ∈ L1(QT )+ for all T > 0.
(6)

. . . These three above properties will be assumed throughout the paper. . .

Remark 2.1. Note that all results given in this paper immediately extend if (M) is replaced by the existence of 
αi ∈ (0, +∞) such that

∀r ∈ [0,+∞)m, a.e. (t, x),
∑

i

αifi(t, x, r) ≤ σ‖r‖ + h(t, x).

Indeed we may multiply each i-th equation by αi and changing ui into vi := αiui . For simplicity, and without loss of 
generality, we will work here with (M) as above.

For i = 1, . . . , m, let ϕi : [0, +∞) → [0, +∞) be increasing, continuously differentiable on (0, +∞) with 
ϕi(0) = 0. We will mainly consider two situations:

The nondegenerate case:

∃ai, bi ∈ (0,+∞), ∀s ∈ (0,+∞), 0 < ai ≤ ϕ′
i (s) ≤ bi < +∞. (7)

The possibly degenerate case:

∀s ∈ [0,+∞), ϕi(s) = di s
mi , mi ∈ (0,+∞), di ∈ (0,+∞). (8)

We consider the associated System (1) where the weak solution of each equation is understood in the sense of 
nonlinear semigroups in L1(�) (see [40] for various definitions of solutions). More precisely, if ϕ denotes one of the 
ϕi and if (w0, F) ∈ L∞(�) × L∞(QT ), we will use, especially in the approximation processes, the following notion 
of bounded solutions:⎧⎨⎩w ∈ C([0, T );L1(�)) ∩ L∞(QT ), ϕ(w) ∈ L2

(
0, T ;H 1

0 (�)
)
,

∂tw − �ϕ(w) = F in the sense of distributions in QT ,

w(0) = w0.

(9)

If ϕ satisfies one of the conditions (7) or (8), then for (w0, F) given in L∞(�) ×L∞(QT ), such a solution exists and is 
unique (see e.g. [40, Chapters 5 and 6]). Moreover, if ŵ is the solution associated with (ŵ0, F̂ ) ∈ L∞(�) ×L∞(QT ), 
we have

‖w(t) − ŵ(t)‖L1(�) ≤ ‖w0 − ŵ0‖L1(�) +
t∫

0

‖F(s) − F̂ (s)‖L1(�) ds, (10)

so that

(w0,F ) ∈ L1(�) × L1(QT ) �→ w ∈ C([0, T ];L1(�))

is a contraction. This allows to extend by density, in a unique way, the notion of solution to any (F, w0) ∈ L1(QT ) ×
L1(�) and we will denote it by

w := Sϕ(w0,F ). (11)

This is the notion of solution that will mainly be used in this paper. Note that it satisfies{
w ∈ C([0, T );L1(�)), ϕ(w) ∈ L1(QT ) and ∀ψ ∈ CT ,

− ∫
�

ψ(0)w0 − ∫
QT

∂tψ w + ϕ(w)�ψ = ∫
QT

ψ F,
(12)

where

CT = {ψ : [0, T ] × � → R; ψ,∂tψ, ∂2
xixj

ψ are continuous, ψ = 0 on 
T , ψ(T ) = 0}. (13)

The latter property (12) corresponds to the notion of very weak solution in Definition 6.2 of [40].



E.H. Laamri, M. Pierre / Ann. I. H. Poincaré – AN 34 (2017) 571–591 575
Solutions in the sense of (11) satisfy the maximum principle and order properties:

[w0 ≥ 0,F ≥ 0] ⇒ [Sϕ(w0,F ) ≥ 0], [w1 ≥ w2,F1 ≥ F2] ⇒ [Sϕ(w1,F1) ≥ Sϕ(w2,F2)].
Recall also that w := Sϕ(w0, F) satisfies (see e.g. [40])

∀p ∈ [1,+∞], ∀t ∈ [0, T ], ‖w(t)‖Lp(�) ≤ ‖w0‖Lp(�) +
t∫

0

‖F(s)‖Lp(�) ds. (14)

We now define what we mean by a solution to our System (1).

Definition 2.2. Given ui0 ∈ L1(�), ui0 ≥ 0, i = 1, . . . , m, by global weak solution to System (1), we mean u =
(u1, u2, . . . , um) : (0, +∞) × � → [0, +∞)m such that, for all i = 1, . . . , m and for all T > 0{

ui ∈ C([0,+∞);L1(�)), ϕi(ui) ∈ L1(0, T ;W 1,1
0 (�)),

ui = Sϕi (u0i , fi(u)) .
(15)

Note that we only deal with nonnegative solutions.

The approximate reaction–diffusion system Next we consider the following approximation of System (1) with solu-
tion un := (un

1, . . . , un
m) in the sense of (9) for each equation, that is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

for all i = 1, . . . ,m,

for all T > 0, un
i ∈ L∞(QT ) ui ≥ 0, ϕi(u

n
i ) ∈ L2(0, T ;H 1

0 (�)),

∂tu
n
i − �ϕi(u

n
i ) = f n

i (un) in Q,

un
i (t, .) = 0 on 
,

un
i (0, .) = un

i0 ≥ 0 in �,

(16)

where un
i0 ∈ L∞(�)+ converges to ui0 in L1(�) and the approximate nonlinearities f n

i satisfy (4) with K(·) indepen-
dent of n, (5), (6) with σ , h independent of n and are in L∞(QT ×R

m) for each n. The convergence of f n
i toward fi

is defined as follows. Let us denote

εn
M := max

1≤i≤m
sup

0≤‖r‖≤M

|f n
i (t, x, r) − fi(t, x, r)|. (17)

We will assume that

εn
M → 0 in L1(QT ) and a.e. as n → +∞. (18)

As a typical example, we may choose

f n
i := fi

1 + 1
n

∑
1≤j≤m |fj |

. (19)

Note that, with this choice, ‖f n
i ‖L∞(Q) ≤ n and the other properties may easily been checked (in (4), K(M) has to be 

replaced by (2 + m)K(M)).

Lemma 2.3. Assume that, for 1 ≤ i ≤ m, ϕi satisfies either (7) or (8) with mi > 0. Then the approximate system (16)
has a (global and regular) solution un and there exists C : [0, +∞) → [0, +∞), independent of n such that

∀n, ∀T > 0, sup
t∈[0,T ]

∑
1≤i≤m

‖un
i (t)‖L1(�) ≤ C(T )

⎡⎣1 +
∑

1≤i≤m

‖ui0‖L1(�)

⎤⎦ .

Now, let us assume, like in the semilinear case that, for whatever reason, an a priori L1-estimate holds for the 
solution un of the approximate System (16), namely

∀T > 0, sup
n

∑
‖f n

i (un)‖L1(QT ) < +∞. (20)

1≤i≤m
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Examples of such situations and applications will be given later (see also the survey [31]). The question is to decide 
whether, like in the semilinear case, un converges to a global weak solution of (1).

A first—not surprising—result is that, when the nonlinearities ϕi are nondegenerate, then this convergence property 
does hold. Moreover, the a priori L2-estimate holds as well. Indeed we have the following proposition (and this is a 
particular case of Theorem 2.6 and Theorem 2.7 below):

Proposition 2.4. Assume all functions ϕi are nondegenerate in the sense of (7). Then, up to a subsequence, un

converges in [L1(QT )]m for all T > 0 to a global weak solution of (1) in the sense of Definition 2.2. If moreover 
u0 ∈ L2(�)m and h ∈ L1

loc

([0,+∞);L2(�)
)

in the assumption (6), then there exists C : [0, +∞) → [0, +∞) such 
that

sup
n

∑
1≤i≤n

‖un
i ‖L2(QT ) ≤ C(T )

⎡⎣1 +
∑

1≤i≤m

‖ui0‖L2(�)

⎤⎦ .

Remark 2.5. Versions of the above L2-estimate may also be found in [12,28,32] where they were used to prove global 
existence results for systems of type (1) with nondegenerate ϕi and quadratic reactive terms. Global existence with 
general right-hand side bounded in L1 seems however to be new.

Now the question is to decide what happens in the degenerate case. We can prove the following.

Theorem 2.6. Assume that, for 1 ≤ i ≤ m, ϕi satisfies either (7) or (8) with mi ∈ ((N − 2)+/N,2
)
. Assume 

L1-estimate (20) holds. Then, up to a subsequence, un converges in [L1(QT )]m for all T > 0 to a global weak 
solution of (1) in the sense of Definition 2.2.

As commented in the introduction, we do not know whether the restriction mi < 2 is necessary or not. We will 
explain where it naturally appears in the proof and suggest some possible reasons. We will deduce a global existence 
result for System (1) below in Corollary 2.11.

On the other hand, it turns out that the a priori L2-estimate does have a natural extension no matter the value of the 
mi .

Theorem 2.7. Assume that, for 1 ≤ i ≤ m, ϕi satisfies either (7) or (8) with mi > 0. If moreover h ∈ L1
loc

([0, +∞);
L2(�)

)
in the assumption (6), then there exists C : [0, +∞) → [0, +∞) such that

sup
n

∑
1≤i≤m

‖un
i ‖Lmi+1(QT ) ≤ C(T )[1 +

∑
1≤i≤m

‖un
i0‖L2(�)],

where we set mi := 1 in case (7).

We deduce the following global existence result.

Corollary 2.8. Assume that, for 1 ≤ i ≤ m, ϕi satisfies either (7) or (8) with mi ≥ 1. Assume there exists ε > 0 such 
that ∑

1≤i≤m

|fi(u)| ≤ C[1 +
∑

1≤i≤m

u
mi+1−ε
i ]. (21)

Then, for all u0 ∈ L2(�)m, u0 ≥ 0, the system (1) has a global weak solution in the sense of Definition 2.2.

As we will see in the proof, the main point of the “−ε” in the above assumption is that it makes the nonlinearities 
f n

i (un) not only bounded in L1(QT ), but uniformly integrable. This is the main tool to pass to the limit in the 
reactive terms. Actually, any other assumption guaranteeing this uniform integrability of the fn

i (un) will lead to global 
existence. For instance, it follows from this theorem that global existence holds for the typical system modeling the 
chemical reaction
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U1 + U3 � U2 + U4.

Indeed, applying the mass action law for the reactive terms and a Darcy’s law for the diffusion lead to the following 
4 × 4 system for the concentrations ui = ui(t, x) of the components Ui, 1 ≤ i ≤ 4:⎧⎨⎩

for 1 ≤ i ≤ 4,

∂tui − di�ϕi(ui) = (−1)i[u1u3 − u2u4] in Q,

ui = 0 on 
, ui(0) = ui0 ≥ 0.

(22)

The following result is a direct consequence of Corollary 2.8 when mi > 1 for all 1 ≤ i ≤ 4. If some of the mi are 
equal to 1, then an extra argument is needed to prove that the reactive terms are not only bounded in L1, but uniformly 
integrable. This is coming from the entropy inequality and from an L1-estimate that it provides on umi+1

i (logui)
2

(extending the L2-techniques of [11]).

Corollary 2.9. Assume that, for 1 ≤ i ≤ 4, ϕi satisfies either (7) or (8) with mi ≥ 1. Then, for all u0 = (ui0)1≤i≤4 with 
ui0 ≥ 0 and ui0 logui0 ∈ L2(�) for 1 ≤ i ≤ 4, System (22) has a global weak solution in the sense of Definition 2.2.

Remark 2.10. We may also consider more general reversible chemical reactions of the form

p1U1 + p2U2 + . . . + pmUm � q1U1 + q2U2 + . . . + qmUm,

where pi , qi are nonnegative integers. According to the usual mass action kinetics and with Darcy’s laws for the 
diffusion, the evolution of the concentrations ui of Ui may be modeled by the following system

∂tui − di�u
mi

i = (pi − qi)
(
k2�

m
j=1u

qj

j − k1�
m
j=1u

pj

j

)
, i = 1 . . .m, (23)

where k1, k2 are positive diffusion coefficients and where a stoichiometric law holds like 
∑

i αipi =∑i αiqi for some 
αi ∈ (0, +∞). Similarly to Corollary 2.9, global existence of weak solutions may be proven when∑

i

pi

mi + 1
≤ 1,

∑
i

qi

mi + 1
≤ 1. (24)

Indeed, together with Theorem 2.7, this guarantees that the reactive terms are bounded in L1(QT ). The entropy 
inequality, which is valid for this system as well as for (22), allows to prove their uniform integrability in all cases 
when (24) holds. This approach is the same as for Corollary 2.9 and relies also on an L1-estimate on umi+1

i (logui)
2 . 

For completeness, we also give the main steps of the proof of this remark after the proof of Corollary 2.9.

It is known that, for instance for a 2 × 2 system, an a priori L1 bound of type (20) holds as soon as two linear 
relations between f1, f2 hold rather than only one, like

f1 + f2 ≤ 0, f1 + λf2 ≤ 0, λ ∈ [0,1).

More generally, if there are m linearly independent similar inequalities in an m × m system, then estimate (20) holds. 
Actually, by coupling Theorem 2.6 and Theorem 2.7, we may even prove the following.

Corollary 2.11. Assume that for all 1 ≤ i ≤ m, ϕi satisfies either (7) or (8) with mi ∈ ((N − 2)+/N,2
)
. Assume 

moreover that there exists an invertible m × m matrix P with nonnegative entries and b ∈R
m such that

∀r ∈ [0,+∞)m, Pf (r) ≤ b
[
1 +

∑
i

r
1+mi

i

]
, (25)

where again mi := 1 in case (7). Then, for all u0 ∈ L1(�)m, u0 ≥ 0, the System (1) has a global weak solution in the 
sense of Definition 2.2.

Remark 2.12. We emphasize the fact that any L1(�)-initial data is allowed in this result. As particular standard 
situations covered by Corollary 2.11, we have the 2 × 2 systems where the nonlinearities are as in the two following 
examples:
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1) f1 ≥ 0, f2 = −f1.

2) f1(u1, u2) = λu
p

1 u
q

2 − uα
1 u

β

2 , f2(u1, u2) = −u
p

1 u
q

2 + uα
1 u

β

2 , λ ∈ [0,1), p, q,α,β ≥ 1.

Indeed, (25) is satisfied with b = (0, 0) and successively

P =
(

1 1
1 0

)
, P =

(
1 1
1 λ

)
.

Note that in these two examples, there is no restriction on the growth of f1, f2, but as stated in Corollary 2.11, it 
is required that mi < 2. On the other hand, when applying Corollary 2.8 to this system (see also Remark 2.10), we 
obtain global existence of weak solution, no matter the values of the m1, m2, but with the growth conditions

p

m1 + 1
+ q

m2 + 1
< 1,

α

m1 + 1
+ β

m2 + 1
< 1.

The case m1 = m2 = 3, p = β = 5, q = α = 2 is for instance not covered (except may be in small space dimensions) 
by any of the above results although the reactive terms are a priori bounded in L1(QT ) (see the proof of Corollary 2.11) 
and even if λ = 0. This is an interesting open problem.

3. The proofs

Proof of Lemma 2.3. Since the f n
i are bounded for each n, existence of a (unique) bounded global solution un is 

classical. Let us recall a procedure without too many details. Given T ∈ (0, +∞), we consider the set

W := {v ∈ C([0, T ];L1(�)m); ∀i = 1, . . . ,m, vi(0) = un
i0, ‖vi‖L∞(QT ) ≤ R},

where R = ‖un
i0‖L∞(�) + n T (recall that f n

i is uniformly bounded by n). We equip W with the norm : ‖v‖ :=
maxi supt∈[0,T ] ‖vi(t)‖L1(�). Then, we consider the mapping F which to vn = (vn

1 , · · · , vn
m) ∈ W associates the so-

lution un = (un
1, · · · , un

m) ∈ W , un
i = Sϕi

(
un

i0, f
n
i (π(vn))

)
where π : Rm → [0, +∞)m is the projection onto the 

positive cone, that is π(r1, . . . , rm) = (r+
1 , . . . , r+

m). Using the estimates (10)–(14), it is easy to prove that F send 
W into itself and that some iterate of F is a strict contraction. Whence the existence of a fixed point un. The 
L2(0, T ; H 1

0 (�))-regularity holds by construction for these bounded solutions (see [40]). Next, multiplying each 
equation by (un

i )
− = − inf{un

i , 0}, integrating on QT and summing over i, thanks to the quasipositivity of f n we 
deduce that (un

i )
− ≡ 0, whence the nonnegativity of un. We refer e.g. to [20] for more details.

Next, summing all the m equations of (16) and integrating on � gives, using (M):

∂t

∫
�

∑
1≤i≤m

un
i (t) ≤

∫
�

∑
1≤i≤m

f n
i (un) ≤ σ

∑
1≤i≤m

‖un
i (t)‖L1(�) + h = σ

∫
�

∑
1≤i≤m

un
i (t) + h.

Integrating this Gronwall’s inequality gives for all t ∈ [0, T ]
∑

1≤i≤m

‖un
i (t)‖L1(�) ≤ eσT

⎡⎣ ∑
1≤i≤m

‖ui0‖L1(�) + ‖h‖L1(QT )

⎤⎦ .

Whence the estimate of Lemma 2.3. �
Let us now recall the main compactness properties of the solutions of (11). Here ϕ : [0, +∞) → [0, +∞) denotes 

one of the functions ϕi .

Lemma 3.1. Assume ϕ satisfies (7) or (8) with mi >
(N−2)+

N
. Then the mapping

(w0,F ) ∈ L1(�) × L1(QT ) �→ Sϕ(w0,F ) ∈ L1(QT )

is compact.

Proof. For a proof, see [2]. �
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Lemma 3.2. Let ϕ(w) = d wq, d ∈ (0, +∞), q > (N −2)+/N . Then, for (w0, F) ∈ L1(�) ×L1(QT ), w = Sϕ(w0, F)

of (11) satisfies∫
QT

|w|qα ≤ C for 0 < α < 1 + 2

qN
, (26)

∫
QT

|∇wq |β ≤ C2 for 1 ≤ β < 1 + 1

1 + qN
, (27)

where C = C
(
T ,α,β, q,‖w0‖L1(�),‖F‖L1(QT )

)
.

If ϕ is nondegenerate in the sense of (7), then the estimates (26) and (27) are valid with q = 1.

Proof. For a proof, see Lukkari [23, Lemma 4.7] for the case q > 1 and Lukkari [24, Lemma 3.5] for the case 
(N−2)+

N
< q < 1. In these two references, the proof is given with zero initial data, but with right-hand side a bounded 

measure. We may use the measure δt=0 ⊗ w0 dx to include the case of initial data w0. We may also use the results in 
[1, Theorem 2.9]). The estimate in the nondegenerate case may be obtained in a similar way. �

In several of the proofs below, we will use the famous Vitali’s Lemma (see e.g. [13, theorem 2.24, page 150], [38, 
chapter 16]).

Lemma 3.3 (Vitali). Let (E, μ) be a measured space such that μ(E) < +∞, let 1 ≤ p < +∞ and let {fn}n ⊂ Lp(E)

such that fn → f a.e. If {f p
n }n is uniformly integrable over E, then f ∈ Lp(E) and fn → f in Lp(E).

We now deduce various compactness properties of the approximate solution un of (16).

Lemma 3.4. Assume that ϕi satisfy (7) or (8) with mi > (N − 2)+/N and that the L1-estimate (20) holds for the 
solution un of (16). Then, up to a subsequence, and for all T > 0 and 1 ≤ i ≤ m,

– un
i converge in L1(QT ) and a.e. to some ui ∈ L1(QT ),

– ϕi(u
n
i ) converge in Lα(QT ) and a.e. to ϕi(ui) for all α ∈ [1, 1 + 2/(miN)

)
in case (8) and all α ∈ [1, 1 + 2/N

)
in case (7),

– ϕi(ui) ∈ Lβ
(
0, T ; W 1,β

0 (�)
)

for all β ∈ [1, 1 + 1/(1 + miN)
)

in case (8) and for all β ∈ [1, 1 + 1/(1 + N)
)

in 
case (7),

– f n
i (un) converges a.e. to fi(u) ∈ L1(QT ).

Proof of Lemma 3.4. By the estimate (20), f n
i (un) is bounded in L1(QT ). According to Lemma 3.1, un

i is relatively 
compact in L1(QT ) for all T > 0. Therefore, up to a subsequence, we may assume that un

i converge in L1(QT ) for 
all T > 0 and a.e. in Q as well to some limit ui ∈ L1(QT ).

Next, by Lemma 3.2, ϕi(u
n
i ) is bounded in Lα(QT ) for α ∈ [1, 1 + 2/(miN)

)
[even for α ∈ [1, 1 + 2/N

)
in the 

nondegenerate case] and for all T > 0. By arbitrarity of α in this interval open to the right, ϕi(u
n
i )

α is even uniformly 
integrable. Since it also converges a.e. to ϕi(ui), by the Vitali’s Lemma 3.3, the convergence holds strongly in Lα(QT )

to ϕi(ui).
Next, thanks to the estimate of the gradient in Lemma 3.2, ϕi(u

n
i ) stays bounded in the space Lβ

(
0, T ; W 1,β

0 (�)
)

for all β ∈ [1, 1 + 1/(1 + miN)
)

[even all β ∈ [1, 1 + 1/(1 + N)
)

in the nondegenerate case]. These spaces being 
reflexive (for β > 1), it follows that ϕi(ui) also belongs to these same spaces.

Finally, due to the definition of the f n
i and to the a.e. convergence of un to u = (ui)1≤i≤m, it is clear that f n

i (un)

converges a.e. to fi(u). By Fatou’s Lemma, fi(u) ∈ L1(QT ). �
Remark 3.5. To prove that the limit u is solution of the limit problem, we would “only need” to prove that the 
convergence of f n

i (un) to fi(u) holds in the sense of distributions and not only a.e. But this is where the main 
difficulty of the proof lies. Indeed, f n

i (un) is bounded in L1(QT ). Therefore it converges in the sense of measures to 
fi(u) + μ where μ is a bounded measure. The point is to prove that this measure is equal to zero.



580 E.H. Laamri, M. Pierre / Ann. I. H. Poincaré – AN 34 (2017) 571–591
An easy situation is when the f n
i (un) are uniformly integrable and not only bounded in L1(QT ). Then, using 

Vitali’s Lemma 3.3, we deduce that the convergence of f n
i (un) to fi(u) holds in L1(QT ) and therefore in the sense 

of distributions. It follows that u is solution of the limit problem.
Actually, our method here, similar to the one in [30], will be to first prove that u is a supersolution of the limit 

system. This is where the main difficulty is concentrated. The main result is stated in the next proposition. It is 
interesting to emphasize that the conclusion of this proposition is valid without the structure property (M). This 
property (M) will only be used later to prove the reverse inequality.

Proposition 3.6. Under the assumptions of Lemma 3.4, the limit u is a supersolution of the limit system, which means 
that, for all ψ ∈ CT as defined in (13), ψ ≥ 0 and for 1 ≤ i ≤ m:

−
∫
�

ψ(0)ui0 +
∫

QT

−∂tψ ui + ∇ψ∇ϕi(ui) ≥
∫

QT

ψfi(u),

where ui ∈ L∞ ((0, T );L1(�)
)
, ϕi(ui) ∈ L1

(
(0, T ); W 1,1

0 (�)
)
.

Preliminary remark about Proposition 3.6 and its proof. Note that the result of this Proposition is interesting 
for itself and, as we already remark, is valid without the structure assumption (M) on the nonlinearities f n

i . The 
ideas of the proof of Proposition 3.6 are taken from [30]. A first idea is that, if w is a solution of the heat equation, 
then Tk(w) is a supersolution of the heat equation where Tk is a regular approximation of the truncation function 
r ∈ [0, +∞) �→ inf{r, k} as defined below. Here, we first prove that Tk(ui) is indeed a supersolution for all k: by 
letting k go to +∞, it will follow that ui itself is a supersolution, whence Proposition 3.6.

In order to obtain that Tk(ui) is a supersolution, we pass to the limit as n → +∞ in the inequation satisfied by 
an adequate approximation of Tk(u

n
i ). But to pass to the limit in the sense of distributions in the nonlinear reaction 

terms (which a priori converge only a.e.), each truncation of the i-th equation must also involve all the un
j , j �= i: more 

precisely, in the semilinear case, the method was to write for each i, the inequation satisfied by Tk(u
n
i + η

∑
j �=i u

n
j )

with η > 0, then first to let n → +∞ for η, k fixed, and next to let η → 0, then k → +∞ (see [30]). The main work 
was to justify the step η → 0 which involves estimates on the gradient of the solutions.

Here, the ideas are the same, but we have to adapt them to nonlinear diffusions. Besides and because of the 
degeneracy due this nonlinearity, gradient estimates are not as good as for linear diffusions, especially near ui = 0. 
Moreover, the nonlinear diffusion requires more complex truncations than in the linear case. This is why we consider 
the truncating process (29) below.

To prepare the proof of Proposition 3.6, let us introduce the truncating functions Tk : [0, +∞) → [0, +∞) of class 
C3 which satisfy the following for all k ≥ 1:⎧⎪⎪⎨⎪⎪⎩

Tk(r) = r if r ∈ [0, k − 1],
Tk(r) ≤ k;
T ′

k(r) = 0 if r ≥ k

0 ≤ T ′
k(r) ≤ 1, −1 ≤ T ′′

k (r) ≤ 0 for all r ≥ 0.

(28)

Next, for all i = 1, . . . , m and for (n, η, k) ∈N
∗ × (0, 1) × [1, +∞[, we introduce

An
i,η,k = ∂t

(
Tk(u

n
i )T

′
k(η V n

i )
)− ∇ · (T ′

k(u
n
i )T

′
k(η V n

i )∇ϕi(u
n
i )
)
, V n

i =
∑
j �=i

un
j . (29)

Remark 3.7. To give some light on the choice of the above expression, note that, when η → 0, then T ′
k(η V n

i ) → 1
and when k → +∞, then Tk tends to the identity so that this expression approximates ∂tu

n
i − ∇ · (∇ϕi(u

n
i )
) =

∂tu
n
i − �ϕi(u

n
i ).

We check that⎧⎪⎪⎨⎪⎪⎩
An

i,η,k = T ′
k(u

n
i )T

′
k(η V n

i )f n
i (un) + An

i + Bn
i where

An
i = η Tk(u

n
i )T

′′
k (η V n

i )(V n
i )t = η Tk(u

n
i )T

′′
k (η V n

i )
∑

j �=i

[
�ϕj (u

n
j ) + f n

j (un)
]
,

that we write as an obvious sum: An
i =:∑j �=i X

n
j + Yn

j ,

Bn = −∇ϕ (un)∇[T ′(un)T ′(η V n)].
(30)
i i i k i k i
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The proof of Proposition 3.6 will mainly rely on the following estimate.

Lemma 3.8. There exist δ > 0, C > 0 independent of n and η such that, for all i = 1, . . . , m and for all ψ ∈ CT , ψ ≥ 0:∫
QT

An
i,η,kψ ≥

∫
QT

T ′
k(u

n
i )T

′
k(η V n

i )f n
i (un)ψ − C D(ψ)ηδ, (31)

where D(ψ) = ‖ψ‖L∞(QT ) + ‖∇ψ‖L∞(QT ).

Proof of Lemma 3.8. It is a direct consequence of formula (30) and of Lemmas 3.12 and 3.13 below. �
The proof of Lemmas 3.12 and 3.13 below will require the following preliminary estimate:

Lemma 3.9. Let F ∈ L1(QT )+, w0 ∈ L1(�)+. Then w = Sϕ(w0, F) as defined in (11) satisfies the following: 

there exists C = C
(∫

QT
F,
∫
�

w0

)
such that, for all nondecreasing θ : (0, +∞) → (0, +∞) of class C1 and with 

θ(0+) = 0∫
[θ(w)≤k]

|∇θ(w)| |∇ϕ(w)| =
∫

[θ(w)≤k]
∇θ(w)∇ϕ(w) ≤ C k. (32)

In particular,∫
[ϕ(w)≤k]

|∇ϕ(w)|2 ≤ C k,

∫
[w≤k]

|∇w|2 ≤ C k2−m (33)

with m = 1 in case (7) and with m = mi in case (8) assuming mi < 2.

Remark 3.10. The main restriction mi < 2 discussed in the introduction appears in the above statement. The proof 
of Theorem 2.6 requires to control the L2-norm of ∇un

i on the level sets [un
i ≤ k]. This L2-norm is not bounded if 

mi ≥ 2 because of the degeneracy around the points where un
i = 0. It is however valid for the large values of un

i . But 
this does not seem to be sufficient for the proof.

Proof of Lemma 3.9. As usual, we make the computations for regular enough solutions and they are preserved by 
approximation for all semigroup solutions.

Multiply equation ∂tw − �ϕ(w) = F by Tk+1(θ(w)). We obtain∫
�

Jk(w)(T ) +
∫

QT

T ′
k+1(θ(w))∇θ(w)∇ϕ(w) =

∫
QT

Tk+1(θ(w))F +
∫
�

Jk(w0),

where J ′
k(r) = Tk+1(θ(r)), Jk(0) = 0. Since Tk+1 ≤ k + 1, we have Jk(r) ≤ (k + 1) r so that

∫
[θ(w)≤k]

|∇θ(w)||∇ϕ(w)| ≤ (k + 1)

⎛⎜⎝∫
QT

F +
∫
�

w0

⎞⎟⎠≤ C k.

Choosing θ := ϕ gives the first estimate of (33). The second one is clear in the nondegenerate case (7). If ϕi(r) = dir
mi

with mi < 2, we choose θ(r) := r2−mi to obtain

di(2 − mi)mi

∫
[w2−mi ≤k]

|∇w|2 ≤ Ck,

which gives the second estimate of (33) by changing k into k2−mi . �
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Remark 3.11. The two next lemmas provide the expected estimates for Bn
i , then An

i . We will often use that, for some 
C independent of n and η, it follows from (32) that, for i, j = 1, . . . , m∫

[η ϕj (un
j )≤k]

|∇ϕj (u
n
j )|2 ≤ C k/η,

∫
[η V n

i ≤k]
|∇V n

i |2 ≤ C [k/η]2−M, M = max{1,max
i

mi}, (34)

where we used the inclusion: ∀j �= i, [ηV n
i ≤ k] ⊂ [ηun

j ≤ k].

Lemma 3.12. There exist C ≥ 0, δ > 0 independent of n and η such that, for all i = 1, . . . , m and for all ψ ∈ CT , 
ψ ≥ 0∫

QT

ψBn
i ≥ −ηδ C ‖ψ‖L∞(QT ). (35)

Proof of Lemma 3.12. We have∫
QT

ψBn
i = −

∫
QT

ψ∇ϕi(u
n
i )∇[T ′

k(u
n
i )T

′
k(η V n

i )]

= −
∫

QT

ψ∇ϕi(u
n
i )
[∇un

i T
′′
k (un

i )T
′
k(η V n

i ) + T ′
k(u

n
i )T

′′
k (η V n

i )η∇V n
i

]
≥ −η

∫
QT

ψT ′
k(u

n
i )T

′′
k (η V n

i )∇ϕi(u
n
i )∇V n

i ,

the last inequality coming from T ′′
k ≤ 0, ϕ′

i ≥ 0, ψ ≥ 0. By Schwarz’s inequality and for some C = C(k)

∫
QT

∣∣ψT ′
k(u

n
i )T

′′
k (η V n

i )∇ϕi(u
n
i )∇V n

i

∣∣≤ C ‖ψ‖L∞(QT )

⎛⎜⎝ ∫
[un

i ≤k]
|∇ϕi(u

n
i )|2
⎞⎟⎠

1/2⎛⎜⎝ ∫
[η V n

i ≤k]
|∇V n

i |2
⎞⎟⎠

1/2

≤ C ‖ψ‖L∞(QT )

√
ϕi(k) [k/η]1−M/2, M := max{1,max

i
mi},

where the last inequality is obtained through (32) and (34). Thus, 
∫
QT

ψBn
i ≥ −CD(ψ)ηM/2 for some C = C(k). 

Whence (35) with δ = M/2. �
Lemma 3.13. There exist δ > 0, C ≥ 0 independent of n and η such that, for all i = 1, . . . , m and for all ψ ∈ CT , 
ψ ≥ 0:∫

QT

ψAn
i ≥ −ηδCD(ψ). (36)

Proof of Lemma 3.13. We will need several steps. Recall that An
i = Xn

i + Yn
i .

• Let us bound 
∫
QT

Yn
j ψ . We have∫

QT

Yn
j ψ = η

∫
QT

ψTk(u
n
i )T

′′
k (η V n

i )f n
j (un),

so that, using the L1-bound on f n
i , we obtain∫

QT

Yn
j .ψ ≥ −ηC(k)‖ψ‖L∞(QT ). (37)
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• Let us bound 
∫
QT

Xn
j ψ . We have∫

QT

Xn
j ψ =

∫
QT

ηψTk(u
n
i )T

′′
k (η V n

i )�ϕj (u
n
j ) = −In − Jn

where

In = η

∫
[η V n

i ≤k]
∇ϕj (u

n
j )∇ψTk(u

n
i )T

′′
k (η V n

i ) and Jn = K1,n + K2,n

with

K1,n = η

∫
[η V n

i ≤k]∩[un
i ≤k]

ψ∇ϕj (u
n
j )T

′
k(u

n
i )T

′′
k (η V n

i )∇un
i ,

K2,n = η2
∫

[η V n
i ≤k]

ψ∇ϕj (u
n
j )Tk(u

n
i )T

′′′
k (η V n

i )∇V n
i ,

• Let us bound In. By (27):

|In| ≤ C(k)D(ψ)η

∫
QT

|∇ϕj (u
n
j )| ≤ Cη.

• Let us bound K1,n. By Schwarz’s inequality, (32)–(34) and [ηV n
i ≤ k] ⊂ [ηun

j ≤ k]

|K1,n| ≤ η

∫
[η un

j ≤k]∩[un
i ≤k]

ψ |∇ϕj (u
n
j )|T ′

k(u
n
i )|T ′′

k (η V n
i )||∇un

i |

≤ C(k)η‖ψ‖L∞(QT )

⎛⎜⎜⎝ ∫
[ηun

j ≤k]
|∇ϕj (u

n
j )|2
⎞⎟⎟⎠

1/2⎛⎜⎝ ∫
[un

i ≤k]
|∇un

i |2
⎞⎟⎠

1/2

≤ CD(ψ)η

√
ϕj (k/η) k1−mi/2 ≤ CD(ψ)η1−mj /2,

where we used ϕj (r) ≤ Crmj for r ≥ 1.
• Let us bound K2,n. Using again Schwarz’s inequality, (32)–(34) and [ηV n

i ≤ k] ⊂ [ηun
j ≤ k], we obtain:

|K2,n| ≤ η2
∫

[η V n
i ≤k]

ψ |∇ϕj (u
n
j )||∇V n

i |Tk(u
n
i )||T ′′′

k (η V n
i ))|

≤ Cη2‖ψ‖L∞(QT )

⎡⎢⎢⎣ ∫
[η un

j ≤k]
|∇ϕj (u

n
j )|2
⎤⎥⎥⎦

1/2⎡⎢⎣ ∫
[η V n

i ≤k]
|∇V n

i |2
∣∣∣∣∣∣∣
1/2

,

≤ Cη2D(ψ)

√
ϕj (k/η)

[
k/η
]1−M/2

≤ Cη2D(ψ)
[
k/η
]1−mj /2 [

k/η
]1−M/2

≤ CD(ψ)η(mj +M)/2. �
Proof of Proposition 3.6. Recall that, by Lemma 3.8, we have for all ψ ∈ CT , ψ ≥ 0
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∫
QT

An
i,η,kψ ≥

∫
QT

T ′
k(u

n
i )T

′
k(η V n

i )f n
i (un)ψ − C D(ψ)ηδ, (38)

where

An
i,η,k = ∂t

(
Tk(u

n
i )T

′
k(η V n

i )
)− ∇ · (T ′

k(u
n
i )T

′
k(η V n

i )∇ϕi(u
n
i )
)
, V n

i =
∑
j �=i

un
j .

Note also that{ ∫
QT

An
i,n,kψ = − ∫

�
Tk(u

n
i0)T

′
k(η V n

i (0))ψ(0)

+ ∫
QT

−Tk(u
n
i )T

′
k(η V n

i ) ∂tψ + T ′
k(u

n
i )T

′
k(η V n

i )∇ϕi(u
n
i )∇ψ.

(39)

The main point is to pass to the limit in (38) and (39). We do it in the following order: first n → +∞, then η → 0, 
finally k → +∞.

• Let n → +∞ along the subsequence introduced in Lemma 3.4 (η and k are fixed). Since un
i0 → ui0 in L1(�) and 

since Tk , T ′
k are Lipschitz continuous∫

�

Tk(u
n
i0)T

′
k(η V n

i (0))ψ(0) →
∫
�

Tk(ui0)T
′
k(η Vi(0))ψ(0).

For the last integral in (39), since, for all j = 1, . . . , m, un
j converges in L1(QT ) and a.e. to uj , it follows that 

Tk(u
n
i )T

′
k(η V n

i ) → Tk(ui)T
′
k(η Vi) in L1(QT ) where we set Vi :=∑j �=i uj . It also follows that T ′

k(η V n
i ) con-

verges in L2(QT ) to T ′
k(η Vi). Next, T ′

k(u
n
i )∇ϕ(un

i ) is bounded in L2(QT ) by (33) in Lemma 3.9. Therefore it 
converges weakly in L2(QT ). Its limit is necessarily T ′

k(ui)∇ϕ(ui). Indeed, T ′
k(u

n
i )∇ϕ(un

i ) = ∇Sk(u
n
i ) where we 

set Sk(r) :=
∫ r

0 T ′
k(s)ϕ

′
i (s)ds. Since Sk(u

n
i ) converges a.e. to Sk(ui) and is bounded, the convergence holds in 

the sense of distributions. Therefore the distribution limit of ∇Sk(u
n
i ) is ∇Sk(ui) = T ′

k(ui)∇ϕi(ui). This ends the 
proof of the passing to the limit in (39).
Now, to pass to the limit in the right-hand side of (38), let us denote

Wn := T ′
k(u

n
i )T

′
k(η V n

i )f n
i (un), W := T ′

k(ui)T
′
k(η Vi)fi(u)

and let us show that Wn converges to W in L1(QT ). Since Wn = 0 outside the set [un
i ≤ k] ∪ [V n

i ≤ k/η], if 
M := max{k, k/η}, we may write (see the definition (17) and property (4) and recall that |T ′

k | ≤ 1)

|Wn| ≤ |f n
i (t, x, un)| ≤ |fi(t, x,0)| + εn

0 + K(M)||un(t, x)||.
By assumption (see (18)), as n → +∞, εn

0 tends to 0 in L1(QT ). Moreover, un converges in L1(QT )m to u. 
Therefore, to prove the convergence of Wn in L1(QT ), it is sufficient to prove that it converges a.e. We know 
that, for all j , un

j converges a.e. to uj . Therefore, T ′
k(u

n
i )T

′
k(η V n

i ) converges a.e. to T ′
k(ui)T

′
k(η Vi). It remains to 

check that

f n
i (t, x, un(t, x)) converges a.e. (t, x) to fi(t, x, u(t, x)). (40)

Let D be the subset of (t, x) ∈ QT such that, at the same time, un(t, x) converges to u(t, x) with ||u(t, x)|| < +∞
and εn

p(t, x) converges to 0 for all positive integer p as n → +∞ along the subsequence introduced in Lemma 3.4. 
We know that QT \D is of zero Lebesgue measure. Now let (t, x) ∈ D and let p > ‖u(t, x)‖. For n large enough, 
‖un(t, x)‖ < p and we may write for all i = 1, . . . , m (using the definition (17) and property (4)):{ |f n

i (t, x, un(t, x)) − fi(t, x,u(t, x))| ≤ εp(t, x) + |fi(t, x,un(t, x)) − fi(t, x,u(t, x))|
≤ εp(t, x) + K(p)||un(t, x) − u(t, x)||.

The right-hand side of this inequality tends to 0 by definition of D.
According to the above analysis, we can pass to the limit as n → +∞ in (38) and (39) and we obtain that{− ∫

�
Tk(ui0)T

′
k(η Vi(0))ψ(0) + ∫

QT
−Tk(ui)T

′
k(η Vi) ∂tψ + T ′

k(ui)T
′
k(η Vi)∇ϕi(ui)∇ψ

≥ ∫
QT

T ′
k(ui)T

′
k(η Vi)fi(u)ψ − C D(ψ)ηδ.

(41)
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• We now let η → 0 for fixed k in (41). Since f n
i (un) converges a.e. to fi(u) (see (40)) and is bounded in L1(QT ), 

Fatou’s lemma implies that fi(u) ∈ L1(QT ). As η → 0, T ′
k(η vi)) → 1 a.e. and stays bounded by 1, then by 

dominated convergence, we can replace at the limit T ′
k(η Vi) in all integrals of (41). Thanks to δ > 0, we then 

obtain

−
∫
�

Tk(ui0)ψ(0) +
∫

QT

−Tk(ui) ∂tψ + T ′
k(ui)∇ϕi(ui)∇ψ ≥

∫
QT

T ′
k(ui)fi(u)ψ. (42)

• Finally, we let k → +∞ in this inequality (42). Then Tk(ui) increases to ui and T ′
k(ui) increases to 1, ∇ϕi(ui) is 

at least in L1(QT ) (see (27)) and fi(u) ∈ L1(QT ). Therefore, we easily pass to the limit in (42) to obtain

−
∫
�

ui0ψ(0) +
∫

QT

−ui ∂tψ + ∇ϕi(ui)∇ψ ≥
∫

QT

fi(u)ψ. (43)

And this ends the proof of Proposition 3.6. �
Proof of Theorem 2.6. By Proposition 3.6, we already know that the limit u is a supersolution in the sense that (43)
is satisfied for all ψ ∈ CT , ψ ≥ 0 and for all i = 1, . . . , m. We will show with the help of the (M) structure property 
(6) that the inverse inequality is satisfied for the sum of these m expressions, namely

−
∫
�

[
∑

i

ui0]ψ(0) +
∫

QT

−[
∑

i

ui] ∂tψ + [
∑

i

∇ϕi(ui)]∇ψ ≤
∫

QT

[
∑

i

fi(u)]ψ. (44)

This will imply that equality holds in each of the inequalities (43).
Going back to the approximate system (16) and adding the m equations lead to the fact that, for all ψ as above,

−
∫
�

[
∑

i

un
i0]ψ(0) +

∫
QT

−
[∑

i

un
i

]
∂tψ + [

∑
i

∇ϕi(u
n
i )]∇ψ =

∫
QT

[
∑

i

f n
i (un)]ψ.

We already know that, along an adequate subsequence of n → +∞, un
i converges in L1(QT ) to ui and that ∇ϕ(un

i )

converges weakly in L2(QT ) to ∇ϕi(ui) (see the proof of Proposition 3.6). Hence, the left-hand side of this equality 
converges to the expected limit as n → +∞.

For the right-hand side, the assumption (6) on the f n
i says that

σ ||un|| + h −
∑

i

f n
i (un) ≥ 0.

We know that un converges in L1(QT ) to u and, according to (40), that f n
i (un) converges a.e. to fi(u). By Fatou’s 

Lemma∫
QT

[
σ ||u|| + h −

∑
i

fi(u)

]
ψ ≤

∫
QT

(σ ||u|| + h)ψ + lim inf
n→+∞

∫
QT

−[
∑

i

f n
i (un)]ψ.

Therefore

lim sup
n→∞

∫
QT

[
∑

i

f n
i (un)]ψ ≤

∫
QT

[
∑

i

fi(u)]ψ,

whence (44). And as explained above, this implies that equality holds in (43). We will use below the version obtained 
after integration by parts, namely that, for all ψ ∈ CT

−
∫

ui0ψ(0) +
∫

−ui ∂tψ − ϕi(ui)�ψ =
∫

fi(u)ψ. (45)
� QT QT
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We know that, at least ϕi(ui) ∈ L1(0, T ; W 1,1
0 (�)) by Lemma 3.4. To conclude the proof of Theorem 2.6, it remains 

to show that we exactly have

ui = Sϕi
(ui0, fi(u)), (46)

in the sense of (11).
To this end, we first go back to (42). Note that by approximation, this inequality remains valid if one replaces Tk

by the “exact” truncation function

∀r ∈ [0, k], 
k(r) = r, ∀r ∈ [k,+∞), 
k(r) = k,

and since 
′
k(ui)∇ϕi(ui) = ∇ϕi(
k(ui)) a.e., then (42) may be written

−
∫
�


k(ui0)ψ(0) +
∫

QT

−
k(ui) ∂tψ + ∇ϕi(
k(ui))∇ψ ≥
∫

QT


′
k(ui)fi(u)ψ. (47)

Inequality (47) says in some sense that 
k(ui) is a bounded “supersolution” of ∂t
k(ui) − �ϕi(
k(ui)) ≥

′

k(ui)fi(u). By the comparison Theorem 6.5 in [40] (see also Proposition 6.4 in [40]), we may deduce that


k(ui) ≥ Sϕi

(

k(ui0),


′
k(ui)fi(u)

)
.

Now, passing to the limit as k → +∞ and using the contraction property (10), we deduce (note that (
k(ui0),


k(ui)fi(u)) converges to (ui0, fi(u)) in L1(�) × L1(QT )):

ui ≥ Sϕi
(ui0, fi(u)) =: Ui.

But, since ui satisfies (45) and since so does Ui by (12), we have∫
QT

(ui − Ui)∂tψ + [ϕi(ui) − ϕi(Ui)]�ψ = 0.

Choosing ψ(t, x) = (T − t)ζ(x) where −�ζ = 1 in �, ζ = 0 on ∂�, we obtain∫
QT

(ui − Ui)ζ + [ϕi(ui) − ϕi(Ui)](T − t) = 0.

Since ζ > 0, ui ≥ Ui , ϕi increasing, we deduce ui ≡ Ui whence (46). �
Proof of Theorem 2.7. We add the m equations of System (16) to obtain

∂t (
∑

i

un
i ) − �(

∑
i

ϕi(u
n
i )) =

∑
i

f n
i (un) ≤ σ ||un|| + h = σ

∑
i

un
i + h.

We rewrite this as

∂t (e
−σ t
∑

i

un
i ) − �

(
e−σ t

∑
i

ϕi(u
n
i )

)
≤ e−σ th ≤ h.

Let us set W(t) := e−σ t
∑

i u
n
i , Z(t) :=

t∫
0

e−σs
∑

i

ϕi(u
n
i (s))ds. Integrating the last inequality in time leads to

W(t) − �Z(t) ≤ W(0) +
t∫

0

h(s)ds. (48)

We now multiply this inequality by ∂tZ(≥ 0) and we integrate over QT :
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∫
QT

(∂tZ)W +
∫

QT

∇∂tZ · ∇Z ≤
∫

QT

∂tZ

⎡⎣W(0) +
t∫

0

h

⎤⎦≤
∫
�

⎡⎣W(0) +
T∫

0

h

⎤⎦Z(T ).

We have 
∫
QT

∇∂tZ · ∇Z = 1
2

∫
�

|∇Z(T )|2 ≥ 0. Moreover, the above right hand-side is bounded for all T > 0. To see 
it, we may introduce the solution of

−�θ0 = W(0) +
T∫

0

h in �, θ0 = 0 on ∂�, θ0 ≥ 0.

And we multiply the equation (48) at time t = T by θ0 to find, after integration by parts∫
�

W(T )θ0(T ) +
∫
�

⎡⎣W(0) +
T∫

0

h

⎤⎦Z(T ) ≤
∫
�

|∇θ0|2 ≤ C‖W(0) +
T∫

0

h‖L2(�).

Finally, for all T > 0, we obtained C(T ) ∈ (0, +∞) such that∫
QT

e−2σ t [
∑

i

un
i ][
∑

i

ϕi(u
n
i )] ≤ C(T ).

In particular, if ϕi(ui) = diu
mi

i , we obtain

di

∫
QT

u
mi+1
i ≤ e2σT C(T ).

And if ϕi is nondegenerate as in (7), this estimate is also valid with mi = 1. �
Proof of Corollary 2.8. For all i = 1, . . . , m, we set

un
i0 := inf{ui0, n}, ∀r ∈ [0,+∞)m, a.e. (t, x) ∈ Q, f n

i (t, x, r) = fi(t, x, r)

1 + 1
n

∑
j |fj (t, x, r)| .

As already stated (see the comments following (19)), these approximations f n
i satisfy (4), (5), (6) with values inde-

pendent of n. Thus, we may consider the solutions of the approximate system (16) and apply Theorem 2.7 which 
implies that, for all i = 1, . . . , m, un

i is bounded in Lmi+1(QT ). Together with the assumption (21), it follows that 
f n

i (un) is uniformly integrable on QT . Indeed, for all measurable set K ⊂ QT with Lebesgue measure denoted by 
|K|, we have (recall that |f n

i | ≤ |fi |)

∫
K

∑
i

|f n
i (un)| ≤ C

⎡⎣|K| +
∑

i

∫
K

(un
i )

mi+1−ε

⎤⎦≤ C

⎡⎢⎢⎣|K| +
∑

i

⎛⎜⎝ ∫
QT

(un
i )

mi+1

⎞⎟⎠
mi+1−ε

mi+1

|K| ε
mi+1

⎤⎥⎥⎦ .

Since supn

∫
QT

(un
i )

mi+1 < +∞, this implies that 
∫
K

∑
i |f n

i (un)| may be made uniformly small by taking |K| small 
enough. This is exactly the uniform integrability of the f n

i (un).
Moreover, f n

i (un) converges a.e. to fi(u). Therefore, at least up to a subsequence, by Vitali’s Lemma 3.3, we 
may deduce that f n

i (un) converges in L1(QT ) for all T < +∞ to fi(ui). This implies that un
i = Sϕi

(
un

i0, f
n
i (un)

)
converges to ui = Sϕi

(ui0, fi(u)).
Finally, by the estimate (27) in Lemma 3.2 of ∇ϕi(u

n
i ) in Lβ(QT ) with β > 1, it follows that ϕi(ui) is (at least) in 

L1(0, T ; W 1,1
0 (�)). This ends the proof of Corollary 2.8. �

Proof of Corollary 2.9. Note first that the reactive terms in System (22) satisfy the three assumptions (4), (5) and (6)
with σ = 0, h = 0. If ϕi(ui) = diu

mi

i for at least one odd and one even value of i ∈ {1, . . . , 4}, then the assumptions of 
Corollary 2.8 are satisfied: indeed, if for instance m1 > 1, we may write Young’s inequality
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u1u3 ≤ 1

p
u

p

1 + 1

q
u

q

2 , p = (m1 + 3)/2 < m1 + 1, q = (m1 + 3)/(m1 + 1) < 2,

and similarly for u2u4. Whence global existence of weak solutions. With mi ≥ 1, i = 1, . . . , 4, the strict condition 
(21) is not necessarily satisfied. We need an extra argument to obtain strong compactness in L1(QT ) of the reactive 
terms. We could use the L2-compactness approach used in [31] and [8, Lemma 5].

Here, as in [11], we can more easily use the entropy structure of the system which would apply as well to general 
reversible reactions (see Remark 2.10). This will provide uniform integrability of the approximate reactive terms and, 
together with the a.e. convergence and Vitali’s Lemma 3.3, strong L1(QT ) compactness as well, whence the result of 
Corollary 2.9.

We use the same approximation as in the proof of Corollary 2.8. For i = 1, . . . , 4, let us set

wn
i := un

i logun
i − un

i + 1(≥ 0), zn
i =

un
i∫

1

log r ϕ′
i (r)dr ≥ 0. (49)

We have

∂tw
n
i − �zn

i = logun
i f

n
i (un) − ϕ′

i (u
n
i )

un
i

|∇un
i |2.

The main point is that∑
1≤i≤4

logun
i f

n
i (un) = −(un

1un
3 − un

2un
4)(log(un

1un
3) − log(un

2un
4))/[1 + 1

n

∑
1≤i≤4

|fi(u
n)] ≤ 0.

We deduce that

∂t (
∑

1≤i≤4

wn
i ) − �

∑
1≤i≤4

zn
i ≤ 0. (50)

We now make the same computation as in the proof of Theorem 2.7. We integrate this inequality in time, we multiply 
by 
∑

i z
n
i (≥ 0) and we integrate over QT . We obtain

∫
QT

(
∑

1≤i≤4

wn
i )(
∑

1≤i≤4

zn
i ) + 1

2

∫
�

|∇
T∫

0

∑
1≤i≤4

zn
i |2 ≤

∫
�

∑
1≤i≤4

wn
i (0)

T∫
0

∑
1≤i≤4

zn
i . (51)

From

−�

T∫
0

∑
1≤i≤4

zn
i ≤

∑
1≤i≤4

wn
i (0) ≤

∑
1≤i≤4

ui0| logui0| + 4 ∈ L2(�),
∑

1≤i≤4

zn
i = 0 on ∂�,

we deduce that 
∫ T

0

∑
i z

n
i is bounded in L2(�) independently of n. Thus, it follows from (51) that for some C(T ) ∈

(0, +∞)∫
QT

(
∑

1≤i≤4

wn
i )(
∑

1≤i≤4

zn
i ) ≤ C(T ).

Now, in the nondegenerate case, ϕ′
i(u

n
i ) ≥ ai for some ai > 0 so that zn

i ≥ aiw
n
i and the above last estimate implies ∫

QT
ai(logun

i )
2(un

i )
2 ≤ C(T ). If ϕi(u

n
i ) = di(u

n
i )

mi , we have zn
i = di logun

i (un
i )

mi − (mi)
−1[(un

i )
mi − 1]. From the 

same estimate above, we deduce∫
QT

(logun
i )

2(un
i )

mi+1 ≤ C(T ).

In all cases, we obtain that (un
i )

2 are uniformly integrable on QT . Thus we can pass to the limit in L1(QT ) in the 
quadratic terms f n(un). �
i
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Proof of Remark 2.10. Let us first assume k1 = k2 =: k in (23). With the same notation as in the just above proof of 
Corollary 2.9, we have

m∑
i=1

logun
i f

n
i (un) = −k[

∏
i

u
qi

i −
∏
i

u
pi

i ] log

∏
i u

qi

i∏
i u

pi

i

≤ 0,

∂t (
∑

i

wn
i ) − �

∑
i

zn
i ≤ 0.

We now multiply this last inequality by 
∑

i z
n
i and, by the same computation as in (51) and in the lines which follow 

(51), we deduce as well that 
∫
QT

(logun
i )

2(un
i )

mi+1 ≤ C(T ) for all i = 1, . . . , m. Therefore (un
i )

mi+1 is uniformly 
integrable.

Now let ri := (mi + 1)/qi for i = 1, . . . , m and s := 1 −∑m
i=1 qi/(mi + 1), this last number being nonnegative by 

assumption (24). Then, using 
∑

i (ri)
−1 + s = 1, by Young’s inequality we have

m∏
i=1

(un
i )

qi ≤
m∑

i=1

ri
−1(un

i )
mi+1 + s.

This implies that the product 
∏

i (u
n
i )

qi is itself uniformly integrable and similarly for 
∏

i (u
n
i )

pi . Therefore, as in 
Corollary 2.9, we can pass to the limit in L1(QT ) for the nonlinear reaction terms of the approximate problem to 
System (23).

Finally, to treat the case k1 �= k2, if for instance p1 − q1 �= 0, we may just change the definition of the functions 
wn

1 , zn
1 as

wn
1 := un

1 log(λun
1) − un

1 + 1/λ, zn
1 =

un
1∫

1

log(λr)ϕ′
1(r)dr,

with λp1−q1 := k1/k2. The rest is unchanged. �
Proof of Corollary 2.11. Again, we consider the same approximation as in the proof of Corollary 2.8. By Theo-
rem 2.6, it is sufficient to prove that the L1(QT )-estimate (20) holds. Let us denote P = (pij )1≤i,j≤m. By Assump-
tion (25), and using (19), we have

∀i = 1, . . . ,m,
∑
j

pij f
n
j (un) =

∑
j pij fj (u

n)

1 + 1
n

∑
p |fp(un)| ≤ bi[1 +

∑
j

(un
j )

mj +1].

Since the right-hand side is nonnegative, we can even write

∀i = 1, . . . ,m,

⎡⎣∑
j

pij f
n
j (un)

⎤⎦+
≤ bi[1 +

∑
j

(un
j )

mj +1].

But, by Theorem 2.7, un
j is bounded in Lmj+1(QT ) independently of n. Therefore, for some C(T ) ∈ (0, +∞)

∫
QT

⎡⎣∑
j

pij f
n
j (un)

⎤⎦+
≤ C(T ).

Now multiplying each j -th equation of the approximate System (16) by pij and summing over j leads, for all i =
1, . . . , m, to

∑
j

pij [∂tu
n
j − �ϕj (u

n
j )] +

⎡⎣∑
j

pij f
n
j (un)

⎤⎦−
=
⎡⎣∑

j

pij f
n
j (un)

⎤⎦+
.
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Integrating over QT and using positivity of the various terms gives∫
QT

⎡⎣∑
j

pij f
n
j (un)

⎤⎦−
≤
∫

QT

⎡⎣∑
j

pij f
n
j (un)

⎤⎦+
+
∑
j

pijuj0.

We deduce that for some C(T ) ∈ (0, +∞)

∑
i

∫
QT

∣∣∣∣∣∣
∑
j

pij f
n
j (un)

∣∣∣∣∣∣≤ C(T ) or
∫

QT

||Pf n(un)|| ≤ C(T ),

where ∀r ∈ R
m, ||r|| =∑i |ri |. If we denote also by || · || the induced norm on m × m matrices, then we have∫

QT

||f n(un)|| =
∫

QT

||P −1Pf n(un)|| ≤ ||P −1||
∫

QT

||Pf n(un)|| ≤ C(T ). �
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