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Abstract

In this work we introduce the obstacle-mass constraint problem for a multidimensional scalar hyperbolic conservation law. 
We prove existence of an entropy solution to this problem by a penalization/viscosity method. The mass constraint introduces a 
nonlocal Lagrange multiplier in the penalized equation, giving rise to a nonlocal parabolic problem. We introduce a compatibility 
condition relating the initial datum and the obstacle function which ensures global in time existence of solution. This is not a 
smoothness condition, but relates to the propagation of the support of the initial datum.
© 2015 Published by Elsevier Masson SAS.
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1. Introduction

We consider the Cauchy problem for a hyperbolic conservation law on (t, x) ∈ (0, T ) ×R
d ,

H(u) ≡ ∂tu + divf (u) = 0,

u(0, x) = u0(x), x ∈ R
d, (1.1)

under both restrictions

0 ≤ u(t, x) ≤ θ(t, x) (1.2)

and
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∫

Rd

u(t, x) dx = 1, t ≥ 0. (1.3)

Here, θ(t, x) is a given obstacle function, f is the flux function which is supposed to be smooth, and the Cauchy 
datum u0 is such that 0 ≤ u0(x) ≤ θ(0, x), with 

∫
Rd u0(x) dx = 1. In all that follows, every solution u of the various 

problems we will consider will be nonnegative, this being a consequence of the non-negativeness of the initial datum 
and the properties of the operator H .

Even without the mass constraint (1.3), some sense must be given to the hyperbolic problem (1.1) under the obstacle 
constraint u ≤ θ . This was done mainly by Lévi in a series of works [10–12], in the case of a Dirichlet problem, in 
which a viscous approximation was introduced with a penalization term enforcing a constraint of type u ≤ θ .

One way to understand Lévi’s approach is to observe that (formally at least) a solution u to the obstacle problem 
H(u) = 0, u ≤ θ actually corresponds to a couple (u, μ) verifying

∂tu + divf (u) = μ, (1.4)

with

μ = −H(θ)−χ{u=θ},

where we define the positive and negative parts as v+ := ess sup{v, 0}, v− = (−v)+, and H is the operator defined 
in (1.1). The motivation for the above equation can be found in Remark 4.2 in [18] for the linear case. In fact, equation 
(1.4) means that u must solve the equation H(u) = 0 wherever u does not coincide with θ . On the other hand, on the 
coincidence set {u = θ} where the Lagrange multiplier μ is active, formally one has H(θ) = −H−(θ), which is to 
say, H(θ) ≤ 0.

However, such a solution, while verifying u ≤ θ , does not conserve mass. This reduces the applicability of that 
approach to problems where mass conservation is important, such as in porous media models with saturation arising 
in petroleum engineering and crowd or traffic dynamics (see, however, [3] for an application of an obstacle problem 
enforcing mass loss). More examples of domains where hyperbolic obstacle problems may be applicable can be found 
in [7] and the references in [11]. Other references on hyperbolic obstacle problems include [1,2,13,17,18], although 
we could cite many others. For an introduction to classical obstacle problems, we address the reader to the books of 
Kinderlehrer and Stampacchia [9], and also Rodrigues [16].

It is clear that a solution to (1.1)–(1.3), taken in a naïve sense, may not exist if the obstacle θ is reached. Indeed, 
in that case, there are two mutually exclusive effects taking place: on the one hand, the evolution equation H(u) = 0
naturally conserves the total mass; on the other hand, the presence of the obstacle leads to mass loss. In this work we 
propose a mechanism designed to reconcile these two contradictory aspects. One classical way in which an integral 
constraint like the unit integral condition in (1.3) may be enforced, is to introduce a Lagrange multiplier into the 
equation (1.1), see for instance Caffarelli and Lin [4] for a related problem. Taking this approach here, our problem 
without obstacle may be posed as follows: we look for a pair (u, λ), with λ(t) a function of t alone, such that u and λ
satisfy

∂tu + divf (u) = λ(t)u,

u(0, x) = u0(x), (1.5)

where the Lagrange multiplier λ(t) ensures that∫

Rd

u(t, x) dx = 1, t ≥ 0.

To our knowledge, this procedure is completely new for scalar conservation laws. Moreover, we require that u satisfy 
both restrictions (1.2) and (1.3). Thus, even while respecting the obstacle condition, the solution u conserves the total 
mass, which is physically relevant for real applications.

Formally, and in agreement with (1.4) and (1.5), the solution u of (1.1)–(1.3) should verify

∂tu + divf (u) = −H(θ)−χ{u=θ} + u

∫
d

H(θ)−χ{u=θ} dx. (1.6)
R
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In fact, setting λ(t) = ∫
Rd H(θ)−χ{u=θ} dx and integrating (1.6) on Rd one finds formally

d

dt

∫

Rd

u dx = λ(t)
(∫

Rd

u dx − 1
)
,

which yields the conservation of mass 
∫
Rd u dx = 1 for t > 0, as long as 

∫
Rd u0 dx = 1.

The main goal in this work is to give a precise meaning to the above formal reasoning, by obtaining an entropy 
solution to (1.1)–(1.3) (and thus (1.6)) defined in an appropriate sense. For that, we will introduce a nonlocal parabolic 
equation containing a penalization term to enforce the constraint u ≤ θ (as in [11]), and a new, nonlocal Lagrange 
multiplier term designed to enforce the mass constraint (1.3). As we will see below, this is not trivial to achieve. The 
first problem which arises is the lack of global in time existence for a possible solution of the problem (1.1)–(1.3). 
This is explained in more detail below, and is linked to the possibility that the support of the solution may find itself 
in a region where the integral of θ is too small. In this way, it is obviously impossible to satisfy both conditions (1.2)
and (1.3) simultaneously.

One can say that such a situation reflects a lack of compatibility between the solution and the obstacle function. 
This problem is solved by defining an appropriate notion of compatibility between the obstacle θ and the initial datum 
u0 (see Definition 1.3 below). Crucially, this notion of compatibility is sufficient to obtain global-in-time existence of 
an entropy solution to the problem (1.1)–(1.3).

The uniqueness of solution is not established here. Nevertheless, we conjecture that a wellposedness property is 
valid. Note that in [11], the uniqueness property is a delicate part of that paper, as is usual in the theory of hyperbolic 
conservation laws. The difficulty in reproducing usual uniqueness arguments (Kruzkov’s doubling of variables) is 
mainly due to the fact that a solution to (1.1)–(1.3) actually consists of a pair (u, λ) (see Definition 1.2 below). Note, 
however, that in order to obtain our existence result, a careful and involved study of a nonlocal parabolic problem is 
necessary, requiring in particular new assumptions on the data and delicate estimates. However, our method does not 
give an explicit or clear dependence of λ(t) with respect to u. For these reasons we chose to leave for future work the 
interesting question of wellposedness.

Finally, it would be interesting to determine whether the methods in our paper can be extended to deal with more 
general (e.g., time dependent) mass constraints, hyperbolic systems of conservation laws, etc. Also, it would be of 
great interest for physical applications (even under smoothness assumptions, to keep the analysis less involved) to 
extend the results of this work to a general conservation law with space and time dependent flux function and source 
term.

An outline of the paper follows. In Section 2 we analyze the nonlocal parabolic problem which approximates the 
full problem (1.1)–(1.3). The analysis is based on a fixed point argument. We present some details, since in the a 
priori estimates one must be careful due to the presence of the penalization and, especially, the nonlocal term. Next, 
in Section 3 we provide key uniform estimates for the approximate problem. They will allow us in Section 4 to pass 
to the limit on the penalized nonlocal parabolic equation to obtain a solution of (1.1)–(1.3). Finally, in the Appendix, 
we provide a proof of two crucial lemmas, used to prove the uniform estimates of Section 3.

1.1. Smoothness assumptions on the data

The initial datum u0 is taken in the space (L∞ ∩ L1)(Rd). In fact, to simplify the exposition, we also consider that 
u0 has bounded variation, that is, u0 ∈ BV (Rd). We suppose that the initial datum has unit mass, so∫

Rd

u0(x) dx = 1. (1.7)

The flux function f is taken in (C2(R))d , and without loss of generality we assume that f (0) = 0. Also, we 
suppose that

‖f ′‖(L∞(R))d ≤ M, ‖f ′′‖(L∞(R))d ≤ M ′. (1.8)

Note that in the subsequent analysis we will eventually prove an L∞ bound (for each time T ) on the solution u.
Therefore, the condition (1.8) can then be relaxed in a standard way to
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sup
|v|≤L

|f ′(v)| ≤ M, sup
|v|≤L

|f ′′(v)| ≤ M ′,

where M, M ′ may depend on L.
The obstacle θ(t, x) : [0, +∞) ×R

d → R is assumed to satisfy the following conditions:

There exists a constant θ > 0 such that θ(t, x) ≥ θ, a.e. (t, x), (1.9)

‖∇t,xθ‖W 2,1([0,+∞)×Rd ) ≤ Cθ, (1.10)

and for each compact set K , the function t →
∫

K

θ(t, x) dx is continuous. (1.11)

Note that the obstacle θ(t, x) is not required to be bounded or continuous, but only bounded away from zero. Also, 
(1.10) is a condition on derivatives of order 1, 2 and 3 of θ , but not on the function θ itself, which is not integrable.

1.2. Entropy solutions to the obstacle-mass constraint problem

Here we recall some standard facts and terminology from hyperbolic conservation laws. We refer the reader to the 
books [8] and [6] for further reference on hyperbolic conservation laws.

Definition 1.1. A function η ∈ C1(R) is called an entropy for equation (1.1), with associated entropy flux q ∈
C1(R; Rd), when for each u ∈R,

q ′
j (u) = η′(u)f ′

j (u), (j = 1, . . . , d). (1.12)

Also, we call F(u) = (η(u), q(u)) an entropy pair, and if η is convex we say that F(u) is a convex entropy pair. 
Moreover, F(u) is called a generalized entropy pair if it is the uniform limit of a family of entropy pairs over compact 
sets.

The Kruzkov entropies are the most important example of generalized convex entropy pairs, consisting of the 
following parametrized family

F(u, v) = (|u − v|, sgn(u − v)(f (u) − f (v)), v ∈ R. (1.13)

Next, extending the definition in [11], we present in which sense a function u(t, x) is a weak entropy solution of 
(1.1)–(1.3).

Definition 1.2. Let θ : [0, +∞) × R
d → R be a function which is called the obstacle, verifying the conditions in 

(1.10)–(1.11). Let u0 ∈ (L1 ∩L∞ ∩BV )(Rd) with 0 ≤ u0(x) ≤ θ(0, x) a.e., and 
∫
Rd u0 dx = 1. A pair (u, λ) is called 

an obstacle mass conserving weak entropy solution of the Cauchy problem (1.1)–(1.3) if for any T > 0:

(i) The function u is in L∞((0, T ) ×R
d) with u(t, ·) ∈ BV (Rd) for a.a. t ∈ [0, T ], and the Lagrange multiplier λ is 

in L∞(0, T ; R+).
(ii) For each nonnegative test function ϕ ∈ C∞

c ((−∞, T ) ×R
d), and any k ∈ [0, 1]

T∫

0

∫

Rd

F (u(t, x), k θ(t, x)) · ∇t,xϕ(t, x) dxdt

+
T∫

0

∫

Rd

(
λ(t) u(t, x) − H(k θ(t, x))

)
sgn(u(t, x) − k θ(t, x))ϕ(t, x) dxdt

+
∫

Rd

|u0(x) − k θ(0, x)|ϕ(0, x) dx ≥ 0. (1.14)

(iii) For almost all (t, x) ∈ (0, T ) ×R
d , 

∫
d u(t) dx = 1 and u(t, x) ≤ θ(t, x).
R
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One observes that, as a consequence of Definition 1.2, the initial condition is assumed in the L1(Rd) strong sense 
(see [5,14,15]):

ess lim
t→0

∫

Rd

|u(t, x) − u0(x)|dx = 0. (1.15)

1.3. Necessary and sufficient conditions for global-in-time existence: a compatibility condition

According to Definition 1.2, a solution u to the obstacle-mass constraint problem must satisfy 0 ≤ u ≤ θ for almost 
all t, x. Then, it is obvious that if for some t > 0 we have

∫

{u(t)>0}
θ(t, x) dx < 1,

then ∫

Rd

u(t, x) dx =
∫

{u(t)>0}
u(t, x) dx ≤

∫

{u(t)>0}
θ(t, x) dx < 1,

which is in contradiction to the unit mass property (the last point in Definition 1.2).
Thus, we see that a necessary condition for global-in-time existence is that the integral of the obstacle function θ

on the support of the solution u remain greater than one, that is to say, for almost all (t, x) ∈ (0, T ) ×R
d ,

∫

{u(t)>0}
θ(t, x) dx ≥ 1. (1.16)

Of course the property (1.16) depends on the solution itself. To find a sufficient condition for global existence, we 
must find a condition on the initial datum u0 and on the obstacle θ only, ensuring that a property like (1.16) remains 
valid for arbitrary times T > 0. To this end, we now introduce the notion of compatible initial datum and obstacle.

Define v(t, x) as the unique entropy solution to the Cauchy problem for the conservation law on [0, T ] ×R
d

∂tv + divf (v) = 0,

v(0, x) = v0(x), (1.17)

where v0 ∈ (L∞ ∩ L1 ∩ BV )(Rd). Recall from [8] that v ∈ C(0, T ; L1(Rd)).

Definition 1.3. Let u0 be an initial datum and θ an obstacle verifying the assumptions in Definition 1.2. We say that 
u0 and θ are compatible if there exists a function v0(x) ∈ (L∞ ∩ L1 ∩ BV )(Rd) with the following properties:

(i) v0(x) ≤ min(u0(x), θ), where θ is the lower bound on the obstacle, given in (1.9);
(ii) For some β > 0,

1 + β ≤
∫

{v>0}
θ(t, x) dx ≤ +∞, (1.18)

where v(t, x) is given by (1.17).

We now show that, there exists an important special case, where one may ensure that u0 and θ are compatible in 
the sense of Definition 1.3.

Proposition 1.4. Suppose that for each compact K ⊂ R
d there is a constant cK > 0 such that u0(x) ≥ cK , x ∈ K . 

Then, u0 and θ are compatible in the sense of Definition 1.3.
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Proof. It suffices to take some 0 < γ < θ and v0(x) := min(u0(x), γ ) in (1.17). In that case, the condition (1.18)
is valid. Indeed, from finite speed of propagation, the solution v of the conservation law (1.17) will have the same 
property of being locally bounded away from zero as u0. To see this, consider a ball B(r) of radius r > 0 centered 
around an arbitrary point of Rd . Then we have that, for M given by (1.8), t > 0, the solution v(t, x) on B(r) is 
influenced only by the values of v0 on B(r + Mt). Let c > 0 be such that v0 ≥ c on B(r + (M + 1)t). Since c
is a solution to the conservation law (1.17), the classical comparison property for conservation laws and domain of 
dependence arguments [8] imply that, v(t, x) ≥ c > 0 on B(r).

Therefore, {v(t) > 0} =R
d and so the condition (1.18) in Definition 1.3 is verified. �

Note that Definition 1.3 refers to properties of the initial datum u0, and the obstacle function θ only, and not of 
the solution to the obstacle-mass constraint problem u(t, x). Indeed, it states that the support of the solution v of the 
conservation law (1.17) cannot be carried into a region where the integral of θ is less than one.

Remark 1.5. Suppose that u0 and θ are compatible in the sense of Definition 1.3. Then, it follows that the initial 
datum u0 must have some mass strictly below the obstacle θ , which will be useful later. Indeed, suppose not, hence 
u0(x) = 0 or u0(x) = θ . Therefore, {v0 > 0} ⊂ {u0 > 0} and so, we would have

1 < 1 + β ≤
∫

{v0>0}
θ dx ≤

∫

{u0>0}
θ dx =

∫

Rd

u0 dx = 1,

which is a contradiction.

Remark 1.6. Suppose we have a solution u(x, t) of the obstacle-mass problem (Definition 1.2) with 
∫
Rd u dx = 1, 

and that u0 and θ are compatible in the sense of Definition 1.3. Then, the argument in Remark 1.5 is still valid for 
each t > 0, showing that u has some mass strictly below the obstacle θ for each t :∫

{u<θ}
u(t) dx ≥ 0. (1.19)

This property is crucial in our analysis. It guarantees that, if u is losing mass from contact with the obstacle θ , then 
there is a “reserve” of mass strictly below the obstacle on which the Lagrange multiplier term uλ can act, compensating 
for the lost mass. One important part in this work is to prove rigorously a precise version of (1.19), which can be found 
in Lemma 3.2 below. The proof is delicate and can be found in the Appendix.

For future reference, we will also consider the following viscous perturbation of (1.17),

∂tvε + divf (vε) − ε�vε = 0,

vε(0, x) = v0(x). (1.20)

The existence, uniqueness and regularity properties of the family {vε}, follow from standard well-posedness theory 
for parabolic equations.

1.4. Main result

The main result of this paper is the following existence theorem, which states that compatibility in the sense of 
Definition 1.3 is sufficient to ensure global-in-time existence of a solution to the obstacle-mass constraint problem.

Theorem 1.7 (Existence of solution to the obstacle-mass constraint problem). Let u0 ∈ (L1 ∩L∞ ∩BV )(Rd), and let 
θ(t, x) be an obstacle function. Suppose that u0, the flux f , and θ verify (1.7)–(1.11) and that u0, θ are compatible in 
the sense of Definition 1.3. Then, there exists an entropy solution to the hyperbolic obstacle-mass constraint problem 
(1.1)–(1.3) in the sense of Definition 1.2.

The proof of Theorem 1.7 will be given in Section 4. Our strategy consists of analyzing a perturbed problem ((2.1)
below) and passing to the limit on the perturbation parameters. This analysis will be the object of the next sections.
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2. Study of the nonlocal penalized problem

2.1. An approach using a nonlocal penalization

Let u0 and θ verify the assumptions (1.7)–(1.11). For each ε > 0, and all n ∈N we consider the following nonlocal 
perturbed parabolic problem

⎧⎪⎨
⎪⎩

∂tun,ε + divf (un,ε) − ε�un,ε = nun,ε

∫

Rd

(un,ε − θ)+ dx − n(un,ε − θ)+,

un,ε(0, x) = u0(x),

(2.1)

as an approximation scheme to solve the problem (1.1)–(1.3) (here (z)+ = max{z, 0}). Indeed, the last term in (2.1)
is the usual term penalizing the excess of un,ε above θ (see [11]), ensuring that the limit of un,ε will stay below the 
obstacle θ .

We now explain formally how the introduction in (2.1) of the nonlocal penalization term n un,ε

∫
Rd (un,ε − θ)+ dx

implies the unit integral property. Indeed, integrating (2.1) on Rd and on [0, t], one finds using 
∫
Rd u0 dx = 1 that

∫

Rd

un,ε dx − 1 ≤ n

t∫

0

(∫

Rd

un,ε dx − 1
)(∫

Rd

(un,ε − θ)+ dx
)

ds

≤ n sup
(0,t)

(∫

Rd

(un,ε − θ)+ dx
) t∫

0

(∫

Rd

un,ε dx − 1
)

ds.

Since un,ε is expected to remain below the obstacle θ in the limit, the term n 
∫
Rd (un,ε − θ)+ dx is expected to remain 

bounded with n. Then, using Gronwall’s Lemma, the previous estimate yields 
∫
Rd un,ε(t, x) dx = 1 for t ≥ 0. The 

previous computation will be precisely described below.

2.2. Well-posedness for the nonlocal penalized problem

In this section, we establish well-posedness results for the nonlocal penalized parabolic problem (2.1). As we shall 
see, the analysis of this problem for each n and ε is not trivial, due to the competition between the nonlocal term and 
the penalization term. The main technical tool will be the Banach contraction principle. We follow in general lines the 
exposition in [8].

For T > 0, define the space W =W(0, T ) by

W := {v : v ∈ L2(0, T ;H 1(Rd)
)
, ∂t v ∈ L2(0, T ;H−1(Rd)

)}. (2.2)

One recalls that the space W enjoys the continuous imbedding

W ⊂ C
([0, T ];L2(Rd)

)
.

Moreover, for any v ∈W the limt→0 v(t) = v(0) is a well defined element of the space L2(Rd).

Theorem 2.1 (Well-posedness for the nonlocal penalized problem). Let u0 ∈ (L1 ∩ L2)(Rd), with 
∫
Rd u0(x) dx = 1. 

Then, for each n ∈N, ε, T > 0, there exists a unique solution

un,ε ∈ W∩ C
([0, T ]; (L1 ∩ L2)(Rd)

)
,

of the nonlocal parabolic problem (2.1), in the sense that: For every w ∈ H 1(Rd), and for almost all t ∈ (0, T ),
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〈∂tun,ε(t),w〉H−1×H 1 −
∫

Rd

(
f (un,ε(t)) − ε∇un,ε(t)

) · ∇w dx

= n
(∫

Rd

un,ε(t)w dx
)(∫

Rd

(un,ε(t) − θ(t))+ dx
)

− n

∫

Rd

(un,ε(t) − θ(t))+ w dx, (2.3)

and limt→0
∫
Rd ‖un,ε(t) − u0‖L2(Rd )dx → 0. Moreover, this solution verifies for almost all t ∈ (0, T ),

∫

Rd

un,ε(t)dx = 1.

Proof. 1. The theorem will be proved using the Banach contraction principle. To this end, given v ∈ C
([0, T ];

L1(Rd)
)
, let v ∈ W be the weak solution of the Cauchy problem

∂tv + divf (v) − ε�v = nv

∫

Rd

(v − θ)+ dx − n(v − θ)+,

v(0, x) = u0(x). (2.4)

More precisely, v is such that, for all w ∈ H 1(Rd), and for almost all t ∈ (0, T ),

〈∂tv(t),w〉H−1×H 1 −
∫

Rd

(
f (v(t)) − ε∇v(t)

) · ∇w dx

= n
(∫

Rd

v(t)w dx
)(∫

Rd

(v(t) − θ)+ dx
)

− n

∫

Rd

(v(t) − θ)+ w dx. (2.5)

Moreover, limt→0
∫
Rd ‖v(t) − u0‖L2(Rd )dx → 0. The proof that there exists a unique solution of (2.5) follows closely 

the one in [8, p. 56], so we omit it. Note that (2.5) is a standard (local) parabolic problem.
2. Now, let us consider the mapping

� : C([0, T ];L1(Rd)
) →W,

v → �(v) = v solution of (2.5). (2.6)

Let R > 1 to be chosen later. We will show that, for T0 sufficiently small, � is a contraction in the Banach space

E := {v ∈ C
([0, T0];L1(Rd)

) : ‖v‖E := sup
t∈[0,T0]

‖v(t)‖L1(Rd ) ≤ R}. (2.7)

Let v be the unique solution of problem (2.5). First of all, note that since u0 ≥ 0, we have v ≥ 0. This follows from the 
fact that v ≡ 0 is a solution of the problem (2.5) and classical comparison arguments (see, in particular, Lemma 4.1
below).

3. We prove that the map � takes E into E. For this, we establish the estimate∫

Rd

v(t) dx ≤ en
∫ t

0

∫
Rd (v−θ)+ dx ds . (2.8)

Note that once (2.8) is proved, we find immediately∫

Rd

v(t) dx ≤ ent‖v‖E ≤ entR.

Now, since R > 1, we have that for t ≤ T0 sufficiently small, entR < R and so v ∈ E.
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To prove (2.8), we introduce as in [8, p. 54], and for the sake of localization, the smooth positive functions ψρ :
R

d → R for large ρ ∈R, such that for some constant C > 0,

ψρ(x) = 1 if |x| ≤ ρ/2, ψρ decays exponentially for |x| ≥ ρ,

|∇ψρ | ≤ Cψρ

ρ
, and |�ψρ | ≤ Cψρ

ρ2
. (2.9)

Take w = ψρ as a test function in (2.5) to find, after discarding the (nonpositive) last term on the right-hand side,

〈∂tv(t),ψρ〉H−1×H 1 −
∫

Rd

(
f (v(t)) − ε∇v(t)

) · ∇ψρ dx

≤ n
(∫

Rd

v(t)ψρ dx
)(∫

Rd

(v(t) − θ)+ dx
)
. (2.10)

Now, for ρ sufficiently large, recalling |f (v)| = |f (v) − f (0)| ≤ Mv and (2.9),∫

Rd

f (v) · ∇ψρ − ε∇v · ∇ψρ dx ≤
∫

Rd

Mv|∇ψρ | + ε v|�ψρ |dx

≤
∫

Rd

C
(
M

v

ρ
ψρ + ε

v

ρ2
ψρ

)
dx

≤ C(M + ε)

ρ

∫

Rd

vψρ dx.

Hence integrating (2.10) on (0, t), we find∫

Rd

v(t)ψρ dx ≤
∫

Rd

u0ψρ dx

+
t∫

0

(
C

M + ε

ρ
+ n

∫

Rd

(v(s) − θ)+ dx
)(∫

Rd

v(s)ψρ dx
)

ds.

Using Gronwall’s inequality and 
∫
Rd u0ψρ dx ≤ ∫

Rd u0 dx = 1, we obtain∫

Rd

v(t)ψρ dx ≤ e
Ct M+ε

ρ en
∫ t

0

∫
Rd (v−θ)+ dx ds .

Then, passing to the limit as ρ → ∞ and applying the Monotone Convergence Theorem, we conclude that∫

Rd

v(t) dx ≤ en
∫ t

0

∫
Rd (v−θ)+ dx ds,

which is (2.8). This proves that the map � takes E into E (recall the comments after (2.8)).
3. We will now prove that the map � is a contraction on E for sufficiently small T0. That is, we will prove the 

following estimate,

‖u − v‖E ≤ K‖u − v‖E, (2.11)

for some K < 1.
Let us fix some notations. We introduce for δ > 0, u ∈ R, the regularized sign function sgnδ(u) as the continuous 

function which is linear for 0 ≤ |u| ≤ δ, and equal ±1 otherwise. Also, we use the notations

Iδ(u) =
u∫

sgnδ(v)+ dv, u ∈R, (2.12)
0
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and

(u)+δ = u sgnδ(u)+, (2.13)

both of which are Lipschitz approximations of the positive part u+. Note that a small calculation gives

Iδ(u) ≤ (u)+δ ≤ u+, δ, u ≥ 0. (2.14)

Next, let u, v ∈ E and let u and v be solutions of (2.5) associated with u and v, respectively. Recall the definition 
of the function ψρ in (2.9). Then, write (2.5) for u and v, and subtract. Taking w = sgnδ(u − v)+ψρ as a test function, 
we find, with obvious notation,

〈∂t Iδ(u − v),ψρ〉H−1×H 1 =
∫

Rd

(
f (u) − f (v) − ε∇(u − v)

) · ∇(
sgnδ(u − v)+ψρ

)
dx

+ n
(∫

Rd

u sgn(u − v)+δ ψρ dx
)(∫

Rd

(u − θ)+ dx
)

− n
(∫

Rd

v sgn(u − v)+δ ψρ dx
)(∫

Rd

(v − θ)+ dx
)

− n

∫

Rd

(
(u − θ)+ − (v − θ)+

)
sgnδ(u − v)+ψρ dx

= I1 + I2 + I3 + I4. (2.15)

Now, observe that for each δ ≥ 0, the algebraic inequality holds,

(
(u − θ)+ − (v − θ)+

)
sgnδ(u − v)+ ≥ 0,

as is easily seen by considering the various cases. This shows that

I4 ≤ 0. (2.16)

We now treat the term I1 in (2.15). We find

I1 =
∫

Rd

(f (u) − f (v) − ε∇(u − v)) · ∇(sgnδ(u − v)+ψρ)dx

=
∫

Rd

(f (u) − f (v)) · ∇(u − v) sgn′
δ(u − v)+ψρ dx

+
∫

Rd

(f (u) − f (v)) · sgnδ(u − v)+∇ψρ dx

− ε

∫

Rd

|∇(u − v)|2 sgn′
δ(u − v)+ψρ dx

− ε

∫

Rd

∇(u − v) sgnδ(u − v)+∇ψρ dx

= I11 + I12 − I13 − I14. (2.17)

First, using (1.8) and ab ≤ ε a2 + 1 b2, we get
2 2ε
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I11 ≤ M

∫

Rd

(u − v)+|∇(u − v)| sgn′
δ(u − v)ψρ dx

≤ M2

2ε

∫

Rd

((u − v)+)2 sgn′
δ(u − v)ψρ dx

+ ε

2

∫

Rd

|∇(u − v)|2 sgn′
δ(u − v)ψρ dx.

In this way,

I11 − I13 ≤ M2

2ε

∫

Rd

((u − v)+)2 sgn′
δ(u − v)ψρ dx

− ε

2

∫

Rd

|∇(u − v)|2 sgn′
δ(u − v)ψρ dx

≤ M2

2ε

∫

Rd

((u − v)+)2 sgn′
δ(u − v)ψρ dx. (2.18)

Let us introduce a convenient notation: we denote by

o(δ, t)

a function of δ ∈ R which tends to zero when δ → 0 for almost every t > 0. Note that

sgn′
δ(u)+ = 1

δ
χ{0<u<δ},

where here and in what follows χA denotes the characteristic function of a set A ⊂R
d .

Now, for each ρ, the family of functions of (t, x) appearing on the right-hand side of (2.18),

ζδ(t, x) := (
(u(t, x) − v(t, x))+

)2 sgn′
δ(u(t, x) − v(t, x))+ψρ

satisfies for almost every (t, x) ∈ [0, ∞) ×R
d

0 ≤ ζδ(t, x) = ((u − v)+)2 1

δ
χ{(u−v)+≤δ}ψρ

≤ (u − v)+χ{(u−v)+≤δ}ψρ

≤ δψρ ∈ L1(Rd)

and

ζδ(t, x) → 0, δ → 0.

These facts and Lebesgue’s Theorem show that (cf. (2.18)),

t∫

0

I11(s) − I13(s) ds = M2

2ε

t∫

0

∫

Rd

ζδ(s, x) dx ds = o(δ, t). (2.19)

Going back to (2.17), using the properties of ψρ in (2.9), and also (2.14), we find
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I12 − I14 ≤ M

∫

Rd

(u − v)+ sgnδ(u − v)+|∇ψρ |dx

− ε

∫

Rd

∇(Iδ(u − v)) · ∇ψρ dx

= M

∫

Rd

(u − v)+δ |∇ψρ |dx + ε

∫

Rd

Iδ(u − v))�ψρ dx

≤ CM

ρ

∫

Rd

(u − v)+δ ψρ dx + εC

ρ2

∫

Rd

Iδ(u − v)ψρ dx

≤ C(M + ε)

ρ

∫

Rd

(u − v)+ψρ dx.

This estimate along with (2.19) gives

t∫

0

I1(s) ds ≤ o(δ) + C(M + ε)

ρ

t∫

0

∫

Rd

(u − v)+ψρ dx ds. (2.20)

We now turn to the remaining terms in (2.15).

I2 + I3 = n
(∫

Rd

u sgn(u − v)+δ ψρ dx
)(∫

Rd

(u − θ)+ dx
)

− n
(∫

Rd

v sgn(u − v)+δ ψρ dx
)(∫

Rd

(v − θ)+ dx
)

≤ n
(∫

Rd

(u − v)+δ ψρ dx
)(∫

Rd

(u − θ)+ dx
)

+ n
(∫

Rd

v sgnδ(u − v)+ψρ dx
)(∫

Rd

(u − θ)+ − (v − θ)+ dx
)

≤ n
(∫

Rd

(u − v)+ψρ dx
)(∫

Rd

(u − θ)+ dx
)

+ n

∫

Rd

v dx

∫

Rd

(u − v)+ dx,

and so

t∫

0

I2(s) + I3(s) ds ≤ n

t∫

0

(∫

Rd

(u − v)+ψρ dx
)(∫

Rd

(u − θ)+ dx
)

ds

+ n

t∫

0

(∫

Rd

v dx
)(∫

Rd

(u − v)+ dx
)

ds. (2.21)

Therefore, integrating (2.15) on (0, t) yields from (2.16), (2.20) and (2.21),
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∫

Rd

Iδ(u(t) − v(t))ψρ dx ≤ o(δ) +
t∫

0

C(M + ε)

ρ

∫

Rd

(u − v)+ψρ dx ds

+ n

t∫

0

(∫

Rd

(u − v)+ψρ dx
)(∫

Rd

(u − θ)+ dx
)

ds

+ n

t∫

0

(∫

Rd

v dx
)(∫

Rd

(u − v)+ dx
)

ds.

Now, we apply the Monotone Convergence Theorem to take δ → 0, and use Gronwall’s Lemma to get

∫

Rd

(u(t) − v(t))+ψρ dx ≤ n

t∫

0

(∫

Rd

v dx
)(∫

Rd

(u − v)+ dx
)

ds

× exp
(
n

t∫

0

∫

Rd

(u − θ)+ dx ds + t
C(M + ε)

ρ

)
.

Then, taking ρ → ∞ (again by monotone convergence), we obtain the estimate

∫

Rd

(u − v)+(t) dx ≤ n

t∫

0

(∫

Rd

v dx
)(∫

Rd

(u − v)+ dx
)

ds

× exp
(
n

t∫

0

∫

Rd

(u − θ)+ dx ds
)
. (2.22)

Now we use the estimate (2.8) of 
∫
Rd v dx in (2.22) to find

∫

Rd

(u − v)+(t) dx ≤ n

t∫

0

∫

Rd

(u − v)+ dx ds

× exp
(
n

t∫

0

∫

Rd

(u − θ)+ + (v − θ)+ dx ds
)

or, recalling the definition of the space E in (2.7),∫

Rd

(u − v)+(t) dx ≤ nt sup
0≤t≤T0

‖u − v‖L1(Rd ) e
nt sup0≤t≤T0

(‖u‖
L1(Rd )

+‖v‖
L1(Rd )

)

≤ nt‖u − v‖E e2Rnt .

By symmetry, we find an estimate equal to the previous one, but with (v − u)+ instead of (u − v)+. From |a| =
a+ + (−a)+, we have∫

Rd

|u − v|(t) dx ≤ 2nte2Rnt‖u − v‖E,

and consequently, choosing T0 such that supt∈(0,T0)
2nte2Rnt ≤ K < 1,

‖u − v‖E ≤ K‖u − v‖E,

which is the desired contraction estimate (2.11). This proves contraction of the map � for sufficiently small T0.
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4. We are now in a position to finish the existence proof for the penalized viscous problem (2.3). The first part of 
the Banach Contraction Principle tells us that the sequence defined by uk = �(uk−1) with u0 ∈ E converges strongly 
in E towards some un,ε ∈ E. Each uk verifies equation (2.5) with uk−1 in place of v. Taking w = uk in (2.5) gives

1

2

∫

Rd

∂t (u
k)2 dx + ε

∫

Rd

|∇uk|2 dx −
∫

Rd

f (uk) · ∇uk dx

≤ n

∫

Rd

(uk)2 dx
(∫

Rd

(uk−1 − θ)+ dx
)

≤ nR

∫

Rd

(uk)2 dx,

since uk−1 ∈ E. Furthermore, since

∫

Rd

f (uk) · ∇uk dx ≤ M2

2ε

∫

Rd

(uk)2 dx + ε

2

∫

Rd

|∇uk|2 dx,

we get

1

2

d

dt

∫

Rd

(uk)2 dx + ε

2

∫

Rd

|∇uk|2 dx ≤ (
nR + M2

2ε

)∫

Rd

(uk)2 dx.

Integrating this inequality on (0, t), t ≤ T0 and applying Gronwall’s lemma gives first

uk ∈ L∞(0, t;L2(Rd))

and then also

uk ∈ L2(0, t;H 1(Rd)), t ≤ T0,

uniformly in k. This allows us to conclude that the limit un,ε (which is in E by definition) is also in W(0, t) (cf. (2.2)) 
and so solves the problem (2.3), at least for some time T0. Since functions in W(0, T0) are actually continuous on 
[0, T0] with values in L2(Rd) (see [8, p. 54]), the initial datum u0 is indeed assumed. This completes the existence 
part of the proof of Theorem 2.1.

5. Finally, we show global in time existence. For this it will be sufficient to prove that 
∫
Rd un,ε(t) dx = 1 for almost 

all t ∈ [0, T0). In (2.3) take ψρ as test function to obtain in a way very similar to what was used to deduce (2.20), 
using also the properties of ψρ in (2.9),

d

dt
〈un,ε(t),ψρ〉 ≤ C(M + ε)

ρ

∫

Rd

un,ε(t)ψρ dx

+ n
(∫

Rd

un,ε(t)ψρ dx
)(∫

Rd

(un,ε(t) − θ)+ dx
)

− n

∫

Rd

(un,ε(t) − θ)+ψρ dx

and so, integrating on (0, t),
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∫

Rd

un,ε(t)ψρ dx ≤
∫

Rd

u0 dx + C(M + ε)

ρ

t∫

0

∫

Rd

un,ε(s)ψρ dx ds

+ n

t∫

0

(∫

Rd

un,ε(s)ψρ dx
)(∫

Rd

(un,ε(s) − θ)+ dx
)

ds

− n

t∫

0

∫

Rd

(un,ε(s) − θ)+ψρ dx ds. (2.23)

Since un,ε ∈ E, we have un,ε(t) ∈ L1(Rd). Now, we return to (2.23) and take ρ → ∞ applying Lebesgue’s Theorem 
to find

∫

Rd

un,ε dx ≤
∫

Rd

u0 dx + n

t∫

0

(∫

Rd

un,ε dx
)(∫

Rd

(un,ε − θ)+ dx
)

ds

− n

t∫

0

∫

Rd

(un,ε − θ)+ dx ds.

Then, it follows that

∫

Rd

un,ε dx − 1 ≤ n

t∫

0

(∫

Rd

un,ε dx − 1
)(∫

Rd

(un,ε − θ)+ dx
)

ds

≤ nR

t∫

0

(∫

Rd

un,ε dx − 1
)

ds,

and consequently, by Gronwall’s lemma, 
∫
Rd un,ε(t) dx = 1, for almost all t ≤ T0. Furthermore, since u ∈ E, we may 

suppose by continuity of the L1 norm that

∀ t ≤ T0,

∫

Rd

un,ε(t) dx = 1. (2.24)

This completes the proof of Theorem 2.1. �
3. Uniform estimates for the nonlocal penalized problem

In this section, we prove estimates for solutions of (2.1) independently of the penalization parameter n and of 
the viscosity parameter ε. They will allow not only the necessary compactness properties on the sequence (un,ε) but 
also give a more precise characterization of the limit of un,ε as n → ∞, ε → 0. So, in Theorem 3.1 we prove an 
estimate which ensures that, in the limit, the solution of the obstacle-mass constraint problem will indeed stay below 
the obstacle. For this, we need the result in Lemma 3.2 (whose proof is found in the Appendix), which states that the 
solutions un,ε retain some mass strictly below the obstacle, uniformly in n. Recall from the discussion in Section 1.3, 
that the compatibility property in Definition 1.3 was especially designed to ensure this type of property.

Then, in Theorem 3.3, we establish uniform (in n and ε) estimates for un,ε in W 1,1((0, T ) ×R
d). These estimates 

will allow us in the next section to obtain existence of a solution for problem (1.1)–(1.3), using the vanishing viscosity 
method.
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3.1. Main estimates independent of n and ε

Theorem 3.1. Let T > 0 be arbitrary. Suppose the initial datum u0 is in (L1 ∩ L∞ ∩ BV )(Rd) with 
∫
Rd u0 dx = 1

and that, u0 and θ are compatible in the sense of Definition 1.3. Let {un,ε} be the family of solutions of the nonlocal 
parabolic problem (2.3). Then, there exist constants α > 0, Cθ depending on T , u0 and θ , but not on n, such that for 
all ε > 0 sufficiently small, and a.e. t ∈ (0, T )

∫

Rd

(
un,ε(t) − θ(t)

)+
dx ≤ Cθ

αn
, (3.1)

‖un,ε(t)‖L∞(Rd ) ≤ ‖u0‖L∞(Rd )e
t
Cθ
α . (3.2)

The constant α is given by Lemma 3.2 below.

To prove Theorem 3.1, we consider the following key result, which was discussed in Remark 1.6.

Lemma 3.2. Under the same conditions of Theorem 3.1, there exists a constant α > 0 depending on T , u0 and θ , but 
not on n or ε, such that the estimate is valid:

inf
0≤t≤T

∫

{un,ε<θ}
un,ε(t) dx ≥ α. (3.3)

We also have

Theorem 3.3. Under the same conditions of Theorem 3.1, the solution un,ε of the nonlocal penalized parabolic 
problem (2.3) with regularized initial datum satisfies

un,ε ∈ W 1,1((0, T ) ×R
d), uniformly in ε,n.

More precisely, for each n ∈N, and ε > 0, and almost all t ∈ (0, T )

‖∂tun,ε(t)‖L1(Rd ) + ‖∇un,ε(t)‖L1(Rd ) ≤ C
(

TV(u0) + 1
)
etC,

where C depends on θ , f , d , t and α (given by Lemma 3.2) but not on ε or n.

Here, TV denotes the total variation, see for instance [8, p. 51].

Remark 3.4. Let us comment briefly on the results of Lemma 3.2 and Theorem 3.1. The estimate (3.3) states that, for 
t ∈ [0, T ], the function un,ε retains some mass below the obstacle θ , uniformly in n and ε, and it is the most delicate 
estimate in this work. The key compatibility property in Definition 1.3 is used to prove the estimate (3.3), which in 
turn ensures the key property (3.1). This last estimate ensures that as n → ∞ the mass above the obstacle θ of the 
solutions un,ε vanishes.

Also, although a smoother initial datum is required for Theorem 3.3, when passing to the limit n → ∞, ε → 0 this 
requirement can be eliminated in a completely standard way. We omit this straightforward procedure (found, e.g., in 
[8]) for the sake of clarity.

Now we prove Theorems 3.1 and 3.3, leaving the proof of Lemma 3.2 to the Appendix.

Proof of Theorem 3.1. We prove the estimate (3.1). Recall the notations (2.12) and (2.13). Use the weak formulation 
(2.3) with w = sgnδ(un,ε − θ)+ to find after adding and subtracting various terms,



P. Amorim et al. / Ann. I. H. Poincaré – AN 34 (2017) 221–248 237
d

dt

∫

Rd

Iδ(un,ε − θ)+ dx −
∫

Rd

(f (un,ε) − f (θ)) · ∇ sgnδ(un,ε − θ)+ dx

+ ε

∫

Rd

sgn′
δ(un,ε − θ)+|∇(un,ε − θ)|2 dx

= n

∫

Rd

un,ε sgnδ(un,ε − θ)+ dx ·
∫

Rd

(un,ε − θ)+ dx

− n

∫

Rd

(un,ε − θ)+ dx −
∫

Rd

(H(θ) − ε�θ) sgnδ(un,ε − θ)+ dx. (3.4)

Recall that H is the hyperbolic operator defined in (1.1). Consider the second and third terms on the left-hand side. 
We have, in exactly the same way as was done to prove the estimate (2.18),∫

Rd

(f (un,ε) − f (θ)) · ∇ sgnδ(un,ε − θ)+ dx

− ε

∫

Rd

sgn′
δ(un,ε − θ)+|∇(un,ε − θ)|2 dx

≤ M2

2ε

∫

Rd

((u − v)+)2 sgn′
δ(u − v)dx

− ε

2

∫

Rd

|∇(u − v)|2 sgn′
δ(u − v)dx

≤ M2

2ε

∫

Rd

((u − v)+)2 sgn′
δ(u − v)dx.

Now, for each t > 0, the family of functions of x ∈R
d ,

ζδ(x) := (
(u(t, x) − v(t, x))+

)2 sgn′
δ(u(t, x) − v(t, x))+

satisfies for almost every x ∈ R
d ,

0 ≤ ζδ(x) = ((u − v)+)2 1

δ
χ{(u−v)+≤δ}

≤ (u − v)+χ{(u−v)+≤δ}
≤ (u − v)+ ∈ L1(Rd)

and

ζδ(x) ≤ δ → 0.

Thus, by Lebesgue’s theorem, we have∫

Rd

(f (un,ε) − f (θ)) · ∇ sgnδ(un,ε − θ)+ dx

− ε

∫

Rd

sgn′
δ(un,ε − θ)+|∇(un,ε − θ)|2 dx

≤ M2

2ε

∫
d

((u − v)+)2 sgn′
δ(u − v)dx → 0, δ → 0. (3.5)
R
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Let us take the limit δ → 0 in (3.4). By Lebesgue’s Theorem and (3.5), the right-hand side converges to

n

∫

Rd

un,ε sgn(un,ε − θ)+ dx ·
∫

Rd

(un,ε − θ)+ dx

− n

∫

Rd

(un,ε − θ)+ dx −
∫

Rd

(H(θ) − ε�θ) sgn(un,ε − θ)+ dx,

while the left-hand side converges to d
dt

∫
Rd (un,ε − θ)+ dx, as can be seen by writing

d

dt

∫

Rd

Iδ(un,ε − θ)+ dx =
∫

Rd

sgnδ(un,ε − θ)+∂t (un,ε − θ) dx

and applying Lebesgue’s theorem. We arrive at

d

dt

∫

Rd

(un,ε − θ)+ dx = n

∫

Rd

un,ε sgn(un,ε − θ)+ dx ·
∫

Rd

(un,ε − θ)+ dx

− n

∫

Rd

(un,ε − θ)+ dx −
∫

Rd

(H(θ) − ε�θ) sgn(un,ε − θ)+ dx. (3.6)

Now define

ϕ(t) =
∫

Rd

(un,ε − θ)+(t) dx. (3.7)

Then, (3.6) becomes

ϕ′(t) ≤ −nϕ(t)
(

1 −
∫

Rd

un,ε sgn(un,ε − θ)+ dx
)

−
∫

Rd

(H(θ) − ε�θ) sgn(un,ε − θ)+ dx. (3.8)

We now use the key property (3.3) from Lemma 3.2 and the unit integral property (3.3). We have that

1 −
∫

Rd

un,ε sgn(un,ε − θ)+ dx =
∫

Rd

un,ε dx −
∫

Rd

un,εχ{un,ε>θ} dx

=
∫

Rd

un,εχ{un,ε≤θ} dx

≥
∫

Rd

un,εχ{un,ε<θ} dx

and from (3.3),
∫

Rd

un,εχ{un,ε<θ} dx ≥ α.

This, −H ≤ H−, and (3.8) give
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ϕ′(t) ≤ −nϕ(t)

∫

Rd

un,εχ{un,ε<θ} dx

−
∫

Rd

(H(θ) − ε�θ) sgn(un,ε − θ)+ dx

≤ −αnϕ(t) +
∫

Rd

(H(θ)− + ε�θ) sgn(un,ε − θ)+ dx.

Thus, if ε ≤ 1 and

Cθ := sup
t∈[0,T ]

∫

Rd

|H(θ(t))−| + |�θ(t)|dx

(note that Cθ depends on T but does not depend on n or ε), then

ϕ′(t) ≤ −αnϕ(t) + Cθ, (3.9)

or (
eαntϕ(t)

)′ ≤ Cθe
αnt

⇒ ϕ(t) ≤ Cθ

t∫

0

eαn(s−t) ds ≤ Cθ

1 − e−αnt

αn
≤ Cθ

αn
,

which proves the estimate (3.1), or rather, a slightly more precise version of (3.1) ensuring that ϕ(t) → 0 as t → 0.
We will now use (3.1) to prove the pointwise estimate (3.2). Let

m(t) := ‖u0‖L∞(Rd )e
t
Cθ
α .

In parallel to (3.4), it is easy to see that by adding and subtracting the appropriate terms in (2.3) and using sgnδ(un,ε −
m)+ as a test function, we have

d

dt

∫

Rd

Iδ(un,ε − m)+ dx −
∫

Rd

(f (un,ε) − f (m)) · ∇ sgnδ(un,ε − m)+ dx

+ ε

∫

Rd

sgn′
δ(un,ε − m)+|∇(un,ε − m)|2 dx

= n

∫

Rd

(un,ε − θ)+ dx ·
∫

Rd

un,ε sgnδ(un,ε − m)+ dx

− n

∫

Rd

(un,ε − θ)+ sgnδ(un,ε − m)+ dx −
∫

Rd

m′ sgnδ(un,ε − m)+ dx. (3.10)

By exactly the same reasoning that was done after (3.4), we see that the two last terms on the left-hand side can be 
neglected. Also, the second term on the right-hand side is nonpositive and so we discard it. For the first term in the 
right-hand side we have using (3.1),

n

∫

Rd

(un,ε − θ)+ dx ·
∫

Rd

un,ε sgnδ(un,ε − m)+ dx

≤ Cθ

α

∫

Rd

un,ε sgnδ(un,ε − m)+ dx

≤ Cθ

α

∫
d

(un,ε − m)+δ dx + Cθ

α

∫
d

m sgnδ(un,ε − m)+ dx.
R R
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Therefore, (3.10) becomes after passing to the limit δ → 0 (recall that m(t) = ‖u0‖L∞et
Cθ
α ),

d

dt

∫

Rd

(un,ε − m)+ dx ≤ Cθ

α

∫

Rd

(un,ε − m)+ dx

+
∫

Rd

(−m′ + Cθ

α
m

)
sgn(un,ε − m)+ dx

= Cθ

α

∫

Rd

(un,ε − m)+ dx.

Since (u0(x) − m(0))+ ≡ 0 for all x ∈ R
d , integrating the previous estimate and using Gronwall’s lemma gives that 

(un,ε − m)+ = 0 of almost all t, x, which is precisely the L∞ estimate (3.2). This completes the proof of Theo-
rem 3.1. �
Proof of Theorem 3.3. Before establishing the uniform estimates, it is necessary to prove that un,ε has the necessary 
smoothness for the calculations to be justified. For this we will repeatedly use [8, Theorem 1.5, p. 55], which is a 
standard regularity result for the solution to a heat equation with right-hand side in L2.

So, according to [8, Theorem 1.5, p. 55], we see that for each ε, n the function un,ε , solution of (2.3), satisfies

un,ε ∈ L2(0, T ;H 2(Rd)
)
, ∂tun,ε ∈ L2(0, T ;L2(Rd)), (3.11)

as long as f is a C1 function and the initial datum u0 is in H 1(Rd). This allows us to write the equation (2.3) in strong 
form,

∂tun,ε + divf (un,ε) − ε�un,ε = nun,ε

∫

Rd

(un,ε − θ)+ dx − n(un,ε − θ)+,

un,ε(0, x) = u0(x). (3.12)

We need further regularity for the time and space derivatives. Define v = ∂tun,ε . Differentiate equation (3.12) in t to 
get

∂tv + divf ′(un,ε)v − ε�v = nv

∫

Rd

(un,ε − θ)+ dx

+ nu∂t

(∫

Rd

(un,ε − θ)+ dx
)

− n∂t (un,ε − θ)+. (3.13)

Clearly, the first and third terms on the right-hand side are in L2(0, T ; L2), in view of (3.11) and (3.1). For the second 
term, recalling (3.7) and (3.9) gives

∂t

(∫

Rd

(un,ε − θ)+ dx
)

≤ C,

while from (3.6) we find using (3.1) and the regularity of θ

∂t

(∫

Rd

(un,ε − θ)+ dx
)

≥ −n

∫

Rd

(un,ε − θ)+ dx

−
∫

Rd

(H(θ) − ε�θ) sgnδ(un,ε − θ)+ dx

≥ −Cθ .

The previous two inequalities give 
∣∣∣∂t

(∫
Rd (un,ε − θ)+ dx

)∣∣∣ ≤ C. Going back to (3.13), we see that the right-hand 

side is in L2(0, T ; L2). Applying [8, Theorem 1.5, p. 55], we conclude that for each n, ε
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∂tun,ε ∈ L2(0, T ;H 1(Rd)
)
, (3.14)

as long as u0 ∈ H 2(Rd) and f ∈ (C2(R))d .
Now we deduce some additional spatial regularity. Differentiate (3.12) in the direction xi , i = 1, . . . , d to find

∂t ∂iun,ε − ε�∂iun,ε = n∂iun,ε

∫

Rd

(un,ε − θ)+ dx

− n∂i(un,ε − θ)+ − div(∂if (u)). (3.15)

All the terms on the right-hand side are easily seen to be in L2(0, T ; L2), from the regularity property (3.11). Again 
invoking [8, Theorem 1.5, p. 55], we see that (assuming u0 ∈ H 2(Rd))

un,ε ∈ L2(0, T ;H 3(Rd)
)
. (3.16)

We now have enough smoothness to rigorously proceed with the uniform estimates and prove Theorem 3.3. We 
begin with a uniform estimate of ‖∇un,ε‖L1(Rd ). In the following calculation, for the sake of brevity, we omit the 
regularization parameter δ of the sign function. Differentiate (3.12) in the direction xi , i = 1, . . . , d . After summing 
and subtracting the appropriate terms, we find

∂t ∂i(un,ε − θ) + div
(
f ′(un,ε)∂iun,ε − f ′(un,ε)∂iθ

) − ε∂i�(un,ε − θ)

= n∂iun,ε

∫

Rd

(un,ε − θ)+ dx − n∂i(un,ε − θ)+ + G,

where

G = −∂t ∂iθ − div
(
f ′(un,ε)∂iθ

) − ε∂i�θ. (3.17)

After multiplying by sgn(∂i(un,ε − θ)) and integrating on Rd we find∫

Rd

∂t |∂i(un,ε − θ)|dx = −
∫

Rd

div
(
f ′(un,ε)∂i(un,ε − θ)

)
sgn ∂i(un,ε − θ) dx

+
∫

Rd

ε∂i�(un,ε − θ)
)

sgn ∂i(un,ε − θ) dx

+ n
(∫

Rd

∂iun,ε sgn ∂i(un,ε − θ) dx
)(∫

Rd

(un,ε − θ)+ dx
)

− n

∫

Rd

|∂i(un,ε − θ)+|dx +
∫

Rd

G sgn ∂i(un,ε − θ) dx. (3.18)

Consider the first two terms on the right-hand side. We integrate by parts and proceed as in the proof of estimates 
(2.18) and (3.5). They become using (1.8)∫

Rd

f ′(un,ε)∂i(un,ε − θ) · ∇∂i(un,ε − θ) sgn′ ∂i(un,ε − θ) dx

−
∫

Rd

ε|∇∂i(un,ε − θ)|2 sgn′ ∂i(un,ε − θ) dx

≤ M2

2ε

∫

Rd

(∂i(un,ε − θ))2 sgn′ ∂i(un,ε − θ) dx

− ε

2

∫
d

|∇∂i(un,ε − θ)|2 sgn′ ∂i(un,ε − θ) dx.
R
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Now, as in (2.18) and (3.5), but with ∂i(un,ε − θ) instead of (un,ε − θ), the first term above tends to zero as the regu-
larization parameter of the sign function tends to zero, while the second term is nonpositive and so can be neglected.

Going back to (3.18), using the estimate (3.1), the third term on the right-hand side is bounded by

Cθ

α

∫

Rd

|∂iun,ε|dx.

The fourth term in (3.18) is nonpositive, while for the last one we have (recall (3.17))∫

Rd

G sgn ∂i(un,ε − θ) dx ≤
∫

Rd

|∂t ∂iθ | + |f ′′(un,ε) · ∇un,ε∂iθ |

+ |f ′(un,ε)∇∂iθ | + ε|∂i�θ |dx

≤ Cθ

(
M ′

∫

Rd

|∇un,ε|dx + M + ε + 1
)

≤ Cθ,f

(∫

Rd

|∇un,ε|dx + 1
)

(3.19)

for some Cθ,f depending on ‖∇t,xθ‖W 2,1([0,+∞)×Rd ), ‖f ′‖∞ and ‖f ′′‖∞, but not on ε.
Putting all the previous estimates together and integrating on [0, t], we get from (3.18)∫

Rd

|∂i(un,ε − θ)|dx ≤
∫

Rd

|∂i(u0 − θ(0))|dx

+ Cθ,f,α

t∫

0

(∫

Rd

|∇un,ε|dx + 1
)

dt,

where now Cθ,f,α = (1 + 1
α
)Cθ,f . Finally, writing |∂iun,ε| ≤ |∂i(un,ε − θ)| + |∂iθ | we find

∫

Rd

|∂iun,ε|dx ≤
∫

Rd

|∂iu0|dx + Cθ,f,α

t∫

0

(∫

Rd

|∇un,ε|dx + 1
)

dt

+
∫

Rd

|∂iθ(0)| + |∂iθ |dx.

Since the last integral can be bounded by a constant Cθ(t) independent of ε or n, (recall the smoothness assumptions 
on θ in (1.10)) we find after applying Gronwall’s inequality that

‖∇un,ε(t)‖L1(Rd ) ≤ (‖∇u0‖L1(Rd ) + Cθ(t)
)
etC,

for some constant C depending on θ , f ′, f ′′, α and d , but independent of ε and n. Thus,

∇un,ε ∈ L∞(0, T ;L1(Rd)) uniformly in n, ε. (3.20)

Next, we obtain a uniform estimate of ‖∂tun,ε(t)‖L1(Rd ). Differentiate the equation (3.12) in t (after adding and 
subtracting appropriate terms) to get

∂tt (un,ε − θ) + div
(
f ′(un,ε)∂tun,ε − f ′(un,ε)∂t θ

) − ε∂t�(un,ε − θ)

= n∂tun,ε

∫

Rd

(un,ε − θ)+ dx + nun,ε

∫

Rd

∂t (un,ε − θ)+ dx

− n∂i(un,ε − θ)+ + K,

where
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K = −∂tt θ − div
(
f ′(un,ε)∂t θ

) − ε∂t�θ. (3.21)

Now multiply by sgn∂t (un,ε − θ) and integrate on Rd . The flux and viscosity terms give a nonpositive contribution 
on the right-hand side, exactly as in the previous estimate, so we omit their treatment. We find

d

dt

∫

Rd

|∂t (un,ε − θ)|dx ≤ n
(∫

Rd

∂tun,ε sgn ∂t (un,ε − θ) dx
)(∫

Rd

(un,ε − θ)+ dx
)

+ n
(∫

Rd

un,ε sgn ∂t (un,ε − θ) dx
)(∫

Rd

∂t (un,ε − θ)+ dx
)

− n

∫

Rd

∂t (un,ε − θ)+ sgn ∂t (un,ε − θ) dx

+
∫

Rd

|K|dx. (3.22)

The first line on the right-hand side is estimated using (3.1),

n
(∫

Rd

∂tun,ε sgn ∂t (un,ε − θ) dx
)(∫

Rd

(un,ε − θ)+ dx
)

≤ Cθ

α

∫

Rd

|∂tun,ε|dx.

Now we consider the second and third lines on the right-hand side of (3.22). Using 
∫
Rd u sgn ∂t (u − θ) dx ≤ 1, ∫

Rd un,ε dx = 1, and ∂tv
+ = sgnv+∂tv, we find that these terms are bounded in the following way:

n

∫

Rd

∂t (un,ε − θ)+ dx − n

∫

Rd

∂t (un,ε − θ)+ sgn ∂t (un,ε − θ) dx

= n

∫

Rd

sgn(un,ε − θ)+
(
∂t (un,ε − θ) − |∂t (un,ε − θ)|

)
dx

≤ 0.

The last term in (3.22) is estimated exactly as in (3.19) to give∫

Rd

|K|dx ≤ Cθ,f

(∫

Rd

|∂tun,ε|dx + 1
)
.

Using the foregoing estimates, (3.22) becomes upon integration on (0, t),∫

Rd

|∂t (un,ε − θ)|dx ≤
∫

Rd

|∂t (u0 − θ(0))|dx

+ Cθ,f,α

t∫

0

(∫

Rd

|∂tun,ε|dx + 1
)

dt,

with Cθ,f,α = (1 + 1
α
)Cθ,f . Therefore, we obtain

∫

Rd

|∂tun,ε|dx ≤
∫

Rd

|∂tu0|dx + Cθ,f,α

t∫

0

(∫

Rd

|∂tun,ε|dx + 1
)

dt

+
∫
d

|∂t θ | + |∂t θ(0)|dx.
R
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Now, using the equation (3.12) one obtains∫

Rd

|∂tu0|dx ≤ M‖∇u0‖L1(Rd ) + ε‖�u0‖L1(Rd ). (3.23)

As in [8, p. 68], we consider a smoothing of u0 such that ε‖�u0‖L1(Rd ) ≤ C‖∇u0‖L1(Rd ) for some universal constant 
depending only on the dimension d . Thus

‖∂tun,ε‖L1(Rd ) ≤ C‖∇u0‖L1(Rd ) + Cθ,f,α

t∫

0

‖∂tun,ε‖L1(Rd ) + 1dt

+ ‖∂t θ‖L1(Rd ) + ‖∂t θ(0)‖L1(Rd )

and so applying Gronwall’s lemma gives

‖∂tun,ε(t)‖L1(Rd ) ≤ (
C‖∇u0‖L1(Rd ) + Cθ(t)

)
etC.

This concludes the proof of Theorem 3.3. �
4. Solvability of the obstacle-mass constraint problem

In this section, we establish existence of an entropy solution for problem (1.1)–(1.3), in the sense of Definition 1.2, 
by the vanishing viscosity method.

Proof of Theorem 1.7. 1. First, for ε > 0 and n ∈N we consider the nonlocal penalized viscous problem (2.1), which 
we repeat here for convenience:

∂tun,ε + divf (un,ε) − ε�un,ε = nun,ε

∫

Rd

(un,ε − θ)+ − n(un,ε − θ)+,

un,ε(0, x) = u0(x).

For ϕ ∈ C∞
c ((−∞, T ) ×R

d) and η an entropy (assumed C2 without loss of generality), multiply (2.1) by ϕ η′(un,ε −
kθ) and integrate in (0, T ) ×R

d =: �T . We obtain

−
∫∫

�T

η(un,ε − kθ)ϕt dx dt +
∫∫

�T

η′(un,ε − kθ)ϕ ∂t (kθ) dx dt

−
∫∫

�T

η′(un,ε − kθ)
(
f (un,ε) − f (kθ)

) · ∇ϕ dx dt

+
∫∫

�T

η′(un,ε − kθ)ϕ divf (kθ) dx dt

−
∫∫

�T

ε �η(un,ε − kθ)ϕ dx dt −
∫∫

�T

ε �(kθ)η′(un,ε − kθ)ϕ dx dt

−
∫

Rd

η(u0(x) − k θ(0, x))ϕ(0, x) dx

=
∫∫

�T

(
f (un,ε) − f (kθ)

) · ∇(
η′(un,ε − kθ)

)
ϕ dx dt

−
∫∫

ε η′′(un,ε − kθ) |∇(un,ε − kθ)|2 ϕ dx dt
�T



P. Amorim et al. / Ann. I. H. Poincaré – AN 34 (2017) 221–248 245
+
∫∫

�T

(
nun,ε

∫
(un,ε − θ)+ dx − n(un,ε − θ)+

)
η′(un,ε − kθ)ϕ dx dt.

Let η(u) be an approximation (uniform on compact sets) of the Kruzkov entropy |u|. Then, similarly to the estimate 
(2.19), the first and second terms on the right-hand give nonpositive or vanishing contributions as we take the limit in 
that approximation (see (2.19) for a totally similar procedure). Thus, neglecting the negative terms on the right-hand 
side, it follows that in the sense of distributions

∂t |un,ε − kθ | + div
(

sgn(un,ε − kθ)
(
f (un,ε) − f (kθ)

)) − ε�|un,ε − kθ |

≤ nun,ε sgn(un,ε − kθ)

∫

Rd

(un,ε − θ)+ dx

− sgn(un,ε − kθ)
(
H(kθ) − ε�(kθ)

)
, (4.1)

which incidentally motivates the precise formulation in Definition 1.2.
2. Now, we define for almost all t ∈ (0, T ),

λn,ε(t) := n

∫

Rd

(un,ε(t) − θ(t))+ dx.

According to the estimate (3.1), we have that λn,ε(t) is uniformly bounded for a.a. t ∈ (0, T ). Thus (if necessary 
taking a subsequence), λn,ε(t) converges weak-star in L∞(0, T ) to some λ(t) as n → ∞, ε → 0.

3. With the inequality (4.1) in hand, and the estimates collected in previous sections, it is a standard matter to 
pass to limit as n, ε → 0 and obtain an entropy solution. Indeed, using standard compactness results (see, e.g., the 
totally similar procedure in [8, p.70]), the family (un,ε) has a subsequence (which we do not relabel) converging a.e. 
on �T and in L1

loc((0, T ) × R
d) to some u ∈ L∞((0, T ) × R

d). The gradient estimate in Theorem 3.3 ensures that 
u(t) ∈ BV (Rd) for a.a. t ∈ (0, T ). Note that Theorem 3.3 requires that the initial datum is smooth enough, so we use a 
mollification of u0 depending on ε. The procedure to obtain u0 in the limit is exactly the same as in [8], so we omit it 
for the sake of simplicity. Moreover, from item 2 we see that the first term on the right-hand side of (4.1) converges to 
uλ(t)η′(u − kθ) weak-star in L∞(

(0, T ) ×R
d
)
, which is enough to pass to the limit on (4.1). Thus (u, λ) is a solution 

of problem (1.1)–(1.3) according to Definition 1.2. This completes the proof of Theorem 1.7. �
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Appendix

The goal of this appendix is to prove Lemma 3.2, which is crucial in our analysis. For its proof, we require the 
Lemma 4.1, which we prove first. This is a modification of a classical comparison result comparing the solution of 
the nonlocal problem (2.1) with the solution of the homogeneous conservation law (1.20). The key point is that this 
comparison property is independent of n, and that the nonlocal terms do not influence the result.

Lemma 4.1. Let un,ε be a solution of (2.1), and let vε be a solution to the Cauchy problem for the viscous homogeneous 
conservation law (1.20). Then, un,ε ≥ vε . In particular, this comparison property holds for all n.
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Proof of the lemma. We drop the subscripts n, ε from un,ε and ε from vε during the proof. Subtract (2.1) from (1.20), 
multiply by (vε − un,ε)

+, and integrate on Rd to get (with w = vε − un,ε)

d

dt

∫

Rd

(w+)2 dx ≤ −
∫

Rd

div
(
f (v) − f (u)

)
w+ dx + ε

∫

Rd

�w w+ dx

− n
(∫

Rd

uw+ dx
)(∫

Rd

(u − θ)+ dx
)

+ n

∫

Rd

(u − θ)+w+ dx.

Now note that by the compatibility condition of Definition 1.3, vε has initial datum v0 < θ , so by (1.9) and the 
maximum principle for the problem (1.20), we have that vε ≤ θ (see [8]). Therefore, in the set where un,ε ≥ θ , then 
necessarily un,ε > vε , or w+ = 0. Thus we conclude that

n

∫

Rd

(u − θ)+w+ dx = 0.

Also neglecting the nonpositive term on the right-hand, we find

d

dt

∫

Rd

(w+)2 dx ≤ −
∫

Rd

div
(
f (v) − f (u)

)
w+ dx + ε

∫

Rd

�w w+ dx.

Using the Lipschitz condition on f and integration by parts, we have

d

dt

∫

Rd

(w+)2 dx ≤
∫

Rd

(
f (v) − f (u)

) · ∇w+ dx − ε

∫

Rd

∇w∇w+ dx

≤ M

∫

Rd

|w||∇w+|dx − ε

∫

Rd

|∇w+|2 dx

= M

∫

Rd

|w+||∇w+|dx − ε

∫

Rd

|∇w+|2 dx.

Then, using a weighted Young inequality, we easily find

d

dt

∫

Rd

(w+)2 dx ≤ M2

2ε

∫

Rd

|w+|2 dx − ε

2

∫

Rd

|∇w+|2 dx.

Integrating on [0, t] for t ≤ T , and using Gronwall’s lemma, we conclude that 
∫
Rd (w

+)2 dx = 0 and so v ≤ u on 
[0, T ]. This proves Lemma 4.1. �
Proof of Lemma 3.2. One recalls that, its motivation was discussed in Remark 1.6 above and it is used in the proof 
of Theorem 3.1. We repeat the statement here for convenience.

Under the same conditions of Theorem 3.1, there exists a constant α > 0 depending on T , u0 and θ , but not on n
or ε, such that the estimate (3.3) is valid, that is to say:

inf
0≤t≤T

∫

{un,ε<θ}
un,ε(t) dx ≥ α.

The idea of the proof is the following: as discussed in Section 1.3, Definition 1.3 is designed to ensure that the 
support of un,ε always travels into regions where the integral of θ is greater than one. In view of this, and the fact 
(established in (2.24)) that the total mass of un,ε is one, necessarily un,ε cannot have all its nonzero values above θ , 
otherwise compatibility in the sense of Definition 1.3 would be violated. Therefore, un,ε must retain some mass 
below θ , which is the claim in (3.3). We now make precise this statement, using a contradiction argument.
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1. Suppose (3.3) is false. Then, there are sequences εj → 0, tj ∈ (0, T ], nj → ∞, such that∫

Rd

ujχ{uj <θ}(tj ) dx <
1

j
, (4.2)

where uj ∈ L1(Rd) is the solution unj ,εj
of equation (2.1) (in the sense of Theorem 2.1), at time tj (so, uj (x) =

unj ,εj
(tj , x)). Upon extraction of a subsequence (which here, and in what follows, we do not relabel), we may suppose 

tj → t∗ for some t∗ ∈ (0, T ] as j → ∞. Observe that due to Remark 1.5 we ensure that t∗ > 0. Thus, if we set 
wj(x) := uj (x)χ{uj (x)<θ(tj ,x)} ∈ L1(Rd), then (4.2) gives wj → 0 as j → ∞ in L1(Rd), since uj is nonnegative.

Let vj ∈ L1(Rd) denote the (smooth) solution of the viscous problem (1.20) with viscosity parameter ε = εj , at 
time tj . That is, vj (x) = vεj

(tj , x) in (1.20). According to the comparison Lemma 4.1, we have vj ≤ uj , and so 
vjχ{uj <θ(tj )} ≤ wj for a.e. x ∈R

d . From wj → 0 in L1(Rd) we obtain

vjχ{uj <θ(tj )} → 0 in L1(Rd) (4.3)

as j → ∞.
2. We have vj (tj ) → v(t∗) in L1(Rd) as j → ∞, with v solving (1.17). Indeed, according to standard results 

concerning the vanishing viscosity approximation of hyperbolic conservation laws and the continuity in time of the 
viscous approximations (see, for instance, [8]), we have

‖vj (tj ) − v(t∗)‖L1(Rd ) ≤ ‖vj (tj ) − vj (t
∗)‖L1(Rd ) + ‖vj (t

∗) − v(t∗)‖L1(Rd ) → 0

as j → ∞. Also, we have χ{uj (x)<θ(tj ,x)}
∗
⇀ ξ in L∞(Rd), for some ξ ∈ L∞(Rd). Thus, (4.3) gives v(t∗)ξ = 0 a.e. 

on Rd . Therefore,

ξ = 0 a.e. on {x ∈R
d |v(x, t∗) > 0}, (4.4)

which we abbreviate to {v(t∗) > 0}. Now, observe that a sequence of nonnegative functions weakly converging to zero 

also converges strongly in L1
loc. Since χ{uj<θ(tj )} ≥ 0, we conclude from χ{uj<θ(tj )}

∗
⇀ ξ and (4.4) that actually

χ{uj <θ(tj )} → 0 strongly in L1
loc({v(t∗) > 0})

and a.e. on {v(t∗) > 0}, as j → ∞.
3. Let BR denote the ball of radius R > 0 centered on the origin. Let δ > 0 to be chosen later. According to 

Egorov’s Theorem, there exists a set Jδ ⊂ ({v(t∗) > 0} ∩ BR) such that |Jδ| ≤ δ and χ{uj <θ(tj )} → 0 uniformly on 
Vδ := ({v(t∗) > 0} ∩BR) \Jδ as j → ∞. Since χ{uj<θ(tj )} only takes the values 0 and 1, this means that for sufficiently 
large j , we must have uj (x) > θ(tj , x) a.e. on Vδ . Therefore,∫

Vδ

uj (x) dx >

∫

Vδ

θ(tj , x) dx =
∫

{v(t∗)>0}∩BR

θ(tj , x) dx −
∫

Jδ

θ(tj , x) dx. (4.5)

Now, from the compatibility condition (1.18), we deduce that for large enough R,∫

{v(t∗)>0}∩BR

θ(t∗, x) dx > 1 + β/2,

and, by the L1 continuity property (1.11),∫

{v(t∗)>0}∩BR

θ(tj , x) dx > 1 + β/2

for sufficiently large j . On the other hand, from Lebesgue’s theorem and (1.11), we see that since θ is locally inte-
grable, we have 

∫
Jδ

θ(t∗, x) dx → 0 when δ → 0. Therefore, we choose δ small enough such that
∫

θ(t∗, x) dx ≤ β

8
.

Jδ
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Again using (1.11), we find for sufficiently large j∫

Jδ

θ(tj , x) dx ≤
∫

BR

|θ(tj , x) − θ(t∗, x)|dx + β

8

≤ β

8
+ β

8
= β

4
.

We conclude from (4.5) and from the unit integral property (2.24) that

1 ≥
∫

Vδ

uj (x) dx > 1 + β

2
− β

4
= 1 + β

4
,

which is a contradiction. Thus (4.2) cannot hold and so (3.3) is proven. This concludes the proof of Lemma 3.2. �
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