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Abstract

We show the everywhere differentiability of viscosity solutions to a class of Aronsson equations in Rn for n ≥ 2, where the 
coefficient matrices A are assumed to be uniformly elliptic and C1,1. Our result extends an earlier important theorem by Evans 
and Smart [18] who have studied the case A = In which correspond to the ∞-Laplace equation. We also show that every point is a 
Lebesgue point for the gradient.

In the process of proving the results we improve some of the gradient estimates obtained for the infinity harmonic functions. The 
lack of suitable gradient estimates has been a major obstacle for solving the C1,α problem in this setting, and we aim to take a step 
towards better understanding of this problem, too.

A key tool in our approach is to study the problem in a suitable intrinsic geometry induced by the coefficient matrix A. Heuris-
tically, this corresponds to considering the question on a Riemannian manifold whose the metric is given by the matrix A.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

For any open set � ⊂R
n with n ≥ 2, we consider the Aronsson equation:

AH [u](x) := 〈Dx(H(x,Du(x))),DpH(x,Du(x))〉 = 0 in �, (1.1)

where the Hamiltonian H is given by H(x, p) = 〈A(x)p, p〉. We denote the set of all uniformly elliptic matrices A
of order n by A (�). Our main result is the following theorem.
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Theorem 1.1. Assume A ∈ A (�) ∩ C1,1(�). Then any viscosity solution u ∈ C(�) to the Aronsson equation (1.1) is 
everywhere differentiable in �.

In order to show the robustness of the methodology, following Evans–Smart [18] we also show that every point is 
a Lebesgue point for the gradient.

Observe that when A is the identity matrix of order n, the Aronsson equation (1.1) becomes the infinity Laplace 
equation:

�∞u :=
n∑

i,j=1

uxi
uxj

uxixj
= 0 in �. (1.2)

G. Aronsson [1–4] initiated the study of the infinity Laplace equation (1.2) by deriving it as the Euler–Lagrange 
equation, in the context of L∞-variational problems, of absolute minimal Lipschitz extensions (AMLE) or equiva-
lently absolute minimizers (AM) of

inf
{

esssup
x∈�

|Du|2 : u ∈ Lip(�)
}
. (1.3)

Employing the theory of viscosity solutions of elliptic equations, Jensen [20] has first proved the equivalence between 
AMLEs and viscosity solutions of (1.2), and the uniqueness of both AMLEs and infinity harmonic functions under 
the Dirichlet boundary condition. See [26] and [6] for alternative proofs. For further properties of infinity harmonic 
functions, we refer the readers to the paper by Crandall–Evans–Gariepy [13] and the survey articles by Aronsson–
Crandall–Juutinen [7] and Crandall [12].

For L∞-variational problems involving Hamiltonian functions H = H(x, z, p) ∈ C2(� ×R ×R
n), Barron, Jensen 

and Wang [8] have proved that an absolute minimizer of

F∞(u,�) = esssup
x∈�

H(x,u(x),Du(x)) (1.4)

is a viscosity solution of (1.1), provided the level sets of H are convex in p-variable. Recall that a Lipschitz function 
u ∈ Lip(�) is an absolute minimizer for F∞, if for every open subset U � � and v ∈ Lip(U), with v|∂U = u|∂U , it 
holds

F∞(u,U) ≤ F∞(v,U).

See [15,5,21,22] for related works on both Aronsson’s equations (1.1) and absolute minimizers of F∞. Recently, 
Bjorland, Caffarelli and Figalli [9] (see also [11]) studied the infinity fractional Laplacian, that is, the L∞-variational 
problems associated to non-local Hamiltonian functions.

The regularity for infinity harmonic functions (or viscosity solutions to (1.2)) has attracted great interest re-
cently. When n = 2, Savin [27] has showed the interior C1-regularity, and Evans–Savin [17] have established the 
interior C1, α-regularity. Wang and Yu [29] have established the C1-boundary regularity and, moreover, they have 
also extended Savin’s C1-regularity to the Aronsson equation (1.1) for uniformly convex H(p) ∈ C2(R2) [28]. 
When n ≥ 3, Evans and Smart [18,19] have established the interior everywhere differentiability of infinity harmonic 
functions, whereas Wang and Yu [29] have extended this to the boundary differentiability. For the inhomogeneous 
infinity Laplace equation, the everywhere differentiability has been shown by Lindgren in [23]. In this paper, we 
extend the Evans–Smart [18,19] differentiability result to cover also the case of the Aronsson equation (1.1) for 
A ∈ A (�) ∩ C1,1(�) and n ≥ 2. The result is not merely a straightforward generalization of the known theory, since 
there are several new difficulties in running the arguments.

The Evans–Smart method heavily relies on a linear approximation property proved earlier by Crandall, Evans and 
Gariepy [13]. This result states that the difference quotient, corresponding to the differentiability condition, has a 
convergent subsequence. Then one needs to show the uniqueness of the limit to conclude the result. A linear approx-
imation property also holds for the Aronsson equation (1.1); see Lemma 4.1 below. Lemma 4.1 was first proved by 
Yu [30] for some general Hamiltonian functions H(x, p); later a proof was given in [22] when H(x, p) = 〈A(x)p, p〉
based on an intrinsic geometry induced by the coefficient A.

For showing the uniqueness of the aforementioned limit, we need to establish certain gradient estimates. The stan-
dard approach has been to study the ε-regularized equation. After introducing the coefficient matrix, the regularized 



J. Siljander et al. / Ann. I. H. Poincaré – AN 34 (2017) 119–138 121
equation does not necessarily have smooth enough solutions for the standard Bernstein type arguments which rely on 
differentiating the equation. In order to overcome this obstacle, we need to approximate the coefficient matrix, too.

We can prove the estimates required for the convergence results only if the coefficient matrix is close enough to 
the identity. As we want to consider the general case, we need to use a blow-up argument to reduce the problem to 
studying merely such matrices. This requires a careful analysis of the final reasoning for the differentiability result.

Finally, the introduction of the coefficient matrix into our gradient estimates causes several technical difficulties not 
present in the case of the ∞-Laplace equation. The equation includes terms with partial derivatives of the coefficient 
matrix. In order to control these new terms, we need to establish a series of new estimates.

In the process of proving the gradient estimates we are also able to improve the earlier estimates for the infinity 
harmonic functions by Evans and Smart, see Theorem 3.3 below. The lack of suitable gradient estimates has been a 
major obstacle in solving the C1,α problem for the ∞-Laplace equation [17]. We aim to take a step towards better 
understanding of the problem also at this front.

As a final remark we would like to point out an interesting question related to the assumption A ∈ C1,1. Already 
making sense of the equation (1.1) requires the coefficient matrix to be at least C1. In the classical theory, on the 
other hand, this sort of higher regularity results are typically based on perturbation arguments which require the 
coefficient to be, say, Hölder continuous. In our setting this corresponds to assuming A ∈ C1,α . Now it is an interesting 
question whether the regularity assumption in Theorem 1.1 can be relaxed and, in particular, whether it holds for 
instance for merely A ∈ A (�) ∩ C1(�). As proved in Lemma 4.1, the linear approximation property only requires 
A ∈ A (�) ∩ C(�).

2. Preliminaries

First of all, recall that the coefficient matrix A = (aij (x))1≤i,j≤n is called uniformly elliptic if there exists L > 0
such that

L−1|p|2 ≤ 〈A(x)p, p〉 ≤ L|p|2, x ∈ � and p ∈R
n. (2.1)

Recall also the definition of the Hamiltonian

H(x, p) = 〈A(x)p,p〉 =
n∑

i, j=1

aij (x)pipj , x ∈ � and p ∈R
n. (2.2)

In this section, we will describe a regularization scheme of the Aronsson equation (1.1). Let’s recall the definition 
of viscosity solutions of the Aronsson equation (1.1).

Definition 2.1. A function u ∈ C(�) is a viscosity subsolution (supersolution) of the Aronsson equation (1.1) if, for 
every x ∈ � and every ϕ ∈ C2(�) such that if u − ϕ has a local maximum (minimum) at x then

AH [ϕ](x) ≥ (≤) 0. (2.3)

A function u is a viscosity solution of (1.1) if u is both viscosity subsolution and supersolution.

For ε > 0 and a uniformly elliptic matrix B ∈ A (�) ∩ C∞(�), set the Hamiltonian function HB by

HB(x,p) = 〈B(x)p,p〉, x ∈ � and p ∈ R
n.

We consider an ε-regularized Aronsson equation (1.1) associated with B and HB :{ −Aε
HB

[uε] := −AHB
[uε] − εdiv(B∇uε) = 0 in �,

uε = u on ∂�.
(2.4)

For (2.4), we have the following theorem.

Theorem 2.2. For ε > 0, B ∈ A (�) ∩ C∞(�), and u ∈ C0,1(�), there exists a unique solution uε ∈ C∞(�) ∩ C(�)

of the equation (2.4).
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Proof. Consider the minimization problem of the functional of exponential growth

cε := inf
{
Iε[v] :=

∫
�

exp
(1

ε
HB(x,∇v)

)
dx

∣∣ v ∈ Kε

}
,

where Kε is the set of admissible functions of the functional Iε defined by

Kε =
{
w ∈ W 1,1(�)

∣∣ ∫
�

exp
(1

ε
HB(x,∇w)

)
dx < +∞, w = u on ∂�

}
.

Note that since u ∈ Kε , Kε �= ∅. Let {um} ⊂ Kε be a minimizing sequence, i.e., lim
m→∞Iε[um] = cε . Without loss of 

generality, we may assume that there exists uε ∈ Kε such that um → uε uniformly on �, and Dum ⇀ Duε in Lq(�)

for any 1 ≤ q < +∞. Since HB(x, p) = 〈B(x)p, p〉 is uniformly convex in p-variable, by the lower semicontinuity 
we have that

Iε[uε] =
∫
�

exp
(1

ε
HB(x,∇uε)

)
dx =

∞∑
k=0

∫
�

(
ε−1HB(x,∇uε)

)k

k! dx

≤ lim inf
m→∞

∞∑
k=0

∫
�

(
ε−1HB(x,∇um)

)k

k! dx

= lim inf
m→∞

∫
�

exp
(1

ε
HB(x,∇um)

)
dx = lim inf

m→∞ Iε[um] = cε.

Hence cε = Iε[uε] and uε is a minimizer of Iε over the set Kε . Direct calculations imply that the Euler–Lagrange 
equation of uε is (2.4). The uniqueness of uε follows from the maximum principle that is applicable for the equation 
(2.4). The smoothness of uε follows from the theory of quasilinear uniformly elliptic equations, and the reader can 
find its proofs in the papers by Lieberman [24] pages 47–49 and [25] lemma 1.1 (see also the paper by Duc–Eells 
[16]). �

Note that any viscosity solution u ∈ C(�) of the Aronsson equation (1.1) is locally Lipschitz continuous, i.e. u ∈
C

0,1
loc (�) (see [10] and [22]). Since we consider the interior regularity of u, we may simply assume that u ∈ C0,1(�).

Now we will indicate that under suitable conditions on A, any viscosity solution u ∈ C0,1(�) of the Aronsson 
equation (1.1) can be approximated by smooth solutions uε of ε-regularized equations (2.4) associated with suitable 
HB ’s. For this, we recall that for any A ∈ A (�) ∩C1,1(�), it is a standard fact that there exists {Aε} ⊂ A (�) ∩C∞(�)

such that

(i)
∥∥Aε

∥∥
C1,1(�)

≤ 2
∥∥A

∥∥
C1,1(�)

for all ε > 0.

(ii) For any α ∈ (0, 1), Aε → A in C1,α(�) as ε → 0.

Theorem 2.3. For any A ∈ A (�) ∩ C1,1(�) with ellipticity constant L < 2
1
5 (see (2.1)), let {Aε} ⊂ A (�) ∩ C∞(�)

satisfy the properties (i) and (ii). Assume that u ∈ C0,1(�) is a viscosity solution of the Aronsson equation (1.1), and 
{uε} ⊂ C∞(�) ∩ C(�) are classical solutions of the ε-regularized equation (2.4) on �, with B and HB replaced by 
Aε and HAε respectively. Then there exists a constant δ0 = δ0(�, ‖A‖L∞(�)) > 0 such that if ‖DA‖L∞(�) ≤ δ0, then 
uε → u in C0

loc(�).

Proof. From Theorem 3.1, we have that for any compact subset K � �,∥∥Duε
∥∥

C(K)
≤ C

(
dist(K, ∂�),‖u‖C(�),‖Aε‖C1,1(�)

)
≤ C

(
dist(K, ∂�),‖u‖C(�),‖A‖C1,1(�)

)
, ∀ ε > 0.

This implies that there exists a û ∈ C
0,1

(�) such that, after passing to a subsequence,
loc
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uε → û in C0
loc(�). (2.5)

Since {Aε} satisfies (i) and (ii), there exists ε0 > 0 such that for any 0 < ε ≤ ε0, it holds that ‖Aε‖L∞(�) ≤ 2‖A‖L∞(�), 

and the ellipticity constant Lε of Aε satisfies Lε ≤ 2
1
4 . Let δ0 > 0 be the constant given by Theorem 3.2 and assume 

‖DA‖L∞(�) ≤ δ0

2
. Then there exists 0 < ε1 ≤ ε0 such that ‖DAε‖L∞(�) ≤ δ0 for any ε < ε1. Thus Theorem 3.2

below is applicable to uε for any 0 < ε < ε1 and we conclude that there exist γ ∈ (0, 1) and C > 0, independent of 
0 < ε < ε1, such that∣∣uε(x) − u(x0)

∣∣ ≤ C|x − x0|γ , ∀ x ∈ �, x0 ∈ ∂�. (2.6)

From (2.5) and (2.6), we see that

|û(x) − u(x0)| ≤ C|x − x0|γ , ∀ x ∈ �, x0 ∈ ∂�.

This implies that û ∈ C(�) and û ≡ u on ∂�. By the compactness property of viscosity solutions of elliptic equations 
(see Crandall–Ishii–Lions [14]), we know that û ∈ C(�) is a viscosity solution of the Aronsson equation (1.1) asso-
ciated with A and HA. Since û ≡ u on ∂�, it follows from the uniqueness theorem of (1.1) (see [10] and [22]) that 
û = u. This also implies that uε → u in C0

loc(�) for ε → 0. �
3. A priori estimates

Motivated by [18,19], we will establish some necessary a priori estimates of smooth solutions {uε} of the equation 
(2.4) associated with {Aε} satisfying (i) and (ii), which is the crucial ingredient to establish everywhere differentiability 
of viscosity solution of the Aronsson equation (1.1).

In this section, we will assume A ∈ A (�) ∩ C∞(�), and uε ∈ C∞(�) ∩ C(�) is a solution of the ε-regularized 
equation (2.4) with B and HB replaced by A and HA.

3.1. Lipschitz estimates

We begin with the following theorems.

Theorem 3.1. For u ∈ C0,1(�) and A ∈ A (�) ∩ C∞(�), assume uε ∈ C∞(�) ∩ C(�) is a solution of the 
ε-regularized equation (2.4), with B and HB replaced by A and HA. Then we have the estimates

max
�

|uε | ≤ max
�

|u|, (3.1)

and for each open set V � �, there exists C > 0 depending on n, L, ‖u‖C(�), dist(V , ∂�), and ‖A‖C1,1(�) such that

max
V

|Duε | ≤ C. (3.2)

Proof. The estimate (3.1) follows from the standard maximum principle of the equation (2.4). For (3.2), we proceed 
as follows. To simplify the presentation, we will use the Einstein summation convention. Denote uε

i = ∂
∂xi

uε , uε
ij =

∂2

∂xi∂xj
uε , aij as the (i, j)th-entry of A, and aij

k = ∂
∂xk

aij . Recall that

AH [uε] = 2aikuε
ku

ε
ij a

j�uε
� + a

ij
k uε

i u
ε
j a

k�uε
�.

Taking ∂
∂s

of the equation (2.4), we obtain

2aikuε
ku

ε
ijsa

j�uε
� + 4aik

s uε
ku

ε
ij a

j�uε
� + 4aikuε

ksu
ε
ij a

j�uε
� + a

ij
ksu

ε
i u

ε
j a

k�uε
� + 2a

ij
k uε

isu
ε
j a

k�uε
�

+ a
ij
k uε

i u
ε
j a

k�
s uε

� + a
ij
k uε

i u
ε
j a

k�uε
�s + ε div(ADuε

s ) + ε div(AsDuε) = 0. (3.3)

Set

Gε
m := 4aimuε

ij a
j�uε

� + 2a
mj

uε
j a

k�uε
� + a

ij
uε

i u
ε
j a

km, (3.4)
k k
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and

Fε
s := 4aik

s uε
ku

ε
ij a

j�uε
� + a

ij
k uε

i u
ε
j a

k�
s uε

� + a
ij
ksu

ε
i u

ε
j a

k�uε
� + ε div(AsDuε). (3.5)

Define the operator Lε by

Lεv := 2aikuε
kvij a

j�uε
� +

n∑
m=1

Gε
mvm + ε div(ADv). (3.6)

Then (3.3) can be written as

−Lε(u
ε
s ) = Fε

s . (3.7)

Set vε := 1
2 |Duε |2. Then

vε
i =

n∑
s=1

uε
su

ε
si and vε

ij =
n∑

s=1

[
uε

siu
ε
sj + uε

sij u
ε
s

]
,

so that by using the equation (3.7) we have

Lεv
ε =

n∑
s=1

[
2aikuε

ku
ε
siu

ε
sj a

j�uε
� + uε

sLεu
ε
s + εaijuε

siu
ε
sj

]
= 2|D2uεADuε |2 +

n∑
s=1

[
εaijuε

siu
ε
sj − uε

sF
ε
s

]
. (3.8)

Set zε := 1
2 (uε)2. Then by the equation (2.4) we have

Lεz
ε = 2aikuε

ku
ε
ij u

εaj�uε
� + 2aikuε

ku
ε
i u

ε
j a

j�uε
� +

n∑
m=1

Gε
muε

muε + εuε div(ADuε) + εaij uε
i u

ε
j

= 2〈Duε,ADuε〉2 + ε〈ADuε,Duε〉 + uεAε
H [uε]

+ 4uεaimuε
muε

ij a
j�uε

� + 2uεa
mj
k uε

j a
k�uε

�u
ε
m

= 2〈Duε,ADuε〉2 + ε〈ADuε,Duε〉
+ 4uε〈ADuε,D2uεADuε〉 + 2uε〈〈Duε,DADuε〉,ADuε〉,

where 〈Duε, DADuε〉 is interpreted as the vector (〈Duε, AkDuε〉)k with Ak being the element-wise derivative of A. 
Choose φ ∈ C∞

0 (�) such that

φ = 1 in V, 0 ≤ φ ≤ 1,

and, for β > 0 to be determined later, define the auxiliary function wε by

wε := φ2vε + βzε.

If wε attains its maximum on ∂�, then

sup
V

vε ≤ sup
V

wε(x) ≤ max
�

wε = max
∂�

wε = β

2
max
∂�

u2,

hence (3.2) holds. Thus we may assume wε attains its maximum at an interior point x0 ∈ �. This gives

Dwε(x0) = 0,D2wε(x0) ≤ 0,

so that

−Lεw
ε(x0) = −(2aikuε

ka
j�uε

� + εaij )wε
ij

∣∣∣ ≥ 0. (3.9)

x=x0
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On the other hand, from (3.8) and (3.9) we have that, at x = x0,

0 ≤ −Lεw
ε(x0) = −Lε(φ

2vε) − βLεz
ε

= −φ2Lεv
ε − βLεz

ε − vεLεφ
2 − 8φaikuε

ka
j�uε

�φi

n∑
r=1

uε
rju

ε
r − 4εφ

n∑
m=1

φia
ijuε

mju
ε
m

=
[
−2φ2|D2uεADuε |2 − εφ2

n∑
s=1

aijuε
siu

ε
sj − 2β〈Duε,ADuε〉2 − εβ〈Duε,ADuε〉

]

−
[
4βuε〈ADuε,D2uεADuε〉 + 2βuεa

mj
k uε

ju
ε
mak�uε

�

]
−

[
8φaikuε

ka
j�uε

�φi

n∑
r=1

uε
rju

ε
r + 4εφ

n∑
m=1

φia
ijuε

mju
ε
m

]
+ φ2

n∑
s=1

uε
sF

ε
s − vεLε(φ

2)

= I1 + I2 + I3 + I4 + I5.

We estimate I1, · · · , I5 as follows. Since 〈ξ,Aξ 〉 ≥ 1
L
|ξ |2 for all ξ ∈R

n, we have

I1 = −2φ2|D2uεADuε |2 − εφ2
n∑

s=1

aijuε
siu

ε
sj − 2β〈Duε,ADuε〉2 − εβ〈ADuε,Duε〉

≤ −2φ2|D2uεADuε |2 − ε

L
φ2|D2uε |2 − 2β

L2
|Duε |4.

Applying Young’s inequality, we can estimate I2 by

I2 = −4βuε〈ADuε,D2uεADuε〉 − 2βuεa
mj
k uε

ju
ε
mak�uε

�

≤ 4β|uε ||ADuε ||D2uεADuε | + C|Duε |3
≤ β4/3|D2uεADuε |4/3 + C|Duε |4 + C(β),

where we have used (3.1). Henceforth C > 0 denotes constants depending only on n, L, ‖A‖C1,1(�), ‖u‖C(�), and 
dist(V , ∂�).

Similarly, by Young’s inequality we have

I3 = −8φaikuε
ka

j�uε
�φi

n∑
r=1

uε
rju

ε
r − 4εφ

n∑
m=1

φia
ijuε

mju
ε
m

≤ 8φ〈ADφ,Duε〉 · 〈Duε,D2uεADuε〉 + 4ε〈AD2uεDuε,Dφ〉φ
≤ C|D2uεADuε ||Duε |2φ + Cε|D2uεDuε |φ
≤ 1

8
|D2uεADuε |2φ2 + ε

16L
|D2uε |2φ2 + C|Duε |4 + C.

For I4, by using 0 < ε ≤ 1, we have

I4 =
n∑

s=1

[
4φ2uε

sa
ik
s uε

ku
ε
ij a

j�uε
� + φ2uε

sa
ij
k uε

i u
ε
j a

k�
s uε

�

+ φ2uε
sa

ij
sru

ε
i u

ε
j a

k�uε
� + εφ2uε

s div(AsDuε)
]

≤ 1

8
|D2uεADuε |2φ2 + C|Duε |4 + ε

16L
φ2|D2uε |2 + C.

Finally, for I5, we have



126 J. Siljander et al. / Ann. I. H. Poincaré – AN 34 (2017) 119–138
I5 = 2vεaikuε
k(φ

2)ij a
j�uε

� + 4vεaik(φ2)ku
ε
ij a

j�uε
� + 2vεa

ij
k (φ2)iu

ε
j a

k�uε
�

+ vεa
ij
k uε

i u
ε
j a

k�(φ2)� + εvε div(ADφ2)

≤ C|Duε |4 + C|D2uεADuε ||Duε |2φ + Cε|Duε |2

≤ 1

8
|D2uεADuε |2φ2 + C|Duε |4 + C.

Combining all these estimates with (3.9) yields that, at x = x0,

2φ2|D2uεADuε |2 + ε

L
φ2|D2uε |2 + 2

L2
β|Duε |4

≤ |D2uεADuε |2φ2 + C|Duε |4 + Cβ4/3|D2uεADuε |4/3 + ε

8L
φ2|D2uε |2 + C(β),

so that

|D2uεADuε |2φ2 + 2

L2
β|Duε |4 ≤ C|Duε |4 + Cβ4/3|D2uεADuε |4/3 + C(β).

We may choose β > 1 sufficiently large so that

|D2uεADuε |2φ2 + β

L2
|Duε |4 ≤ Cβ4/3|D2uεADuε |4/3 + C(β).

Multiplying both sides of this inequality by φ4 and applying Young’s inequality implies

|D2uεADuε |2φ6 + β

L2
|Duε |4φ4 ≤ Cβ4/3|D2uεADuε |4/3φ4 + C(β)

≤ 1

2
|D2uεADuε |2φ6 + C(β).

Hence we have

|Duε |4φ4
∣∣∣
x=x0

≤ C.

This finishes the proof, since vε = 1
2 |Duε |2 attains its maximum at x0. �

Next we will establish the boundary Hölder continuity estimate of uε.

Theorem 3.2. With the same notations of Theorem 3.1, assume that in addition L < 21/4. Then there exist δ0 > 0, 
ε0 > 0, γ ∈ (0, 1), and C > 0 depending only on � and ‖A‖L∞(�) such that if ‖DA‖L∞(�) ≤ δ0 and 0 < ε < ε0, then

|uε(x) − u(y0)| ≤ C|x − y0|γ , y0 ∈ ∂�, x ∈ �. (3.10)

Proof. To show (3.10), assume for simplicity that y0 = 0 ∈ ∂�. Define w(x) = λ|x|γ , where λ > 1 is chosen such 
that

−w + u(0) ≤ u ≤ u(0) + w on ∂�.

This is always possible, since u is Lipschitz. Now we claim that w is a supersolution of the ε-regularized equation 
(2.4). In fact, direct calculations imply

−aik(x)wk(x)wij (x)aj�(x)w�(x) = −λ2γ 2aikxka
j�x�

|x|4−2γ
· λγ

[
(γ − 2)

xixj

|x|4−γ
+ δij

|x|2−γ

]
= λ3γ 3(2 − γ )

〈x,Ax〉2

|x|8−3γ
− λ3γ 3 〈x,A2x〉

|x|6−3γ

≥ λ3γ 3 2 − γ

L2
|x|3γ−4 − λ3γ 3L2|x|3γ−4

= λ3γ 3
(

2 − γ

2
− L2

)
|x|3γ−4.
L
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Note that we can choose γ > 0 so that γ̃ := 2−γ

L2 − L2 > 0, since L < 2
1
4 . Next we estimate

−a
ij
k (x)wi(x)wj (x)ak�(x)w�(x) = −λ3γ 3a

ij
k (x)ak�(x)

xixj x�

|x|6−3γ

≥ −λ3γ 3‖A‖L∞(�)‖DA‖L∞(�)|x|3γ−3

Finally, for the regularization term we can estimate

−ε div(ADw)(x) = −ελaij γ
δij

|x|2−γ
− ελaij γ (γ − 2)

xixj

|x|4−γ
− ελγ a

ij
j

xi

|x|2−γ

≥ −ελLγ (n + γ − 2)|x|γ−2 − 2ελnγ ‖DA‖L∞(�)|x|γ−1.

Putting these estimates together, we have

−Aε
H [w] ≥ 2λ3γ 3γ̃ |x|3γ−4 − λ3γ 3‖A‖L∞(�)‖DA‖L∞(�)|x|3γ−3 − 2ελLγ (n + γ − 2)|x|γ−2

− 2ελnγ ‖DA‖L∞(�)|x|γ−1

≥ 2λ3γ 3γ̃ |x|3γ−4 − λ3γ 3‖A‖L∞(�)‖DA‖L∞(�)|x|3γ−3 − Cε|x|3γ−4.

Set

δ0 := δ(�,A) = minx∈�
γ̃

2|x|
‖A‖L∞(�)

.

If ‖DA‖L∞(�) ≤ δ0 and ε0 > 0 is sufficiently small, then we have γ ∈ (0, 1) that

−Aε
H [w] ≥ 0.

By the comparison principle, we conclude that w + u(0) ≥ uε in �. Similarly, we have −w + u(0) ≥ uε in �. Thus 
we obtain

|uε(x) − u(0)| ≤ λ|x|γ , x ∈ �.

This completes the proof. �
3.2. Flatness estimates

In this section, we will prove refined a priori estimates of the ε-regularized equation (2.4) under a flatness as-
sumption. Assume uε ∈ C∞(�) ∩ C(�) is a smooth solution to the ε-regularized equation (2.4) associated with 
A ∈ A (�) ∩ C∞(�).

Theorem 3.3. Assume B(0, 3) ⊂ �. For any 0 < λ < 1, if A ∈ A (�) ∩ C∞(�) satisfies A(0) = In and

‖DA‖L∞(B(0, 3)) + ‖D2A‖L∞(B(0, 3)) ≤ λ, (3.11)

and if uε ∈ C∞(�) is a smooth solution of (2.4) that satisfies

max
x∈B(0,2)

|uε(x) − xn| ≤ λ, (3.12)

then there exists a constant C > 0 independent of ε and λ such that

|Duε(x)|2 ≤ uε
n(x) + Cλ1/2 for all x ∈ B(0,1). (3.13)

Proof. Set �(p) := (|p|2 − pn)
2+ = max{|p|2 − pn,0}2. Let φ ∈ C∞

0 (B(0, 3)) be such that

φ = 1 in B(0,1), φ = 0 outside B(0,2), 0 ≤ φ ≤ 1, and |Dφ| ≤ 2.

Define
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vε = φ2�(Duε) + β(uε − xn)
2 + λ|Duε |2.

Applying Theorem 3.1, we have

|uε | + |Duε | ≤ C in B(0,2).

If max
B(0, 2)

vε is attained on ∂B(0, 2), then by (3.1), (3.11), and (3.12) we have

max
B(0, 2)

vε(x) = max
∂B(0,2)

(
β(uε − xn)

2 + λ|Duε |2) ≤ βλ2 + Cλ ≤ Cλ,

and hence

max
B(0,1)

(|Duε |2 − uε
xn

)
+2 ≤ max

B(0, 1)
�(Duε) ≤ Cλ

so that (3.13) holds. Therefore we may assume that vε attains its maximum at an interior point x0 ∈ B(0, 2). If (|Duε |2 − uε
n

)
(x0) ≤ 0, then �(Duε)(x0) = 0 and

max
B(0,1)

�(Duε) ≤ max
B(0,1)

vε(x) = vε(x0) ≤ vε(x0) ≤ βλ2 + Cλ ≤ Cλ

so that (3.13) also holds. So we can also assume(|Duε |2 − uε
n

)
(x0) > 0.

To estimate vε(x0), let Lε and Fε
s be given by (3.6) and (3.5). We need to compute Lεv

ε at x0. Using

AH [uε] + εdiv(ADuε) = 2aikuε
ku

ε
ij a

j�uε
� + a

ij
k uε

i u
ε
j a

k�uε
� + εdiv(ADuε) = 0,

we obtain

−Lε((u
ε − xn)

2) = −4aikuε
ku

ε
ij a

j�uε
�(u

ε − xn) − 4aikuε
ka

j�uε
�(u

ε
i − δin)(u

ε
j − δjn)

− 8aik(uε
k − δkn)u

ε
ij a

j�uε
�(u

ε − xn)

− 4a
ij
k (uε

i − δin)u
ε
j a

k�uε
�(u

ε − xn)

− 2a
ij
k uε

i u
ε
j a

k�(uε
� − δ�n)(u

ε − xn)

− 2ε(uε − xn)div(ADuε − ADxn) − 2ε〈Duε − en,A(Duε − en)〉
= −4

(〈Duε,ADuε〉 − ankuε
k

)2 − 2ε〈Duε − en,A(Duε − en)〉
− 8aik(uε

k − δkn)u
ε
ij a

j�uε
�(u

ε − xn)

− 4a
ij
k (uε

i − δin)u
ε
j a

k�uε
�(u

ε − xn)

+ 2a
ij
k uε

i u
ε
j a

k�δ�n(u
ε − xn) + 2ε

n∑
i=1

ain
i (uε − xn)

= J1 + J2 + J3 + J4 + J5 + J6,

where we denote en = (0, . . . , 0, 1).
Applying (3.12) and Theorem 3.1, we have by straightforward calculations that

|J3| ≤ Cλ|D2uεADuε |,
and

|J4|, |J5| ≤ Cλ,

as well as

|J6| ≤ Cελ.
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Since ‖DA‖L∞ ≤ λ and A(0) = In, we have |A − In| ≤ Cλ on � and hence∣∣〈Duε,ADuε〉 − ankuε
k

∣∣ ≥ ∣∣|Duε |2 − uε
n

∣∣ − ∣∣〈Duε, (A − In)Duε〉∣∣
− ∣∣ann − 1

∣∣|un| −
n−1∑
k=1

∣∣ankuε
k

∣∣
≥ ∣∣|Duε |2 − uε

n

∣∣ − Cλ.

Hence we have that

J1 = −4
(〈Duε,ADuε〉 − ankuε

k

)
2 ≤ −4

∣∣|Duε |2 − uε
n

∣∣2 + Cλ.

Since 〈ξ,Aξ 〉 ≥ 1
L
|ξ |2, we also have

J2 ≤ − ε

L

∣∣Duε − en

∣∣2
.

Combining all these estimates on Ji’s, we have

−Lε

(
(uε − xn)

2) ≤ −4
(|Duε |2 − uε

n

)
2 − 2ε

L
|Duε − en|2 + Cλ(1 + |D2uεADuε |). (3.14)

Moreover, similar to the proof of Theorem 3.1, we have

1

2
Lε

(|Duε |2) = 2|D2uεADuε |2 + ε

n∑
s=1

(
aijuε

siu
ε
sj − uε

sF
ε
s

)
≥ 2|D2uεADuε |2 + ε

L
|D2uε |2 − C|D2uεADuε ||Duε |2 − C|Duε |4

≥ |D2uεADuε |2 + ε

L
|D2uε |2 − C. (3.15)

Next we need to estimate Lε(φ
2�(Duε)). First recall

Lε(�(Duε)) = 2aikuε
ka

j�uε
�(�(Duε))ij + ε div(AD(�(Duε)))

+ (
4aisuε

ij a
j�uε

� + 2a
sj
k uε

j a
k�uε

� + a
ij
k uε

i u
ε
j a

ks
)
(�(Duε))s .

As explained earlier, we may assume |Duε|2 > uε
n at x0 ∈ B(0, 2). With this assumption we have at x = x0 that

(�(Duε))s = 2
(|Duε |2 − uε

n

)(
2

n∑
k=1

uε
ksu

ε
k − uε

ns

)
,

and

(�(Duε))ij = 2
(

2
n∑

s=1

uε
sju

ε
s − uε

nj

)(
2

n∑
s=1

uε
siu

ε
s − uε

ni

)

+ 2
(|Duε |2 − uε

n

)(
2

n∑
s=1

(uε
siu

ε
sj + uε

sij u
ε
s ) − uε

nij

)
.

Hence we obtain that, at x = x0,

Lε(�(Duε)) = 4aikuε
ka

j�uε
�

(
2

n∑
s=1

uε
sju

ε
s − uε

nj

)(
2

n∑
s=1

uε
siu

ε
s − uε

ni

)

+ 4
(|Duε |2 − uε

n

)
aikuε

ka
j�uε

�

(
2

n∑
(uε

siu
ε
sj + uε

sij u
ε
s ) − uε

nij

)

s=1
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+ 2εaij
(

2
n∑

s=1

uε
siu

ε
s − uε

ni

)(
2

n∑
s=1

uε
sju

ε
s − uε

nj

)
+ 2ε

(|Duε |2 − uε
n

)
aij

(
2

n∑
s=1

(uε
siu

ε
sj + uε

sij u
ε
s ) − uε

nij

)
+ 2εa

ij
j

(|Duε |2 − uε
n

)(
2

n∑
s=1

uε
sju

ε
s − uε

nj

)
+ 2

(|Duε |2 − uε
n

) n∑
m=1

Gε
m

(
2

n∑
s=1

uε
smuε

s − uε
nm

)
= 4aikuε

ka
j�uε

�

(
2

n∑
s=1

uε
sju

ε
s − uε

nj

)(
2

n∑
s=1

uε
siu

ε
s − uε

ni

)
+ 8

(|Duε |2 − uε
n

)
aikuε

ka
j�uε

�

( n∑
s=1

uε
siu

ε
sj

)
+ 2εaij

(
2

n∑
s=1

uε
siu

ε
s − uε

ni

)(
2

n∑
s=1

uε
sju

ε
s − uε

nj

)
+ 4εaij

(
|Duε |2 − uε

n

)( n∑
s=1

uε
sju

ε
sj

)
+ 2

(|Duε |2 − uε
n

)(
2

n∑
s=1

uε
sLε(u

ε
s ) − Lε(u

ε
n)

)
= K1 + K2 + K3 + K4 + K5. (3.16)

Here Gε
m is as defined in (3.4). Now we estimate K1, . . . , K5 separately as follows. For K1, we have

K1 = 4
[
2〈Duε,D2uεADuε〉 − 〈(D2uε)n,ADuε〉

]2
,

where (D2uε)n denotes the nth-row of D2uε . For K2, we have

K2 = 8(|Duε |2 − uε
n)|D2uεADuε |2.

For K3, we have

K3 ≥ 2ε

L

n∑
i=1

(
2

n∑
s=1

uε
siu

ε
s − uε

ni

)2
.

For K4, we have

K4 ≥ 4ε

L

(|Duε |2 − uε
n

)∣∣D2uε
∣∣2

.

From (3.7), we have

K5 = 2
(|Duε |2 − uε

n

)( n∑
s=1

2uε
sF

ε
s − Fε

n

)
,

so that we can apply Theorem 3.1 to estimate∣∣K5
∣∣ ≤ (|Duε |2 − uε

n

)(
Cλ|D2uεADuε | + ε

4L
|D2uε |2 + Cλ

)
.

Putting these estimates into (3.16) gives
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Lε(�(Duε)) ≥ 8
(|Duε |2 − uε

n

)(|D2uεADuε |2 + ε

4L
|D2uε |2

)
+ 4

[
2〈Duε,D2uεADuε〉 − 〈(D2uε)n,ADuε〉

]2

+ 2ε

L

n∑
i=1

(
2

n∑
s=1

uε
siu

ε
s − uε

ni

)2

− Cλ(|Duε |2 − uε
n)|D2uεADuε | − Cλ. (3.17)

It follows from (3.17) that

Lε

(
φ2�(Duε)

) = φ2Lε

(
�(Duε)

) + �(Duε)Lε

(
φ2)

+ 4aikuε
ka

jluε
l φφi(�(Duε))j + 2εφaijφi(�(Duε))j

≥ 8φ2(|Duε |2 − uε
n

)∣∣D2uεADuε
∣∣2 + �

(
Duε

)
Lε

(
φ2)

+ 4φ2
[
2〈Duε,D2uεADuε〉 − 〈(D2uε)n,ADuε〉

]2

+ 4aikuε
ka

j�uε
�φφi(�(Duε))j + 2ε

L
φ2

n∑
i=1

(
2

n∑
s=1

uε
siu

ε
s − uε

ni

)2

+ 2εφaijφi(�(Duε))j − Cλφ2
[
1 + (|Duε |2 − uε

n

)∣∣D2uεADuε
∣∣].

It is easy to see that

|Lε

(
φ2)| = ∣∣∣2aikuε

ka
j�uε

�(φ
2)ij + εdiv(ADφ2)

+
(

4aisuε
ij a

j�uε
� + 2a

sj
k uε

j a
k�uε

� + a
ij
k uε

i u
ε
j a

ks
)(

φ2)
s

∣∣∣
≤ C|Duε |2 + φ

∣∣D2uεADuε
∣∣ + Cε

≤ φ
∣∣D2uεADuε

∣∣ + C,

so that

�
(
Duε

)|Lε

(
φ2)| ≤ (|Duε |2 − uε

n

)
2
(
φ|D2uεADuε | + C

)
.

By Young’s inequality, we have

4aikuε
ka

jluε
l φφi(�(Duε))j

= 8aikuε
ka

j�uε
�φφi

(|Duε |2 − uε
n

)(
2

n∑
s=1

uε
sju

ε
s − uε

nj

)
= 8aikuε

kφφi(|Duε |2 − uε
n) ·

(
2〈Duε,D2uεADuε〉 − 〈(D2uε)n,ADuε〉

)
≤ 4φ2

[
2〈Duε,D2uεADuε〉 − 〈(D2uε)n,ADuε〉

]2

+ 16
[
〈Dφ,ADuε〉(|Duε |2 − uε

n)
]2

.

Thus by Theorem 3.1, we obtain

4φ2
[
2〈Duε,D2uεADuε〉 − 〈(D2uε)n,ADuε〉

]2 + 4aikuε
ka

j�uε
�φφi(�(Duε))j

≥ −16
[
〈Dφ,ADuε〉(|Duε |2 − uε

n)
]2

≥ −C
(|Duε |2 − uε

n

)
2.

Similarly, by Young’s inequality, we have that
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2εφaijφi

(
�(Duε)

)
j

= 4εφaijφi

(|Duε |2 − uε
n

)(
2

n∑
s=1

uε
sju

ε
s − uε

nj

)
≤ Cε|Dφ|2(|Duε |2 − uε

n

)2 + ε

L
φ2

n∑
i=1

(
2

n∑
s=1

uε
siu

ε
s − uε

ni

)2
,

which gives

2ε

L

n∑
i=1

(
2

n∑
s=1

uε
siu

ε
s − uε

ni

)
2φ2 − 2εφaijφi

(
�(Duε)

)
j

≥ −Cε|Dφ|2(|Duε |2 − uε
n

)
2

≥ −Cε
(|Duε |2 − uε

n

)
2.

Putting all these estimates together and applying Young’s inequality, we conclude that

Lε

(
φ2�(Duε)

) ≥ 8φ2(|Duε |2 − uε
n

)∣∣D2uεADuε
∣∣2 − C

(|Duε |2 − uε
n

)
2

− (|Duε |2 − uε
n

)
2
(
φ|D2uεADuε | + C

)
− Cλ

(|Duε |2 − uε
n

)∣∣D2uεADuε
∣∣φ2 − Cλφ2

≥ −C(|Duε |2 − uε
n)

3 − C(|Duε |2 − uε
n)

2 − Cλ(|Duε |2 − uε
n) − Cλφ2

≥ −C(|Duε |2 − uε
n)

2 − Cλ(|Duε |2 − uε
n) − Cλ. (3.18)

Combining the estimates (3.14), (3.15), with (3.18) yields that, at x = x0,

0 ≤ −Lε

(
vε

) = −Lε

(
φ2�(Duε)

) − βLε

(
(uε − xn)

2) − λLε

(|Duε |2)
≤ C

(|Duε |2 − uε
n

)2 + Cλ
(|Duε |2 − uε

n

) + Cλ

− 4β
(|Duε |2 − uε

n

)
2 − 2εβ

L

∣∣Duε − en

∣∣2 + Cβλ + Cβλ
∣∣D2uεADuε

∣∣
+ 2λ

(
− |D2uεADuε |2 − ε

L2
|D2uε |2 + C

)
.

Thus we have that, at x = x0,

(4β − C)
(|Duε |2 − uε

n

)
2 + 2λ

∣∣D2uεADuε
∣∣2 + 2λε

L2

∣∣D2uε
∣∣2

≤ Cλ
(|Duε |2 − uε

n

) + C(1 + β)λ + Cβλ
∣∣D2uεADuε

∣∣.
Choosing β > C and applying Young’s inequality, we obtain

β
(|Duε |2 − uε

n

)
2 ≤ Cλ + 2β2λ.

Thus we conclude that, at x = x0,(|Duε |2 − uε
n

)
2 ≤ Cλ.

This completes the proof. �
4. Differentiability

This section is devoted to the proof of Theorem 1.1. In order to do it, we need some lemmas. The first lemma 
is the linear approximation property, which was proved by Yu for some general Hamiltonian functions H(x, p) (see 
[30] Theorem 2.9 and Remark 2.11); later a proof based on the intrinsic distance was given in [22] Theorem 6 for the 
special case H(x, p) = 〈A(x)p, p〉. Below for reader’s convenience, we sketch the proof of Lemma 4.1 based on the 
intrinsic distance and [22].
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Lemma 4.1. Let A ∈ A (�) ∩ C(�) and u ∈ C0,1(�) be an absolute minimizer of F∞ with respect to A in �. Then 
for each x ∈ � and every sequence {rj }j∈N converging to 0, there exists a subsequence r = {rjk

}k∈N and a vector 
ex,r ∈R

n such that

lim
k→∞ sup

y∈B(0, 1)

∣∣∣∣u(x + rjk
y) − u(x)

rjk

− 〈ex, r, y〉
∣∣∣∣ = 0, (4.1)

and H(x, ex, r) = LipdA
u(x). Here

LipdA
u := lim sup

y→x

|u(y) − u(x)|
dA(x, y)

,

and

dA(x, y) := sup
{
w(x) − w(y) : w ∈ C0,1(�) satisfies H(z,Dw(z)) ≤ 1 a.e. z ∈ �

}
.

Sketch of the proof of Lemma 4.1. Without loss of generality, assume x = 0 ∈ � and u(0) = 0. We also assume 
LipdA

u(0) > 0, since the case LipdA
u(0) = 0 is trivial.

For any fixed r0 ∈ (
0, dA(0, ∂�)

)
, assume that rj+1 < rj < r0 for all j . For each j ∈N, define

uj (y) = 1

rj
u(rj y), Aj (y) = A(rjy), y ∈ B

(
0, r−1

j r0
)
,

A∞(y) = A(0), y ∈ R
n,

and

Hj(x, ξ) = 〈Aj(x)ξ, ξ〉, x ∈ B
(
0, r−1

j r0
)
, ξ ∈R

n.

Also let dj denote the intrinsic distance dAj
corresponding to Aj .

Recall that by [22] Lemma 15 there exists u∞ ∈ W 1,∞(Rn) and a subsequence {rjk
}k∈N of {rj }j∈N such that ujk

converges to u∞ locally uniformly in Rn, and weak∗ in W 1, ∞(Rn). Moreover, by [22] Lemma 19 that there exists a 
vector e ∈R

n such that

u∞(x) = 〈e, x〉, x ∈ R
n, and H∞(e)

( ≡ H∞(0, e)
) = Lipd∞u∞(0).

From this, we conclude that

sup
y∈B(0,1)

∣∣ 1

rjk

u(rjk
y) − 〈e, y〉∣∣ = sup

y∈B(0,1)

∣∣ujk
(y) − 〈e, y〉∣∣ = sup

y∈B(0,1)

∣∣ujk
(y) − u∞(y)

∣∣ → 0

as k → ∞, and H∞(e) = LipdA
u(0). This completes the proof. �

Given a pair of functions A ∈ A (�) ∩ C(�) and u ∈ C0,1(�), and a pair of 0 �= r ∈ R and x0 ∈ �, we define

Ax0,r (y) = A(x0 + ry), ux0,r (y) = u(x0 + ry) − u(x0)

r
, y ∈ �x0,r := r−1(� \ {x0}

)
.

Similarly, for any x0 ∈ � and any non-singular matrix M ∈ R
n×n, we define

Ax0,M(y) = A(x0 + My), ux0,M(y) = M−1(u(x0 + My) − u(x0)
)
,

for y ∈ �x0,M := M−1
(
� \ {x0}

)
.

The following scaling invariant property of absolute miminizers of F∞ is a simple consequence of change of 
variables, whose proof is left for the readers.

Lemma 4.2. For any x0 ∈ �, r �= 0, and a non-singular matrix M ∈ R
n×n, if u ∈ C0,1(�) is an absolute minimizer 

of F∞, with respect to A, in �, then ux0,r is an absolute minimizer of F∞, with respect to Ax0,r , in �x0,r , and ux0,M

is an absolute minimizer of F∞, with respect to Ax0,M , in �x0,M .
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We also need the following lemma, which was proved in [19].

Lemma 4.3. For b ∈ S
n−1 and η > 0, if v ∈ C2(B(0, 1)) satisfies

sup
x∈B(0,1)

∣∣v(x) − 〈b, x〉∣∣ ≤ η,

then there exists a point x0 ∈ B(0, 1) such that∣∣Dv(x0) − b
∣∣ ≤ 4η.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. For every point x0 ∈ �, we will show that there exists a vector Du(x0) ∈ R
n such that

|u(x0 + h) − u(x0) − 〈Du(x0), h〉| = o(|h|), ∀ h ∈R
n. (4.2)

From Lemma 4.2, we may assume that x0 = 0, u(x0) = 0, and A(x0) = In. By Theorem 4.1, in order to prove (4.2), 
it suffices to show that for every pair of sequences r = {rj } and s = {sk} that converge to 0, if

lim
j→∞ sup

y∈B(0, 3rj )

1

rj
|u(y) − 〈a, y〉| = 0 (4.3)

and

lim
k→∞ sup

y∈B(0, 3sk)

1

sk
|u(y) − 〈b, y〉| = 0 (4.4)

for some a, b ∈R
n, then a = b.

Since H(0, a) = 〈a, a〉 = 〈b, b〉 = H(0, b) = LipdA
u(0), we have |a| = |b|. We prove the above claim by contra-

diction. Suppose that 0 �= a �= b. Then, without loss of generality, we may assume that a = en. For, otherwise, let M

be a nonsingular matrix such that Ma = en. Set v(y) = u(|a|MT y)
|a| and Ã(y) = A(|a|MT y)M . Then by Lemma 4.2

v is an absolute minimizer of F∞, with respect to Ã. It is clear that (4.3) holds with u and a replaced by v and en

respectively.
Since |b| = |en| = 1 and b �= en, we have

θ := 1 − bn > 0.

Let C > 0 be the constant in (3.13) and choose λ > 0 such that

Cλ
1
2 = θ

4
.

Choose r ∈ {rj } such that

sup
y∈B(0, 3r)

1

r
|u(y) − yn| ≤ λ

4
, (4.5)

and ⎧⎨⎩
2

1+21/5 |ξ |2 ≤ 〈
A(x)ξ, ξ

〉 ≤ 1+21/5

2 |ξ |2, x ∈ B(0,3r), ξ ∈R
n,

r
∥∥DA

∥∥
L∞(B(0,3))

+ r2
∥∥D2A

∥∥
L∞(B(0,3))

≤ 1
2 min

{
δ(B(0, 3)), λ

}
,

(4.6)

where δ(B(0, 3)) is the constant given by Theorem 3.2.
For x ∈ B(0, 3), let Ã(x) = A(rx) and ̃u(x) = 1

r
u(rx). Since DÃ(x) = r(DA)(rx) and D2Ã(x) = r2(D2A)(rx)

for x ∈ B(0, 3), it follows from (4.6) that⎧⎨⎩
2

1+21/5 |ξ |2 ≤ 〈
Ã(x)ξ, ξ

〉 ≤ 1+21/5

2 |ξ |2, x ∈ B(0,3), ξ ∈ R
n,∥∥DÃ

∥∥
L∞(B(0,3))

+ ∥∥D2Ã
∥∥

L∞(B(0,3))
≤ 1

2 min
{
δ(B(0, 3)), λ

}
.

Let Ãε ∈ A (�) ∩ C∞(�) such that
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(i)
∥∥Ãε

∥∥
C1,1(B(0.3))

≤ 2
∥∥Ã

∥∥
C1,1(B(0,3))

for all ε > 0,

(ii) for any 0 < α < 1, Ãε → Ã in C1,α(B(0, 3)) as ε → 0.

Then there exists an ε0 > 0 such that for ε < ε0⎧⎨⎩
2

1+21/4 |ξ |2 ≤ 〈
Ãε(x)ξ, ξ

〉 ≤ 1+21/4

2 |ξ |2, x ∈ B(0,3), ξ ∈ R
n,∥∥DÃε

∥∥
L∞(B(0,3))

+ ∥∥D2Ãε

∥∥
L∞(B(0,3))

≤ min
{
δ(B(0, 3)), λ

}
.

(4.7)

Let ũε ∈ C0,1(B(0, 3)) be the unique solution of (2.4) associated with Ãε and HÃε
, with u and � replaced by ũ

and B(0, 3) respectively. Then, by Theorem 3.2, we have that ̃uε → ũ uniformly in B(0, 3). By Lemma 4.2, ̃u is an 
absolute minimizer of F∞ with respect to Ã. From (4.5), we also have

sup
y∈B(0,3)

|̃u(y) − yn| ≤ λ

4
.

Hence there exists ε1 ∈ (0, ε0) such that for all ε < ε1,

sup
y∈B(0,3)

∣∣̃uε(y) − yn

∣∣ ≤ λ

2
. (4.8)

Setting ̃sk = sk/r . Then we have

lim
k→∞ sup

y∈B(0,3s̃k)

1

s̃k
|̃u(y) − 〈b, y〉| = 0.

Choose η = θ
48 and pick s ∈ {̃sk}, with 0 < s < 1, so that

sup
y∈B(0, s)

1

s
|̃u(y) − 〈b, y〉| ≤ η

2
.

By Theorem 3.2, there exists ε2 > 0 such that for all ε < ε2,

sup
y∈B(0, s)

1

s

∣∣̃uε(y) − 〈b, y〉∣∣ ≤ η.

Applying Lemma 4.3 to 1
s
ũε(s·), we can find a point x0 ∈ B(0, s) such that∣∣Dũε(x0) − b

∣∣ ≤ 4η,

which, combined with |b| = 1, yields{
ũε

n(x0) ≤ bn + 4η ≤ 1 − θ + 4η,

|Dũε(x0)| ≥ 1 − 4η.
(4.9)

From (4.8), we can apply Theorem 3.3 to conclude∣∣Dũε(x0)
∣∣2 ≤ ũε

n(x0) + Cλ1/2 ≤ ũε
n(x0) + θ

4
.

This, combined with (4.9), implies that

(1 − 4η)2 ≤ 1 − θ + 4η + θ

4
,

so that

θ ≤ 12η + θ

4
≤ θ

2
,

this is impossible. Thus a = b, and there is a unique tangent plane at 0 and u is differentiable at 0. The proof is 
complete. �
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5. Lebesgue points of the gradient

In this last section, we show that every point is a Lebesgue point for the gradient, which extends the property on 
infinity harmonic functions by [18].

Theorem 5.1. Let A ∈ A (�) ∩C1,1(�) and u be a viscosity solution of the Aronsson equation (1.1). Then every point 
in � is a Lebesgue point of Du.

For the intrinsic distance dA associated with A, define the intrinsic ball

BdA
(x, r) :=

{
y

∣∣ dA(x, y) < r
}

for x ∈ � and 0 < r < dA(x, ∂�). For E ⊂Rn, define −
∫

E

f = 1

|E|
∫

E

f .

Lemma 5.2. For 0 < λ < 1, let A ∈ A (�) ∩C1,1(�) such that A(0) = In and 
∥∥DA

∥∥
L∞(�)

≤ λ2. Assume u ∈ C0,1(�)

is an absolute minimizer of F∞ with respect to A, and satisfies, for BdA
(0, 3) ⊂ �,

max
x∈BdA

(0,3)

∣∣u(x) − u(0) − 〈a, x〉∣∣ ≤ λ.

Then there exists a constant C > 0 depending on |a| such that

−
∫

BdA
(0,1)

∣∣Du(x) − a
∣∣2

dx ≤ Cλ. (5.1)

Proof. Since

(1 + Cλ2)−1|ξ |2 ≤ 〈A(x)ξ, ξ〉 ≤ (1 + Cλ2)|ξ |2, ∀x ∈ �, ξ ∈ R
n,

we have

(1 + Cλ)−1|x − y| ≤ dA(x, y) ≤ (1 + Cλ)|x − y|, ∀x, y ∈ �.

It suffices to show that

−
∫

B(0,1+Cλ)

∣∣Du(x) − a
∣∣2

dx ≤ Cλ. (5.2)

By the same argument as in the proof of [18] Theorem 4.1, (5.2) follows if

sup
x∈B(0,1+Cλ)

|Du(x)| ≤ |a| + Cλ. (5.3)

To prove (5.3), let

S+
r u(x) := max

dA(z,x)=r

u(z) − u(x)

r
.

A simple modification of the proof of [22] Theorem 2 shows that S+
r u(x) is monotone increasing with respect to r , 

and √〈A(x)Du(x),Du(x)〉 = LipdA
u(x) = lim

r→0
S+

r u(x).

This implies

|Du(x)| ≤ (1 + Cλ)S+
1 u(x), x ∈ B(0,1 + Cλ).

For x ∈ B(0, 1 + Cλ), if BdA
(x, 1) ⊂ BdA

(0, 3) and dA(z, x) = 1, then we have
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|u(x) − u(z)| ≤ |u(x) − u(0) − 〈a, x〉| + |u(z)−u(0) − 〈a, z〉| + |〈a, x − z〉|
≤ 2λ + |a||x − z| ≤ |a| + Cλ,

which implies that

S+
1 u(x) ≤ |a| + Cλ, ∀x ∈ B(0,1 + Cλ).

Hence we have that

|Du(x)| ≤ |a| + Cλ, ∀ x ∈ B(0,1 + Cλ).

The proof is completed by applying the argument in Theorem 4.1 of [18]. �
Proof of Theorem 5.1. We want to show that for every x0 ∈ � and for every ε > 0, there exists r0 > 0 such that

−
∫

BdA
(x0,r)

∣∣Du(x) − Du(x0)
∣∣2

dx ≤ ε,

for every r ≤ r0. As before, by Lemma 4.2, we may assume that x0 = 0, u(0) = 0 and A(0) = In. For an arbitrary 
0 < λ < 1, since u is differentiable at 0, there exists r0 < λ2 such that

max
z∈BdA

(0, 3r)

∣∣u(x) − 〈Du(0), x〉∣∣ ≤ λr, 0 < r ≤ r0. (5.4)

Set Ar(x) = A(rx) and ur(x) = u(rx)

r
. Then ur is an absolute minimizer of F∞ associated to Ar . Observe that 

‖DAr‖ ≤ r‖DA‖ and by [22] Lemma 5.4, dAr (rx, ry) = rdA(x, y). Hence BdA
(0, r) = rBdAr

(0, 1). Therefore, (5.4)
implies

max
x∈BdAr

(0, 3)

∣∣ur(x) − 〈Du(0), x〉∣∣ ≤ λ, 0 < r ≤ r0. (5.5)

Now we can apply Lemma 5.2 to conclude that

−
∫

BdA
(0,r)

∣∣Du(x) − Du(0)
∣∣2

dx = −
∫

BdAr
(0,1)

∣∣Dur(x) − Du(0)
∣∣2

dx

≤ Cλ,

for every r ≤ r0 and λ small enough. This completes the proof. �
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