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Abstract

We revise the classical approach by Brézis–Gallouët to prove global well-posedness for nonlinear evolution equations. In par-
ticular we prove global well-posedness for the quartic NLS on general domains � in R2 with initial data in H 2(�) ∩ H 1

0 (�), and 
for the quartic nonlinear half-wave equation on R with initial data in H 1(R).
© 2015 Elsevier Masson SAS. All rights reserved.
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The main aim of this paper is to revise the technique developed by Brézis and Gallouët to study the global well-
posedness of Cauchy problems associated with some nonlinear evolution equations. More precisely we prove that by 
using the Brézis–Gallouët inequality in conjunction with suitable higher order energies that we shall introduce along 
the paper, then the standard theory, developed in [4] and [16] respectively for NLS and half-wave equation with cubic 
nonlinearity, has an improvement to quartic nonlinearity.

Our first result concerns an extension to higher order nonlinearities of the very classical result in [4]. More precisely 
the first family of problems that we shall address is the following one:

⎧⎨
⎩

i∂tu + �u = λu|u|3, (t, x) ∈R× �,

u(t, x) = 0, (t, x) ∈ R× ∂�,

u(0) = ϕ,

(0.1)

where λ = ±1, � ⊂R
2 is open and satisfies the following hypotheses:

(H1) ∃L ∈ L(H 2(�), H 2(R2)) ∩L(H 1(�), H 1(R2)) s.t. (Lu)|� = u a.e. in �;
(H2) L2(�) ⊃ H 2(�) ∩ H 1

0 (�) � u 	→ �u ∈ L2(�) is self-adjoint.
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By the celebrated Brézis–Gallouët inequality it follows that if � satisfies (H1), then the following logarithmic Sobolev 
embedding occurs:

‖v‖L∞(�) � ‖v‖H 1(�)

√
ln

(
2 + ‖v‖H 2(�)

) + 1, ∀v ∈ H 2(�). (0.2)

There has been a growing interest in the last decades on the Cauchy problem associated with NLS on domains, starting 
from the pioneering paper [4]. In this paper the authors prove global well-posedness for the defocusing cubic NLS on 
domains � ⊂ R

2, by combining (0.2) with the conservation of the energy. The first extension of the result by Brézis 
and Gallouët, up to the fourth order nonlinearity, was obtained in [19] under some restrictive conditions on the initial 
data ϕ. More precisely it is assumed that ϕ|ϕ| ∈ H 3(�) ∩ H 1

0 (�), �ϕ ∈ H 1
0 (�). A fundamental tool to treat NLS on 

domains, with higher order nonlinearities, are the so-called Strichartz inequalities (see [7] and the bibliography therein 
for the case � = R

2). In [5] it is proved a suitable version of Strichartz inequalities with loss, on general compact 
manifolds. Beside other results in this paper it is studied the Cauchy problem associated with NLS on 2D compact 
manifolds for every nonlinearity u|u|p. The results in [5] have been extended to NLS on domains � ⊂ R

2, under 
suitable assumptions. In particular the cases of bounded domains and external domains have been widely investigated 
in the literature. Just to quote a few results we mention [1,3,6,13], etc.

Due to the huge literature devoted to NLS on 2D domains, Theorem 0.1 below could be considered somewhat 
weaker compared with the known results, however we prefer to keep its statement along this paper for three reasons. 
First of all our argument is exclusively based on integration by parts and energy estimates, and hence it is independent 
of the use of Strichartz estimates. The second reason is that the proof of Theorem 0.1 can help to understand the idea 
behind the more involved proof of our second result concerning the nonlinear half-wave equation, where as far as we 
know our result is a novelty in the literature. The third reason is that as far as we know it is unclear whether or not the 
aforementioned Strichartz estimates are available under the rather general assumptions (H1), (H2).

Let us recall that by the usual energy estimates, in conjunction with the classical Sobolev embedding H 2(�) ↪→
L∞(�), one can prove that the Cauchy problem (0.1) is well-posed locally in time provided that ϕ ∈ H 2(�) ∩H 1

0 (�). 
More precisely there exists one unique solution u ∈ C([0, Tmax); H 2(�) ∩H 1

0 (�)) of (0.1), where Tmax > 0. Moreover, 
we have the alternative: either Tmax = ∞ or Tmax < ∞ and limt→T −

max
‖u(t)‖H 2(�) = ∞.

The first result of the paper is the following.

Theorem 0.1. Let � ⊂ R
2 be an open set that satisfies (H1), (H2), ϕ ∈ H 2(�) ∩ H 1

0 (�) and let u ∈ C([0, Tmax);
H 2(�) ∩ H 1

0 (�)) be the unique local solution of (0.1). Then we have the following alternative: either Tmax = ∞ or 
Tmax < ∞ and sup[0,Tmax)

‖u(t)‖H 1(�) = ∞.

Next we give some concrete conditions on the initial data ϕ in order to guarantee global well-posedness of (0.1). 
We need to introduce the energy preserved along (0.1) for λ = ±1:

ENLS,±(u) = 1

2

∫
�

|∇u|2dx ± 1

5

∫
�

|u|5dx. (0.3)

We also introduce the ground state Q(|x|) defined as the unique solution to

−�Q + Q = Q4, Q ∈ H 1(R2), Q > 0.

We are now in a position to state the following global well-posedness result.

Corollary 0.1. Let � be as in Theorem 0.1 and ϕ ∈ H 2(�) ∩ H 1
0 (�).

If λ = 1 then (0.1) has one unique global solution u ∈ C([0, ∞); H 2(�) ∩ H 1
0 (�)).

If λ = −1 and ϕ satisfies:

ENLS,−(ϕ)‖ϕ‖4
L2 < ENLS,−(Q)‖Q‖4

L2 and

‖∇ϕ‖L2‖ϕ‖2
L2(�)

< ‖∇Q‖L2‖Q‖2
L2 , (0.4)

then (0.1) has one unique global solution u ∈ C([0, ∞); H 2(�) ∩ H 1(�)).
0
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The proof of Corollary 0.1 follows by Theorem 0.1 in conjunction with the conservation of the energy (0.3). In 
fact, in the defocusing case, since the energy is positive definite, it prevents blow-up of the H 1 norm. In the focusing 
case a combination of the conservation of the energy with conditions (0.4), prevents blow-up of the H 1-norm via a 
standard continuity argument (see [12] for details).

The second family of Cauchy problems that we consider in this paper is associated with the fourth order nonlinear 
half-wave equation:{

i∂tu − |Dx |u = λu|u|3, (t, x) ∈R×R,

u(0) = ϕ ∈ H 1(R),
(0.5)

where |Dx | =
√−∂2

x is the first order non-local fractional derivative, λ = ±1. Let us mention that evolution problems 
with non-local dispersion arise in various physical settings (see [8,17,10,15]). In the case of a cubic nonlinearity, the 
Cauchy problem (0.5) is strictly related with the Szegö model (see [11,18]).

We recall that by standard arguments one can prove the existence of one unique solution u ∈ C([0, Tmax); H 1(R))

of (0.5), where Tmax > 0. Moreover, we have the alternative: either Tmax = ∞ or Tmax < ∞ and

lim
t→T −

max

‖u(t)‖H 1(R) = ∞.

We can state our second result.

Theorem 0.2. Let ϕ ∈ H 1(R) and u ∈ C([0, Tmax); H 1(R)) be the unique local solution of (0.5). Then we have the 
following alternative: either Tmax = ∞ or Tmax < ∞ and sup[0,Tmax)

‖u(t)‖
H

1
2 (R)

= ∞.

Next we give some concrete conditions on the initial data ϕ in order to guarantee global well-posedness of (0.5). 
We need to introduce the energy preserved along (0.5) for λ = ±1:

EHW,±(u) = 1

2

∫
R

||Dx | 1
2 u|2dx ± 1

5

∫
R

|u|5dx. (0.6)

We also introduce R ∈ H
1
2 (R) as the unique (non-trivial) optimizer of the following Gagliardo–Nirenberg inequality

‖f ‖L5(R) ≤ CGN‖|Dx | 1
2 f ‖

3
5
L2(R)

‖f ‖
2
5
L2(R)

, (0.7)

that satisfies

|Dx |R + R = R4, R(x) = R(|x|) > 0. (0.8)

The uniqueness of R defined as above is proved in [9] (concerning a general proof on the existence of optimizers for 
Gagliardo–Nirenberg inequalities see [2]).

The next result is a version of Corollary 0.1 in the context of the half-wave equation.

Corollary 0.2. Assume λ = 1 then (0.5) has one unique global solution u ∈ C([0, ∞); H 1(R)).
Assume λ = −1 and ϕ satisfies:

EHW,−(ϕ)‖ϕ‖4
L2 < EHW,−(R)‖R‖4

L2 and

‖|Dx | 1
2 ϕ‖L2‖ϕ‖2

L2(R)
< ‖|Dx | 1

2 R‖L2‖R‖2
L2, (0.9)

then (0.5) has one unique global solution u ∈ C([0, ∞); H 1(R)).

Along the paper we shall present a proof of Corollary 0.2. Of course in the defocusing case it follows by Theo-
rem 0.2 in conjunction with the fact that the energy EHW,+ is positive definite. In the focusing case the proof is more 
involved and we need to adapt the argument in [12] in a non-local context.

The global well-posedness results above can be considered as an extension to the quartic half-wave equation of 
part of the results proved by Krieger, Lenzmann and Raphael in [16]. In this paper in fact the authors treat, beside very 
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interesting blow-up results, the Cauchy theory for the half-wave equation with cubic nonlinearity via the classical 
approach in [4]. We should also notice that in [16] the authors work in H

1
2 (R), while in Theorem 0.2 we work in 

H 1(R).
A basic tool along the proof of Theorem 0.2 will be the following version of (0.2):

‖v‖L∞(R) � ‖v‖
H

1
2 (R)

√
ln

(
2 + ‖v‖H 1(R)

) + 1, ∀v ∈ H 1(R). (0.10)

Its proof follows by a straightforward adaptation of the argument in [4]. Hence we skip it and we shall make an 
extensive use of (0.10) without any further comment.

1. Proof of Theorem 0.1

Along this section we use the notations:

∇u = (∂xu, ∂yu), � = ∂2
x + ∂2

y , (f, g) =
∫
�

f · ḡ dx, L2 = L2(�), Hk = Hk(�).

We also introduce the following energy:

E(u) = ‖�u‖2
L2 − 2λRe(�u,u|u|3) − 3

4
λ(|∇|u|2|2, |u|).

Lemma 1.1. Let u be as in Theorem 0.1, then we have the following identity:

d

dt
(E(u) + ‖u‖2

L2) = −2λ2Im(∇u,u∇(|u|6))

+ 3

4
λ(|∇|u|2|2, ∂t |u|)) + 2λ(|∇u|2, ∂t (|u|3)). (1.1)

Proof. Recall that d
dt

‖u‖2
L2 = 0, hence we shall treat d

dt
E(u). Next we assume that the solution is regular enough in 

order to justify all the computations. In the case that the solution u is only H 2, then one can proceed by a smoothing 
argument via the Yosida regularization (we skip this technical but standard regularization argument).

We start with the following computation:

d

dt
‖�u‖2

L2 = 2Re(�∂tu,�u) = 2Re(�∂tu,−i∂tu + λu|u|3)

= 2λRe(�∂tu,u|u|3) = 2λ
d

dt
Re(�u,u|u|3) − 2λRe(�u, ∂t (u|u|3)),

where we used the equation solved by u in the second equality. Next notice that

Re(�u, ∂t (u|u|3)) =Re(�u, ∂tu|u|3) +Re(�u,u∂t (|u|3))
=Re(�u, ∂tu|u|3) + 1

2
(�|u|2, ∂t (|u|3) − (|∇u|2, ∂t (|u|3)) = I + II + III.

By using the equation solved by u we get

I =Re(�u,−iλu|u|6) = λIm(∇u,u∇(|u|6)).
Moreover, we have

II = −1

2
(∇|u|2, ∂t∇(|u|3)) = −3

4
(∇|u|2, ∂t (∇(|u|2)|u|))

= −3

4

d

dt
(∇|u|2,∇(|u|2)|u|) + 3

4
(∂t∇|u|2,∇(|u|2)|u|)

= −3

4

d

dt
(∇|u|2,∇(|u|2)|u|) + 3

8
(∂t |∇|u|2|2, |u|)

= −3

4

d

dt
(∇|u|2,∇(|u|2)|u|) + 3

8

d

dt
(|∇|u|2|2, |u|) − 3

8
(|∇|u|2|2, ∂t |u|). � (1.2)
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Lemma 1.2. Let u be as in Theorem 0.1 and U = sup[0,TMax) ‖u(t)‖H 1 , then we have:

d

dt
(E(u) + ‖u‖2

L2) � U8 ln3(2 + ‖u‖H 2)

+ U3‖�u‖2
L2 ln(2 + ‖u‖H 2) + U2 + U‖�u‖2

L2, ∀t ∈ [0, Tmax). (1.3)

Proof. Next we collect some useful inequalities satisfied by any solution u of (0.1):

|Im(∇u,u∇(|u|6))| �
∫

|∇u|2 · |u|6dx

� ‖u‖2
H 1‖u‖6

L∞ � ‖u‖8
H 1 ln3(2 + ‖u‖H 2) + ‖u‖2

H 1,

where we used (0.2). We also have∫
|∇|u|2|2 · |∂t |u||dx �

∫
|∇u|2 · |u|6dx +

∫
|∇u|2 · |�u| · |u|2dx, (1.4)

where we used the diamagnetic inequality |∂t |u|| ≤ |∂tu| and the equation solved by u. By combining the Hölder 
inequality, the logarithmic Sobolev embedding (0.2) and the Gagliardo–Nirenberg inequality

‖∇u‖L4 � ‖�u‖
1
2
L2‖∇u‖

1
2
L2, (1.5)

we can continue the estimate above as follows:

. . . � ‖u‖8
H 1 ln3(2 + ‖u‖H 2) + ‖u‖2

H 1 + ‖�u‖2
L2‖u‖3

H 1 ln(2 + ‖u‖H 2) + ‖�u‖2
L2‖u‖H 1 .

Finally notice that (by using the equation solved by u)∫
|∇u|2 · ∂t (|u|3)dx �

∫
|∇u|2 · |u|6 +

∫
|∇u|2 · |�u| · |u|2dx,

and we can continue as in (1.4). �
Proof of Theorem 0.1. Assume by the absurd that

Tmax < ∞ and U = sup
t∈[0,Tmax)

‖u‖H 1 < ∞.

By elementary computations we get:

|(|∇|u|2|2, |u|)| � (

∫
|∇u|4dx)

1
2 · (

∫
|u|6dx)

1
2 � U4‖�u‖L2,

where we used (1.5), and we also have

|(�u,u|u|3)| � ‖�u‖L2‖u‖4
L8 � U4‖�u‖L2 .

Hence

‖u‖2
H 2 � E(u) + ‖u‖2

L2, for ‖u‖H 2 > R = R(U) > 0. (1.6)

Next recall that by definition of Tmax we have ‖u(t)‖H 2 > R, ∀t > T̄ ∈ (0, Tmax). Hence by combining (1.6) with (1.3)
we get:

‖u(t)‖2
H 2 � ‖u(T̄ )‖2

H 2 + U8

t∫

T̄

ln3(2 + ‖u‖H 2)dt + U3

t∫

T̄

‖u‖2
H 2 ln(2 + ‖u‖H 2)dt

+ U

t∫

T̄

‖u‖2
H 2dt + U2(t − T̄ ), ∀t ∈ [T̄ , Tmax).

We are in a position to conclude, arguing as in [4], that supt∈[0,Tmax)
‖u(t)‖H 2 < ∞, and hence we get a contradiction 

with the definition of Tmax. �
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2. The half-wave equation

Along this section we use the notations:

|Dx |s = (

√
−∂2

x )s, (f, g) =
∫
R

f · ḡ dx, Lp = Lp(R), Hk = Hk(R).

We also introduce the energy

F(u) = ‖∂xu‖2
L2 + 2λRe(|Dx |u,u|u|3) − 3

4
λ(||Dx | 1

2 (|u|2)|2, |u|)
+ λ(|Dx | 1

2 |u|2 − ū|Dx | 1
2 u − u|Dx | 1

2 ū, |Dx | 1
2 (|u|3)). (2.1)

The following proposition from [14] will be crucial in the sequel.

Proposition 2.1. We have the following estimate:

‖|Dx |s(fg) − g|Dx |sf − f |Dx |sg‖Lp � ‖|Dx |s1f ‖Lq ‖|Dx |s2f ‖Lr ,

where

1

p
= 1

q
+ 1

r
, 1 < p,q, r < ∞, 1 > s = s1 + s2 > 0, si ≥ 0.

Lemma 2.1. Let u be as in Theorem 0.2. Then we have the following identity:

d

dt
(F(u) + ‖u‖2

L2) = −2λ2Im(|Dx |u,u|u|6) + 2λ(||Dx | 1
2 u|2, ∂t (|u|3))

+ λ(|Dx | 1
2 ∂t (|u|2) − ∂t (ū|Dx | 1

2 u) − ∂t (u|Dx | 1
2 ū), |Dx | 1

2 (|u|3))
+ 2λRe(|Dx | 1

2 u, |Dx | 1
2 (u∂t (|u|3)) − |Dx | 1

2 u∂t (|u|3) − u|Dx | 1
2 ∂t (|u|3))

− 3

4
λ(||Dx | 1

2 (|u|2)|2, ∂t |u|) + 3

2
λ(|Dx | 1

2 (|u|2), |Dx | 1
2 |u|∂t (|u|2))

+ 3

2
λ(|Dx | 1

2 (|u|2), |Dx | 1
2 (∂t (|u|2)|u|) − |u||Dx | 1

2 ∂t (|u|2) − ∂t (|u|2)|Dx | 1
2 |u|). (2.2)

Proof. Recall that d
dt

‖u‖2
L2 = 0, hence we shall compute d

dt
F(u). In the sequel we assume that the solution is regular 

enough in order to justify the following computations. The proof in the case of lower regular solutions (i.e. H 1

solutions), can be done by a standard density argument. However we skip the details.
We start with the following computation:

d

dt
‖∂xu‖2

L2 = 2Re(|Dx |∂tu, |Dx |u) = 2Re(|Dx |∂tu, i∂tu − λu|u|3)

= −2λRe(|Dx |∂tu,u|u|3) = −2λ
d

dt
Re(|Dx |u,u|u|3) + 2λRe(|Dx |u, ∂t (u|u|3)),

where we used the equation solved by u. Next notice that

Re(|Dx |u, ∂t (u|u|3)) =Re(|Dx |u, ∂tu|u|3) +Re(|Dx |u,u∂t (|u|3)) = I + II.

Concerning I we get (by using the equation solved by u)

I = −λIm(|Dx |u,u|u|6),
and for II we have

II =Re(|Dx | 1
2 u, |Dx | 1

2 (u∂t (|u|3)))
=Re(|Dx | 1

2 u, |Dx | 1
2 u∂t (|u|3)) +Re(|Dx | 1

2 u,u|Dx | 1
2 ∂t (|u|3))

+Re(|Dx | 1
2 u, |Dx | 1

2 (u∂t (|u|3)) − |Dx | 1
2 u∂t (|u|3) − u|Dx | 1

2 ∂t (|u|3)), (2.3)
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that can be written as (recall ∂t (|u|3) = 3
2∂t (|u|2)|u|)

. . . =Re(|Dx | 1
2 u, |Dx | 1

2 u∂t (|u|3)) + 3

4
(|Dx | 1

2 (|u|2), |Dx | 1
2 (∂t (|u|2)|u|))

− 1

2
(|Dx | 1

2 (|u|2) − ū|Dx | 1
2 u − u|Dx | 1

2 ū, |Dx | 1
2 ∂t (|u|3))

+Re(|Dx | 1
2 u, |Dx | 1

2 (u∂t (|u|3)) − |Dx | 1
2 u∂t (|u|3) − u|Dx | 1

2 ∂t (|u|3))
= II1 + II2 + II3 + II4. (2.4)

Next notice that

II2 = 3

4
(|Dx | 1

2 (|u|2), |u||Dx | 1
2 ∂t (|u|2)) + 3

4
(|Dx | 1

2 (|u|2), |Dx | 1
2 |u|∂t (|u|2))

+ 3

4
(|Dx | 1

2 (|u|2), |Dx | 1
2 (∂t (|u|2)|u|) − |u||Dx | 1

2 ∂t (|u|2) − ∂t (|u|2)|Dx | 1
2 |u|)

and hence

. . . = 3

8
(∂t ||Dx | 1

2 (|u|2)|2, |u|) + 3

4
(|Dx | 1

2 |u|2, |Dx | 1
2 |u|∂t (|u|2))

+ 3

4
(|Dx | 1

2 (|u|2), |Dx | 1
2 (∂t (|u|2)|u|) − |u||Dx | 1

2 ∂t (|u|2) − ∂t (|u|2)|Dx | 1
2 |u|)

= 3

8

d

dt
(||Dx | 1

2 (|u|2)|2, |u|)

− 3

8
(||Dx | 1

2 |u|2|2, ∂t |u|) + 3

4
(|Dx | 1

2 (|u|2), |Dx | 1
2 |u|∂t (|u|2))

+ 3

4
(|Dx | 1

2 (|u|2), |Dx | 1
2 (∂t (|u|2)|u|) − |u||Dx | 1

2 ∂t (|u|2) − ∂t (|u|2)|Dx | 1
2 |u|).

Moreover, we have

II3 = −1

2

d

dt
(|Dx | 1

2 (|u|2) − ū|Dx | 1
2 u − u|Dx | 1

2 ū, |Dx | 1
2 (|u|3))

+ 1

2
(|Dx | 1

2 ∂t (|u|2) − ∂t (ū|Dx | 1
2 u) − ∂t (u|Dx | 1

2 ū), |Dx | 1
2 (|u|3)). �

Lemma 2.2. Let u be as in Theorem 0.2 and let U = sup[0,Tmax)
‖u(t)‖

H
1
2

, then we have

d

dt
(F(u) + ‖u‖2

L2) � (1 + U)6‖u‖2
H 1 ln(2 + ‖u‖H 1).

Proof. It follows by combining the estimates below with Lemma 2.1. More precisely we shall prove that all the terms 
on the r.h.s. in (2.2) can be estimated by (1 + U)6‖u‖2

H 1 ln(2 + ‖u‖H 1). First notice that

|Im(|Dx |u,u|u|6)| � ‖u‖H 1‖u‖7
L14 � ‖u‖2

H 1‖u‖6

H
1
2
� ‖u‖2

H 1U
6.

On the other hand

|(||Dx | 1
2 u|2, ∂t (|u|3))| � ‖|Dx | 1

2 u‖2
L4‖∂tu‖L2‖u‖2

L∞,

that by (0.10) and the following Gagliardo–Nirenberg inequality

‖|Dx | 1
2 u‖2

L4 � ‖|Dx |u‖L2‖|Dx | 1
2 u‖L2, (2.5)

implies

. . . � ‖u‖H 1‖u‖3
1 ‖∂tu‖L2 ln(2 + ‖u‖H 1) + ‖u‖H 1‖u‖ 1 ‖∂tu‖L2 .
H 2 H 2
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By looking at the equation solved by u

. . . � ‖u‖H 1‖u‖3

H
1
2
(‖u‖H 1 + ‖u‖4

L8) ln(2 + ‖u‖H 1) + ‖u‖H 1‖u‖
H

1
2
(‖u‖H 1 + ‖u‖4

L8).

Next notice that if we develop by the classical Leibniz rule the derivative with respect to the time variable and we 
apply twice Proposition 2.1 (where s = s1 = 1

2 , s2 = 0, p = 4
3 , q = 2, r = 4) we get:

|(|Dx | 1
2 ∂t (|u|2) − ∂t (ū|Dx | 1

2 u) − ∂t (u|Dx | 1
2 ū), |Dx | 1

2 (|u|3))|
� ‖∂tu‖L2‖|Dx | 1

2 u‖L4‖|Dx | 1
2 (|u|3)‖L4 � ‖∂tu‖L2‖u‖

1
2
H 1‖u‖

1
2

H
1
2
‖|u|3‖

1
2
H 1‖|u|3‖

1
2

H
1
2

� ‖∂tu‖L2‖u‖
H

1
2
‖u‖H 1‖u‖2

L∞ .

Notice that we have used (2.5) and the property

‖v · w‖Hs � ‖v‖Hs ‖w‖L∞ + ‖w‖Hs‖v‖L∞ . (2.6)

We conclude by (0.10) and the equation solved by u.
Next we use again Proposition 2.1 (where s = s1 = 1

2 , s2 = 0, p = 4
3 , q = 2, r = 4),

|(|Dx | 1
2 u, |Dx | 1

2 (u∂t (|u|3)) − |Dx | 1
2 u∂t (|u|3) − u|Dx | 1

2 ∂t (|u|3))|
� ‖|Dx | 1

2 u‖2
L4‖∂t (|u|3)‖L2 � ‖u‖H 1‖u‖

H
1
2
‖∂tu‖L2‖u‖2

L∞,

where we used (2.5). We conclude by (0.10) and by using the equation solved by u.
By the Hölder inequality we get

|(||Dx | 1
2 (|u|2)|2, ∂t |u|)| � ‖|Dx | 1

2 (|u|2)|‖2
L4‖∂tu‖L2

� ‖u2‖
H

1
2
‖u2‖H 1‖∂tu‖L2 � ‖u‖

H
1
2
‖u‖H 1‖u‖2

L∞‖∂tu‖L2,

where we have used (2.5) and (2.6). We conclude as above.
Next we have the estimate

|(|Dx | 1
2 (|u|2), |Dx | 1

2 |u|∂t (|u|2))| � ‖|Dx | 1
2 (|u|2)‖L4‖|Dx | 1

2 |u|‖L4‖∂tu‖L2‖u‖L∞

� ‖u2‖
1
2
H 1‖u2‖

1
2

H
1
2
‖u‖

1
2
H 1‖u‖

1
2

H
1
2
‖∂tu‖L2‖u‖L∞, (2.7)

where we used (2.5). By (2.6) we get

. . . � ‖u‖H 1‖u‖
H

1
2
‖u‖2

L∞‖∂tu‖L2 ,

and we conclude by using the equation solved by u in conjunction with (0.10).
Finally by Proposition 2.1 and the Hölder inequality we get the following estimate:

|(|Dx | 1
2 (|u|2), |Dx | 1

2 (∂t (|u|2)|u|) − |u||Dx | 1
2 ∂t (|u|2) − ∂t (|u|2)|Dx | 1

2 |u|)|
� ‖(|Dx | 1

2 (|u|2)‖L4‖∂t (|u|2)‖L2‖|Dx | 1
2 u‖L4 ,

and by (2.5)

. . . � ‖u2‖
1
2
H 1‖u2‖

1
2

H
1
2
‖u‖

1
2
H 1‖u‖

1
2

H
1
2
‖∂tu‖L2‖u‖L∞,

which is precisely the term in (2.7), hence we can conclude as above. �
Proof of Theorem 0.2. It is similar to the proof of Theorem 0.1, provided that we use Lemma 2.2 and we show that

|F(u) + ‖u‖2
2 − ‖u‖2

1 | � C(U)(1 + ‖u‖H 1) ln
3
2 (2 + ‖u‖H 1),
L H
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where U = sup[0,Tmax)
‖u(t)‖

H
1
2

. This fact follows by the following computations. First notice that

|(|Dx |u,u|u|3)| � ‖|Dx |u‖L2‖u‖4
L8 � ‖u‖H 1‖u‖4

H
1
2
.

Moreover, we have

|(||Dx | 1
2 (|u|2)|2, |u|)| � ‖|Dx | 1

2 (|u|2)‖2
L4‖u‖L2

� ‖u2‖
H

1
2
‖u2‖H 1‖u‖L2 � ‖u‖2

L∞‖u‖H 1‖u‖2

H
1
2
,

where we used (2.5) and (2.6). We conclude by (0.10). Finally notice that

|(|Dx | 1
2 |u|2 − ū|Dx | 1

2 u − u|Dx | 1
2 ū, |Dx | 1

2 (|u|3))|
� ‖|Dx | 1

2 |u|2‖L2‖|Dx | 1
2 (|u|3)‖L2 + ‖u‖L2‖|Dx | 1

2 |u|‖L4‖|Dx | 1
2 (|u|3)‖L4

and hence by (2.5)

. . . � ‖u2‖
H

1
2
‖u3‖

H
1
2

+ ‖u‖L2‖u‖
1
2

H
1
2
‖u‖

1
2
H 1‖u3‖

1
2

H
1
2
‖u3‖

1
2
H 1

� ‖u‖2

H
1
2
‖u‖3

L∞ + ‖u‖L2‖u‖H 1‖u‖
H

1
2
‖u‖2

L∞,

where we used (2.6). We conclude again by (0.10). �
3. Proof of Corollary 0.2

The case λ = 1 follows by combining the conservation of the energy EHW,+ (which is positive definite) with 
Theorem 0.2.

Concerning the case λ = −1 it is sufficient to show that ‖u(t)‖
Ḣ

1
2

cannot blow up in finite time under the assump-

tions of Corollary 0.2.
Notice that by combining the conservation of the mass and the energy, with the assumption EHW,−(R)‖R‖4

L2 >

EHW,−(ϕ)‖ϕ‖4
L2 , we get

EHW,−(R)‖R‖4
L2 > EHW,−(u(t))‖u(t)‖4

L2

= 1

2
‖|Dx | 1

2 u(t)‖2
L2‖u(t)‖4

L2 − 1

5
‖u(t)‖5

L5‖u(t)‖4
L2 . (3.1)

By the following Gagliardo–Nirenberg inequality

‖g‖L5(R) ≤ CGN‖|Dx | 1
2 g‖

3
5
L2(R)

‖g‖
2
5
L2(R)

(3.2)

we get

. . . ≥ 1

2

(‖|Dx | 1
2 u(t)‖L2‖u(t)‖2

L2

)2 − 1

5
C5

GN

(‖|Dx | 1
2 u(t)‖L2‖u(t)‖2

L2

)3
.

Hence ‖|Dx | 1
2 u(t)‖L2‖u(t)‖2

L2 belongs to the sublevel

A= {x ∈ R
+|f (x) < EHW,−(R)‖R‖4

L2},
where f (x) = 1

2x2 − 1
5C5

GNx3. Next we denote by xmax > 0 the unique point where the maximum of f is achieved on 
(0, ∞). We claim that

xmax = ‖|Dx | 1
2 R‖L2‖R‖2

L2 and f (xmax) = EHW,−(R)‖R‖4
L2 . (3.3)

If this is the case then we get

A=A1 ∪A2,
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where

A1 = (0,‖|Dx | 1
2 R‖L2‖R‖2

L2) and A2 = (‖|Dx | 1
2 R‖L2‖R‖2

L2,∞),

and we conclude by a continuity argument.
In order to prove (3.3) first notice that by the analysis of f ′ we get

xmax = 5

3C5
GN

and also since R is an optimizer for (3.2), then

EHW,−(R)‖R‖4
L2 = 1

2

(‖|Dx | 1
2 R‖L2‖R‖2

L2

)2 − 1

5
C5

GN

(‖|Dx | 1
2 R‖L2‖R‖2

L2

)3
.

Hence (3.3) follows provided that we prove

5

3C5
GN

= ‖|Dx | 1
2 R‖L2‖R‖2

L2 . (3.4)

To prove this fact notice that since R is an optimizer for (3.2) we get

d

dt
(

∫
|R + tϕ|5dx − C5

GN‖|Dx | 1
2 (R + tϕ)‖3

L2‖R + tϕ‖2
L2)t=0 = 0, ∀ϕ ∈ H

1
2

and hence by direct computations it implies

−(3C5
GN‖R‖2

L2‖|Dx | 1
2 R‖L2)|Dx |R − (2C5

GN‖|Dx | 1
2 R‖3

L2)R + 5R4 = 0.

Since R solves (0.8) we deduce that

3C5
GN‖R‖2

L2‖|Dx | 1
2 R‖L2 = 2C5

GN‖|Dx | 1
2 R‖3

L2 = 5 (3.5)

and hence we get (3.4). Notice that (3.5) follows by the fact that R cannot be a solution to |Dx |R + aR = bR4 unless 
a = b = 1. In fact, if it not the case, then, since R solves (0.8), we would get (b − 1)R4 = (a − 1)R that implies R is 
a constant.
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