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Abstract

Let L = − divx(A(x)∇x) be a uniformly elliptic operator in divergence form in a bounded domain �. We consider the fractional 
nonlocal equations{

Lsu = f, in �,

u = 0, on ∂�,
and

{
Lsu = f, in �,

∂Au = 0, on ∂�.

Here Ls , 0 < s < 1, is the fractional power of L and ∂Au is the conormal derivative of u with respect to the coefficients A(x). 
We reproduce Caccioppoli type estimates that allow us to develop the regularity theory. Indeed, we prove interior and boundary 
Schauder regularity estimates depending on the smoothness of the coefficients A(x), the right hand side f and the boundary of the 
domain. Moreover, we establish estimates for fundamental solutions in the spirit of the classical result by Littman–Stampacchia–
Weinberger and we obtain nonlocal integro-differential formulas for Lsu(x). Essential tools in the analysis are the semigroup 
language approach and the extension problem.
© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In a bounded Lipschitz domain � ⊂R
n, n ≥ 1, we consider an elliptic operator in divergence form

Lu = −divx(A(x)∇xu),

with boundary condition

Dirichlet: u = 0, or Neumann: ∂Au := A(x)∇xu · ν = 0, on ∂�,
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where ν is the exterior unit normal to ∂�. The coefficients are symmetric A(x) = Aij (x) = Aji(x), i, j = 1, . . . , n, 
bounded and measurable in � and satisfy the uniform ellipticity condition �1|ξ |2 ≤ A(x)ξ ·ξ ≤ �2|ξ |2, for all ξ ∈ R

n

and almost every x ∈ �, for some ellipticity constants 0 < �1 ≤ �2. In this paper we study interior and boundary 
regularity estimates for the fractional nonlocal problem Lsu = f in �, subject to the boundary conditions above, in the 
cases when f is Hölder continuous, see Theorems 1.1, 1.3 and 1.4, and when f is just Lp integrable, see Theorems 1.2
and 1.5. These estimates of course depend on the regularity of the coefficients A and of the boundary of �. Our main 
tools are the semigroup language approach as developed in [32] and the extension problem as introduced in [7]. We 
obtain Caccioppoli type estimates that are combined with a compactness and approximation argument based on the 
ideas of [5] to prove the regularity results.

Let us begin by considering the case of Dirichlet boundary condition. By using the L2-Dirichlet eigenvalues and 
eigenfunctions (λk, φk)

∞
k=0, φk ∈ H 1

0 (�), of L we can define the fractional powers Lsu, 0 < s < 1, for u in the domain 
Dom(Ls) ≡ Hs (see Remark 2.1) in the natural way. If u(x) =∑∞

k=0 ukφk(x), x ∈ �, then

Lsu(x) =
∞∑

k=0

λs
kukφk(x).

Observe that u = 0 on ∂�. Equivalently, we have the semigroup formula

Lsu(x) = 1

	(−s)

∞∫
0

(
e−tLu(x) − u(x)

) dt

t1+s
, (1.1)

where {e−tLu}t>0 is the heat diffusion semigroup generated by L with the Dirichlet boundary condition and 	 is the 
Gamma function. See Section 2. It is clear that for f in the dual space H−s ≡ (Hs)′ there exists a unique solution 
u ∈Hs to the fractional nonlocal equation{

Lsu = f, in �,

u = 0, on ∂�.
(1.2)

Starting from (1.1) and by using the heat kernel for e−tL we are able to obtain integro-differential formulas for Lsu(x)

of the form

〈Lsu,ψ〉 =
∫
�

∫
�

(
u(x) − u(z)

)(
ψ(x) − ψ(z)

)
Ks(x, z) dx dz +

∫
�

u(x)ψ(x)Bs(x) dx, (1.3)

where ψ ∈ Hs , see Theorem 2.3. Observe that this formula is parallel to the weak form interpretation of Lu in 
H 1

0 (�). Estimates for the kernel Ks(x, z) and the fundamental solution Gs(x, z) of Ls are contained in Theorems 2.4, 
2.6 and 2.7. In particular, we show that the fundamental solution satisfies the interior estimate

Gs(x, z) ∼ 1

|x − z|n−2s
, for x, z ∈ �,

when n �= 2s, with a logarithmic estimate when n = 2s.
Similarly, we can define the fractional powers of LN , the operator L subject to Neumann boundary conditions. In 

this case we use the Neumann eigenvalues and eigenfunctions (μk, ϕk)
∞
k=0, ϕk ∈ H 1(�), to define Ls

Nu as

Ls
Nu(x) =

∞∑
k=1

μs
kukϕk(x). (1.4)

The formula in (1.1) is also valid for LN in place of L. Then we obtain the integro-differential formula

〈Ls
Nu,ψ〉 =

∫
�

∫
�

(
u(x) − u(z)

)(
ψ(x) − ψ(z)

)
KN

s (x, z) dx dz, (1.5)

where the kernel KN
s (x, z) is given in terms of the heat kernel for e−tLN . Notice the difference between this for-

mula and the one in (1.3) for the Dirichlet case. This is so because for the Neumann boundary condition we have 
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e−tLN 1 ≡ 1, while for the Dirichlet condition e−tL1 �= 1. Now if 
∫
�

f dx = 0 then there exists a unique solution 
u ∈ Dom(Ls

N) = Hs(�) to{
Lsu = f, in �,

∂Au = 0, on ∂�,
(1.6)

with 
∫
�

u dx = 0. For the details see Section 7.
It is already known, see [33], that the fractional operators (1.1) can be described as Dirichlet-to-Neumann maps 

for an extension problem in the spirit of the extension problem for the fractional Laplacian on Rn of [7]. In fact, let 
U = U(x, y) : � × (0, ∞) → R be the solution to the degenerate elliptic equation with A2 weight{div(yaB(x)∇U) = 0, in � × (0,∞),

U = 0, on ∂� × [0,∞),

U(x,0) = u(x), on �,

(1.7)

where

B(x) :=
[

A(x) 0
0 1

]
∈ R

n+1 ×R
n+1, and a := 1 − 2s ∈ (−1,1). (1.8)

Then, for cs = |	(−s)|/(4s	(s)) > 0,

− 1

2s
lim

y→0+ yaUy(x, y) = − lim
y→0+

U(x, y) − U(x,0)

y2s
= csL

su(x), x ∈ �.

Moreover, there are explicit formulas for U in terms of the semigroup e−tL. See Theorem 2.5 and the comments 
before it. When A(x) = I and � = R

n in (1.7) we recover the extension problem for the fractional Laplacian of [7]. 
By replacing the second equation for U in (1.7) by ∂AU(x, y) = 0 for all y ≥ 0 we get the extension problem for the 
fractional operator Ls

N .
Fractional powers of elliptic operators as those above arise naturally in applications, for instance, in nonlinear 

elasticity, probability and mathematical biology. Consider for example the following thin obstacle problem for an 
elastic membrane U(x, y) : � × (0, ∞) → R and an obstacle ϕ : � →R such that ϕ ≤ 0 on ∂�:⎧⎪⎨⎪⎩

Uyy − LU = 0 = div(B(x)∇U), in � × (0,∞),

U(x,0) ≥ ϕ(x), on �,

Uy(x,0) ≤ 0, on {U(x,0) = ϕ(x)},
Uy(x,0) = 0, on {U(x,0) > ϕ(x)}.

We also require for the membrane U to be at level zero (Dirichlet) or to have zero flux (Neumann) on ∂� ×[0, ∞). The 
classical case of the Signorini problem is when A(x) = I , so the membrane is a harmonic function in � × (0, ∞). It is 
cleat that the solution U(x, y) to the first equation above with the boundary datum u(x) := U(x, 0) and the Dirichlet
(or Neumann) boundary condition on ∂� × [0, ∞) is given by the Poisson semigroup generated by L (or LN ):

U(x, y) = e−yL1/2
u(x), x ∈ �, y ≥ 0.

Observe that Uy(x, y) = −L1/2e−yL1/2
u(x) (see [32]). Therefore we readily see that the membrane solves the thin 

obstacle problem if and only if its trace u solves the fractional obstacle problem{
u ≥ ϕ, in �,

L1/2u ≥ 0, in {u = ϕ},
L1/2u = 0, in {u > ϕ},

with u = 0 (or ∂Au = 0) on ∂�, see [32]. This obstacle problem for L = −� and � = R
n was studied in [6,29]. 

Another application comes from the theory of stochastic processes. It is known that there is a Markov process Yt

having as generator the fractional power (−�D)s of the Dirichlet Laplacian −�D on �. Indeed, we first kill the 
Wiener process Xt at τ�, the first exit time of Xt from �, and then we subordinate the killed Wiener process with an 
s-stable subordinator Tt . Hence Yt = XTt is the desired process, see for example [30] and the references therein. For 
a semilinear problem involving the fractional Dirichlet Laplacian see [9] and the references therein. By considering 
nonlocal chemical diffusion in the Keller–Segel model one is led to a semilinear problem for the fractional Neumann 
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Laplacian, see [34]. Finally, we mention that finite element approximations for the fractional problem (1.2) were 
studied in [22] by using the extension problem.

We now present the interior regularity estimates.

Theorem 1.1 (Interior regularity for f in Cα). Assume that � is a bounded Lipschitz domain and that f ∈ C0,α(�), 
for some 0 < α < 1. Let u be a solution to (1.2) or (1.6).

(1) Suppose that 0 < α + 2s < 1 and that A(x) is continuous in �. Then u ∈ C0,α+2s(�) and

[u]C0,α+2s (�) ≤ C
(‖u‖L2(�) + [u]Hs(�) + ‖f ‖C0,α(�)

)
.

(2) Suppose that 1 < α + 2s < 2 and that A(x) is in C0,α+2s−1(�). Then u ∈ C1,α+2s−1(�) and

[u]C1,α+2s−1(�) ≤ C
(‖u‖L2(�) + [u]Hs(�) + ‖f ‖C0,α(�)

)
.

The constants C above depend only on ellipticity, n, �, α, s and the modulus of continuity of A(x).

Theorem 1.2 (Interior regularity for f in Lp). Assume that � is a bounded Lipschitz domain and that f ∈ Lp(�), for 
some 1 < p < ∞. Let u be a solution to (1.2) or (1.6).

(1) Suppose that n/(2s) < p < n/(2s −1)+ and that A(x) is continuous in �. Then u ∈ C0,α(�), for α = 2s −n/p ∈
(0, 1), and

[u]C0,α(�) ≤ C
(‖u‖L2(�) + [u]Hs(�) + ‖f ‖Lp(�)

)
.

(2) Suppose that s > 1/2, p > n/(2s − 1) and that A(x) is in C0,α(�), for α = 2s − n/p − 1 ∈ (0, 1). Then u ∈
C1,α(�) and

[u]C1,α(�) ≤ C
(‖u‖L2(�) + [u]Hs(�) + ‖f ‖Lp(�)

)
.

The constants C above depend only on ellipticity, n, �, α, s and the modulus of continuity of A(x).

The results above should be compared with the classical regularity estimates for the fractional Laplacian and 
with the classical Schauder estimates for divergence form elliptic operators. If (−�)su = f in Rn and f ∈ Cα then 
u ∈ Cα+2s . On the other hand, if Lu = f and the coefficients A(x) and the right hand side f are in Cα , then u ∈ C1,α

in the interior. If the coefficients are just continuous and f is in Lp , for some n/2 < p < n, then u ∈ C2−n/p , while 
if p > n and the coefficients are Hölder continuous with exponent α = 2 − n/p − 1 then u ∈ C1,α in the interior. See 
Proposition 5.1 and [15,18,29,31].

Notice that in Theorems 1.1 and 1.2 we require the coefficients to be continuous in part (1) and Hölder continuous 
in part (2). The idea behind these results is to compare the solution u with the solution of the equation with frozen 
coefficients. In (1) we notice that u − c is still a solution in the interior for any constant c, so the regularity basically 
comes from the right hand side as in the case of the fractional Laplacian. For part (2), if � is a linear function then 
u − � is not a solution of the same equation. Then Hölder regularity in the coefficients is needed in order to gain a 
decay in the oscillation of the remainder error in the right hand side.

Next we establish the boundary regularity in the case of Dirichlet boundary condition.

Theorem 1.3 (Boundary regularity for f in Cα – Dirichlet). Assume that � is a bounded domain and that f ∈ C0,α(�), 
for some 0 < α < 1. Let u be a solution to (1.2).

(1) Suppose that 0 < α + 2s < 1, � is a C1 domain and that A(x) is continuous in �. Then

u(x) ∼ dist(x, ∂�)2s + v(x), for x close to ∂�,

where v ∈ C0,α+2s(�). Moreover,

[v]C0,α+2s (�) ≤ C
(
1 + ‖u‖L2(�) + [u]Hs(�) + ‖f ‖C0,α(�)

)
.
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(2) Suppose that s ≥ 1/2, 1 < α + 2s < 2, � is a C1,α+2s−1 domain and that A(x) is in C0,α+2s−1(�). Then

u(x) ∼ dist(x, ∂�) + v(x), for x close to ∂�,

where v ∈ C1,α+2s−1(�). Moreover,

[v]C1,α+2s−1(�) ≤ C
(
1 + ‖u‖L2(�) + [u]Hs(�) + ‖f ‖C0,α(�)

)
.

In both cases, if f (x0) = 0 for some x0 ∈ ∂�, then u(x0) = v(x0) and u has the same regularity as v at x0 ∈ ∂�. The 
constants C above depend only on ellipticity, n, �, α, s and the modulus of continuity of A(x).

The result above should be compared with the boundary regularity estimates for the fractional Dirichlet Laplacian 
(−�+

D)s in the half space Rn+ contained in Theorem 5.3. Observe that here an odd reflection can be performed to 
compare with the global problem.

For the case of Neumann boundary condition the global regularity is the same as the interior regularity.

Theorem 1.4 (Global regularity for f in Cα – Neumann). Assume that � is a bounded domain and that f ∈ C0,α(�), 
for some 0 < α < 1. Let u be a solution to (1.6).

(1) Suppose that 0 < α + 2s < 1, � is a C1 domain and that A(x) is continuous in �. Then u ∈ C0,α+2s(�) and

[u]C0,α+2s (�) ≤ C
(‖u‖L2(�) + [u]Hs(�) + ‖f ‖C0,α(�)

)
.

(2) Suppose that s ≥ 1/2, 1 < α + 2s < 2, � is a C1,α+2s−1 domain and that A(x) is in C0,α+2s−1(�). Then u ∈
C1,α+2s−1(�) and

[u]C1,α+2s−1(�) ≤ C
(‖u‖L2(�) + [u]Hs(�) + ‖f ‖C0,α(�)

)
.

The constants C above depend only on ellipticity, n, �, α, s and the modulus of continuity of A(x).

Again this Theorem should be compared with the boundary regularity estimates for the fractional Neumann Lapla-
cian (−�+

N)s in the half space Rn+, see Theorem 7.2. In this case even reflections can be used to relate the problem 
with the global one.

Finally, for Lp right hand side, both Dirichlet and Neumann cases have the same regularity up to the boundary.

Theorem 1.5 (Boundary regularity for f in Lp). Assume that � is a bounded domain and that f ∈ Lp(�), for some 
1 < p < ∞. Let u be a solution to (1.2) or (1.6).

(1) Suppose that n/(2s) < p < n/(2s − 1)+, � is a C1 domain and that A(x) is continuous in �. Then u ∈ C0,α(�), 
for α = 2s − n/p ∈ (0, 1), and

[u]C0,α(�) ≤ C
(‖u‖L2(�) + [u]Hs(�) + ‖f ‖Lp(�)

)
.

(2) Suppose that s > 1/2, p > n/(2s − 1), � is a C1,α domain and that A(x) is in C0,α(�), for α = 2s − n/p − 1 ∈
(0, 1). Then u ∈ C1,α(�) and

[u]C1,α(�) ≤ C
(‖u‖L2(�) + [u]Hs(�) + ‖f ‖Lp(�)

)
.

The constants C above depend only on ellipticity, n, �, α, s and the modulus of continuity of A(x).

We recall that if Lu = f and the coefficients A(x) and the right hand side f are in Cα up to the boundary of 
� then u ∈ C1,α up to the boundary. If the coefficients are just continuous up to the boundary and f is in Lp for 
some n/2 < p < n then u is globally in C2−n/p , while if p > n and the coefficients are Hölder continuous up to the 
boundary with exponent α = 2 − n/p − 1 then u ∈ C1,α up to the boundary. See [15,18].
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Some bounds at the boundary for the fractional Dirichlet Laplacian when f is just bounded and � is smooth where 
obtained in [9]. For the particular case s = 1/2 in a smooth domain with a right hand side vanishing at the boundary see 
also [4]. The regularity estimates for the Neumann case generalize the results for the fractional Neumann Laplacian 
(−�N)1/2 obtained in [34, Theorem 3.5]. When the coefficients A(x) and the domain � are smooth, the Lp-domain 
and regularity of fractional powers of strongly elliptic operators was considered in [27,28], see also the recent preprint 
[17].1 For the fractional Laplacian on Rn we know that the unique solution u ∈ Hs(Rn) of the Dirichlet problem{

(−�)su = 1, in B1,

u = 0, in R
n \ B1,

is given by u(x) = cn,s(1 − |x|2)s+, see [14]. Thus in general u is globally in Cs but not in any Cα for α > s, see also 
[25]. For this case the boundary regularity in fractional Sobolev spaces and in Hölder spaces on smooth domains was 
studied in [16].

Throughout the paper we will mainly focus on the case of the Dirichlet boundary condition. We explain only in 
Section 7 how the case of the Neumann condition works by pointing out the main differences with the Dirichlet case. 
In Section 2 we define in a precise way the fractional operator Ls . By using the heat semigroup e−tL and (1.1) we 
obtain the integro-differential formula (1.3), with estimates on the kernel. The extension problem is explained. We 
also include in this section the estimates for the fundamental solutions and comment about the Harnack inequality 
of [35] and the De Giorgi–Nash–Moser theory for the case of bounded measurable coefficients. Section 3 contains 
a Caccioppoli inequality that we use to prove an approximation lemma via a compactness argument. Here we also 
prove a trace inequality on balls with explicit dependence on the radius that will be useful to prove regularity. Then 
Section 4 is devoted to the proof of the interior regularity results (Dirichlet case). The case of the fractional Dirichlet 
Laplacian in a half space is studied in detail in Section 5. We collect in Section 6 the proof of the boundary estimates 
for the Dirichlet case.

Notation. The notation we will use in this paper is the following. The upper half space is given by Rn+ := {(x′, xn) ∈
R

n : x′ ∈ R
n−1, xn > 0}. For the extension problem we use the notation Rn+1+ = {(x, y) ∈ R

n+1 : x ∈ R
n, y > 0}. We 

usually write X = (x, y) ∈ R
n+1+ . For x0 ∈ R

n and r > 0 we denote

Br(x0) = {x ∈R
n : |x − x0| < r},

B+
r (x0) = Br(x0) ∩R

n+,

Br(x0)
∗ = Br(x0) × (0, r) ⊂R

n+1+ ,

B+
r (x0)

∗ = B+
r (x0) × (0, r) ⊂R

n+ × (0,∞).

We will just put Br , B+
r , etc. whenever x0 = 0. The letters C, c and d will denote positive constants that may change 

at each occurrence. We will add subscripts to them whenever we want to stress their dependence on other constants, 
domains, etc. The matrix B(x) and the parameter a are given by (1.8). The notation div and ∇ stand for the divergence 
and the gradient with respect to the variable X = (x, y) ∈ � × (0, ∞).

2. Fractional divergence form elliptic operators

Throughout this section, unless explicitly stated, � will be a bounded Lipschitz domain of Rn and the matrix of 
coefficients A(x) will be uniformly elliptic, bounded and measurable.

2.1. Definition of Ls

The operator L is nonnegative and selfadjoint in the Sobolev space H 1
0 (�). Therefore there exists an orthonormal 

basis of L2(�) consisting of eigenfunctions φk ∈ H 1
0 (�), k = 0, 1, 2, . . . , that correspond to eigenvalues 0 < λ0 <

λ1 ≤ λ2 ≤ · · · ↗ ∞. Let us define the domain Hs ≡ Dom(Ls) of the fractional operator Ls , 0 < s < 1, as the Hilbert 
space of functions

1 We are grateful to Gerd Grubb for several interesting comments about the smooth case.
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u =
∞∑

k=0

ukφk =
∞∑

k=0

〈u,φk〉L2(�)φk ∈ L2(�),

with inner product

〈u,ψ〉2
Hs :=

∞∑
k=0

λs
kukdk,

where ψ =∑∞
k=0 dkφk ∈ Hs . Observe that for some positive constant C we have ‖u‖L2(�) ≤ C〈u, u〉Hs = C‖u‖Hs , 

for u ∈ Hs , so that 〈·, ·〉Hs defines indeed an inner product in Hs . For u ∈Hs , let Lsu be the element in the dual space 
H−s := (Hs)′ given by

Lsu =
∞∑

k=0

λs
kukφk, in H−s .

Namely,

〈Lsu,ψ〉 =
∞∑

k=0

λs
kukdk = 〈u,ψ〉Hs ,

where 〈·, ·〉 denotes the paring between Hs and H−s . By the Riesz representation theorem any functional f ∈ H−s

can be written as f =∑∞
k=0 fkϕk in H−s , where the coefficients fk satisfy 

∑∞
k=0 λ−s

k f 2
k < ∞. With these definitions 

and observations, if f =∑∞
k=0 fkφk ∈ H−s then the unique solution u ∈ Hs to the Dirichlet problem (1.2) is given 

by u =∑∞
k=0 λ−s

k fkφk ∈ Hs . More generally, if f ∈ Hr for r ≥ 0 (here H0 := L2(�)), then there exists a unique 
solution u ∈Hr+2s .

Remark 2.1. We use the following notation:

Hs :=
⎧⎨⎩

Hs(�), when 0 < s < 1/2,

H
1/2
00 (�), when s = 1/2,

H s
0 (�), when 1/2 < s < 1.

(2.1)

The spaces Hs(�) and Hs
0 (�), s �= 1/2, are the classical fractional Sobolev spaces given by the completion of C∞

c (�)

under the norm

‖u‖2
Hs(�) = ‖u‖2

L2(�)
+ [u]2

Hs(�),

where

[u]2
Hs(�) =

∫
�

∫
�

(u(x) − u(z))2

|x − z|n+2s
dx dz, 0 < s < 1.

The space H 1/2
00 (�) is the Lions–Magenes space which consists of functions u in L2(�) such that [u]H 1/2(�) < ∞

and ∫
�

u(x)2

dist(x, ∂�)
dx < ∞.

See [20, Chapter 1], also [22, Section 2] for a discussion. The norm in any of these spaces is denoted by ‖ · ‖Hs . We 
will later see, by using the extension problem, that in fact we have Hs = Hs as Hilbert spaces.

2.2. Heat semigroup and pointwise formula

Given a function u =∑∞
k=0 ukφk in L2(�), the weak solution v(x, t) to the heat equation for L with Dirichlet 

boundary condition
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{
vt = −Lv, in � × (0,∞),

v(x, t) = 0, on ∂� × [0,∞),

v(x,0) = u(x), on �,

is given by

v(x, t) ≡ e−tLu(x) =
∞∑

k=0

e−tλkukφk(x),

in the sense that, for every test function ψ =∑∞
k=0 dkφk ∈ H 1

0 (�),

〈e−tLu,ψ〉L2(�) =
∞∑

k=0

e−tλkukdk.

In particular, e−tLu ∈ L2((0, ∞); H 1
0 (�)) ∩ C([0, ∞); L2(�)), and ∂t e

−tLu ∈ L2((0, ∞); H−1(�)).

Lemma 2.2. Let u ∈Hs . Then

Lsu = 1

	(−s)

∞∫
0

(
e−tLu − u

) dt

t1+s
, in H−s .

More precisely, if ψ ∈Hs then

〈Lsu,ψ〉 = 1

	(−s)

∞∫
0

(〈e−tLu,ψ〉L2(�) − 〈u,ψ〉L2(�)

) dt

t1+s
. (2.2)

Proof. We have the following numerical formula with the Gamma function:

λs = 1

	(−s)

∞∫
0

(
e−tλ − 1

) dt

t1+s
, for λ > 0, 0 < s < 1.

Then, if ψ =∑∞
k=0 dkφk ,

〈Lsu,ψ〉 =
∞∑

k=0

λs
kukdk = 1

	(−s)

∞∑
k=0

∞∫
0

(
e−tλkukdk − ukdk

) dt

t1+s

= 1

	(−s)

∞∫
0

( ∞∑
k=0

e−tλkukdk −
∞∑

k=0

ukdk

)
dt

t1+s
,

which is the desired formula. The last identity follows from Fubini’s theorem, since u, ψ ∈Hs . �
Let Wt(x, z) be the distributional heat kernel for L with the Dirichlet boundary condition, that is,

Wt(x, z) =
∞∑

k=0

e−tλkφk(x)φk(z) = Wt(z, x), t > 0, x, z ∈ �. (2.3)

It is clear that Wt(x, z) ≥ 0 (see [10]) and that if u, ψ ∈ L2(�) then

〈e−tLu,ψ〉L2(�) =
∫
�

∫
�

Wt(x, z)u(z)ψ(x)dz dx = 〈u, e−tLψ〉L2(�), t ≥ 0.
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Theorem 2.3 (Pointwise/energy formula). Let u, ψ ∈Hs . Then (1.3) holds, where

0 ≤ Ks(x, z) := 1

2|	(−s)|
∞∫

0

Wt(x, z)
dt

t1+s
≤ cn,s

|x − z|n+2s
, x �= z, (2.4)

and

Bs(x) := 1

2|	(−s)|
∞∫

0

(
1 − e−tL1(x)

) dt

t1+s
≥ 0. (2.5)

Proof. By plugging the heat kernel into (2.2),

	(−s)〈Lsu,ψ〉 =
∞∫

0

∫
�

⎡⎣∫
�

Wt(x, z)u(x)ψ(z) dx − u(z)ψ(z)

⎤⎦dz
dt

t1+s

=
∞∫

0

∫
�

⎡⎣∫
�

Wt(x, z)
(
u(x) − u(z)

)
ψ(z)dx + u(z)ψ(z)

⎛⎝∫
�

Wt(x, z) dx − 1

⎞⎠⎤⎦dz
dt

t1+s

=
∞∫

0

∫
�

∫
�

Wt(x, z)
(
u(x) − u(z)

)
ψ(z)dx dz

dt

t1+s

+
∞∫

0

∫
�

u(z)ψ(z)
(
e−tL1(z) − 1

)
dz

dt

t1+s
=: I.

By exchanging the roles of x and z and using the symmetry of the heat kernel, we also have that

I = −
∞∫

0

∫
�

∫
�

Wt(x, z)
(
u(x) − u(z)

)
ψ(x)dx dz

dt

t1+s
+

∞∫
0

∫
�

u(z)ψ(z)
(
e−tL1(z) − 1

)
dz

dt

t1+s
.

Therefore, by adding both identities for I ,

2|	(−s)|〈Lsu,ψ〉 =
∞∫

0

∫
�

∫
�

Wt(x, z)
(
u(x) − u(z)

)(
ψ(x) − ψ(z)) dx dz

dt

t1+s

+
∞∫

0

∫
�

u(z)ψ(z)
(

1 − e−tL1(z)
)

dz
dt

t1+s
. (2.6)

To reach the final expression with the kernel Ks(x, z) and the function Bs(x) we need to interchange the order of inte-
gration in (2.6). The estimate for the kernel Ks(x, z) is contained in Theorem 2.4. Since u, ψ ∈ Hs (see Remark 2.1) 
it follows that Fubini’s theorem can be applied to the first term in the right hand side of (2.6). For the second term in 
(2.6), take ψ = u. Observe that 0 ≤ e−tL1(z) ≤ 1, which follows from the maximum principle. This and the fact that 
Ks(x, z) ≥ 0 imply in (2.6) that

0 ≤
∞∫

0

∫
�

|u(z)|2(1 − e−tL1(z)
)
dz

dt

t1+s

= 2|	(−s)|〈Lsu,u〉 −
∫
�

∫
�

(
u(x) − u(z)

)2
Ks(x, z) dx dz ≤ 2|	(−s)|‖u‖Hs < ∞.

Then, by Fubini’s theorem,
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0 ≤
∞∫

0

∫
�

|u(z)|2(1 − e−tL1(z)
)
dz

dt

t1+s
=
∫
�

|u(z)|2Bs(z) dz < ∞,

with Bs(z) as in the statement. The same is true for when we replace u by ψ and by u − ψ . Thus, by writing 
uψ = 1

2 (u2 + ψ2 − (u − ψ)2), it follows that we can apply Fubini’s theorem to the second term of (2.6). �
Theorem 2.4 (Estimates for Ks(x, z)). Let Ks(x, z) ≥ 0 be the kernel in (2.4).

(1) If the coefficients A(x) are bounded and measurable then

Ks(x, z) ≤ cn,s

|x − z|n+2s
, x, z ∈ �, x �= z.

(2) If the coefficients A(x) are bounded and measurable in � =R
n then

Ks(x, z) ∼ cn,s

|x − z|n+2s
, x, z ∈R

n, x �= z.

In this case the function Bs(x) of (2.5) is identically zero.
(3) If the coefficients A(x) are Hölder continuous in � with exponent α ∈ (0, 1) then there exist positive constants c

and η ≤ 1 ≤ ρ depending only on n, α, � and ellipticity, with c depending also on s, such that

c−1 min

(
1,

φ0(x)φ0(z)

|x − z|2η

)
1

|x − z|n+2s
≤ Ks(x, z) ≤ c min

(
1,

φ0(x)φ0(z)

|x − z|2ρ

)
1

|x − z|n+2s
,

where λ0 and φ0 are the first eigenvalue and the first eigenfunction of L. Here, for some constant C > 0 depending 
on α, n, � and ellipticity,

C−1 dist(x, ∂�)ρ ≤ φ0(x) ≤ C dist(x, ∂�)η.

(4) Under the hypothesis of (3), if in addition � is a C1,γ domain for some 0 < γ < 1, then the estimate in (3) is true 
for η = ρ = 1 and c depending also on γ . In particular, the estimate holds when Ls = (−�D)s , the fractional 
Dirichlet Laplacian in a C1,γ domain.

Proof. We use the following known estimates for the heat kernel (2.3) and then integrate in t in (2.4) via the change 
of variables r = |x − z|2/t ∈ (0, ∞).

(1) In this case there exist constants C, c > 0 depending on ellipticity, n and � such that

Wt(x, z) ≤ C
e−|x−z|2/(ct)

tn/2
,

for all x, z ∈ �, t > 0, see [10, p. 89], also [3].
(2) For the case of bounded measurable coefficients in the whole space, the result of Aronson [2] establishes that 

for some positive constants c1, . . . , c4 depending on ellipticity and n,

c1
e−|x−z|2/(c2t)

tn/2
≤ Wt(x, z) ≤ c3

e−|x−z|2/(c4t)

tn/2
,

for all x, z ∈R
n, t > 0. See also [10, p. 97]. Moreover, in this case we have e−tL1(x) ≡ 1, so Bs(x) ≡ 0.

(3) Under these hypotheses it is proved in [23, Theorem 2.2] that there exist positive constants η ≤ 1 ≤ ρ and c, c1, 
c2 depending only on n, α, � and ellipticity such that

c−1 min

(
1,

φ0(x)φ0(z)

1 ∧ tη

)
e−λ0t

e−c1|x−z|2/t

1 ∧ tn/2
≤ Kt(x, z)

≤ c−1 min

(
1,

φ0(x)φ0(z)

1 ∧ tρ

)
e−λ0t

e−c2|x−z|2/t

1 ∧ tn/2
,

for all x, z ∈ �, t > 0. The behavior of φ0 is also known, see [23, (1.2)].
(4) This follows from the fact that in the heat kernel estimate written in (3) above we can take η = ρ = 1, see [23, 

Remark 1, p. 123]. �
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2.3. Extension problem

We particularize to our situation the extension problem of Stinga–Torrea [33], which is in turn a generalization of 
the Caffarelli–Silvestre extension problem of [7]. Let us explain the details, which can be found in [32,33].

Let u ∈Hs . Consider the solution U = U(x, y) : � × [0, ∞) → R to the extension problem{−LU + a
y
Uy + Uyy = 0, in � × (0,∞),

U(x, y) = 0, on ∂� × [0,∞),

U(x,0) = u(x), on �.

(2.7)

The equation above is in principle understood in the sense that U belongs to C∞((0, ∞); H 1
0 (�)) ∩C([0, ∞); L2(�))

and ∫
�

A(x)∇xU(x, y)∇xη(x) dx =
∫
�

(
a
y
Uy + Uyy

)
η(x) dx, for each y > 0,

for any test function η ∈ H 1
0 (�). The boundary conditions in y read

lim
y→0+ U(x, y) = u(x) in L2(�), and lim

y→∞U(x, y) = 0 weakly in L2(�).

Notice that problem (2.7) can also be written in divergence form as (1.7). It was shown in [32,33] that if u =∑∞
k=0 ukφk then the solution to this problem is

U(x, y) = ys 21−s

	(s)

∞∑
k=0

λ
s/2
k ukKs(λ

1/2
k y)φk(x), (2.8)

where Ks is the modified Bessel function of the second kind and parameter s. Equivalently,

U(x, y) = y2s

4s	(s)

∞∫
0

e−y2/(4t)e−tLu(x)
dt

t1+s

= 1

	(s)

∞∫
0

e−y2/(4t)e−tL(Lsu)(x)
dt

t1−s
. (2.9)

By using the heat kernel one can show that

U(x, y) =
∫
�

P s
y (x, z)u(z) dz, (2.10)

where the Poisson kernel P s
y (x, z) is given by

P s
y (x, z) = y2s

4s	(s)

∞∫
0

e−y2/(4t)Wt (x, z)
dt

t1+s
. (2.11)

In addition, by letting cs = 	(1−s)

4s−1/2	(s)
> 0, we have

− lim
y→0+ yaUy(x, y) = csL

su, in H−s . (2.12)

It is easy to show, by using the representation with eigenfunctions and Bessel functions of (2.8), that U belongs to 
the space H 1

0 (� × (0, ∞), yadX), which is the completion of C∞
c (� × [0, ∞)) under the norm

‖U‖2
H 1

0 (�×(0,∞),yadX)
=
∫ ∞∫

ya
(
U2 + |∇U |2) dX.
� 0
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See [11,13], also [36], for the theory of weighted Sobolev spaces. It is known (see [9, Proposition 2.1]) that these 
weighted Sobolev spaces have the fractional Sobolev spaces Hs defined in (2.1) as trace spaces, that is,

‖U(·,0)‖Hs ≤ C�,a‖U‖H 1
0 (�×(0,∞),yadX).

Therefore, u(x) = U(x, 0) ∈ Hs . This and the fact that the norm in H 1
0 (� × (0, ∞), yadX) is comparable to the 

natural energy for the extension equation given by (2.13) show that Hs = Hs , for all 0 < s < 1, as we already 
mentioned at the end of Remark 2.1. We summarize all these considerations in the following result. See [32,33].

Theorem 2.5 (Extension problem). Let u ∈ Hs . There exists a unique weak solution U ∈ H 1
0 (� × (0, ∞), yadX) to 

the extension problem (1.7), where B(x) and a are as in (1.8). Moreover, U is given by (2.9), which can also be written 
as (2.10), and it satisfies (2.12). More precisely, for each ϕ ∈ H 1

0 (� × (0, ∞), yadX),

∫
�

∞∫
0

yaB(x)∇U∇ϕ dX = cs

∫
�

Lsu(x)ϕ(x,0) dx.

In particular, U is the unique minimizer of the energy functional

J (U) =
∫
�

∞∫
0

yaB(x)∇U∇U dX, (2.13)

over the set U = {U ∈ H 1
0 (� × (0, ∞), yadX) : U(x, 0) = u(x)}, and for the minimizer U we have the identity

∫
�

∞∫
0

yaB(x)∇U∇U dX = ‖Ls/2u‖2
L2(�)

= ‖u‖2
Hs ,

and the inequality

∫
�

∞∫
0

ya|U |2 dX ≤ C�,s‖u‖2
L2(�)

.

2.4. Scaling

For u ∈Hs and λ > 0, let

Aλ(x) := A(λx), uλ(x) := u(λx),

and call Lλ the operator with coefficients Aλ in �λ := {x : x/λ ∈ �}. Then

(Ls
λuλ)(x) = λ2s(Lsu)(λx), in �λ.

In particular, if L has constant coefficients (as in the case of the Dirichlet Laplacian) then Lsuλ(x) = λ2sLsu(λx), 
in �λ. We present two different proofs.

Proof using the semigroup. Let v(x, t) = e−tLu(x). Since L is a linear second order divergence form elliptic oper-
ator, it follows that v satisfies the usual parabolic scaling. This immediately implies that the heat semigroup for Lλ is 
given by

e−tLλuλ(x) = v(λx,λ2t), x ∈ �λ, t > 0.

Now, by Lemma 2.2 and the change of variables r = λ2t , we see that the following identities hold in the weak sense:
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(Ls
λuλ)(x) = 1

	(−s)

∞∫
0

(
e−tLλuλ(x) − uλ(x)

) dt

t1+s

= 1

	(−s)

∞∫
0

(
v(λx,λ2t) − u(λx)

) dt

t1+s

= λ2s

	(−s)

∞∫
0

(
v(λx, r) − u(λx)

) dr

r1+s
= λ2s(Lsu)(λx). �

Proof using the extension problem. Let U be the solution to the extension problem (1.7). Consider Uλ(x, y) =
U(λx, λy). This function is defined for x in �λ and y > 0. Then, by using the weak formulation of the extension 
problem it is easy to check that{div(yaBλ(x)∇Uλ) = 0, for x ∈ �λ, y > 0,

Uλ(x, y) = 0, for x ∈ ∂�λ, y ≥ 0,

Uλ(x,0) = uλ(x), for x ∈ �λ,

(2.14)

where Bλ(x) = B(λx), x ∈ �λ. Since (2.14) is the extension problem for uλ and the operator Ls
λ,

−ya∂yUλ(x, y)

∣∣∣
y=0

= cs(L
s
λuλ)(x),

in L2(�). To conclude notice that

−ya∂yUλ(x, y)

∣∣∣
y=0

= −λ2s(λy)aUy(λx,λy)

∣∣∣
(λy)=0

= csλ
2s(Lsu)(λx). �

2.5. Fundamental solution

The fundamental solution Gs(x, z) = Gz
s(x) (Green function) of Ls with pole at z ∈ � is defined as the weak 

solution to{
LsGz = δz, G ≥ 0, in �,

Gz = 0, on ∂�.

Then Gs(x, z) is the distributional kernel of L−s , namely,

Gs(x, z) =
∞∑

k=0

1

λs
k

φk(z)φk(x) = Gs(z, x), in H−s . (2.15)

Indeed, for any ψ =∑∞
k=0 dkφk ∈Hs , by the symmetry of Ls ,

〈Ls
xG

z
s,ψ〉 = 〈Gz

s,L
s
xψ〉 =

∞∑
k=0

1

λs
k

φk(z)λ
s
kdk = ψ(z).

The following result is in the spirit of Littman–Stampacchia–Weinberger [21]. The proof is done by using the 
extension problem.

Theorem 2.6 (Littman–Stampacchia–Weinberger-type estimate). Fix the ellipticity constants 0 < �1 ≤ �2. Then the 
fundamental solutions Gs of any of the operators Ls that have ellipticity constants between �1 and �2 satisfy the 
following property. For any compact subset K ⊂ � there exist positive constants C1, C2, depending only on K, �, 
�1, �2 and s such that, when n > 2s,

C1

|x − z|n−2s
≤ Gs(x, z) ≤ C2

|x − z|n−2s
, x, z ∈K, x �= z.

In the case n = 2s we must replace |x − z|−(n−2s) by − ln |x − z|.
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Proof. We do the proof for Gs(x, 0), the fundamental solution of Ls with pole at the origin, and for � = Q1, the 
cube with center at the origin an side length 1. We take K to be Q1/4 ⊂ Q1. Let U be the solution to the following 
extension problem⎧⎨⎩

div(yaB(x)∇U) = 0, in Q1 × (0,∞),

U(x, y) = 0, on ∂Q1 × [0,∞),

− limy→0 yaUy(x, y) = csδ(0,0), on Q1.

Then, U(x, 0) = Gs(x, 0), see [32,33]. Because of the Neumann boundary condition at y = 0, it is easy to check (see 
the technique in [7] or [35]) that the even reflection Ũ(x, y) = U(x, |y|), x ∈ Q1, y ∈ R, is a weak solution to the 
equation{

div(|y|aB(x)∇Ũ ) = csδ(0,0), in Q1 ×R,

Ũ = 0, on ∂Q1 ×R.

This is a degenerate elliptic equation with A2 weight ω(x, y) = |y|a in Rn+1. By the result of Fabes, Jerison and 
Kenig [12] (see also Fabes [11]), the Green function Ũ(x, y) is comparable in Q1/4 to the quantity

1∫
|x−z|

s

sn+a+1
ds ∼ cn,s

{
|x − z|−(n−2s), if n > 2s,

ln 1
|x−z| , if n = 2s.

�

One can also apply the language of semigroups to study the fundamental solution of Ls as explained in [32,33]. If 
we use the numerical formula

λ−s = 1

	(s)

∞∫
0

e−tλ dt

t1−s
, λ, s > 0,

in (2.15), we see that the fundamental solution can be written as

Gs(x, z) = 1

	(s)

∞∫
0

Wt(x, z)
dt

t1−s
, in H−s , (2.16)

where Wt(x, z) is the heat kernel for L, see (2.3). The next estimates should be compared with those of Theorem 2.4.

Theorem 2.7 (Estimates for Gs(x, z)). Let Gs(x, z) ≥ 0 be the fundamental solution of Ls .

(1) If the coefficients A(x) are bounded and measurable then

Gs(x, z) ≤ cn,s

|x − z|n−2s
, x, z ∈ �, x �= z.

(2) If the coefficients A(x) are bounded and measurable in � =R
n then

Gs(x, z) ∼ cn,s

|x − z|n−2s
, x, z ∈R

n, x �= z.

(3) If the coefficients A(x) are Hölder continuous in � with exponent α ∈ (0, 1) then there exist positive constants c
and η ≤ 1 ≤ ρ depending only on n, α, � and ellipticity, with c depending also on s, such that

c−1 min

(
1,

φ0(x)φ0(z)

|x − z|2η

)
1

|x − z|n−2s
≤ Gs(x, z) ≤ c min

(
1,

φ0(x)φ0(z)

|x − z|2ρ

)
1

|x − z|n−2s
,

for x, z ∈ �, x �= z, where λ0 and φ0 are the first eigenvalue and the first eigenfunction of L.
(4) Under the hypothesis of (3), if in addition � is a C1,γ domain for some 0 < γ < 1, then the estimate in (3) is true 

for η = ρ = 1 and c depending also on γ . In particular, the estimate holds when Gs is the fundamental solution 
of the fractional Dirichlet Laplacian (−�D)s in a C1,γ domain.

Proof. The proof is parallel to that of Theorem 2.4 by using the heat kernel estimates given there and then integrating 
in t in the identity (2.16) via the change of variables r = |x − z|2/t . �
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2.6. Harnack inequality and De Giorgi–Nash–Moser theory

Let u ∈ Hs , u ≥ 0 in � such that Lsu = 0 in some ball B ⊂⊂ �. Then there exists a constant C depending on 
B , �, n and s such that

sup
1
2 B

u ≤ C inf
1
2 B

u.

Moreover, u is α-Hölder continuous in 1
2B , for some exponent 0 < α < 1. This result can be proved by using the 

extension problem of [33] as stated in Theorem 2.5. For details see [35].

3. Caccioppoli estimate, approximation, regularity of harmonic functions and a trace inequality

In this section we consider solutions U ∈ H 1(B∗
1 , yadX) to{

div(yaB(x)∇U) = div(yaF ), in B∗
1 ,

−yaUy

∣∣
y=0 = f, on B1,

(3.1)

where B(x) is given by (1.8) and F = (F1, . . . , Fn+1) is a vector field on B∗
1 such that

Fi(x) ∈ L2(B∗
1 , yadX), i = 1, . . . , n, and Fn+1 = 0. (3.2)

Definition 3.1. A function U ∈ H 1(B∗
1 , yadX) is a weak solution to (3.1) if∫

B∗
1

yaB(x)∇U∇ψ dX =
∫
B∗

1

yaF∇ψ dX +
∫
B1

ψ(x,0)f (x) dx,

for every ψ ∈ H 1(B∗
1 , yadX) such that ψ = 0 on ∂B∗

1 \ (B1 × {0}).
By a change of coordinates we can always assume that

B(0) = I.

Lemma 3.2 (Caccioppoli inequality). Let U be a weak solution to (3.1) in the sense of Definition 3.1 with F as in 
(3.2). Then, for every η ∈ C∞(B∗

1 ) that vanishes on ∂B∗
1 \ (B1 × {0}),

∫
B∗

1

yaη2|∇U |2 dX ≤ C

⎛⎜⎝∫
B∗

1

ya
(
|∇η|2U2 + |F |2η2

)
dX +

∫
B1

(η(x,0))2|U(x,0)||f (x)|dx

⎞⎟⎠ ,

where C = C(λ, �).

Proof. Take ψ = η2U ∈ H 1(B∗
1 , yadX) as a test function. Then∫

yaB(x)η2∇U∇U dX = −2
∫

yaηUB(x)∇U∇η dX +
∫

(η(x,0))2U(x,0)f (x) dx

+
∫

yaη2F∇U dX + 2
∫

yaUηF∇η dX.

Using the ellipticity and the Cauchy inequality with ε > 0,

λ

∫
yaη2|∇U |2 dX ≤ �

2ε

∫
yaU2|∇η|2 dX + 2�ε

∫
yaη2|∇U |2 dX +

∫
η2|U ||f |dx

+ 1

4ε

∫
yaη2|F |2 dX + ε

∫
yaη2|∇U |2 dX

+ 1

2ε

∫
yaη2|F |2 dX + 2ε

∫
yaU2|∇η|2 dX.

The inequality follows by choosing ε such that (2� + 1)ε/λ < 1/2. �
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By a compactness argument we get the following consequence of the Caccioppoli inequality.

Corollary 3.3 (Approximation lemma). Let U be a weak solution to (3.1) in the sense of Definition 3.1 with F as in 
(3.2). Suppose that U is normalized so that∫

B1

U(x,0)2 dx +
∫
B∗

1

yaU2 dX ≤ 1.

Then for every ε > 0 there exists δ = δ(ε) > 0 such that if∫
B1

f 2 dx +
∫
B∗

1

ya|F |2 dX +
∫
B1

|A(x) − I |2 dx < δ2,

then there exists a solution W to{
div(ya∇W) = 0, in B∗

3/4,

−yaWy

∣∣
y=0 = 0, on B3/4,

(3.3)

such that∫
B∗

3/4

|U − W |2ya dX < ε2.

Proof. We prove it by contradiction. Suppose that there exist ε0 > 0, coefficients Ak , weak solutions Uk in B∗
1 , 

Neumann type data fk and right hand sides Fk , such that∫
B1

U2
k dx +

∫
B∗

1

yaU2
k dX ≤ 1,

and ∫
B1

f 2
k dx +

∫
B∗

1

ya|Fk|2 dX +
∫
B1

|Ak(x) − I |2 dx <
1

k2
,

so that for any solution W to (3.3),∫
B∗

3/4

|Uk − W |2ya dX ≥ ε2
0, (3.4)

for all k ≥ 1. Let η be a test function which is equal to 1 in B∗
3/4 and vanishes outside B∗

1 . Then the Caccioppoli 
estimate and the hypotheses imply that∫

B∗
3/4

ya|∇Uk|2 dX ≤ C, for all k.

Therefore, {Uk}k≥1 is a bounded sequence in H 1(B∗
3/4, y

adX). Hence, by compactness of the Sobolev embedding, 
there exists a subsequence, that we still denote by Uk, and a function U∞ such that{

Uk → U∞, weakly in H 1(B∗
3/4, y

adX), and

Uk → U∞, strongly in L2(B∗
3/4, y

adX).

We show now that U∞ is a solution to (3.3), which will give us a contradiction. Indeed, for any suitable test function ψ ,
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∫
B∗

3/4

yaBk(x)∇Uk∇ψ dX =
∫

B∗
3/4

yaF k∇ψ dX +
∫

B3/4

ψ(x,0)fk(x) dx.

By taking the limit as k → ∞ along the subsequence found above we get∫
B∗

3/4

ya∇U∞∇ψ dX = 0.

This contradicts (3.4) for W = U∞ and k sufficiently large. �
Remark 3.4 (Approximation up to the boundary). The following observation will be useful when studying the bound-
ary regularity for the fractional problem with Dirichlet boundary condition. We say that U ∈ H 1((B+

1 )∗, yadX) is a 
weak solution to the half ball problem⎧⎨⎩

div(yaB(x)∇U) = div(yaF ), in (B+
1 )∗,

−yaUy

∣∣
y=0 = f, on B+

1 ,

U = 0, on B1 ∩ {xn = 0},
(3.5)

if U satisfies the identity in Definition 3.1 with B1 replaced by B+
1 . The test functions vanish on ∂(B+

1 )∗ \ (B+
1 ×{0}). 

With this definition then it is clear that the Caccioppoli inequality of Lemma 3.2 holds for solutions U of (3.5) with 
B+

1 in place of B1 in the statement. This allows to prove an approximation lemma parallel to Corollary 3.3. Namely, 
given ε > 0, there exists δ = δ(ε) such that if U is a solution of (3.5) that satisfies the hypotheses of Corollary 3.3
with B+

1 in place of B1, then there exists a solution W to⎧⎨⎩
div(ya∇W) = 0, in (B+

3/4)
∗,

−yaWy

∣∣
y=0 = 0, on B+

3/4,

W = 0, on B3/4 ∩ {xn = 0},
(3.6)

such that∫
(B+

3/4)
∗

ya|V −W|2 dX < ε2.

Since we will apply Corollary 3.3, we need to understand the regularity of solutions to (3.3).

Proposition 3.5. Let W ∈ H 1(B∗
1 , yadX) be a weak solution to{

div(ya∇W) = 0, in B∗
1 ,

−yaWy

∣∣
y=0 = 0, on B1.

(1) For each integer k ≥ 0 and each Br(x0) ⊂ B1,

sup
Br/2(x0)×[0,r/2)

|Dk
xW | ≤ C

rk
osc

Br(x0)×[0,r)
W,

where C depends only on n, k and s.
(2) For each Br(x0) ⊂ B1,

max
Br/2(x0)×[0,r/2)

|W | ≤ M

⎛⎜⎝ 1

rn+1+a

∫
Br(x0)

∗
ya|W |2 dX

⎞⎟⎠
1/2

,

where M depends only on n and s.
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(3) We have

sup
x∈B1/2

|Wy(x, y)| ≤ Cy,

where C depends only on n and s.

Proof. It can be seen that W̃(x, y) := W(x, |y|), y ∈ (−1, 1), is a weak solution to

div(|y|a∇W) = 0, in B1 × (−1,1),

see [7, Lemma 4.1]. Now (1) is contained in [6, Corollary 2.5], and (2) follows from [13, Corollary 2.3.4]. Finally
(3) is due to the fact that the Neumann type condition that W satisfies has a zero right hand side. Indeed, this follows 
from the proof of Lemma 4.2 in [7, p. 1254]. �
Remark 3.6 (Regularity up to the boundary – Dirichlet). For a solution W to (3.6) we can perform an odd reflection 
in the xn variable, that we call Wo, which satisfies{

div(ya∇Wo) = 0, in B∗
3/4,

−ya(Wo)y
∣∣
y=0 = 0, on B3/4.

Therefore W is smooth in B+
1/2. Also, (Wo)y grows like y near y = 0, xn = 0. Hence W satisfies the same estimates 

as those for harmonic functions contained in Proposition 3.5 up to the boundary B1/2 ∩ {xn = 0}.

In the proof of the regularity estimates we will need to use the following trace inequality on balls with explicit 
dependence of the constant in terms of the radius.

Lemma 3.7 (Trace inequality in balls). There exists a constant C > 0 depending only n and s such that

r1−s‖U(·,0)‖L2(Br )
≤ C‖U‖H 1(B∗

r ,yadX), (3.7)

for all U ∈ H 1(B∗
1 , yadX) and for any 0 < r ≤ 1. The inequality is also true if we replace Br by B+

r .

Proof. It is enough to consider r = 1. For if (3.7) is true in this case then for the general case we need to take the 
rescaled function V (x, y) = U(rx, ry). Recall that there exists a linear extension operator E : H 1(B∗

1 , |y|adX) →
H 1(Rn+1, |y|adX), such that EU = U in B∗

1 and

‖EU‖H 1(Rn+1,|y|adX) ≤ C0‖U‖H 1(B∗
1 ,|y|adX), (3.8)

where C0 depends only on n and s. Also, EU has compact support. See for example [36, Chapter 2, Theorem 2.1.13]. 
Moreover, the following trace inequality of Lions [19, Paragraph 5]

‖F(·,0)‖2
Hs(Rn) = ‖F(·,0)‖2

L2(Rn)
+ [F(·,0)]2

Hs(Rn) ≤ c2‖F‖2
H 1(Rn+1+ ,yadX)

,

holds for any F ∈ H 1(Rn+1+ , yadX), with a constant c depending only on n and s. Using this trace inequality with 
F = EU and (3.8) we get

‖U(·,0)‖L2(B1)
= ‖(EU)(·,0)‖L2(B1)

≤ ‖(EU)(·,0)‖Hs(Rn)

≤ c‖EU‖
H 1(Rn+1+ ,yadX)

≤ cC0‖U‖H 1(B∗
1 ,|y|adX). �

4. Interior regularity

Theorems 1.1 and 1.2 are in fact corollaries of the more general results that we state and prove in this section.
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We say that a function f : B1 →R is in L2,α(0), for 0 ≤ α < 1, whenever

[f ]2
L2,α(0)

:= sup
0<r≤1

1

rn+2α

∫
Br

|f (x) − f (0)|2 dx < ∞,

where f (0) is defined as f (0) := lim
r→0

1

|Br |
∫
Br

f (x) dx. It is clear that if f is Hölder continuous of order 0 < α < 1

at 0 then f ∈ L2,α(0). If the condition above holds uniformly in balls centered at points close to the origin, then f is 
α-Hölder continuous around the origin, see [8].

Theorem 4.1. Let u be a solution to (1.2). Assume that � is a bounded Lipschitz domain containing the ball B1 and 
let f ∈ L2,α(0), for some 0 < α < 1.

(1) Suppose that 0 < α + 2s < 1. There exist 0 < δ < 1, depending only on n, ellipticity, α and s, and a constant 
C0 > 0 such that if

sup
0<r≤1

1

rn

∫
Br

|A(x) − A(0)|2 dx < δ2,

then there exists a constant c such that

1

rn

∫
Br

|u(x) − c|2 dx ≤ C1r
2(α+2s), for all r > 0 sufficiently small,

where C1 + |c| ≤ C0
(‖u‖L2(�) + [u]Hs(�) + [f ]L2,α(0) + |f (0)|).

(2) Suppose that 1 < α + 2s < 2. There exist 0 < δ < 1, depending only on n, ellipticity, α and s, and a constant 
C0 > 0 such that if

sup
0<r≤1

1

rn+2(α+2s−1)

∫
Br

|A(x) − A(0)|2 dx < δ2,

then there exists a linear function �(x) =A +B · x such that

1

rn

∫
Br

|u(x) − �(x)|2 dx ≤ C1r
2(α+2s), for all r > 0 sufficiently small,

where C1 + |A| + |B| ≤ C0
(‖u‖L2(�) + [u]Hs(�) + [f ]L2,α(0) + |f (0)|).

The constants C0 above depend only on [A]L2,0(0) (resp. [A]L2,α+2s−1(0)), ellipticity, n, α and s.

It is clear then that Theorem 1.1 for the Dirichlet case is a direct consequence of Theorem 4.1 after a dilation of 
the variables if necessary. Indeed, the conditions on f and on the coefficients hold everywhere in � and therefore the 
estimate for u can be obtained around every interior point.

We say that a function f : B1 →R is in L2,−2s+α(0), 0 < α < 1, whenever

[f ]2
L2,−2s+α(0)

:= sup
0<r≤1

1

rn+2(−2s+α)

∫
Br

|f (x)|2 dx < ∞.

Also, f is in L2,−2s+α+1(0), 0 < α < 1, whenever

[f ]2
L2,−2s+α+1(0)

:= sup
0<r≤1

1

rn+2(−2s+α+1)

∫
B

|f (x)|2 dx < ∞.
r
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We have the following consequences of Hölder’s inequality.

• If f ∈ Lp(B1), for n/(2s) < p < n/(2s − 1)+, then f ∈ L2,−2s+α(0) and

[f ]L2,−2s+α(0) ≤ ‖f ‖Lp(B1),

for α = 2s − n/p.
• If s > 1/2 and f ∈ Lp(B1), for p > n/(2s − 1), then f ∈ L2,−2s+α+1(0) and

[f ]L2,−2s+α+1(0) ≤ ‖f ‖Lp(B1),

for α = 2s − n/p − 1.

Theorem 4.2. Let u be a solution to (1.2). Assume that � is a bounded Lipschitz domain containing the ball B1 and 
let 0 < α < 1.

(1) Suppose that f ∈ L2,−2s+α(0). There exist 0 < δ < 1, depending only on n, ellipticity, α and s, and a constant 
C0 > 0 such that if

sup
0<r≤1

1

rn

∫
Br

|A(x) − A(0)|2 dx < δ2,

then there exists a constant c such that

1

rn

∫
Br

|u(x) − c|2 dx ≤ C1r
2α, for all r > 0 sufficiently small,

where C1 + |c| ≤ C0
(‖u‖L2(�) + [u]Hs(�) + [f ]L2,−2s+α(0)

)
.

(2) Suppose that f ∈ L2,−2s+α+1(0). There exist 0 < δ < 1, depending only on n, ellipticity, α and s, and a constant 
C0 > 0 such that if

sup
0<r≤1

1

rn+2α

∫
Br

|A(x) − A(0)|2 dx < δ2,

then there exists a linear function �(x) =A +B · x such that

1

rn

∫
Br

|u(x) − �(x)|2 dx ≤ C1r
2(1+α), for all r > 0 sufficiently small,

where C1 + |A| + |B| ≤ C0
(‖u‖L2(�) + [u]Hs(�) + [f ]L2,−2s+α+1(0)

)
.

The constants C0 above depend only on [A]L2,0(0) (resp. [A]L2,α(0)), ellipticity, n, α and s.

In view of the comments above, Theorem 1.2 is a direct corollary of Theorem 4.2 after a dilation of the variables if 
necessary.

The rest of this section is devoted to the proof of Theorems 4.1 and 4.2.

4.1. Proof of Theorem 4.1(1)

It is enough to prove the regularity for u(x) = U(x, 0), where U ∈ H 1(B∗
1 , yadX) is a solution to{

div(yaB(x)∇U) = div(yaF ), in B∗
1 ,

−yaUy

∣∣
y=0 = f, on B1.

(4.1)

Here we take F to be a B∗
1 -valued vector field in an appropriate Morrey space (see (3) below) such that Fn+1 = 0. 

Theorem 4.1(1) then follows by taking into account Theorem 2.5, where F ≡ 0.
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It is clear that after an orthogonal change of variables we can assume that A(0) = I . We can also assume that 
f (0) = 0. For if f (0) �= 0 we take

Ũ (x, y) = U(x, y) + 1
1−a

y1−af (0),

that solves (4.1) with Neumann data f̃ (x) = f (x) − f (0) (recall that Bn+1,n+1(x) = 1) and f̃ (0) = 0.
Let δ > 0. By scaling and by considering

Ũ (x, y) = U(x, y)

⎛⎜⎝∫
B1

U(x,0)2dx +
∫
B∗

1

yaU2 dX + 1

δ

([f ]L2,α(0) + [F ]α,s

)⎞⎟⎠
−1

,

we can suppose the following.

(1) (A has small L2,0(0) seminorm) sup
0<r≤1

1

rn

∫
Br

|A(x) − I |2 dx < δ2;

(2) (f has small L2,α(0) seminorm) [f ]2
L2,α(0)

= sup
0<r≤1

1

rn+2α

∫
Br

|f |2 dx < δ2;

(3) (F has small Morrey seminorm at 0) [F ]α,s := sup
0<r≤1

1

rn+1+a+2(α+2s−1)

∫
B∗

r

ya|F |2 dX < δ2;

(4) (U has bounded L2 norms) 
∫
B1

U(x, 0)2 dx +
∫
B∗

1

yaU2 dX ≤ 1.

Given δ > 0, a solution U to (4.1) is called normalized if f (0) = 0, A(0) = I and (1)–(4) above holds.
Now we prove that given 0 < α + 2s < 1 there exists 0 < δ < 1, depending only on n, ellipticity, α and s, such that 

for any normalized solution U to (4.1) there exists a constant c∞ such that

1

rn

∫
Br

|U(x,0) − c∞|2 dx ≤ C0r
2(α+2s), for all r > 0 sufficiently small, (4.2)

and |c∞| ≤ C0, for some constant C0 depending only on n, ellipticity, α and s.

Lemma 4.3. Given 0 < α + 2s < 1 there exist 0 < δ, λ < 1, a constant c and a universal constant D > 0 such that for 
any normalized solution U to (4.1) we have

1

λn

∫
Bλ

|U(x,0) − c|2 dx + 1

λn+1+a

∫
B∗

λ

|U − c|2ya dX < λ2(α+2s),

and |c| ≤ D.

Proof. Let 0 < ε < 1 to be fixed. Then there exist 0 < δ < 1 and a harmonic function W that satisfy Corollary 3.3. 
We have∫

B∗
1/2

|W |2ya dX ≤ 2
∫

B∗
1/2

|U − W |2ya dX + 2
∫

B∗
1/2

U2ya dX ≤ 2ε2 + 2 ≤ 4.

Define c = W(0, 0). By the estimates on harmonic functions given in Proposition 3.5(2), there exists a universal 
constant D such that |c| ≤ D. Moreover, for any X ∈ B∗

1/4, by Proposition 3.5(1)–(3),

|W(X) − c| ≤ |W(x,y) − W(x,0)| + |W(x,0) − W(0,0)|
≤ |Wy(x, ξ)|y + ‖∇xW‖L∞(B1/4)|x| ≤ N(y2 + |x|) ≤ N |X|,

for some universal constant N . For any 0 < λ < 1/4,
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1

λn+1+a

∫
B∗

λ

|U − c|2ya dX

≤ 2

λn+1+a

∫
B∗

λ

|U − W |2ya dX + 2

λn+1+a

∫
B∗

λ

|W − c|2ya dX

≤ 2ε2

λn+1+a
+ 2N2

λn+1+a

∫
B∗

λ

|X|2ya dX ≤ 2ε2

λn+1+a
+ cn,aλ

2. (4.3)

On the other hand, we apply the trace inequality (3.7) to U − c ∈ H 1(B∗
1 , yadX) to get, for any 0 < λ < 1/8,

λ1+a

∫
Bλ

|U(x,0) − c|2 dx ≤ C

⎛⎜⎝∫
B∗

λ

|U − c|2ya dX +
∫
B∗

λ

|∇U |2ya dX

⎞⎟⎠ . (4.4)

Next we need to control the gradient in the right hand side of (4.4). To that end we use the Caccioppoli inequality in 
Lemma 3.2 that ensures that, since U − c is also a solution to the extension equation with the same Neumann type 
datum f ,

∫
B∗

λ

|∇U |2ya dX ≤ C

⎛⎜⎝∫
B∗

2λ

(|U − c|2 + |F |2)ya dX +
∫

B2λ

|U(x,0) − c||f (x)|dx

⎞⎟⎠
≤ C

∫
B∗

2λ

|U − c|2ya dX + ‖F‖2
L2(B∗

2λ,yadX)
+ C

(‖U(·,0)‖L2(B2λ) + |c||B2λ|1/2)‖f ‖L2(B2λ).

Then, since we are in the normalization situation, in (4.4) we get

λ1+a

∫
Bλ

|U(x,0) − c|2 dx ≤ C

∫
B∗

2λ

|U − c|2ya dX + δ2 + C(1 + |c|)δ, (4.5)

where C depends only on ellipticity, n and a. Therefore, for any 0 < λ < 1/8, from (4.5) and (4.3) we get

1

λn

∫
Bλ

|U(x,0) − c|2 dx ≤ C

λn+1+a

∫
B∗

2λ

|U − c|2ya dX + C(1 + |c|)
λn+1+a

(δ + δ2)

≤ Cε2

λn+1+a
+ cn,aλ

2 + C(1 + D)

λn+1+a
δ.

Hence, for any 0 < λ < 1/8, from this and (4.3),

1

λn

∫
Bλ

|U(x,0) − c|2 dx + 1

λn+1+a

∫
B∗

λ

|U − c|2ya dX <
Cε2

λn+1+a
+ cn,aλ

2 + Cδ

λn+1+a
,

where C depends only on ellipticity, n and a and it is universal for any W . We first take 0 < λ < 1/8 sufficiently 
small in such a way that the second term in the right hand side above is less than 1

3λ2(α+2s). Then we let ε > 0 small 
enough so that the first term is less than 1

3λ2(α+2s). For this choice of ε we take 0 < δ < 1 in the approximation lemma 
(Corollary 3.3) to be so small in such a way that the third term above is smaller than 1

3λ2(α+2s). Hence there exists
a constant c bounded by a universal constant D > 0 and 0 < δ < 1 such that for any normalized solution U and for 
some fixed 0 < λ < 1/8,

1

λn

∫
Bλ

|U(x,0) − c|2 dx + 1

λn+1+a

∫
B∗

λ

|U − c|2ya dX < λ2(α+2s). �
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Lemma 4.4. In the situation of Lemma 4.3 there is a sequence of constants ck , k ≥ 0, such that

|ck − ck+1| ≤ Dλk(α+2s),

and

1

λkn

∫
B

λk

|U(x,0) − ck|2 dx + 1

λk(n+1+a)

∫
B∗

λk

|U − ck|2ya dX < λ2k(α+2s).

Lemma 4.4 is enough to get (4.2). Indeed, let c∞ = limk→∞ ck , which is well defined because of the estimate 
for ck . For any r < 1/8, take k ≥ 0 such that λk+1 < r ≤ λk . Then

1

rn

∫
Br

|U(x,0) − c∞|2 dx ≤ 2

rn

∫
Br

|U(x,0) − ck|2 dx + 2

rn

∫
Br

|ck − c∞|2 dx

≤ 2

(
λkn

rn

)
1

λkn

∫
B

λk

|U(x,0) − ck|2 dx + CnD
2λ2k(α+2s)

≤ Cn,λ,Dλ2k(α+2s) ≤ Cn,λ,Dr2(α+2s). (4.6)

Proof of Lemma 4.4. The proof is done by induction. When k = 0, we take c0 = c1 = 0. Then the conclusion is true 
because U is a normalized solution. Assume that the claim is true for some k ≥ 0. Consider

Ũ (X) = U(λkX) − ck

λ(α+2s)k
, X ∈ B∗

1 ,

where λ is as in Lemma 4.3. By applying the change of variables X = λkZ in the weak formulation∫
B∗

λk

yaB(x)∇U∇ψ dX =
∫

B∗
λk

yaF∇ψ dX +
∫

B
λk

f (x)ψ(x,0) dx,

we get, for B̃(x) := B(λkx), ψ̃(X) = ψ(λkX), f̃ (x) = λ−kαf (λkx), F̃ (x) = λ−k(α+2s−1)F (λkx) and Ũ as above,∫
B∗

1

yaB̃(x)∇Ũ∇ψ̃ dX =
∫
B∗

1

yaF̃∇ψ̃ dX +
∫
B1

f̃ (x)ψ̃(x,0) dx.

Thus Ũ is a weak solution to{
div(yaB̃(x)∇Ũ ) = div(yaF̃ ), in B∗

1 ,

−yaŨy

∣∣
y=0 = f̃ , on B1.

(4.7)

Notice that Ã(0) = I , F̃n+1 = 0 and f̃ (0) = 0. Moreover, by changing variables back and using the induction hypoth-
esis,

1

rn

∫
Br

(Ã(x) − I )2 dx = 1

(λkr)n

∫
B

λkr

(A(x) − I )2 dx < δ2;

1

rn+2α

∫
Br

|f̃ |2 dx = 1

(λkr)n+2α

∫
B

λkr

|f |2 dx ≤ [f ]2
L2,α(0)

< δ2;

1

rn+1+a+2(α+2s−1)

∫
Br

ya|F̃ |2 dX = 1

(λkr)n+1+a+2(α+2s−1)

∫
B

λkr

ya|F |2 dX < δ2;

∫
B1

Ũ (x,0)2 dx = 1

λkn

∫
B k

|U(x,0) − ck|2
λ2k(α+2s)

dx ≤ 1;

λ
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∫
B∗

1

yaŨ2 dX = 1

λk(n+1+a)

∫
B∗

λk

ya |U − ck|2
λ2k(α+2s)

dX ≤ 1.

Therefore Ũ is a normalized solution to (4.7). Hence we can apply Lemma 4.3 to Ũ in order to get

1

λn

∫
Bλ

|Ũ (x,0) − c|2 dx + 1

λn+1+a

∫
B∗

λ

|Ũ − c|2ya dX < λ2(α+2s).

Now we change variables back in the definition of Ũ to obtain

1

λ(k+1)n

∫
B

λk+1

|U(x,0) − ck+1|2 dx < λ2(k+1)(α+2s),

and

1

λ(k+1)(n+1+a)

∫
B∗

λk+1

|Ũ − ck+1|2ya dX < λ2(k+1)(α+2s),

where

ck+1 = ck + λk(α+2s)c.

Obviously, we have |ck+1 − ck| = |cλk(α+2s)| ≤ Dλα+2s . This proves the induction step. �
4.2. Proof of Theorem 4.1(2)

As in the previous subsection, it is enough to prove the regularity for u(x) = U(x, 0), where U ∈ H 1(B∗
1 , yadX)

is a solution to{
div(yaB(x)∇U) = div(yaF ), in B∗

1 ,

−yaUy

∣∣
y=0 = f, on B1.

(4.8)

Here F is now a B∗
1 -valued vector field that belongs to an appropriate Campanato space (see (3) below) and such that 

F(0) = 0.
As before, we can assume that A(0) = I and f (0) = 0. We can also suppose the following for δ > 0.

(1) (A has small L2,α+2s−1(0) seminorm) sup
0<r≤1

1

rn+2(α+2s−1)

∫
Br

|A(x) − I |2 dx < δ2;

(2) (f has small L2,α(0) seminorm) [f ]2
L2,α(0)

= sup
0<r≤1

1

rn+2α

∫
Br

|f |2 dx < δ2;

(3) (F has small Campanato seminorm at 0) sup
0<r≤1

1

rn+1+a+2(α+2s−1)

∫
B∗

r

ya|F |2 dX < δ2;

(4) (U has bounded L2 norms) 
∫
B1

U(x, 0)2 dx +
∫
B∗

1

yaU2 dX ≤ 1.

Observe that assumption (1) on the coefficients A(x) is equivalent to ask for the matrix B(x) that

sup
0<r≤1

1

rn+1+a+2(α+2s−1)

∫
B∗

r

ya|B(x) − I |2 dX < δ2.

Now we prove that given 1 < α + 2s < 2 there exists 0 < δ < 1, depending only on n, ellipticity, α and s, such that 
for any normalized solution U to (4.8) there exists a linear function �∞(x) = A∞ + B∞ · x such that
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1

rn

∫
Br

|U(x,0) − �∞|2 dx ≤ C0r
2(α+2s), for all r > 0 sufficiently small, (4.9)

and |A∞| + |B∞| ≤ C0, for some constant C0 depending only on n, ellipticity, α and s.

Lemma 4.5. Given 1 < α + 2s < 2 there exist 0 < δ, λ < 1, a linear function

�(x) = A + B · x,

and a universal constant D > 0 such that for any normalized solution U to (4.8) we have

1

λn

∫
Bλ

|U(x,0) − �(x)|2 dx + 1

λn+1+a

∫
B∗

λ

|U − �|2ya dX < λ2(α+2s),

and |A| + |B| ≤ D.

Proof. Let 0 < ε < 1 to be fixed. Then there exist 0 < δ < 1 and a harmonic function W that satisfy Corollary 3.3. 
As before we have∫

B∗
1/2

|W |2ya dX ≤ 4.

Define �(x) = W(0, 0) +∇xW(0, 0) ·x =: A +B ·x. By the estimates on harmonic functions given in Proposition 3.5, 
there exists a universal constant D such that |A| + |B| ≤ D. Moreover, for any X ∈ B∗

1/4, by Proposition 3.5,

|W(x,y) − �(x)| = ∣∣(W(x,y) − W(x,0)
)+ (W(x,0) − W(0,0) − ∇xW(0,0) · x)∣∣

≤ |Wy(x, ξ)|y + 1
2 |D2

xW(ξ,0)||x|2
≤ Cξy + 1

2‖D2
xW‖L∞(B∗

1/4)
|x|2 ≤ N |X|2,

for some universal constant N . For any 0 < λ < 1/4,

1

λn+1+a

∫
B∗

λ

|U − �|2ya dX

≤ 2

λn+1+a

∫
B∗

λ

|U − W |2ya dX + 2

λn+1+a

∫
B∗

λ

|W − �|2ya dX

≤ 2ε2

λn+1+a
+ 2N2

λn+1+a

∫
B∗

λ

|X|4ya dX ≤ 2ε2

λn+1+a
+ cn,aλ

4. (4.10)

On the other hand, apply the trace inequality (3.7) to U − � ∈ H 1(B∗
1 , yadX) to get, for any 0 < λ < 1/8,

λ1+a

∫
Bλ

|U(x,0) − �(x)|2 dx ≤ C

⎛⎜⎝∫
B∗

λ

|U − �|2ya dX +
∫
B∗

λ

|∇(U − �)|2ya dX

⎞⎟⎠ . (4.11)

Next we control the gradient in the right hand side of (4.11) by using the Caccioppoli inequality. Notice that U − � is 
a solution (in the sense of Definition 3.1) to{

div(yaB(x)∇(U − �)) = div(ya(F + G)), in B∗
1 ,

−ya(U − �)y
∣∣
y=0 = f, on B1,

where the vector field G is given by

G = ((I − A(x)
)∇x�,0

) ∈R
n+1, and G(0) = 0.
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Then, by the Caccioppoli inequality in Lemma 3.2,

∫
B∗

λ

|∇(U − �)|2ya dX ≤ C

⎛⎜⎝∫
B∗

2λ

(|U − �|2 + |F + G|2)ya dX +
∫

B2λ

|U(x,0) − �(x)||f (x)|dx

⎞⎟⎠
≤ C

∫
B∗

2λ

|U − �|2ya dX + C‖F + G‖2
L2(B∗

2λ,yadX)
+ C

(‖U(·,0)‖L2(B2λ) + ‖�‖L2(B2λ)

)‖f ‖L2(B2λ)

≤ C

∫
B∗

2λ

|U − �|2ya dX + Cδ2 + C(1 + D)δ.

Plugging this into (4.11) and taking into account (4.10) we see that, for any 0 < λ < 1/8,

1

λn

∫
Bλ

|U(x,0) − �(x)|2 dx ≤ C

λn+1+a

∫
B∗

2λ

|U − �|2ya dX + C

λn+1+a
(δ2 + δ)

≤ Cε2

λn+1+a
+ cn,aλ

4 + Cδ

λn+1+a
.

Hence, for any 0 < λ < 1/8, from this and (4.10),

1

λn

∫
Bλ

|U(x,0) − �(x)|2 dx + 1

λn+1+a

∫
B∗

λ

|U − �|2ya dX <
Cε2

λn+1+a
+ cn,aλ

4 + Cδ

λn+1+a
,

where C depends only on ellipticity, n and a and it is universal for any W . We first take 0 < λ < 1/8 sufficiently 
small in such a way that the second term in the right hand side above is less than 1

3λ2(α+2s) (recall that we are in the 
situation where 1 < α + 2s < 2). Then we let ε > 0 small enough so that the first term is less than 1

3λ2(α+2s). For this 
choice of ε we take δ > 0 in the approximation lemma to be so small in such a way that the third term above is smaller 
than 1

3λ2(α+2s). Hence, there exists a linear function �(x), whose coefficients are bounded by a universal constant D, 
and 0 < δ < 1 such that for any normalized solution and for some fixed 0 < λ < 1/8,

1

λn

∫
Bλ

|U(x,0) − �(x)|2 dx + 1

λn+1+a

∫
B∗

λ

|U − �|2ya dX < λ2(α+2s). �

Lemma 4.6. In the situation of Lemma 4.5, there exists a sequence of linear functions

�k(x) = Ak + Bk · x,

for k ≥ 0, such that

1

λkn

∫
B

λk

|U(x,0) − �k(x)|2 dx + 1

λk(n+1+a)

∫
B∗

λk

|U − �k|2ya dX < λ2k(α+2s),

and

|Ak − Ak+1|, λk|Bk − Bk+1| ≤ Dλk(α+2s).

Before proceeding with the proof, let us show how this claim already implies (4.9). Let

�∞(x) = A∞ + B∞ · x :=
(

lim
k→∞Ak

)
+
(

lim
k→∞Bk

)
· x.

Notice that A∞ and B∞ are well defined because of the Cauchy property they verify. Observe also that for any k ≥ 0, 
since 1 < α + 2s < 2, we have



L.A. Caffarelli, P.R. Stinga / Ann. I. H. Poincaré – AN 33 (2016) 767–807 793
|�∞(x) − �k(x)| ≤ Cα,sDλk(α+2s), |x| ≤ λk.

For any 0 < r < 1/8, take k ≥ 0 such that λk+1 < r ≤ λk . Then, in a parallel way to (4.6), (4.9) follows for small r .

Proof of Lemma 4.6. The proof is done by induction in k ≥ 0. When k = 0, we take �0(x) = �1(x) = 0 and the 
conclusion is true because U is a normalized solution. Assume that the claim is true for some k ≥ 0. Consider

Ũ (x, y) = U(λkx,λky) − �k(λ
kx)

λ(α+2s)k
, (x, y) ∈ B∗

1 ,

where λ is as in Lemma 4.5. Then, for B̃(x) := B(λkx), ψ̃(x) = ψ(λkx), f̃ (x) = λ−kαf (λkx) and F̃ (X) =
λ−k(α+2s−1)F (λkX) we have∫

B∗
1

yaB̃(x)∇Ũ∇ψ̃ dX =
∫
B1

f̃ (x)ψ̃(x,0) dx +
∫
B∗

1

ya

(
F̃ + I − B̃(x)

λk(α+2s−1)
∇�k

)
∇ψ̃ dX.

Thus Ũ is a weak solution to{
div(yaB̃(x)∇Ũ ) = div(ya(F̃ + G̃)), in B∗

1

−yaŨy

∣∣
y=0 = f̃ , on B1,

where

G̃ =
(

I − B(λkx)

λk(α+2s−1)
∇�k,0

)
∈R

n+1, and G̃(0) = 0.

Certainly Ã(0) = I and f̃ (0) = 0. By changing variables and using the hypotheses,

1

rn+1+a+2(α+2s−1)

∫
B∗

r

ya|F̃ + G̃|2 dX

≤ 1

(λkr)n+1+a+2(α+2s−1)

∫
B∗

λkr

ya
(
|F |2 + |I − B(x)|2|Bk|2

)
dX < (1 + D2c2)δ2,

where we used that

|Bk| ≤
k∑

j=1

|Bj − Bj−1| ≤ D

∞∑
j=0

λj(α+2s−1) = Dc.

Also,

1

rn+2α

∫
Br

|f̃ |2 dx = 1

(λkr)2α+n

∫
B

λkr

f 2 dx ≤ [f ]2
L2,α(0)

< δ2;

∫
B1

Ũ (x,0)2 dx = 1

λkn

∫
B

λk

|U(x,0) − �k(x)|2
λ2k(α+2s)

dx ≤ 1;

∫
B∗

1

yaŨ2 dX = 1

λk(n+1+a)

∫
B∗

λk

ya |U − �k|2
λ2k(α+2s)

dX ≤ 1.

By Lemma 4.5 (that can be applied to Ũ/(1 + D2c2)), there is a linear function � such that

1

λn

∫
Bλ

|Ũ (x,0) − �(x)|2 dx + 1

λn+1+a

∫
B∗

|Ũ − �|2ya dX < λ2(α+2s).
λ



794 L.A. Caffarelli, P.R. Stinga / Ann. I. H. Poincaré – AN 33 (2016) 767–807
So changing variables back in the definition of Ũ we get

1

λ(k+1)n

∫
B

λk+1

|U(x,0) − �k+1(x)|2 dx + 1

λ(k+1)(n+1+a)

∫
B∗

λk+1

|U − �k+1|2ya dX < λ2(k+1)(α+2s),

where �k+1(x) = �k(x) + λk(α+2s)�(λ−kx). By construction,

|�k+1(x) − �k(x)| = λk(α+2s)|�(λ−kx)| ≤ Dλk(α+2s)(1 + λ−k|x|).
When x = 0 we get |Ak+1 −Ak| ≤ Dλk(α+2s). On the other hand, again by construction, |Bk+1 −Bk| ≤ Dλ−kλk(α+2s). 
This finishes the proof. �
4.3. Proof of Theorem 4.2

This proof is done by following exactly the same lines of the proof of Theorem 4.1, but with easy changes in 
the exponents. Indeed, for part (1) we have to replace in the proof of Theorem 4.1(1) the exponent α that appears 
everywhere there by −2s + α. For part (2), along the proof of Theorem 4.1(2) we need to replace the exponent α by 
the new exponent −2s + α + 1. Observe that we do not need the reduction to the case f (0) = 0.

5. Case study: the fractional Dirichlet Laplacian in the half space

In this section we study the global regularity and the growth near the boundary for solutions to the fractional 
Dirichlet Laplacian of the half space.

5.1. Global regularity

Let us recall the Schauder estimates for the fractional Laplacian on Rn.

Proposition 5.1. Let 0 < s < 1 and 0 < α ≤ 1. Assume that f ∈ C0,α(Rn) and that u ∈ L∞(Rn) is a solution to

(−�)su = f, in R
n.

(1) If α + 2s ≤ 1, then u ∈ C0,α+2s(Rn) and

‖u‖C0,α+2s (Rn) ≤ C
(‖u‖L∞(Rn) + ‖f ‖C0,α(Rn)

)
.

(2) If 1 < α + 2s ≤ 2, then u ∈ C1,α+2s−1(Rn) and

‖u‖C1,α+2s−1(Rn) ≤ C
(‖u‖L∞(Rn) + ‖f ‖C0,α(Rn)

)
.

(3) If 2 < α + 2s < 3, then u ∈ C2,α+2s−2(Rn) and

‖u‖C2,α+2s−2(Rn) ≤ C
(‖u‖L∞(Rn) + ‖f ‖C0,α(Rn)

)
.

The constants C above depend only on n, α and s. In particular, if f = 0 in a ball Br , then u is smooth in Br/2.

Proof. For (1) and (2) see [29, Proposition 2.8]. The statement in (3) is proved analogously by taking into account 
the range of the exponents. The details are omitted. �

Recall that the Zygmund space �∗(Rn) consists of all bounded functions u on Rn such that

[u]�∗(Rn) := sup
x,h∈Rn

|u(x + h) − 2u(x) + u(x − h)|
|h| < ∞,

under the norm ‖u‖�∗(Rn) := ‖u‖L∞(Rn) + [u]�∗(Rn), see [37] (also [31, Chapter V] or [24]).
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Proposition 5.2. Let 0 < s < 1. Assume that f ∈ L∞(Rn) and that u ∈ L∞(Rn) is a solution to

(−�)su = f, in R
n.

Namely, assume that u ∈ L∞(Rn) is given by

u(x) = (−�)−sf (x) = 1

	(s)

∞∫
0

et�f (x)
dt

t1−s
,

where the integral is well defined for almost all x ∈ R
n and for some f ∈ L∞(Rn).

(1) If 0 < 2s < 1 then u ∈ C0,2s(Rn) and

‖u‖C0,2s (Rn) ≤ C
(‖u‖L∞(Rn) + ‖f ‖L∞(Rn)

)
.

(2) If 2s = 1 then u is in the Zygmund space �∗(Rn) and

‖u‖�∗(Rn) ≤ C
(‖u‖L∞(Rn) + ‖f ‖L∞(Rn)

)
.

(3) If 1 < 2s < 2 then u ∈ C1,2s−1(Rn) and

‖u‖C1,2s−1(Rn) ≤ C
(‖u‖L∞(Rn) + ‖f ‖L∞(Rn)

)
.

The constants C above depend only on n and s.

Proof. Parts (1) and (3) of this result, that is, when 2s �= 1, are already contained in [1, Theorem 6.4].2 Here we 
present a proof that works for every 0 < s < 1 and includes the Zygmund space.

For α > 0, let �α be the space of bounded functions u on Rn for which

[u]�α := sup
x∈Rn,t>0

|t1−α/2∂t e
t�u(x)| < ∞.

It is known that

�α =
⎧⎨⎩C0,α(Rn), if 0 < α < 1,

�∗(Rn), if α = 1,

C1,α−1(Rn), if 1 < α < 2.

Moreover, the norm on all these spaces is equivalent to ‖u‖L∞(Rn) + [u]�α . See [24] where this result is proved for 
the torus. In [31] a similar characterization is proved by using the Poisson semigroup instead of the heat semigroup. 
The proof in [24] can be easily adapted to the case of Rn. It is enough to show that

[u]�2s
= sup

x∈Rn,t>0
|t1−s∂t e

t�(−�)−sf (x)| ≤ C‖f ‖L∞(Rn),

for some constant C depending only on n and s. Consider the heat kernel Wt(x) = (4πt)−n/2e−|x|2/(4t), x ∈R
n, t > 0. 

Notice that the following simple estimate∫
Rn

|∂tWt (x)|dx ≤ c

t
, t > 0,

implies that

|∂t e
t�f (x)| ≤ c

t
‖f ‖L∞(Rn), for all x ∈R

n, t > 0.

Thus, with this and the semigroup property et�er�f = e(t+r)�f we obtain

2 We are grateful to Mark Allen for pointing out this to us.
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|t∂t e
t�(−�)−sf (x)| ≤ Ct

∞∫
0

∣∣∣∣∂wew�f (x)
∣∣
w=t+r

∣∣∣∣ dr

r1−s

≤ Ct‖f ‖L∞(Rn)

∞∫
0

1

t + r

dr

r1−s

= Cts‖f ‖L∞(Rn)

∞∫
0

1

1 + ρ

dρ

ρ1−s
= C‖f ‖L∞(Rn)t

s ,

where C is a constant that depends only on n and s. �
In the half space Rn+ we consider the Laplacian with homogeneous Dirichlet boundary condition on ∂Rn+ =

{xn = 0}. We denote this operator by −�+
D . Then −�+

D is a nonnegative and selfadjoint operator on H 1
0 (Rn+) for 

which the spectral theorem applies. For a function u defined on Rn+ with u(x′, 0) = 0 and for 0 < s < 1 we have

(−�+
D)su(x) = 1

	(−s)

∞∫
0

(
et�+

Du(x) − u(x)
) dt

t1+s
, x ∈R

n+. (5.1)

Here v(x, t) ≡ et�+
Du(x) is the heat semigroup generated by −�+

D on the half space, namely, v is the solution to{
vt = �v, for x ∈R

n+, t > 0,

v(x,0) = u(x), on R
n+,

v(x′,0, t) = 0, for t ≥ 0.

Let x∗ = (x′, −xn), for x ∈R
n. Denote by uo the odd extension of u to Rn with respect to xn:

uo(x) =
{

u(x), if xn ≥ 0,

−u(x∗) = −u(x′,−xn), if xn < 0.

By using the reflection method we see that

et�+
Du(x) = et�uo(x), t > 0, x ∈R

n+,

so that, from (5.1) we observe that

(−�+
D)su(x) = (−�)suo(x), x ∈ R

n+, (5.2)

where (−�)s is the fractional Laplacian on Rn. Moreover, since

et�+
Du(x) = 1

(4πt)n/2

∫
R

n+

(
e−|x−z|2/(4t) − e−|x−z∗|2/(4t)

)
u(z) dz, x ∈R

n+,

from (5.1) we obtain the following pointwise formula:

(−�+
D)su(x) = cn,s

∫
R

n+

(
u(x) − u(z)

)( 1

|x − z|n+2s
− 1

|x − z∗|n+2s

)
dz, x ∈ R

n+.

Also, from the fact that

(−�+
D)−sf (x) = 1

	(s)

∞∫
0

et�Df (x)
dt

t1−s
,

we get, when n �= 2s,
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(−�+
D)−sf (x) = dn,s

∫
R

n+

f (z)

(
1

|x − z|n−2s
− 1

|x − z∗|n−2s

)
dz, x ∈R

n+. (5.3)

The constants cn,s and dn,s above can be computed explicitly.

Theorem 5.3 (Global regularity in half space – Dirichlet case). Let u be a bounded solution to{
(−�+

D)su = f, in R
n+,

u = 0, on ∂Rn+ = {xn = 0},
where f ∈ C0,α(Rn+), 0 < α ≤ 1.

• Suppose that f (x′, 0) = 0, for all x′ ∈R
n−1. Then

(1) If α + 2s ≤ 1 then u ∈ C0,α+2s(Rn+) and

‖u‖
C0,α+2s (Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖

C0,α(Rn+)

)
.

(2) If 1 < α + 2s ≤ 2 then u ∈ C1,α+2s−1(Rn+) and

‖u‖
C1,α+2s−1(Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖

C0,α(Rn+)

)
.

(3) If 2 < α + 2s ≤ 3 then u ∈ C2,α+2s−2(Rn+) and

‖u‖
C2,α+2s−2(Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖

C0,α(Rn+)

)
.

• If f (x′, 0) �= 0 at some x′ ∈ R
n−1 then

(i) If 0 < 2s < 1 then u ∈ C0,2s(Rn+) and

‖u‖
C0,2s (Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖L∞(Rn+)

)
.

(ii) If 2s = 1 then u is in the Zygmund space �∗(Rn+) and

‖u‖
�∗(Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖L∞(Rn+)

)
.

(iii) If 1 < 2s < 2 then u ∈ C1,2s−1(Rn+) and

‖u‖
C1,2s−1(Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖L∞(Rn+)

)
.

All the constants C above depend only on n, α and s.

Proof. From (5.2) we see that (−�)suo(x) = (−�+
D)su(x) = f (x) when x ∈R

n+. On the other hand, for x = (x′, xn)

with xn < 0 we have

(−�)suo(x) = 1

	(−s)

∞∫
0

(
et�uo(x) − uo(x)

) dt

t1+s

= 1

	(−s)

∞∫
0

(
u(x∗) − et�+

Du(x∗)
) dt

t1+s

= −(−�+
D)su(x∗) = −f (x∗).

Hence,

(−�)suo(x) = fo(x), for all x ∈R
n. (5.4)

Now we apply the results by Silvestre to uo (which coincides with u when xn ≥ 0). For (1)–(3), we notice that the 
condition f (x′, 0) = 0 ensures that the odd extension fo is globally in C0,α(Rn). Then we can recall Proposition 5.1. 
As for (i)–(iii), we can only assure that fo is just bounded (it has a jump discontinuity at xn = 0) and the conclusion 
follows from Proposition 5.2. �
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5.2. Particular one dimensional solutions

In this subsection we study the growth near the boundary of solutions to the one dimensional fractional problem{
(−D2

xx)
su(x) = f (x), for x > 0,

u(0) = 0,

where −D2
xx denotes the Dirichlet Laplacian on the half line [0, ∞) and

f =
{

1, when 0 < s < 1/2,

χ[0,1](x), when 1/2 ≤ s < 1.

5.2.1. Case 0 < s < 1/2 and f ≡ 1
From (5.3),

u(x) = cs

∞∫
0

(
1

|x − z|1−2s
− 1

|x + z|1−2s

)
dz

= cs

x1−2s

∞∫
0

(
1

|1 − z/x|1−2s
− 1

|1 + z/x|1−2s

)
dz

= csx
2s

∞∫
0

(
1

|1 − ω|1−2s
− 1

|1 + ω|1−2s

)
dω.

The last integral above is finite. Indeed, since s > 0, the integral converges at the origin. On the other hand, let ω > 2. 
Consider the function ϕ(t) = (ω − t)2s−1, for −1 ≤ t ≤ 1. Then

ϕ(1) − ϕ(−1) = |1 − ω|2s−1 − |1 + ω|2s−1 = 2ϕ′(ξ) ≤ Csω
2s−2,

which implies that the integral converges at infinity for s < 1/2. We conclude that

u(x) = csx
2s , x ∈R

+, 0 < s < 1/2,

for some positive constant cs that can be computed explicitly.

5.2.2. Case s = 1/2 and f = χ[0,1]
Let 0 < x < 1/2. We can write

u(x) = c

1∫
0

(
ln |x + z| − ln |x − z|)dz = c

1∫
0

(
ln |x(1 + z/x)| − ln |x(1 − z/x)|)dz

= c

1∫
0

(
ln |1 + z/x| − ln |1 − z/x|)dz = cx

1/x∫
0

(
ln |1 + ω| − ln |1 − ω|)dω

= cx

⎛⎜⎝C +
1/x∫
2

(
ln(ω + 1) − ln(ω − 1)

)
dω

⎞⎟⎠
= cx

[
C +

(
1
x

+ 1
)

ln
(

1
x

+ 1
)

−
(

1
x

− 1
)

ln
(

1
x

− 1
)]

= c [Cx + (1 + x) ln(1 + x) − (1 − x) ln(1 − x) − 2x lnx] .

It is clear that

u(x) = −2cx lnx + w(x), 0 < x < 1/2,
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where w is smooth up to x = 0. Recall that, ln(1 + x) ∼ x and − ln(1 − x) ∼ x, when 0 < x < 1/2. Also lnx ∼ x − 1, 
when 0 < x < 1/2. Therefore,

u(x) ∼ x, as x → 0+.

5.2.3. Case 1/2 < s < 1 and f = χ[0,1]
From (5.3),

u(x) = cs

1∫
0

(|x − y|2s−1 − (x + y)2s−1)dy

= cs

⎛⎝ x∫
0

(x − y)2s−1 dy +
1∫

x

(y − x)2s−1 dy − 1
2s

(
(x + 1)2s − x2s

)⎞⎠
= cs

2s

(
2x2s + (1 − x)2s − (1 + x)2s

)
.

It is clear that, for some constant c > 0,

u(x) = cx2s + w(x), 0 < x < 1/2,

where w is smooth up to x = 0. By taking into account the series expansions of (1 ± x)2s it is easy to check that

u(x) ∼ x, as x → 0+.

5.3. Behavior near the boundary for half space solutions

Our next step is to consider the problem for the fractional Dirichlet Laplacian in the half space Rn+, n ≥ 2,{
(−�+

D)sw = g, in R
n+,

w(x′,0) = 0, on ∂Rn+,
(5.5)

in the cases where

g(x) = g(x′, xn) =
{

1, when 0 < s < 1/2,

χ[0,1](xn), when 1/2 ≤ s < 1.
(5.6)

To that end we apply the following result.

Lemma 5.4. Let g : Rn →R be a function depending only on the xn-variable, that is, g(x) = φ(xn) for some function 
φ : R →R, for all x ∈R

n. Then the solution to

(−�)sw = g, in R
n,

is a function that depends only on xn. More precisely, w(x) = ψ(xn) for all x ∈ R
n, where ψ : R → R is the solution 

to the one dimensional problem

(−∂2
xx)

sψ = φ, in R
n.

Here −∂2
xx is the Laplacian on the real line R.
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Proof. Notice first that

et�g(x) =
∞∫

−∞

e−|xn−zn|2/(4t)

(4πt)n/2
φ(zn)

⎛⎜⎝ ∫
Rn−1

e−|x′−z′|2/(4t) dz′

⎞⎟⎠ dzn

=
∞∫

−∞

e−|xn−zn|2/(4t)

(4πt)1/2
φ(zn) dzn = e−t∂2

xx φ(xn),

where {e−t∂2
xx }t>0 denotes the heat semigroup on the real line. Hence,

w(x) = (−�)−sg(x) = 1

	(s)

∞∫
0

et�g(x)
dt

t1−s

= 1

	(s)

∞∫
0

e−t∂2
xx φ(xn)

dt

t1−s
= (−∂2

xx)
−sφ(xn) = ψ(xn). �

In view of the previous Lemma, the one dimensional results and the relations (5.2) and (5.4), we get that the 
solution w to (5.5) with g as in (5.6) satisfies the following properties:

w(x) =
⎧⎨⎩ cx2s

n , for all x ∈R
n+, when 0 < s < 1/2,

−cxn lnxn + η1/2(xn), for all x ∈R
n+, xn < 1/2, when s = 1/2,

cx2s
n + η(xn), for all x ∈R

n+, xn < 1/2, when 1/2 < s < 1.

(5.7)

In the last two cases, η1/2 and η are smooth up to xn = 0. Also,

w(x) ∼ xmin{2s,1}
n , as xn → 0+, uniformly in x′ ∈ R

n−1. (5.8)

Finally, it is clear that the solution W to⎧⎨⎩
div(ya∇W) = 0, in R

n+ × (0,∞),

−yaWy

∣∣
y=0 = θg, on R

n+,

W = 0, on ∂Rn+ × [0,∞),

(5.9)

with g as in (5.6) and θ ∈R satisfies

W(x,0) = θw(x), x ∈R
n+.

6. Boundary regularity – Dirichlet case

Theorems 1.3 and 1.5 for solutions to (1.2) are consequences of the more general results that we state and prove 
here.

Throughout this section we assume that � ⊂R
n+ is a bounded domain whose boundary ∂� contains a flat portion 

on {xn = 0} in such a way that B+
1 ⊂ �.

We say that a function f : B1 ∩ {xn ≥ 0} →R is in L2,α
∂� (0), for 0 ≤ α < 1, whenever

[f ]2
L

2,α
∂� (0)

:= sup
0<r≤1

1

rn+2α

∫
B+

r

|f (x) − f (0)|2 dx < ∞,

where f (0) is defined as f (0) := lim
r→0

1

|B+
r |
∫

B+
r

f (x) dx. It is clear that if f is Hölder continuous of order α at 0 then 

f ∈ L
2,α
∂� (0). If the condition above holds uniformly in balls centered at points of ∂� close to the origin, then f is 

α-Hölder continuous at the boundary near the origin, see [8].
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Theorem 6.1. Consider the half space solutions w given in (5.7). Let u be a solution to (1.2). Assume that f ∈ L
2,α
∂� (0), 

for some 0 < α < 1.

(1) Suppose that 0 < α + 2s < 1. There exist 0 < δ < 1, depending only on n, ellipticity, α and s, and a constant 
C0 > 0 such that if

sup
0<r≤1

1

rn

∫
B+

r

|A(x) − A(0)|2 dx < δ2,

then
1

rn

∫
B+

r

|u(x) − f (0)w(x)|2 dx ≤ C1r
2(α+2s), for all r > 0 sufficiently small,

where C1 ≤ C0
(
1 + ‖u‖L2(�) + [u]Hs(�) + [f ]

L
2,α
∂� (0)

+ |f (0)|).
(2) Suppose that s ≥ 1/2 and 1 < α + 2s < 2. There exist 0 < δ < 1, depending only on n, ellipticity, α and s, and a 

constant C0 > 0 such that if

sup
0<r≤1

1

rn+2(α+2s−1)

∫
B+

r

|A(x) − A(0)|2 dx < δ2,

then there exists a linear function �(x) =B · x such that

1

rn

∫
B+

r

|u(x) − f (0)w(x) − �(x)|2 dx ≤ C1r
2(α+2s), for all r > 0 sufficiently small,

where C1 + |B| ≤ C0
(
1 + ‖u‖L2(�) + [u]Hs(�) + [f ]

L
2,α
∂� (0)

+ |f (0)|).
The constants C0 above depend only on [A]

L
2,0
∂�(0)

(resp. [A]
L

2,α+2s−1
∂� (0)

), ellipticity, n, α and s.

Observe the extra term 1 in the estimates for C1 and C1 + |B| that comes from the Hs norm of w.
Theorem 1.3 is a consequence of Theorem 6.1. Indeed, first notice that the conclusion of Theorem 6.1 can be 

translated to any point x0 at ∂�. We can first flatten the boundary of � at x0 and then rescale (and rotate if necessary) 
the resulting domain so that B+

1 (x0) ⊂ � with B1(x0) ∩ {xn = 0} ⊂ ∂�. Then v := u − f (x0)w has the desired 
regularity around x0 (remember that u(x0) − f (x0)w(x0) = 0). By taking into account the growth of w near the 
boundary (5.8) and going back to the initial variables the conclusion follows.

In a similar way as we did for L2,α
∂� (0), we can define L2,−2s+α

∂� (0) and L2,−2s+α+1
∂� (0). It is clear that if f ∈

Lp(B+
1 ) then parallel remarks as those preceding Theorem 4.2 hold for L2,−2s+α

∂� (0) and L2,−2s+α+1
∂� (0), with the 

same exponents p and α.

Theorem 6.2. Let u be a solution to (1.2).

(1) Suppose that f ∈ L
2,−2s+α
∂� (0). There exist 0 < δ < 1, depending only on n, ellipticity, α and s, and a constant 

C0 > 0 such that if

sup
0<r≤1

1

rn

∫
B+

r

|A(x) − A(0)|2 dx < δ2,

then
1

rn

∫
B+

r

|u(x)|2 dx ≤ C1r
2α, for all r > 0 sufficiently small,

where C1 ≤ C0
(‖u‖L2(�) + [u]Hs(�) + [f ] 2,−2s+α

)
.

L∂� (0)
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(2) Suppose that f ∈ L
2,−2s+α+1
∂� (0). There exist 0 < δ < 1, depending only on n, ellipticity, α and s, and a constant 

C0 > 0 such that if

sup
0<r≤1

1

rn+2α

∫
B+

r

|A(x) − A(0)|2 dx < δ2,

then there exists a linear function �(x) =B · x such that

1

rn

∫
B+

r

|u(x) − �(x)|2 dx ≤ C1r
2(1+α), for all r > 0 sufficiently small,

where C1 + |B| ≤ C0
(‖u‖L2(�) + [u]Hs(�) + [f ]

L
2,−2s+α+1
∂� (0)

)
.

The constants C0 above depend only on [A]
L

2,0
∂�(0)

(resp. [A]
L

2,α
∂� (0)

), ellipticity, n, α and s.

Notice that in Theorem 6.2 we do not need to subtract w from u to obtain the regularity up to the origin. Observe 
that Theorem 1.5 in the Dirichlet case follows from this last result after flattening the boundary.

The rest of this section is devoted to the proof of Theorems 6.1 and 6.2.

6.1. Proof of Theorem 6.1(1)

It is enough to prove the result for u(x) = U(x, 0), where U ∈ H 1((B+
1 )∗, yadX) is a solution to⎧⎨⎩

div(yaB(x)∇U) = div(yaF ), in (B+
1 )∗,

−yaUy

∣∣
y=0 = f, on B+

1 ,

U = 0, on B1 ∩ {xn = 0}.
(6.1)

Here F is a (B+
1 )∗-valued vector field such that Fn+1 = 0 and satisfies the Morrey condition

sup
0<r≤1

1

rn+1+a+2(α+2s−1)

∫
(B+

r )∗

ya|F |2 dX < ∞.

After a change of variables we can assume that B(0) = I .
We compare U(x, 0) with W(x, 0), where W is the solution to (5.9) with θ = f (0). In particular, W ∈

H 1((B+
1 )∗, yadX) is a solution to⎧⎨⎩

div(ya∇W) = 0, in (B+
1 )∗,

−yaWy

∣∣
y=0 = f (0), on B+

1 ,

W = 0, on B1 ∩ {xn = 0},
and W(x, 0) = f (0)w(x), for x ∈ B+

1 , with w as in (5.7).
Let V = U − W . Then⎧⎨⎩

div(yaB(x)∇V ) = div(yaH), in (B+
1 )∗,

−yaVy

∣∣
y=0 = h, on B+

1 ,

V = 0, on B1 ∩ {xn = 0},
(6.2)

where h = f − f (0), so that h(0) = 0, and H = F + (I − B(x))∇W , with Hn+1 = 0. Given δ > 0 we can always 
assume that the conditions (1)–(4) in Subsection 4.1 hold with the appropriate changes: B+

r , h, H , V , B+
1 and (B+

1 )∗
in place of Br , f , F , U , B1 and B∗

1 , respectively. Under those hypotheses and the proper normalization for the L2

norms of V and its trace, we call V a normalized solution.
Now we prove that given 0 < α + 2s < 1 there exists 0 < δ < 1, depending only on n, ellipticity, α and s, such that 

for any normalized solution V of (6.2) (recall that V (0, 0) = 0)
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1

rn

∫
B+

r

|V (x,0)|2 dx ≤ Cr2(α+2s), for all r > 0 sufficiently small,

and C ≤ C0, for some constant C0 depending only on n, ellipticity, α and s. The strategy of the proof is the same 
as the proof of Theorem 4.1(1) presented in Subsection 4.1. Here we explain the changes that need to be made. We 
follow parallel steps as those in the proof of Lemma 4.3. Indeed, by using Remarks 3.4 and 3.6 we can prove that 
there exist 0 < δ, λ < 1 such that

1

λn

∫
B+

λ

|V (x,0)|2 dx + 1

λn+1+a

∫
(B+

λ )∗

ya|V |2 dX < λ2(α+2s).

Notice that in the present case we have in Lemma 4.3 that c = 0. Now the rescaling process of Lemma 4.4 comes into 
play, but now we must take ck = 0 for all k ≥ 0. Every step goes through by just changing balls by half balls, because 
when we rescale we always get a normalized solution to (6.2).

6.2. Proof of Theorem 6.1(2)

As in the proof of part (1), we just have to check that there exists 0 < δ < 1 such that in the proper normalized 
situation for (6.2) there is a linear function �∞(x) = B∞ · x such that

1

rn

∫
B+

r

|V (x,0) − �∞(x)|2 dx ≤ Cr2(α+2s),

for r > 0 sufficiently small. Now we suppose that F(0) = 0 and that we have the Campanato condition

sup
0<r≤1

1

rn+1+a+2(α+2s−1)

∫
(B+

r )∗

ya|F |2 dX < δ2.

But again we can follow parallel steps as those of the proof of Theorem 4.1(2). Observe that in our case the independent 
term A in the linear function that appears in Lemma 4.5 is 0 since for the approximating harmonic function W we 
have W(0, 0) = 0. This is essential in the iteration process in order to always have a rescaled solution that is 0 on 
B1 ∩ {xn = 0}. Further details are omitted.

6.3. Proof of Theorem 6.2

As before, it is enough to prove the result for u(x) = U(x, 0), where U ∈ H 1((B+
1 )∗, yadX) is a solution to (6.1), 

where Fn+1 = 0. For part (1) we assume the Morrey condition

sup
0<r≤1

1

rn+1+a+2(α−1)

∫
(B+

r )∗

ya|F |2 dX < ∞,

while for part (2) we suppose that F(0) = 0 and that we have the Campanato condition

sup
0<r≤1

1

rn+1+a+2α

∫
(B+

r )∗

ya|F |2 dX < ∞.

Now the proof follows exactly the same steps of the proof of Theorem 4.2, by just replacing Br by B+
r . We also 

observe that in this case the constant c and the independent term A that come from the approximating harmonic 
function W are both 0. We omit further details.
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7. The case of Neumann boundary condition

In this section we sketch the proof of the results in the case of the Neumann problem (1.6). Recall that the domain 
of LN is the Sobolev space H 1(�). There exists an orthonormal basis of L2(�) consisting of eigenfunctions ϕk ∈
H 1(�), k = 0, 1, 2, . . . , that correspond to eigenvalues 0 = μ0 < μ1 ≤ μ2 ≤ · · · ↗ ∞ of LN . The domain of the 
fractional operator Ls

N is the Hilbert space Hs
N of functions u ∈ L2(�) such that 

∫
�

u dx = 0 and 
∑∞

k=1 μs
ku

2
k ≡∑∞

k=1 μs
k|〈u, ϕk〉L2(�)|2 < ∞. We define Ls

Nu by (1.4) in the dual space H−s
N := (Hs

N )′. Notice that 〈Ls
Nu, 1〉 = 0. 

The heat semigroup generated by LN is given by

e−tLN u(x) =
∞∑

k=0

e−tμkukϕk(x) =
∫
�

WN
t (x, z)u(z) dz,

where WN
t (x, z) is the corresponding heat kernel. Observe that e−tLN 1(x) = 1 for all x ∈ �, t > 0. As in Theorem 2.3

we can prove that (1.5) holds for u, ψ ∈ Hs
N and

KN
s (x, z) := 1

2|	(−s)|
∞∫

0

WN
t (x, z)

dt

t1+s
.

It is well known that if � is an exterior domain or the region lying above the graph of a Lipschitz function, then 
the heat kernel WN

t (x, z) as global upper Gaussian estimates. If the domain is bounded then the Gaussian esti-
mate holds only for short times and the heat kernel is bounded in x, z and t as t → ∞. For this see [3] and 
the references therein. Hence, as we did in Section 2 we can prove that the kernel KN

s (x, z) satisfies the esti-
mate

0 ≤ KN
s (x, z) ≤ c�,n,s

|x − z|n+2s
, x, z ∈ �.

For the heat kernel related to the Neumann Laplacian we have two-sided Gaussian estimates (see [26], also 
[34], and the references therein), which imply that in this case the estimate for KN

s (x, z) from above also 
holds from below with a different constant. The extension problem for Ls

N is given as follows. The solution U
to {divx(A(x)∇xU) + a

y
Uy + Uyy = 0, in � × (0,∞),

∂AU(x, y) = 0, on ∂� × [0,∞),

U(x,0) = u(x), on �,

(7.1)

satisfies, for cs = |	(−s)|/(4s	(s)) > 0,

− 1

2s
lim

y→0+ yaUy(x, y) = − lim
y→0+

U(x, y) − U(x,0)

y2s
= csL

s
Nu(x), in H−s

N ,

see [32,33]. Similar scaling properties as those of Section 2 hold for Ls
N . Parallel to Theorem 2.6, the fundamental 

solution GN
s (x, z) of Ls

N verifies the interior estimate

GN
s (x, z) ∼ c�,n,s

|x − z|n−2s
, n �= 2s,

and it is logarithmic when n = 2s. The interior Harnack inequality for Ls
N is also true.

Next we show that the domain of Ls
N is the fractional Sobolev space Hs(�), which is the closure of C∞(�)

with respect to the norm ‖u‖2
Hs(�) = ‖u‖2

L2(�)
+ [u]2

Hs(�). Notice that the solution U to the extension problem (7.1)

belongs to H 1(� × (0, ∞), yadX) and that for each fixed y ≥ 0 we have 
∫
�

U(x, y) dx = 0. Since the trace of U is 
an element of the fractional Sobolev space Hs(�) (see for example [20]), it turns out that Hs

N ⊂ Hs(�). For the other 
inclusion, we notice that the energy for the extension problem for Ls

N is comparable to the energy for the extension 
problem for the Neumann Laplacian −�N . This and the following Lemma give that if 

∫
�

u dx = 0 then u ∈ Hs
N if 

and only if u ∈ Hs(�).
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Lemma 7.1. Let u : � → R such that 
∫
�

u dx = 0. For any 0 < s < 1, u ∈ Dom((−�N)s) if and only if u ∈ Hs(�). 
In this case we have

‖(−�N)s/2u‖L2(�) ∼ [u]Hs(�).

Proof. The idea is similar to the proof of Theorem 2.4 in [34] and here we sketch the steps. Let U be the solution to 
the extension problem for the fractional Neumann Laplacian in �. Then

−〈U(·, y), u〉L2(�) − 〈u,u〉L2(�)

y2s
→ cs〈(−�N)su,u〉L2(�) = cs‖(−�N)s/2u‖2

L2(�)
,

as y → 0+. Now, with the Poisson kernel P s,N
y for the Neumann Laplacian extension problem (as in (2.10)–(2.11)

but with the Neumann heat kernel in place of Wt(x, z)) we get

〈U(·, y), u〉L2(�) − 〈u,u〉L2(�) =
∫
�

∫
�

P s,N
y (x, z)

(
u(z)u(x) − u(x)2)dx dz.

Here we used the fact that∫
�

P s,N
y (x, z) dz = 1, for all x ∈ �, t > 0.

By exchanging the roles of x and z and using that P s,N
y (x, z) = P

s,N
y (z, x), we get

〈U(·, y), u〉L2(�) − 〈u,u〉L2(�) = 1

2

∫
�

∫
�

(
u(z) − u(x)

)
P s,N

y (x, z) dz dx.

But now, since the heat kernel for the Neumann Laplacian has two sided Gaussian estimates [26,34], we readily get

P s,N
y (x, z) ∼ y2s

(|x − z|2 + y2)(n+2s)/2
.

Therefore, by dividing by y2s and taking y → 0+ above we arrive to ‖(−�N)s/2u‖L2(�) ∼ [u]Hs(�). �
Given f ∈ H−s

N (�) (observe that 〈f, 1〉 = 0), there exists a unique solution u ∈ Hs(�) to (1.6) with 
∫
�

u dx = 0.
It is clear that the interior regularity results of Theorems 1.1 and 1.2 hold for the case of the fractional Neumann 

operator Ls
N . Indeed, the proof presented in Section 4 is based on a Caccioppoli estimate for the (localized) extension 

problem and the Dirichlet boundary condition plays no significant role there.
The boundary results deserve some attention. The reason why the interior regularity should hold up to the boundary 

becomes apparent once we look at the half space case. Consider the fractional Neumann Laplacian −�+
N in a half 

space Rn+. For u having mean zero we have

(−�+
N)su(x) = 1

	(−s)

∞∫
0

(
et�+

N u(x) − u(x)
) dt

t1+s
, x ∈R

n+.

We denote by ue the even reflection of u with respect to the variable xn:

ue(x) =
{

u(x), if xn ≥ 0,

u(x∗), if xn < 0.

Then the method of reflections gives e−t�+
N u(x) = et�ue(x), for x ∈R

n+. Therefore,

(−�+
N)su(x) = cn,s

∫
R

n+

(
u(x) − u(z)

)( 1

|x − z|n+2s
+ 1

|x − z∗|n+2s

)
dz, x ∈ R

n+.

Now, we easily see that if (−�+
N)su(x) = f (x), with f having zero mean in Rn+, then (−�)sue(x) = fe(x), for 

x ∈R
n. As a conclusion, by applying Propositions 5.1 and 5.2 we get the following.
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Theorem 7.2 (Global regularity in half space – Neumann case). Let u be a bounded solution to{
(−�+

N)su = f, in R
n+,

∂xnu = 0, on ∂Rn+ = {xn = 0},
where f has zero mean.

• Suppose that f ∈ C0,α(Rn+), 0 < α ≤ 1. Then

(1) If α + 2s ≤ 1 then u ∈ C0,α+2s(Rn+) and

‖u‖
C0,α+2s (Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖

C0,α(Rn+)

)
.

(2) If 1 < α + 2s ≤ 2 then u ∈ C1,α+2s−1(Rn+) and

‖u‖
C1,α+2s−1(Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖

C0,α(Rn+)

)
.

(3) If 2 < α + 2s ≤ 3 then u ∈ C2,α+2s−2(Rn+) and

‖u‖
C2,α+2s−2(Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖

C0,α(Rn+)

)
.

• Suppose that f ∈ L∞(Rn+). Then

(i) If 0 < 2s < 1 then u ∈ C0,2s(Rn+) and

‖u‖
C0,2s (Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖L∞(Rn+)

)
.

(ii) If 2s = 1 then u is in the Zygmund space �∗(Rn+) and

‖u‖
�∗(Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖L∞(Rn+)

)
.

(iii) If 1 < 2s < 2 then u ∈ C1,2s−1(Rn+) and

‖u‖
C1,2s−1(Rn+)

≤ C
(‖u‖L∞(Rn+) + ‖f ‖L∞(Rn+)

)
.

All the constants C above depend only on n, α and s.

For the general case, as we did before for the Dirichlet case, it is enough to prove the regularity at the origin for the 
solution U to the extension problem⎧⎨⎩

div(yaB(x)∇U) = div(yaF ), in (B+
1 )∗,

−yaUy

∣∣
y=0 = f, on B+

1 ,

∂AU(x, y) = 0, on B∗
1 ∩ {xn = 0},

where A and F have the corresponding regularity. We can assume that B(0) = I , so that ∂AU(0, 0) = −∂xnU(0, 0) = 0. 
The same Caccioppoli estimate holds in this case. The approximation lemma can then be proved to get an approxi-
mating harmonic function W ∈ H 1((B∗

3/4)
+, yadX), see also Remark 3.4. By performing an even reflexion instead 

of an odd one we can reproduce the argument in Remark 3.6 and conclude that W has the desired regularity. From 
here on we can repeat the arguments given in Section 6. Details are left to the interested reader.
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