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Abstract

In this paper we consider a family of quasi-static evolution problems involving oscillating energies Eε and dissipations Dε . Even 
though we have separate Γ -convergence of Eε and Dε , the Γ -limit F of the sum does not agree with the sum of the Γ -limits. 
Nevertheless, F can still be viewed as the sum of an internal energy and a dissipation, and the corresponding quasi-static evolution 
is the limit of the quasi-static evolutions related to Eε and Dε . This result contributes to the analysis of the interaction between 
Γ -convergence and variational evolution, which has recently attracted much interest both in the framework of energetic solutions 
and in the theory of gradient flows.
© 2014 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The definition of quasi-static evolution has been recently widely analyzed in the framework of energetic solutions 
(see e.g. [2,9,10,14,18] and the references therein). In general, the existence of such solutions is obtained through the 
approximation with a family of implicit-time schemes. Namely, given an internal parameter-depending energy E and 
a dissipation D, an initial datum U0 and a time step τ , a discrete trajectory {Uτ

j }j is defined recursively by setting 
Uτ

0 = U0 and taking Uτ
j as a minimizer of

min
{
E(jτ,U) +D

(
U − Uτ

j−1

)}
. (1.1)

A piecewise-constant trajectory Uτ(t) is then defined by

Uτ (t) = Uτ�t/τ�,
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and its limit (which exists up to subsequences) is an energetic solution of the evolution inclusion

∂D(U̇) + ∂UE(t,U) � 0.

In the case of energies and dissipations depending on some parameter ε (e.g., in the case of homogenization, on a 
small space scale) the same scheme above can be followed. For fixed ε it can be defined a quasi-static evolution Uε

and the limit as ε → 0 can be studied. Conversely, with fixed τ and ε, we may consider the discrete trajectories Uτ,ε
j

defined iteratively as solutions of

min
{
Eε(jτ,U) +Dε

(
U − U

τ,ε
j−1

)}
(1.2)

and take the limit as ε → 0 first. Under some coerciveness and continuity assumptions these trajectories converge as 
ε → 0 to Uτ,0

j , and the limit of problems (1.2) can be stated as minimum problems for the corresponding Γ -limit. 

In general that Γ -limit may depend on the sequence Uτ,ε
j−1 converging to Uτ,0

j−1, but in many cases, thanks to the 
optimality properties of Uτ,ε

j−1, the effective limit problem can be written as

min
{
F

(
jτ,U,U

τ,0
j−1

)}
, (1.3)

where F(t, ·, V ) is the Γ -limit of

U �→ Eε(t,U) +Dε(U − V ).

Another condition that guarantees that the limit Uτ,0
j solves a problem of the form (1.3) can be obtained by requiring 

that recovery sequences for the Γ -limit of

(U,V ) �→ Eε(t,U) +Dε(U − V )

at (U, Uτ,0
j−1) can be taken of the form (Uε, U

τ,ε
j−1). This seems to be an issue worth of a separate more abstract 

formulation (in the spirit of the analysis of Mielke et al. [17]), and will not be dealt with in this paper. Note that, 
while the properties of Γ -convergence easily imply the existence of a limit functional F and the convergence of 
minimizers, the actual form of F(t, ·, V ) may depend in a non-trivial way on V , and is not immediately written as a 
sum of an energy and a dissipation. After this passage as ε → 0, we can then define the piecewise-constant functions 
Uτ,0(t) = U

τ,0
�t/τ� and take the limit as τ → 0 to obtain a continuous in time limit U0(t).

In general, it is not clear whether the trajectory U0(t) defined above agrees with the effective energetic solution
given by the limit of Uε(t). Mielke et al. [17] proved that this is the case when Eε and Dε separately Γ -converge to 
some E and D and suitable additional assumptions are satisfied, which in particular imply the equality

F(t,U,V ) = E(t,U) +D(U − V ), (1.4)

and hence the limiting trajectory can again be regarded as an energetic solution. This however is a restrictive hypoth-
esis, and in general neither the form of the limit F may be immediately interpreted as a sum of an internal energy and 
a dissipation, nor we may deduce from the Γ -convergence of Eε and Dε enough information on the convergence of 
their sum.

In this paper we illustrate a case when we do have separate Γ -convergence of Eε and Dε but the Γ -limit of 
the sum does not agree with the sum of the Γ -limits. Nevertheless, the limit F can still be viewed as the sum of an 
internal energy and a dissipation, and the corresponding quasi-static evolution is the limit of the quasi-static evolutions 
related to Eε and Dε . This result contributes to the analysis of the interaction between Γ -convergence and variational 
evolution, which has recently attracted much interest both in the framework of energetic solutions and in the theory 
of gradient flows (see [4,17,15,1,16,6]), and suggests that some generalizations of the time-discrete scheme must be 
envisaged to take into account the possibility of the combined Γ -convergence of energies and dissipations. A related 
result can be found in [7], where a quasistatic evolution for a dimensional-reduction problem in elasto-plasticity 
is investigated. In that case, the energy and the dissipation are coupled by kinematic restrictions. In our case the 
coupling effect is due to oscillations. Note however that oscillating energies do not always lead to a non-commutativity 
phenomenon, and in some cases the arguments in the computation of the Γ -limit can indeed be decoupled into the 
energy and dissipation parts, such as in the case of the homogenization of free-discontinuity problems. In that context 
the effect of surface and bulk oscillations can be dealt with separately (see [5]), which allows to prove that the Francfort 
and Marigo approach to Fracture [2] is indeed compatible with homogenization (see [12]).
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We consider the model of damage by Francfort and Marigo [10], where U = (u, A), u is a displacement and A is 
the damage set,

E(t,U) = E(t, u,A) = α

∫
A

|∇u|2 dx + β

∫
Ω\A

|∇u|2 dx (α < β)

with the constraint that u = gt on the boundary of Ω (given set in Rn), with gt a continuously parameterized family 
of boundary data with g0 = 0, and

D(U) = D(A) = γ |A|.
In the formulation (1.1) the dependence of D on U − Uτ

j−1, where U = (u, A) and Uτ
j−1 = (uτ

j−1, A
τ
j−1) must 

be understood as the requirement that χA − χAτ
j−1

be a characteristic function; i.e., that Aτ
j−1 ⊂ A, so that {Aτ

j }j
is a non-decreasing family of sets. The evolution according to such E and D describes a damage process with a 
non-decreasing damage zone, driven by the varying boundary value and the competition between the internal energy, 
which is characterized by the elastic coefficient

σA(x) = αχA(x) + β
(
1 − χA(x)

)
and is lower in the damaged region A, and the dissipation, which accounts for the amount of damaged material. This 
model is intrinsically non-convex and in general it is not possible to determine a solution of the form (u(t), A(t)), with 
A(t) a family of sets parametrized by t and the problem must be relaxed. In the multi-dimensional case the right frame-
work for the relaxation is that of the G-convergence for the coefficients σA (see [10,8,11]). In the one-dimensional 
case such weak evolution can be easily expressed in terms of the weak limits of characteristic functions χA. Moreover 
it can be seen that in this case it is always possible to construct strong evolutions of the form (u(t), A(t)).

We treat a heterogeneous one-dimensional case, where the functionals take the form

Eε(t, u,A) =
∫
A

α

(
x

ε

)∣∣u′∣∣2
dx +

∫
Ω\A

β

(
x

ε

)∣∣u′∣∣2
dx (1.5)

and α and β are 1-periodic functions. It is well known that in this case for fixed A these energies Γ -converge to

E(t, u,A) = α

∫
A

∣∣u′∣∣2
dx + β

∫
Ω\A

∣∣u′∣∣2
dx, (1.6)

where α and β are the harmonic means of α and β , respectively. For the sake of simplicity we will consider the 
case when α and β take only two values, so that Eε can be interpreted as describing a mixture of two materials with 
coefficients β1 and β2 when undamaged, and α1 and α2 when damaged. We also consider dissipations

Dε(A) =
∫
A

γ

(
x

ε

)
dx, (1.7)

where γ takes the values γ1 and γ2. Note that even the case γ1 = γ2 (and hence Dε independent of ε) possesses the 
same features of the effective evolution as for oscillating γ .

First of all, we note that the Γ -limit of Eε(t, u, A) + Dε(A) always requires a relaxation process. In fact, mini-
mizing sequences of A will never be compact as sets, and their limit (precisely, the weak limit of their characteristic 
functions) must be described by a density function θ ∈ [0, 1]. Hence, the limit evolution must be expressed in terms 
of the relaxed variable (u, θ). In these variables the Γ -limit of Eε(t, u, A) + Dε(A) takes the form (see Theorem 3.1)∫

(0,1)

f hom(θ)
∣∣u′∣∣2

dx +
∫

(0,1)

γ hom(θ) dx,

so that a weak quasi-static evolution can be constructed for this energy. We show that this agrees with the limit of the 
corresponding strong ε-quasi-static evolutions (see Theorem 3.9).

We show that an equivalent formulation can be given in terms of a three-phase material model: the effective 
evolution can itself be seen as a relaxed evolution of a homogenized energy of the form
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E(t,u,A1,A2) = α

∫
A2

∣∣u′∣∣2
dx + C(α,β)

∫
A1

∣∣u′∣∣2
dx + β

∫
Ω\(A1∪A2)

∣∣u′∣∣2
dx

with A1 ∩ A2 = ∅. The sets A2 and A1 can be interpreted, respectively, as the zone where either both materials are 
damaged, or one of the two (which is uniquely determined by the values of αi and βi ) is damaged. C(α, β) is the 
corresponding harmonic mean in the latter case. The effective evolution of a mixture of two homogeneous two-phase 
materials can therefore be interpreted as the relaxed evolution of a homogeneous three-phase material.

We finally note that the features of our example are still valid, as commutability issues are concerned, in a general 
multi-dimensional environment. In that context the interaction between oscillating energies and dissipation can be 
much more complex and difficult to characterize as they depend on the microgeometry and the loading history.

2. Quasi-static evolution for composite materials

In this section we give the definition of quasi-static evolution related to the elastic energy and dissipation in (1.5)
and (1.7) for fixed ε, and show explicitly the existence of such evolution.

For fixed ε > 0 we consider the functional

Eε
Tot(u,A) = Eε(u,A) + Dε(A), (2.1)

where

Eε(u,A) =
∫

(0,1)

σ ε
A(x)

∣∣u′(x)
∣∣2

dx and Dε(A) =
∫
A

γ

(
x

ε

)
dx, (2.2)

with u ∈ H 1(0, 1), A ⊂ (0, 1),

σε
A(x) = α

(
x

ε

)
χA(x) + β

(
x

ε

)(
1 − χA(x)

)
, (2.3)

and

α(y) =
{

α1 if y ∈ [0, 1
2 )

α2 if y ∈ [ 1
2 ,1)

β(y) =
{

β1 if y ∈ [0, 1
2 )

β2 if y ∈ [ 1
2 ,1)

(2.4)

γ (y) =
{

γ1 if y ∈ [0, 1
2 )

γ2 if y ∈ [ 1
2 ,1)

(2.5)

with

0 < αi < βi, 0 < γi, for i = 1,2. (2.6)

Moreover, we will denote in the following

α :=
(

1

2α1
+ 1

2α2

)−1

and β :=
(

1

2β1
+ 1

2β2

)−1

, (2.7)

the harmonic means of αi and βi , respectively.
We suppose that

ε−1 ∈ N; (2.8)

the general case can be always reduced to this assumption up to a negligible error in the energy (2.1) (as ε → 0).

2.1. Minimum problems for the ε-energy

In the following lemma we characterize the minimizers of (2.1) with prescribed boundary data.
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Fig. 1. The minimal value m.

Lemma 2.1. Let t ∈R; then there exists a minimizer (uε, Aε) of

m(t) := min
{
Eε

Tot(u,A) : u(0) = 0, u(1) = t, A ⊂ (0,1)
}
. (2.9)

Moreover, m(t) can be computed explicitly and it is independent of ε. If

p1 :=
√

α1β1γ1

β1 − α1
<

√
α2β2γ2

β2 − α2
=: p2 (2.10)

(which we may suppose without loss of generality) then

m(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βt2 if |t | ≤ p1
β

2p1t − p2
1

β
if p1

β
< |t | ≤ p1(β2+α1)

2β2α1

2β2α1
β2+α1

t2 + γ1
2 if p1(β2+α1)

2β2α1
< |t | ≤ p2(β2+α1)

2β2α1

2p2t + γ1+γ2
2 − p2

2
α

if p2(β2+α1)
2β2α1

< |t | ≤ p2
α

αt2 + γ1+γ2
2 if t ≥ p2

α
.

(2.11)

The function m(t) is plotted in Fig. 1.

Proof. For A ⊂ (0, 1), we set

Aε
1 := A ∩

([
0,

ε

2

)
+ εN

)
, Aε

2 := A ∩
([

ε

2
, ε

)
+ εN

)
,

Bε
1 := (

(0,1) \ A
) ∩

([
0,

ε

2

)
+ εN

)
, Bε

2 := (
(0,1) \ A

) ∩
([

ε

2
, ε

)
+ εN

)
. (2.12)

Note that (0, 1) = Aε
1 ∪ Aε

2 ∪ Bε
1 ∪ Bε

2 , α(x
ε
) = αi for x ∈ Aε

i , and β(x
ε
) = βi for x ∈ Bε

i (i = 1, 2).
We observe that the value

mA(t) := min
{
Eε

Tot(u,A) : u(0) = 0, u(1) = t
}

(2.13)

depends on A only through the measures |Aε
1| and |Aε

2|. Indeed, by Jensen’s inequality and (2.12), for all test functions 
u we have∫

A

α

(
x

ε

)∣∣u′∣∣2
dx +

∫
β

(
x

ε

)∣∣u′∣∣2
dx ≥ α1

∣∣Aε
1

∣∣|z11|2 + β1
∣∣Bε

1

∣∣|z12|2 + α2
∣∣Aε

2

∣∣|z21|2 + β2
∣∣Bε

2

∣∣|z22|2,

(0,1)\A
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where

zi1 := 1

|Aε
i |

∫
Aε

i

u′ dx, zi2 := 1

|Bε
i |

∫
Bε

i

u′ dx, i = 1,2, (2.14)

with a strict inequality unless u′ is constant on Aε
i and Bε

i . Hence, each minimizer must have a constant value of 
the derivative on each of the four sets Aε

i and Bε
i . This observation allows to reduce the computation of m(t) to a 

finite-dimensional minimization. To that end, denote

λi := 2|Aε
i |, i = 1,2. (2.15)

Observing that |Bε
i | = 1

2 − |Aε
i | = 1

2 (1 − λi), we have that

m(t) = min
zij ,λk

{
1

2

(
λ1α1z

2
11 + (1 − λ1)β1z

2
12

) + 1

2

(
λ2α2z

2
21 + (1 − λ2)β2z

2
22

)
+ 1

2
γ1λ1 + 1

2
γ2λ2 : 1

2

(
λ1z11 + (1 − λ1)z12

) + 1

2

(
λ2z21 + (1 − λ2)z22

) = t

}
. (2.16)

A solution λi , zij (i, j = 1, 2) provides a description of all minimizers of problem (2.9) as follows: the set Aε is any 
set A such that 2|Aε

i | = λi , and uε is the unique solution of (2.14), which gives

u′ = zi1 on Aε
i and u′ = zi2 on Bε

i , i = 1,2. (2.17)

We can explicitly compute the minimum in (2.16). We conclude that m(t) is independent on ε and satisfies

m(t) = 1

2
min

{
m1(t1) + m2(t2) : t1 + t2

2
= t

}
, (2.18)

where

mi(t) := min
zi1,zi2,λi

{
λiαiz

2
i1 + (1 − λi)βiz

2
i2 + γiλi : λizi1 + (1 − λi)zi2 = t

}
,

whose explicit form is given by

mi(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
βit

2 if |t | ≤
√

αiγi

βi (βi−αi)
= pi

βi

αi t
2 + γi if |t | ≥

√
βiγi

αi (βi−αi)
= pi

αi

2t

√
αiβiγi

βi−αi
− γiαi

βi−αi
= 2tpi − p2

i

βi
otherwise.

(2.19)

Using (2.19) and solving (2.18) we obtain the expression of m(t) as in (2.11). �
Remark 2.2. 1) We can explicitly compute the minimum values λi,min in (2.16) which are given by (assuming (2.10), 
i.e., p1 < p2)

λ1,min(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 0 ≤ |t | ≤ p1

β

2p1
γ1

(|t | − p1
β

) if p1
β

≤ |t | ≤ p1(β2+α1)
2β2α1

1 if |t | ≥ p1(β2+α1)
2β2α1

,

(2.20)

and

λ2,min(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if 0 ≤ |t | ≤ p2(β2+α1)

2β2α1

2p2
γ2

(|t | − p2(β2+α1)
2β2α1

) if p2(β2+α1)
2β2α1

≤ |t | ≤ p2
α

1 if |t | ≥ p2
α

.

(2.21)

We get that



A. Braides et al. / Ann. I. H. Poincaré – AN 33 (2016) 309–328 315
Fig. 2. The value of λmin.

λmin(t) := ∣∣Aε
∣∣ =

⎧⎨⎩
λ1,min(t)

2 if |t | < p2(β2+α1)
2β2α1

1
2 + λ2,min(t)

2 if |t | ≥ p2(β2+α1)
2β2α1

.
(2.22)

The value of λmin is plotted in Fig. 2.
2) The characterization of the minimizers (uε, Aε) given by (2.15) and (2.17) gives the existence of infinitely-many 

minimizers, except in the cases when both λi,min ∈ {0, 1}, for which the minimizing pair is unique. Under condition 
(2.10), i.e., p1 < p2, this corresponds to Aε = ∅, Aε = (0, 1) ∩ ([0, ε2 ) + εN) or Aε = (0, 1).

Note that the minimality conditions for (2.16) give the relations

α1z11 = β1z21 = α2z12 = β2z22. (2.23)

3) Among all the minimizers (uε, Aε) we have those with

Aε
1 := (0,1) ∩

([
0, λ1,min

ε

2

)
+ εN

)
, Aε

2 = (0,1) ∩
([

ε

2
, (1 + λ2,min)

ε

2

)
+ εN

)
,

for which the damage is “uniformly distributed” in (0, 1). In this case the weak limit of the characteristic functions of 
the sets Aε

i is the constant 1
2λi,min.

Another family of minimizers are those with

Aε
1 := (

0, λε
1,min

) ∩
([

0,
ε

2

)
+ εN

)
, Aε

2 = (
0, λε

2,min

) ∩
([

ε

2
, ε

)
+ εN

)
,

where λε
i,min are such that 2|Aε

i | = λi,min, for which the damage is “concentrated towards 0”. Note that in this case 
we have |λε

i,min − λi,min| ≤ ε and hence the weak limit of the characteristic functions of the sets Aε
i is the function 

1
2χ[0,λi,min].

Remark 2.3. If we introduce the homogenized coefficient related to η1 and η2 as

f hom(η1, η2) :=
[

1

α1
η1 + 1

β1

(
1

2
− η1

)
+ 1

α2
η2 + 1

β2

(
1

2
− η2

)]−1

, (2.24)

then, remarking that

min
zij

{
1

2

(
λ1α1z

2
11 + (1 − λ1)β1z

2
12

) + 1

2

(
λ2α2z

2
21 + (1 − λ2)β2z

2
22

) :
1(

λ1z11 + (1 − λ1)z12
) + 1(

λ2z21 + (1 − λ2)z22
) = 1

}
= f hom

(
λ1

,
λ2

)
, (2.25)
2 2 2 2
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we can rewrite

m(t) = min
λ1,λ2

{
f hom

(
λ1

2
,
λ2

2

)
t2 + 1

2
γ1λ1 + 1

2
γ2λ2

}
. (2.26)

Remark 2.4. Let

G(λ1, λ2, t) = f hom
(

λ1

2
,
λ2

2

)
t2 + γ1

2
λ1 + γ2

2
λ2, (2.27)

where f hom is defined by (2.24). Then for fixed s and t with 0 ≤ s ≤ t , the unique minimizer of the function G(·, ·, s)
on [λ1,min(t), 1] × [λ2,min(t), 1] is (λ1,min(t), λ2,min(t)). This follows from a straightforward, even though somewhat 
lengthy, calculation.

2.2. Quasi-static evolution for the ε-energy

We state now the definition of quasi-static evolution for the energy functional (2.1) and describe explicitly the 
behaviour of such motions in Theorem 2.8.

From now on we will consider u = u(t, x), with u(t, ·) ∈ H 1(0, 1) parametrized by t ∈ [0, T ]. As a shorthand we 
will write u(t) = u(t, ·).

Definition 2.5. Given g ∈ AC([0, T ]), with g(0) = 0, and ε > 0, we say that (u(t), A(t)) is a (strong) quasi-static 
evolution (for the energy (2.1) subjected to the boundary condition g) if for all t ∈ [0, T ] we have u(t) ∈ H 1(0, 1), 
u(t, 0) = 0, u(t, 1) = g(t), A(t) ⊂ (0, 1), and the following properties hold:

• Damage Irreversibility: A(t1) ⊂ A(t2) if t1 < t2;
• Energy Balance: for all t ∈ [0, T ] we have

Eε
Tot

(
u(t),A(t)

) = Eε
Tot

(
u(0),A(0)

) + 2

t∫
0

ġ(s)

∫
(0,1)

σ ε
A(s)(x)u′(s, x) dxds; (2.28)

• Minimality Condition: for all t ∈ [0, T ]
Eε

Tot

(
u(t),A(t)

) ≤ Eε
Tot(v,B) (2.29)

for all v ∈ H 1(0, 1) with v(0) = 0, v(1) = g(t), and A(t) ⊂ B ⊂ (0, 1).

Moreover, we say that (u(t), A(t)) is an approximable (strong) quasi-static evolution (for the energy (2.1) subjected 
to the boundary condition g) if it satisfies the conditions above, and can be obtained as the limit of a time-discrete 
approximation scheme; i.e., up to a subsequence, for all t it is the limit of (uτ (t), Aτ (t)) constructed as follows: 
uτ (t) = uτ�t/τ�, Aτ (t) = Aτ�t/τ�, where uτ

0 = 0, Aτ
0 = ∅, and (uτ

k , A
τ
k) is a minimizing pair for the problem

min
{
Eε

Tot(v,A) : v(0) = 0, v(1) = g(kτ), Aτ
k−1 ⊂ A

}
(2.30)

for k ≥ 1.

Remark 2.6. Note that in general not all quasi-static evolutions are approximable (see [15,19]). We do not address 
this issue here.

Remark 2.7. By the minimality condition (2.29), with B = A(t), we deduce that u(t) is the unique minimizer of 
the quadratic energy Eε(v, A(t)) satisfying the boundary condition u(t, 0) = 0 and u(t, 1) = g(t). Testing the Euler–
Lagrange equation with u(t, x) − g(t)x we deduce the identity∫

σε
A(t)(x)u′(t, x) dx = f ε

(
A(t)

)
g(t), (2.31)
(0,1)
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where

f ε(A) := min
{
Eε(v,A) : v ∈ H 1(0,1), v(0) = 0, v(1) = 1

}
. (2.32)

Theorem 2.8. Let g ∈ AC([0, T ]), with g(0) = 0. Assume (without loss of generality) that (2.10) holds. Then each 
approximable strong quasi-static evolution (uε(t), Aε(t)) (in the sense of Definition 2.5) for the energy in (2.1), 
subjected to the boundary condition g, is characterized by

(i) Aε(t) is increasing in t ;
(ii) if Aε

1(t) := Aε(t) ∩ ([0, ε2 ) + εN) and Aε
2(t) := Aε(t) \ Aε

1(t), then

2
∣∣Aε

1(t)
∣∣ = λ1,min

(
g(t)

)
and 2

∣∣Aε
2(t)

∣∣ = λ2,min
(
g(t)

)
,

where g is the non-decreasing envelope of the function g, defined by

g(t) := inf
h

{
h(t) : h ≥ g on [0, T ], h non-decreasing

}; (2.33)

(iii) the function uε(t) is the unique minimizer of Eε(·, Aε(t)) under the boundary condition uε(t, 0) = 0 and 
uε(t, 1) = g(t).

Proof. Note that the approximability condition in general implies the minimality and the energy balance. This can be 
derived from [13], upon a relaxation argument in order to fulfil the abstract framework therein. Here we give a direct 
proof that highlights the homogenization process through the explicit description of the solutions, using λ1,min and 
λ2,min. We consider the case of g non-decreasing first, and then the general case.

If g is non-decreasing, we can assume without loss of generality that g(t) = t for all t ∈ R. Let (Aε(t), uε(t))

satisfy (i)–(iii). By the characterization of minimizers in Lemma 2.1 such a pair is a solution to

min
{
Eε

Tot(v,B) : v(0) = 0, v(1) = t, B ⊂ (0,1)
}
, (2.34)

and hence satisfies the minimality condition in Definition 2.5. Damage irreversibility is property (i).
It remains to prove the energy balance. To that end, we first note that by (2.11) the function s �→ Eε

Tot(u
ε(s), Aε(s))

is absolutely continuous and its a.e. derivative is given by

∂sE
ε
Tot

(
uε(s),Aε(s)

) = m′(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2βt if 0 < t <
p1
β

2p1 if p1
β

< t <
p1(β2+α1)

2β2α1

4β2α1
β2+α1

t if p1(β2+α1)
2β2α1

< t <
p2(β2+α1)

2β2α1

2p2 if p2(β2+α1)
2β2α1

< t <
p2
α

2αt if t >
p2
α

.

(2.35)

Using this equality we now prove (2.28), rewritten as

t∫
0

∂sE
ε
Tot

(
uε(s),Aε(s)

)
ds = 2

t∫
0

∫
(0,1)

σ ε
Aε(s)(x)

(
uε(x, s)

)′
dxds.

In order to conclude we show that for all s ∈R

m′(s) = 2
∫

(0,1)

σ ε
Aε(s)(x)

(
uε(x, s)

)′
dx. (2.36)

Note that, by Remark 2.2(2) we have (in the notation of Lemma 2.1)(
uε

)′ = zi1 on Aε
i ,

(
uε

)′ = zi2 on Bε
i .

Taking into account conditions (2.23) and the boundary condition
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1

2

(
λ1,min(s)z11 + (

1 − λ1,min(s)
)
z12

) + 1

2

(
λ2,min(s)z21 + (

1 − λ2,min(s)
)
z22

) = s,

this allows us to conclude that the right-hand side of (2.36) equals

4α1α2β1β2

α2β2(β1 − α1)λ1,min(s) + α1β1(β2 − α2)λ2,min(s) + α1α2(β2 + β1)
s.

Using (2.20), (2.21), (2.35) we check that this expression is equal to the one for m′(s) above.
By (i)–(iii) and recalling the minimality properties of λ1,min and λ2,min, we have that, for every τ and k, (uτ

k , A
τ
k) =

(uε(kτ), Aε(kτ)) is a minimizer for (2.30), which implies the approximability of (uε(t), Aε(t)). This concludes the 
proof of the energy balance property and the proof of the theorem in the case of g increasing.

In the general case, we define g by (2.33) and consider (uε(t), Aε(t)) satisfying (i)–(iii). If we denote by uε the 
minimizer of

min
{
Eε

Tot

(
v,Aε(t)

) : v ∈ H 1(0,1), v(0) = 0, v(1) = g(t)
}
, (2.37)

then, by the previous step, the pair (uε(t), Aε(t)) is an approximable quasi-static evolution for the boundary condi-
tion g. In order to show that (uε(t), Aε(t)) is an approximable quasi-static evolution for the boundary condition g we 
first examine the minimality condition. It is enough to consider t such that g(t) < g(t). Suppose by contradiction that 
there exists B ⊃ Aε(t) such that

Eε
Tot

(
uε(t),Aε(t)

)
> min

{
Eε

Tot(v,B) : v(0) = 0, v(1) = g(t)
}
.

Then, noting that f ε(A), as defined in (2.32), is decreasing by inclusion, we have

Eε
Tot

(
uε(t),Aε(t)

) = Eε
Tot

(
uε(t),Aε(t)

) + f ε
(
Aε(t)

)(
g2(t) − g2(t)

)
> min

{
Eε

Tot(v,B) : v(0) = 0, v(1) = g(t)
} + f ε(B)

(
g2(t) − g2(t)

)
= min

{
Eε

Tot(v,B) : v(0) = 0, v(1) = g(t)
}
,

contradicting the minimality condition for (uε(t), Aε(t)). As for the energy balance, it is enough to check it between 
two points s and t such that g(τ) = g(s) = g(t) for all τ ∈ (s, t); i.e.,

Eε
Tot

(
u(t),A

) − Eε
Tot

(
u(s),A

) = 2

t∫
s

ġ(τ )

∫
(0,1)

σ ε
A(x)u′(τ, x) dxdτ, (2.38)

where A = A(t) = A(s). This is easily verified by noting that, in view of Remark 2.7, we can rewrite (2.38) as

f ε(A)
(
g2(t) − g2(s)

) = 2

t∫
s

ġ(τ )g(τ )f ε(A)dτ.

The approximability is obtained as in the non-decreasing case above, after recalling the constrained minimality prop-
erties of λi,min(t) in Remark 2.4 which allow to characterize the minimum values of the energy as in Remark 2.3.

It now remains to prove that every approximable quasi-static evolution (uε(t), Aε(t)) satisfies properties (i)–(iii). 
Properties (i) and (iii) are immediately implied by the definition. Let (uτ

k , A
τ
k) be as in Definition 2.5. We define the 

piecewise-constant function gτ by

gτ (t) = g

(
τ

⌊
t

τ

⌋)
,

and gτ as its non-decreasing envelope in the notation (2.33).
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The sets Aτ
k satisfy

2

∣∣∣∣Aτ
k ∩

([
0,

ε

2

)
+ εN

)∣∣∣∣ = λ1,min
(
gτ (kτ)

)
and

2

∣∣∣∣Aτ
k \

([
0,

ε

2

)
+ εN

)∣∣∣∣ = λ2,min
(
gτ (kτ)

)
. (2.39)

This can be proved by induction. Indeed, (2.39) is satisfied for k = 0, since g(0) = 0 and Aτ
0 = ∅. Assume it holds 

true with k − 1 in the place of k. We have two cases: if gτ (kτ) > gτ ((k − 1)τ ) then g(kτ) = gτ (kτ) and the validity 
of (2.39) follows by the minimality properties of λ1,min and λ2,min; if otherwise gτ (kτ) = gτ ((k − 1)τ ) then the 
conclusion follows by noting that Aτ

k = Aτ
k−1 as a consequence of Remark 2.4.

Passing to the limit as τ → 0 we then obtain property (ii), after noting the uniform convergence of gτ to g. �
Remark 2.9. For any quasi-static evolution (uε(t), Aε(t)) in the sense of Definition 2.5, for fixed t the sets Aε(t)

do not converge to sets as ε → 0, except for the trivial cases ∅ and (0, 1). Indeed, for example for p1 < p2 and 
t ∈ [p1(β2+α1)

2β2α1
, p2(β2+α1)

2β2α1
], we have that Aε(t) = ε(N + [0, 12 )), whose characteristic functions weakly converge to the 

constant 1
2 .

3. Quasi-static evolution for non-homogeneous materials

In this section we show that the approximable quasi-static evolutions related to the energy functionals Eε
Tot

converge, up to subsequences, to the approximable quasi-static evolutions related to the Γ -limit of such energy func-
tionals. Vice versa, any approximable quasi-static evolution for the Γ -limit of the functionals (2.1) is the limit of the 
corresponding approximable quasi-static evolutions.

3.1. Relaxed homogenization

First we compute the Γ -limit of the family of functionals Eε
Tot. We tacitly identify sets with the characteristic 

functions as elements of L1(0, 1).

Theorem 3.1 (Relaxed homogenization). Let (2.10) hold. Then the family Eε
Tot in (2.1) Γ -converges, in the L2 ×

L1-weak topology, to the functional

Ehom
Tot (u, θ) = Ehom(u, θ) + Dhom(θ), (3.1)

where

Ehom(u, θ) =
∫

(0,1)

fhom(θ)
∣∣u′∣∣2

dx, (3.2)

with

fhom(θ) =
⎧⎨⎩ [β1+β2

2β1β2
+ (β1−α1)

β1α1
θ ]−1 if θ ∈ [0, 1

2 )

[β2+α1
2β2α1

+ (β2−α2)
2β2α2

(2θ − 1)]−1 if θ ∈ [ 1
2 ,1)

(3.3)

and

Dhom(θ) =
∫

(0,1)

γhom(θ) dx, γhom(θ) =
{

γ1θ if θ ∈ [0, 1
2 )

γ1
2 + γ2(θ − 1

2 ) if θ ∈ [ 1
2 ,1).

(3.4)

Proof. This is a particular case of homogenization in Lp spaces, where the cell-problem formula rewrites as

φ(θ, z) := min

{∫
A

α(y)|v|2 dy +
∫

β(y)|v|2 dy +
∫
A

γ (y)dy : A ⊂ (0,1), |A| = θ,

1∫
v dx = z

}
.

(0,1)\A 0
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Note that, minimizing first in v, and denoting by η1 = |A ∩ [0, 12 ]| and η2 = |A \ [0, 12 ]|, we obtain

φ(θ, z) = min
{
f hom(η1, η2)z

2 + γ1η1 + γ2η2 : η1 + η2 = θ
}
, (3.5)

with f hom(η1, η2) defined in (2.24). By a direct computation we get the unique minimal

η1 = θ ∧ 1

2
, η2 =

(
θ − 1

2

)
∨ 0 (3.6)

and

φ(θ, z) = fhom(θ)z2 + γhom(θ),

and the desired characterization. �
Corollary 3.2. For all t ≥ 0 we have

min
{
Ehom

Tot (v, θ) : v ∈ H 1(0,1), v(0) = 0, v(1) = t, 0 ≤ θ ≤ 1
} = m(t), (3.7)

where m is given by (2.11). Furthermore, the minimizers (u, θ) for this problem are characterized by the following 
properties:

(i) either θ ≥ 1
2 a.e. or θ ≤ 1

2 a.e.;
(ii) we have∫

(0,1)

θ dx = λmin(t), (3.8)

where λmin(t) is given by (2.22);
(iii) u is the unique minimizer of

min
{
Ehom(v, θ) : v ∈ H 1(0,1), v(0) = 0, v(1) = t

}
. (3.9)

Proof. The corollary follows from a direct computation, or from the previous theorem, Lemma 2.1 and the Fun-
damental Theorem of Γ -convergence. To that end, note that the characterization of m in the proof of Lemma 2.1
guarantees that sequences (uε, Aε) such that uε(0) = 0, uε(1) = t and Eε

Tot(uε, Aε) = m(t) + o(1) as ε → 0 have the 
same cluster points as the sequences of minimizers of (3.7).

If (u(t), θ(t)) satisfy (i)–(iii) then we can define Aε(t) such that χAε(t) weakly converges to θ(t), |Aε(t)| = λmin(t), 
Aε(t) ⊃ [0, ε2 ) + εN or Aε(t) ⊂ [0, ε2 ) + εN, and uε is the corresponding solution of minEε

Tot(u, Aε(t)) with u(0) = 0
and u(1) = t . By Lemma 2.1 (uε(t), Aε(t)) is a minimizer of Eε

Tot(u, A) with u(0) = 0 and u(1) = t and then con-
verges to a minimizer of Ehom

Tot (u, θ) subject to the same boundary conditions. �
Remark 3.3. Note that we do not have the separate Γ -convergence of Eε and Dε to Ehom and Dhom. This is evident 
from the dependence of the form of the limit functionals on inequality (2.10).

Proposition 3.4 (Compatibility of constraints). Let Bε be a family of subsets of (0, 1) and ϕ ∈ L1(0, 1), such that 
χBε

∗
⇀ ϕ and

Γ - lim
ε→0

Eε
Tot(·,Bε) = Ehom

Tot (·, ϕ) (3.10)

with respect to the L2-convergence, then the Γ -limit of

Eε
Tot(u,A;Bε) :=

{
Eε(u,A) + Dε(A) if A ⊃ Bε

+∞ otherwise
(3.11)

with respect to the L2 × L1-weak convergence is

Ehom
Tot (u, θ;ϕ) :=

{
Ehom(u, θ) + Dhom(θ) if θ ≥ ϕ

+∞ otherwise.
(3.12)
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Remark 3.5. Condition (3.10) is equivalent to requiring that

χBε∩([0, ε
2 )+εN) ⇀ ϕ ∧ 1

2
(3.13)

or, equivalently, that

χBε∩([ ε
2 ,ε)+εN) ⇀

(
ϕ − 1

2

)
∨ 0. (3.14)

In order to check (3.13), denote with ϕ1 the weak limit of the sequence on the left-hand side of (3.13), which exists 
up to subsequences, and ϕ2 = ϕ − ϕ1, which is the weak limit of the sequence on the left-hand side of (3.14). Note 
that (we do not relabel the subsequence)

Γ - lim
ε→0

Eε
Tot(u,Bε) = F(u,ϕ1, ϕ2), (3.15)

where

F(u,ϕ1, ϕ2) :=
∫

(0,1)

f hom(ϕ1, ϕ2)
∣∣u′∣∣2

dx + γ1

∫
(0,1)

ϕ1 dx + γ2

∫
(0,1)

ϕ2 dx (3.16)

and f hom is defined in (2.24). This immediately follows from the convergence of the dissipation term, and the char-
acterization of one-dimensional Γ -convergence (see [3, Appendix B]).

It follows that (3.13) is equivalent to (3.10), since, by (3.5) and (3.6), F(u, ϕ1, ϕ2) = Ehom
Tot (u, ϕ) if and only if ϕ1

and ϕ2 are as in (3.13) and (3.14).

Proof of Proposition 3.4. The lower bound inequality is trivial since the constraint is closed. As for the upper bound, 
with fixed θ ≥ ϕ, we use a diagonal argument, first constructing a recovery sequence of sets for a sequence of θσ

converging to θ .
With fixed σ > 0, for all x Lebesgue point of ϕ, ϕ1 (as defined in Remark 3.5) and θ , we consider the family

Iσ
x =

{
I = (x − δ, x + δ) ⊂ (0,1) : δ < σ,

∫
I

∣∣ϕ(x) − ϕ
∣∣dy +

∫
I

∣∣ϕ1(x) − ϕ1
∣∣dy +

∫
I

∣∣θ(x) − θ
∣∣dy < σ |I |

}
.

Since Iσ = ⋃
x Iσ

x is a fine cover of the set of Lebesgue points of (0, 1) we can find a finite family of disjoint intervals 
{I σ

k } of Iσ such that∣∣∣∣(0,1) \
⋃
k

I σ
k

∣∣∣∣ < σ.

We construct subsets Aσ
ε of (0, 1) defining them on each such interval

Iσ
k = (

xσ
k − δσ

k , xσ
k + δσ

k

)
as follows:

(i) Aσ
ε ∩ Iσ

k ⊃ Bε ∩ Iσ
k ;

(ii) |Aσ
ε ∩ Iσ

k | = ∫
Iσ
k

θ dy.

If ϕ(xσ
k ) > 1

2 conditions (i) and (ii) are the only ones required in our construction; otherwise, if ϕ(xσ
k ) ≤ 1

2 , we 
have to require some additional conditions. In order to specify such conditions we introduce the notation

Aσ
ε,1 = Aσ

ε ∩
([

0,
ε

2

)
+ εN

)
, Aσ

ε,2 = Aσ
ε \ Aσ

ε,1

and

Bε,1 = Bε ∩
([

0,
ε

2

)
+ εN

)
, Bε,2 = Bε \ Bε,1.
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(iiia) if θ(xσ
k ) ≤ 1

2 then

Aσ
ε,2 ∩ Iσ

k = Bε,2 ∩ Iσ
k ; (3.17)

(iiib) if θ(xσ
k ) > 1

2 then∣∣Aσ
ε,2 ∩ Iσ

k

∣∣ = ∣∣Bε,2 ∩ Iσ
k

∣∣ ∨
(∫

Iσ
k

(
θ − 1

2

)
dy

)
. (3.18)

We finally include in the sets Aσ
ε the complement of 

⋃
k I σ

k .
Up to a subsequence we have that

χAσ
ε

⇀ θσ and χAσ
ε,2

⇀ θσ
2

as ε → 0, for some θσ
2 and θσ .

By the fact that Iσ
k belong to Iσ

xσ
k

, that Bε satisfy the optimality condition (3.14), and by the properties of Aσ
ε and 

Aσ
ε,2, we have: for all intervals I ⊂ (0, 1)∣∣∣∣∫

I

θσ
2 dy −

∫
I

θ̃σ dy

∣∣∣∣ ≤ 4σ,

where

θ̃ σ (x) =
{

(θ(xσ
k ) − 1

2 )+ if x ∈ Iσ
k

0 otherwise.

Since ̃θσ converges in L1(0, 1) to (θ − 1
2 )+, we deduce that

θσ ⇀ θ and θσ
2 ⇀

(
θ − 1

2

)+

as σ → 0.
By a diagonal argument, we can construct Aε = A

σ(ε)
ε ⊂ Bε which thanks to (3.14) satisfies

Γ - lim
ε→0

Eε
Tot(·,Aε) = Ehom

Tot (·, θ), (3.19)

which implies the desired upper bound. �
Corollary 3.6. Given s ∈ [0, T ]. Assume that ϕ : [0, 1] → [0, 1] satisfies ϕ ≤ 1

2 a.e. or ϕ ≥ 1
2 a.e. and∫

(0,1)

ϕ dx > λmin(s). (3.20)

Then

min
{
Ehom

Tot (u,ϕ) : u(0) = 0, u(1) = s
} ≤ min

{
Ehom

Tot (u, θ) : u(0) = 0, u(1) = s
}

for all θ ≥ ϕ.

Proof. This is a direct consequence of the Γ -convergence result above, combined with Remark 2.4. Indeed, denoting 
by t > s the value such that∫

(0,1)

ϕ dx = λmin(t), (3.21)

we have, using Corollary 3.2, that ϕ can be approximated by a sequence χBε , with Bε satisfying the assumption of 
Proposition 3.4 and
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2
∣∣Bε ∩ ([0, ε/2

) + εN))
∣∣ = λ1,min(t)

and

2
∣∣Bε \ ([0, ε/2

) + εN))
∣∣ = λ2,min(t).

Then by Remark 2.4 we get that

min
{
Eε

Tot(u,Bε) : u(0) = 0, u(1) = s
} ≤ min

{
Eε

Tot(u,A) : u(0) = 0, u(1) = s
}

for all A ⊃ Bε . We conclude by applying Proposition 3.4. �
3.2. Quasi-static evolution

Now we give the definition of a quasi-static evolution related to the energy functional and the dissipation in (3.12).

Definition 3.7. Given g ∈ AC([0, T ]), with g(0) = 0, we say that (u(t), θ(t)) is a (weak) quasi-static evolution (for 
the energy (3.1)) if for all t ∈ [0, T ] we have u(t) ∈ H 1(0, 1), u(0) = 0, u(1) = g(t), θ(t) ∈ L∞(0, 1), 0 ≤ θ ≤ 1, and 
the following properties hold:

• Damage Irreversibility: θ(t) is non-decreasing in time;
• Energy Balance:

Ehom
Tot

(
u(t), θ(t)

) = Ehom
Tot

(
u(0), θ(0)

) + 2

t∫
0

ġ(s)

∫
(0,1)

fhom(θ)u′(s, x) dxds; (3.22)

• Minimality Condition:

Ehom
Tot

(
u(t), θ(t)

) ≤ Ehom
Tot (v,ψ), (3.23)

for all v ∈ H 1(0, 1), v(0) = 0, v(1) = g(t) and ψ ∈ L∞(0, 1), ψ ≥ θ(t).

Moreover, we say that (u(t), θ(t)) is an approximable (weak) quasi-static evolution (for the energy (3.1) subjected 
to the boundary condition g) if it satisfies the conditions above, and can be obtained as the limit of a time-discrete 
approximation scheme; i.e., up to a subsequence, for all t it is the limit of (uτ (t), θτ (t)) constructed as follows: 
uτ (t) = uτ�t/τ�, θτ (t) = θτ�t/τ�, where uτ

0 = 0, θτ
0 = ∅ and (uτ

k , θ
τ
k ) is a minimizing pair for the problem

min
{
Ehom

Tot (v, θ) : v(0) = 0, v(1) = g(kτ), θτ
k−1 ≤ θ

}
(3.24)

for k ≥ 1.

Theorem 3.8. Every approximable (weak) quasi-static evolution (u(t), θ(t)) for Ehom
Tot is characterized by the follow-

ing properties:

(i) θ(t) is non-decreasing in t ;
(ii) θ(t) ≤ 1

2 a.e. or θ(t) ≥ 1
2 a.e., and 

∫
(0,1)

θ(t) dx = λmin(g(t));
(iii) u is the unique minimizer of

min
{
Ehom

Tot

(
v, θ(t)

) : v(0) = 0, v(1) = g(t)
}
. (3.25)

Proof. By [13, Theorem 4.5], all limits of incremental problems (3.24), which exist up to subsequences, are (weak) 
quasi-static evolutions for the energy Ehom

Tot . Then it is enough to show that, for any pair (u(t), θ(t)) satisfying (i)–(iii), 
we can construct an incremental problem whose solutions converge to (u(t), θ(t)), and that any limit of solutions of 
incremental problems satisfy (i)–(iii).
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Let (u(t), θ(t)) satisfy (i)–(iii) and for every τ > 0, as in the proof of Theorem 2.8, denote by gτ (t) the piecewise-
constant interpolation of the values {g(kτ)}k and let gτ (t) be its non-decreasing envelope as in (2.33). Then we 
consider a family θτ

k , with either θτ
k ≥ 1

2 a.e. or θτ
k ≤ 1

2 a.e.,∫
(0,1)

θτ
k dx = max

{
λmin

(
g(jτ)

) : j ≤ k
} = λmin

(
gτ (kτ)

)
,

and

θτ
k−1 ≤ θτ

k ≤ θ(kτ). (3.26)

This can be done by induction. We also consider the corresponding uτ
k minimizing (3.25) with boundary conditions 

uτ
k (0) = 0 and uτ

k(1) = g(kτ), and θ replaced by θτ
k . We can show that, by construction, the family (uτ

k , θ
τ
k ) is a 

solution of the incremental problem

Ehom
Tot

(
uτ

k , θ
τ
k

) ≤ Ehom
Tot (v,ϕ)

for every v ∈ H 1(0, 1), with v(0) = 0 and v(1) = g(kτ) and for every ϕ ≥ θτ
k−1. Indeed if∫

(0,1)

θτ
k−1 dx ≤ λmin

(
g(kτ)

)
then by Corollary 3.2 such θτ

k minimizes

min
{
Ehom

Tot (v,ϕ) : v ∈ H 1(0,1), v(0) = 0, v(1) = g(kτ) and ϕ ≥ θτ
k−1

}
= min

{
Ehom

Tot

(
v, θτ

k

) : v ∈ H 1(0,1), v(0) = 0, v(1) = g(kτ)
}
, (3.27)

while if∫
(0,1)

θτ
k−1 dx > λmin

(
g(kτ)

)
,

then, by Corollary 3.6, we deduce that θτ
k = θτ

k−1. By (3.26) we deduce that the piecewise-constant functions 
(uτ (t), θτ (t)) = (uτ

k , θ
τ
k ) if t ∈ [kτ, (k + 1)τ ) converge to (u(t), θ(t)) for all t ∈ [0, T ], which proves the approx-

imability of (u(t), θ(t)).
On the other hand if (u(t), θ(t)) is an approximable quasi-static evolution, let (uτ

k , θ
τ
k ) be a solution of the incre-

mental problem (3.24) which converges to (u(t), θ(t)). We can prove by induction that

θτ
k ≤ 1

2
a.e., or θτ

k ≥ 1

2
a.e., and

∫
(0,1)

θτ
k dx = λmin

(
gτ (kτ)

)
. (3.28)

Indeed, if k = 0 this is trivially true. Assume that (3.28) holds with k replaced by k − 1. If λmin(gτ (kτ )) =
λmin(gτ ((k − 1)τ )) then λmin(gτ (kτ )) ≥ λmin(g(kτ)), and hence, by Corollary 3.6 we have θτ

k = θτ
k−1. Otherwise, if 

λmin(gτ (kτ )) > λmin(gτ ((k − 1)τ )) then λmin(gτ (kτ )) = λmin(g(kτ)), and the conclusion follows by Corollary 3.2. 
Properties (i)–(iii) then follow by (3.28) taking the limit as τ → 0. �

We show now that an approximable quasi-static evolution (uε(t), Aε(t)) for Eε
Tot(u, A) converges (up to subse-

quences) to a pair (u(t), θ(t)), approximable quasi-static evolution for Ehom
Tot (u, θ).

Theorem 3.9. Any approximable quasi-static evolution (uε(t), Aε(t)) for Eε
Tot(u, A) converges (up to subsequences) 

to a pair (u(t), θ(t)) in the L2 × L1-weak convergence. Moreover, (u(t), θ(t)) is an approximable quasi-static evolu-
tion for Ehom

Tot (u, θ).
Conversely, any approximable quasi-static evolution (u(t), θ(t)) for Ehom

Tot (u, θ) is the limit as ε → 0 of an approx-
imable quasi-static evolution (uε(t), Aε(t)) for Eε

Tot(u, A).
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Proof. By the monotonicity condition on Aε(t), using Helly’s theorem, we can find a subsequence such that (up to 
relabelling the apices)

χAε(t) ⇀ θ(t) and χAε(t)∩([0, ε
2 )+εN) ⇀ θ1(t)

in L1(0, 1) for all t .
Since (i)–(iii) of Theorem 2.8 are satisfied for Aε , then, taking the limit as ε → 0 we deduce (i)–(iii) of Theorem 3.8

for (u, θ).
On the other hand, let (u(t), θ(t)) be an approximable quasi-static evolution for Ehom

Tot (u, θ). By Theorem 3.8 it 
satisfies (i)–(iii) therein. We then construct for all t ∈ [0, T ] the set Aε(t) as follows

Aε(t) =
⋃
k

(
kε, kε +

∫
(kε,(k+1)ε)

θ(t) dx

)
,

and let uε(t) be the corresponding minimizer of v �→ Eε
Tot(v, Aε(t)) with boundary conditions v(0) = 0 and v(1) =

g(t). With this definition (uε(t), Aε(t)) satisfy (i)–(iii) of Theorem 2.8 and hence, it is an approximable quasi-static 
evolution for Eε

Tot(u, A), and converge to (u(t), θ(t)). �
4. Quasi-static evolution for a three-phase material

In this final section, we use the characterization in Theorem 3.8 to show that the limit evolution can be interpreted 
as a weak evolution of a three-phase material. To that end, we introduce a double damage set model that generalizes 
the one introduced by Francfort and Marigo as follows. We consider positive constants a < b < c, k1 and k2, the 
energy

E3P(u,A1,A2) = a

∫
A2

∣∣u′∣∣2
dx + b

∫
A1

∣∣u′∣∣2
dx + c

∫
(0,1)\(A1∪A2)

∣∣u′∣∣2
dx

and the dissipation

D3P(A1,A2) = k1|A1| + k2|A2|,
with domain pairs of disjoint subsets A1, A2 of (0, 1). This can be interpreted as the damage model of a three-phase 
material, where c is the elastic constant of the undamaged state, b the one of the ‘partly damaged’ state, and a the 
one of the ‘totally damaged’ state. The constant k1 represents the cost of the partly damaged state and k2 the one of 
the totally damaged state. In general, we could consider also an ‘intermediate’ dissipation k1,2 which accounts for the 
transition from the partly damaged state to the totally damaged state. Our model corresponds to the case

k1,2 = k2 − k1.

This assumption reflects the fact that the material in order to reach the totally damaged state should pass through the 
intermediate partly damaged state.

The incremental problem for this model consists in solving iteratively

min
u,A1,A2

{
E3P(u,A1,A2) + D3P(A1,A2) : A1 ∩ A2 = ∅, A1 ∪ A2 ⊃ Ak−1

1 ∪ Ak−1
2 ,

A2 ⊃ Ak−1
2 , u(0) = 0, u(1) = g(kτ)

}
. (4.1)

The monotonicity conditions on the sets correspond to the assumption that the totally damaged state can only increase, 
while the partially damaged set can become totally damaged.

We first note that problems (4.1) may undergo relaxation with respect to the weak convergence in H 1 for u and 
weak convergence in L1 for the sets, understood as the weak convergence of their characteristic functions. We are 
then lead to considering the following relaxed functional

E3P
Tot(u,ϕ,ψ) :=

∫
H(ϕ,ψ)

∣∣u′∣∣2
dx + k1

∫
ϕ dx + k2

∫
ψ dx, (4.2)
(0,1) (0,1) (0,1)
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where

H(η1, η2) =
[

1 − (η1 + η2)

c
+ η1

b
+ η2

a

]−1

. (4.3)

This is an immediate consequence of the characterization of one-dimensional Γ -convergence, once we observe that

E3P(u,A1,A2) =
∫

(0,1)

(cχ(0,1)\(A1∪A2) + bχA1 + aχA2)
∣∣u′∣∣2

dx

and we can write

1

cχ(0,1)\(A1∪A2) + bχA1 + aχA2

= 1

c
χ(0,1)\(A1∪A2) + 1

b
χA1 + 1

a
χA2 .

We give a definition of (weak) quasi-static evolution for these energies as follows. Note that in this definition the 
monotonicity conditions on A1 and A2 given in problems (4.1) correspond to conditions on the functions ϕ and ϕ +ψ .

Definition 4.1. Given g ∈ AC([0, T ]), with g(0) = 0, we say that (u(t), ϕ(t), ψ(t)) is a (three-phase) quasi-static 
evolution for the energy (4.2) if for all t ∈ [0, T ] we have u(t) ∈ H 1(0, 1), u(0) = 0, u(1) = g(t), ψ(t) ∈ L∞(0, 1), 
0 ≤ ψ(t) ≤ 1, ϕ(t) ∈ L∞(0, 1), 0 ≤ ϕ(t) ≤ 1, ϕ(t) + ψ(t) ≤ 1, and the following properties hold

• Damage irreversibility ψ(t) and ϕ(t) + ψ(t) are increasing in time for each x ∈ (0, 1),
• Energy Balance

E3P
Tot

(
u(t),ψ(t), ϕ(t)

) = E3P
Tot

(
u(0),ψ(0), ϕ(0)

) + 2

t∫
0

ġ(s)

∫
(0,1)

H(ϕ,ψ)u′dxds

for all t ∈ [0, T ],
• Minimality Condition

E3P
Tot

(
u(t), ϕ(t),ψ(t)

) ≤ E3P
Tot(v, ϕ̃, ψ̃)

for all v : v − u(t) ∈ H 1
0 , and (ϕ̃, ψ̃) such that ψ̃ ≥ ψ(t) and ψ(t) + ϕ(t) ≤ ψ̃ + ϕ̃ ≤ 1.

Now we prove that the limit of the quasi-static evolutions considered in Section 2 can be seen as a quasi-static 
evolution of a three-phase homogenized material as in Definition 4.1. This will be an immediate consequence of the 
following proposition.

Proposition 4.2. If (u(t), θ(t)) is a quasi-static evolution according to Definition 3.7 and we set

(
ϕ(t),ψ(t)

) =
{

(2θ(t),0) if θ(t) ∈ [0, 1
2 )

(2(1 − θ(t)),2θ(t) − 1) if θ(t) ∈ [ 1
2 ,1),

(4.4)

then (u(t), ψ(t), ϕ(t)) is a quasi-static evolution according to Definition 4.1, with

k1 = γ1

2
and k2 = γ1 + γ2

2
,

and

a = 2α1α2

α1 + α2
, b = 2α1β2

α1 + β2
, c = 2β1β2

β1 + β2
.

Proof. By the definition of (ψ(t), ϕ(t)) the irreversibility of damage is preserved. Moreover, from a direct computa-
tion, using the definition of (ψ, ϕ), k1 and k2, a, b, c and the following expression for fhom(θ)
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fhom(θ) =
⎧⎨⎩ [β1+β2

2β1β2
(1 − 2θ) + (β2+α1)

2β2α1
2θ ]−1 if θ ∈ [0, 1

2 )

[β2+α1
2β2α1

2(1 − θ) + (α1+α2)
2α1α2

(2θ − 1)]−1 if θ ∈ [ 1
2 ,1)

(4.5)

we obtain that

fhom(θ) = H(ϕ,ψ) and Dhom(θ) = k1

1∫
0

ϕ dx + k2

1∫
0

ψ dx,

which implies immediately the energy balance. It remains to prove the minimality property. To this end we just need to 
show that for any admissible test pairs (ϕ̃, ψ̃) for E3P

Tot(v, ψ, ϕ) (i.e. such that ψ̃ ≥ ψ(t) and ψ(t) +ϕ(t) ≤ ψ̃ + ϕ̃ ≤ 1) 
we can construct an admissible test functions θ̃ ≥ θ(t) for Ehom

Tot (v, θ) such that

Ehom
Tot (v, θ̃) = E3P

Tot(v, ψ̃, ϕ̃).

It is enough, given (ϕ̃, ψ̃) such that ψ(t) +ϕ(t) ≤ ψ̃ + ϕ̃ ≤ 1, to define θ̃ = ϕ̃/2 if ψ̃ = 0 and θ̃ = (ψ̃ +1)/2 otherwise. 
This choice allows to conclude. �
Corollary 4.3. Let (uε(t), Aε(t)) be a family of approximable quasi-static evolutions for the inhomogeneous two-
phase damage energy Eε

Tot(u, A). Denoting by Aε
1(t) = Aε(t) ∩ ([0, ε2 ) + εN) and Aε

2(t) = Aε(t) \ ([0, ε2 ) + εN) the 
triple (uε(t), Aε

1(t), A
ε
2(t)) converges (up to subsequences) to a triple (u(t), θ1(t), θ2(t)) in the L2 × L1 × L1-weak 

convergence such that, defining ϕ(t) = 2(θ1(t) − θ2(t)) and ψ(t) = 2θ2(t), (u(t), ψ(t), ϕ(t)) is a (three-phase) quasi-
static evolution in the sense of Definition 4.1.

Proof. The proof is an immediate consequence of Theorem 3.9 and the characterization of θ(t) in terms of θ1(t) and 
θ2(t) (see Remark 3.5). �
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