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Abstract

In this paper we prove observability estimates for 1-dimensional wave equations with non-Lipschitz coefficients. For coefficients
in the Zygmund class we prove a “classical” estimate, which extends the well-known observability results in the energy space for
BV regularity. When the coefficients are instead log-Lipschitz or log-Zygmund, we prove observability estimates “with loss of
derivatives”: in order to estimate the total energy of the solutions, we need measurements on some higher order Sobolev norms
at the boundary. This last result represents the intermediate step between the Lipschitz (or Zygmund) case, when observability
estimates hold in the energy space, and the Hölder one, when they fail at any finite order (as proved in [9]) due to an infinite loss
of derivatives. We also establish a sharp relation between the modulus of continuity of the coefficients and the loss of derivatives
in the observability estimates. In particular, we will show that under any condition which is weaker than the log-Lipschitz one
(not only Hölder, for instance), observability estimates fail in general, while in the intermediate instance between the Lipschitz
and the log-Lipschitz ones they can hold only admitting a loss of a finite number of derivatives. This classification has an exact
counterpart when considering also the second variation of the coefficients.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on démontre des inégalités d’observabilité pour l’équation des ondes à coefficients non-Lipschitzien en une
dimension d’espace. Pour des coefficients qui sont dans la classe de Zygmund, on prouve une estimation « classique », qui étend
le résultat bien connu d’observabilité dans l’espace d’énergie pour des coefficients à variation bornée. Au contraire, quand les co-
efficients sont log-Lipschitz ou log-Zygmund, on prouve des estimations d’observabilité « avec perte de dérivées » : pour contrôler
l’énergie totale des solutions, il faut mesurer des normes de Sobolev d’ordre plus élevé au bord de l’intervalle. Ce dernier résultat
représente le cas intermédiaire entre le cas des coefficients Lipschitz (ou Zygmund), où les estimations d’observabilité sont satis-
faites dans l’espace d’énergie, et celui des coefficients Hölder, où elles échouent à n’importe quel ordre (comme prouvé dans [9]) à
cause d’une perte infinie de dérivées. On établit aussi une relation optimale entre le module de continuité des coefficients et la perte
de dérivées dans les inégalités d’observabilité. En particulier, on démontre que, quelle que soit l’hypothèse plus faible que celle de
log-Lipschitz (pas seulement celle de Hölder, par exemple), les estimations ne sont pas valables en général, tandis que pour toute
condition intermédiaire entre celle de Lipschitz et log-Lipschitz on a une inégalité avec une perte d’un nombre fini de dérivées.
Cette classification a un équivalent aussi au niveau de la variation seconde des coefficients.
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1. Introduction and main results

1.1. Motivations

The present paper is devoted to prove boundary observability estimates for the 1-D wave equation with non-
Lipschitz coefficients.

On the one hand, for the first time we will look not only at the first, but also at the second variation of the coeffi-
cients: besides, we will consider Zygmund type regularity conditions.

On the other hand, the results we will get are twofold: we will prove not only “classical” observability estimates in
the natural energy spaces, but also (under precise hypotheses) observability estimates “with loss of derivatives”.

Let us recall that boundary (or internal) observability estimates are equivalent to the controllability property of the
system under the action of a control on the boundary (or in the interior respectively) of the domain.

Our analysis is limited to coefficients just depending on the space variable x. The general case of coefficients
depending both on t and x is much more delicate and it will be matter of future studies.

So, let Ω = ]0,1[ and T > 0 (possibly T = +∞) and consider the 1-D wave equation

(WE)

⎧⎪⎨⎪⎩
ρ(x)∂2

t u − ∂x

(
a(x)∂xu

) = 0 in Ω × ]0, T [,
u(t,0) = u(t,1) = 0 in ]0, T [,
u(0, x) = u0(x), ∂tu(0, x) = u1(x) in Ω,

where the coefficients satisfy boundedness and strict hyperbolicity conditions:

(H) 0 < ρ∗ � ρ(x) � ρ∗, 0 < a∗ � a(x) � a∗.

Under these hypotheses, system (WE) is well-posed in the energy space H 1
0 (Ω) × L2(Ω): for any initial data

(u0, u1) ∈ H 1
0 (Ω) × L2(Ω), there exists a unique u ∈ C([0, T ];H 1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) solution to (WE). In
addition, its energy

E(t) := 1

2

∫
Ω

(
ρ(x)

∣∣ut (t, x)
∣∣2 + a(x)

∣∣ux(t, x)
∣∣2)

dx

is preserved during the evolution in time: E(t) ≡ E(0) in [0, T ].
Moreover, if the coefficients are smooth (say e.g. Lipschitz continuous) the following observability properties hold

true with T ∗ := ‖√ρ/a‖L1 :

• Internal observability: for any Θ := ]�1, �2[ ⊂ Ω and any T > 2T ∗ max{�1,1−�2}, there exists a constant Ci > 0
such that

E(0)� Ci

T∫
0

�2∫
�1

(
ρ(x)

∣∣ut (t, x)
∣∣2 + a(x)

∣∣ux(t, x)
∣∣2)

dx dt; (1)

• Boundary observability: for any T > T ∗, there exists a constant Cb > 0 such that

E(0)� Cb

T∫
0

(∣∣ux(t,0)
∣∣2 + ∣∣ux(t,1)

∣∣2)
dt (2)

(T > 2T ∗ if, in the right-hand side, one considers just the observation at x = 0 or x = 1).
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Let us stress the fact that the lower bounds on the observability time T are necessary: due to the finite propagation
speed for (WE), no observability estimate can hold true if T is too small (see e.g. [31]). The constants in the previous
inequalities can depend on T and on �1, �2, but are independent of the solution.

The previous estimates can be proved by means of a genuinely 1-dimensional technique, i.e. the sidewise energy
estimates, where the role of time and space are interchanged (see e.g. [21]).

In higher space dimensions the problem is much more complex and other techniques are required. In [4] Bardos,
Lebeau and Rauch (see also [7]) proved that a necessary and sufficient condition for observability estimates to hold
for wave equations with smooth coefficients is that the observability region Θ ⊂ Ω satisfies the so-called “Geometric
Control Condition” (GCC for brevity). Roughly speaking, this means that Θ has to absorb all the rays of geometric
optics in time T . The necessity of this property can be seen by constructing the so-called gaussian beam solutions.

When coefficients of the wave equation under consideration are constant the rays are straight lines but for variable
coefficients rays may have a complex dynamics, and concentration phenomena may occur making the GCC harder to
be verified. In the 1-D case, instead, the situation is easier since rays can only travel in a sidewise manner.

The issue is widely open for wave equations with low regularity coefficients. In this paper we address the 1-D case:
as we shall show, the lack of regularity of coefficients may cause a loss of derivatives of solutions along propagation,
thus leading to weaker observability estimates or even to its failure.

For system (WE), observability estimates (1), (2) in the energy space are well-known to be verified when the
coefficients are in the BV class (see [28]). In this paper we analyze this issue for less regular coefficients. Note
however that, in [9], the BV assumption on the coefficients was shown to be somehow sharp, proving that both
interior and boundary observability estimates may fail for Hölder continuous coefficients, due to an infinite loss of
derivatives (see also Theorem 1.3 below for the case of finite loss). Resorting to the original ideas of the work [20] by
Colombini and Spagnolo (which actually go back to paper [13]), in [9] an explicit counterexample was constructed for
which such a phenomenon could be observed. The fundamental issue was making the coefficients oscillate more and
more approaching to the extreme values x = 0 and x = 1 to build solutions exponentially concentrated far from ∂Ω .
Therefore, it is impossible to get observability estimates at the boundary, or in the interior whenever the subinterval
[�1, �2] is different from the whole Ω . A simpler result in that spirit was earlier proved in [2] showing that (1) and
(2) can fail to be uniform in the context of homogenization, for families of uniformly bounded (above and below) but
rapidly oscillating coefficients.

The present paper sets in such a context: it aims to complete, as precisely as possible, the general picture of
boundary observability estimates for wave equations with non-regular coefficients in the 1-D case.

Before stating our results, let us make some harmless but useful changes, in order to simplify the presentation. First
of all, up to extending the coefficients outside the domain under consideration (we will be more clear in Section 2
about this point), we can suppose ρ and a to be defined on the whole Rx .

Moreover, in the whole paper, we will deal with ρ, a ∈ A, where A is a Banach algebra; moreover, thanks to (H),
also 1/ρ and 1/a will belong to A (see also Section 2.2). So, up to performing the change of variables

y = φ(x) :=
x∫

0

1

a(ζ )
dζ

and defining the new unknown ũ(y) := u ◦ φ−1(y), without loss of generality, it’s enough to consider the system⎧⎪⎨⎪⎩
ω(x)∂2

t u − ∂2
xu = 0 in Ω × ]0, T [,

u(t,0) = u(t,1) = 0 in ]0, T [,
u(0, x) = u0(x), ∂tu(0, x) = u1(x) in Ω,

(3)

where ω still belongs to A and satisfies, for some constants ω∗ and ω∗,

0 < ω∗ � ω(x)� ω∗. (4)

Associated to the coefficient ω, let us also define the time

Tω :=
∫ √

ω(x)dx. (5)
Ω
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With the terminology we will introduce in Section 3, by Theorem 4 of [13] Tω is the maximal displacement of a
sidewise wave in the domain Ω .

Finally, in proving our results we will work with smooth data and solutions of Eq. (3). Recovering the correspond-
ing results for “critical regularity” initial data follows then by standard density arguments, thanks to a priori bounds
depending just on the relevant norms.

1.2. Main results

Now we are ready for stating our main results.
First of all, let us assume ω to fulfill an integral Zygmund assumption (see also Section 2.2) on Ω : there exists a

constant K > 0 such that, for all 0 < h < 1/2,
1−h∫
h

∣∣ω(x + h) + ω(x − h) − 2ω(x)
∣∣dx � Kh. (6)

We define also |ω|Z1 as the infimum of the constants K for which (6) holds true.

Theorem 1.1. Let us consider the strictly hyperbolic problem (3)–(4), with T > 2Tω and ω satisfying relation (6).
Assume the initial data (u0, u1) ∈ H 1

0 (Ω) × L2(Ω).
Then, there exists a constant C (depending only on T , ω∗, ω∗ and |ω|Z1 ) such that

‖u0‖2
H 1

0 (Ω)
+ ‖u1‖2

L2(Ω)
� C

T∫
0

∣∣∂xu(t,0)
∣∣2

dt. (7)

Let us make some useful comments on the previous statement.

Remark 1.2.

(i) Under the hypothesis of Theorem 1.1, for initial data (u0, u1) in the energy space H 1
0 × L2 there exists a unique

global in time solution u to (3) such that

u ∈ L∞([0, T ];H 1
0 (Ω)

) ∩ W 1,∞([0, T ];L2(Ω)
)

(see for instance [30]). In particular, ∂2
t u ∈ W−1,∞([0, T ];L2(Ω)) and, as ω ∈ L∞(Ω),

∂2
xu = ω∂2

t u ∈ W−1,∞([0, T ];L2(Ω)
)
.

Therefore, the trace of ∂xu at any point x, and in particular at x = 0 is well-defined. Moreover, by “reversing”
inequality (7), in Section 3.1 we will show that its right-hand side is finite, and all its terms have sense.

(ii) Let us note that condition (6) is weaker than the W 1,1 one (see also Corollary 2.11 and Example 2.12 below).
Therefore, Theorem 1.1 improves the previous result for BV coefficients (see paper [28]).
The fact is that the BV hypothesis on the coefficients is sharp if one just considers their first variation. A condition
like (6) is related (for regular functions) with their second derivative. Thus our assumptions allow to consider
larger classes of coefficients.
In Section 4 we will give motivations in order to support the strength of the previous result.

Let us now deal with lower regularity coefficients, and consider integral log-Lipschitz and log-Zygmund conditions.
These assumptions read, respectively, as follows: there exists a constant K > 0 such that, for all 0 < h < 1/2,

1−h∫
0

∣∣ω(x + h) − ω(x)
∣∣dx � Kh log

(
1 + 1

h

)
, (8)

1−h∫ ∣∣ω(x + h) + ω(x − h) − 2ω(x)
∣∣dx � Kh log

(
1 + 1

h

)
. (9)
h
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We set |ω|LL1 and |ω|LZ1 as the infimum of the constants K for which, respectively, inequalities (8) and (9) hold
true.

Under any of these hypotheses, it is possible to show an observability estimate, provided that we allow a loss of a
finite number of derivatives. Roughly speaking, in order to control the energy of the initial data, we need to add also
the contributions coming from the L2-norms of the time derivatives of the solution at the boundary x = 0.

For notation convenience, let us introduce the operator

Dω : f �→ 1

ω(x)
∂2
xf. (10)

As usual, we will denote with Dk
ω the composition Dω ◦ · · · ◦Dω (k times) for any k > 0, with the convention D0

ω = Id.

Theorem 1.3. Let us consider the strictly hyperbolic problem (3)–(4), with T > 2Tω. Assume this time that ω satisfies
relation (8) or (9).

Then, there exist two positive constants C and m ∈N, depending only on ω∗, ω∗ and |ω|LL1 or |ω|LZ1 respectively
(C also depends on T ) for which

‖u0‖2
H 1

0 (Ω)
+ ‖u1‖2

L2(Ω)
� C

T∫
0

∣∣∂m
t ∂xu(t,0)

∣∣2
dt, (11)

holds true for any initial data u0 ∈ H 2m+1(Ω) ∩ H 1
0 (Ω) and u1 ∈ H 2m(Ω) such that

Dm
ω u0 ∈ H 1(Ω) and Dm

ω u1 ∈ L2(Ω). (12)

Some remarks are in order.

Remark 1.4.

(i) As in Remark 1.2(i), the right-hand side of (11) is well-defined and finite, under our hypotheses. However, as the
proof is much more involved, we will clarify it in detail in Section 3.1.

(ii) As we will see in Theorem 4.3, the loss of a finite number of derivatives in the observability inequality cannot be
avoided, i.e. we do have m > 0.

(iii) The conditions on the higher order derivatives Dm
ω u0 and Dm

ω u1 are very strong: in particular they imply that
Dk

ωu0,D
k
ωu1 ∈ H 2(Ω) for any 0 � k � m − 1. However, they are necessary, due to the weak modulus of conti-

nuity of ω. For instance, let us consider the first case for which they are not trivial, i.e. m = 2. So, our hypotheses
imply u0 ∈ H 5(Ω), and then ∂2

xu0 ∈ H 3. Nevertheless, from this we cannot infer that Dωu0 belongs to the same
space (hence, a fortiori, neither that D2

ωu0 ∈ H 1), due to the rough regularity of ω. So, having smooth initial data
doesn’t help to propagate their regularity in the equation.

(iv) Note that the loss m just depends on ω (see also Section 2.4 and Remark 2.16), but not on T . The observability
constant C, however, depends on all these quantities.

(v) We point out here that the loss comes from Propositions 2.13 and 2.15, where it’s given by the index β > 0. In our
statement, m = [β] + 1: we prefer to work with an integer loss, to simplify the presentation and for applications
to the control problem. However, according to the just mentioned results, a more precise inequality would be

‖u0‖2
H 1

0 (Ω)
+ ‖u1‖2

L2(Ω)
� C

∥∥∂xu(·,0)
∥∥2

Hβ(0,T )
(13)

for any initial data u0 ∈ Hm̃+1(Ω) ∩ H 1
0 (Ω) and u1 ∈ Hm̃(Ω) (where we set m̃ = [2β]) such that, if m̃ > 1, the

following additional conditions are verified:
– if m̃ = 2k, then Dk

ωu0 ∈ H 1(Ω) and Dk
ωu1 ∈ L2(Ω);

– if m̃ = 2k + 1, then Dk
ωu1 ∈ H 1(Ω) and Dk

ωu0 ∈ L2(Ω).
Note that, for m̃ = 1, then the hypotheses on the initial data are enough to recover u1 ∈ H 1(Ω) and Dωu0 ∈
L2(Ω), so that no further requirements are needed.
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The case of the first variation of the coefficient, i.e. Lipschitz-type conditions, is particularly interesting because
we are able to prove the sharpness of our results. More precisely, we will prove also the following facts:

1. any intermediate modulus of continuity between the Lipschitz and the log-Lipschitz ones entails an observability
estimate analogous to inequality (13), with an arbitrarily small β > 0, which, however, cannot vanish;

2. any modulus of continuity slightly worse than the log-Lipschitz one always entails an infinite loss of derivatives,
and then observability estimates fail: in particular, (11) does not hold true, independently of the size of the time T

and of the order m ∈N.

Together with the issues of [28] and [9] we mentioned before, these results complete the general picture about how
observability estimates depend on the modulus of continuity of the coefficients.

The last two points will be proved constructing counterexamples, in the same spirit of the one in paper [9] by
Castro and Zuazua; they are inspired also by the ones (for the Cauchy problem) of Colombini and Lerner (see [17])
for moduli worse than log-Lipschitz, and by Cicognani and Colombini (in [12]) for moduli between Lipschitz and
log-Lipschitz regularities. Hence, we will closely follow the structure of the counterexample in [9]: the difficulty is to
find the correct oscillation of the coefficients in order to reproduce the same energy concentration phenomenon. We
will be more precise in Section 4.2, giving the exact statements and all the details of the construction.

Let us point out that, from the previous characterization, one gathers an analogue counterpart for Zygmund type
conditions, even if explicit counterexamples in this instance (without resorting to the ones established for the first
variation) are still far to be found.

The rest of the paper is organized in the following way.
In the next section we will collect some useful properties we will need in our study. In particular, in a first time

we will analyze the functional spaces we are dealing with and recall some of their basic properties. Then, we will
mention some well-known results about the Cauchy problem for second order strictly hyperbolic operators with low
regularity coefficients. As a matter of fact, due to the sidewise energy estimates method, proving our statements will
strongly rely on energy estimates for such a kind of operators.

In Section 3, we will prove Theorems 1.1 and 1.3. The main ingredient will be the sidewise energy estimates, which
will make use, in a crucial way, of the just established energy estimates. Note that, even if stated in the case of the
whole R, we will be able to use them for a bounded domain thanks to the finite propagation speed issue.

In Section 4 we will discuss the optimality of our results. In the case of Zygmund type conditions, in a first time
we will give some “empirical” considerations in favor of it; then, we will formally derive it from the case of the
first variation. In this last instance we will construct the counterexamples we announced before, establishing a sharp
relation between the modulus of continuity of ω and the loss of derivatives in the observability estimates.

In Section 5 we will present the application of our main results to the problem of null controllability for the wave
equation.

Finally, in Section 6 we will discuss some other closely related issues.

2. Tools

The present section is devoted to present the tools and preliminary results we will need in order to prove our
statements.

In a first time we will introduce the Littlewood–Paley decomposition and the definition of Besov spaces. They
will be used in the next subsection, in order to analyze the classes of coefficients we deal with, and to state some of
their properties. There, we will also focus on Zygmund type conditions in detail. In particular, we will compare the
“integral Zygmund” and the BV classes.

Finally, we will recall some basic results on the Cauchy problem, and in particular on energy estimates, for a second
order strictly hyperbolic operator with non-Lipschitz coefficients. They will be fundamental in the sequel.

2.1. An overview on Littlewood–Paley theory

We introduce here the Littlewood–Paley decomposition and the Besov spaces. We will focus on their basic proper-
ties, and the definition of Bony’s paraproduct decomposition.
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This will be very useful to describe the sets of coefficients we are handling, to justify all the computations we
made in the introduction in order to reduce (WE) to (3) and also to explain Remark 1.4(iii). Let us mention that
Littlewood–Paley theory is also the basis to prove all the results we are going to quote in Section 2.4. Finally, we point
out here that dyadic decomposition has been recently used to deal with multi-dimensional observability problems (see
for instance papers [25] and [24]).

For a complete and detailed description of the Littlewood–Paley theory and of paradifferential calculus, we refer
to [3, Chapter 2] (see also paper [8] and Chapters 4 and 5 of [32]).

Let us first define the so-called “Littlewood–Paley decomposition”, based on a non-homogeneous dyadic partition
of unity with respect to the Fourier variable. So, fix a smooth radial function χ supported in (say) the ball B(0,4/3),
equal to 1 in a neighborhood of B(0,3/4) and such that r �→ χ(re) is nonincreasing over R+ for all unitary vector
e ∈R

N . Moreover, set ϕ(ξ) = χ(ξ/2) − χ(ξ).
The dyadic blocks (�j )j∈Z are defined by1

�j := 0 if j � −2, �−1 := χ(D) and �j := ϕ
(
2−jD

)
if j � 0.

We also introduce the following low frequency cut-off operator:

Sju := χ
(
2−jD

) =
∑

k�j−1

�k for j � 0.

The following fundamental properties hold true:

• for any u ∈ S ′, the equality u = ∑
j �ju holds true in S ′;

• for all u and v in S ′, the sequence (Sj−1u�jv)j∈N is spectrally supported in dyadic annuli {(1/12) · 2j � |ξ | �
2 · 2j }.

Before going on, let us mention a fundamental result, which explains, by the so-called Bernstein’s inequalities, the
way derivatives act on spectrally localized functions.

Lemma 2.1. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any couple (p, q) in [1,+∞]2

with p � q and any function u ∈ Lp , we have, for all λ > 0,

supp û ⊂ B(0, λR) ⇒ ∥∥∇ku
∥∥

Lq � Ck+1λ
k+N( 1

p
− 1

q
)‖u‖Lp ;

supp û ⊂ {
ξ ∈ R

N
∣∣ rλ � |ξ |� Rλ

} ⇒ C−k−1λk‖u‖Lp �
∥∥∇ku

∥∥
Lp � Ck+1λk‖u‖Lp .

One can now define what a (non-homogeneous) Besov space Bs
p,r is.

Definition 2.2. Let s ∈ R and 1 � p, r � +∞. We define the space Bs
p,r as the set of distributions u ∈ S ′ such that

‖u‖Bs
p,r

:= ∥∥(
2js‖�ju‖Lp

)
j�−1

∥∥
�r < +∞.

From the above definition, it is easy to show that for all s ∈ R, the Besov space Bs
2,2 coincides with the non-

homogeneous Sobolev space Hs .
On the other side, for all s ∈ R+ \ N, the space Bs∞,∞ is actually the Hölder space Cs . If s ∈ N, instead, we set

Cs∗ := Bs∞,∞, to distinguish it from the space Cs of the differentiable functions with continuous partial derivatives up
to the order s. Moreover, the strict inclusion Cs

b ↪→ Cs∗ holds, where Cs
b denotes the subset of Cs functions bounded

with all their derivatives up to the order s. For the sake of completeness, let us recall that, if s < 0, we define the
“negative Hölder space” Cs as the Besov space Bs∞,∞.

1 Throughout we agree that f (D) stands for the pseudo-differential operator u �→ F−1(fFu).
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Finally, let us also point out that for any k ∈ N and p ∈ [1,+∞], we have the following chain of continuous
embeddings:

Bk
p,1 ↪→ Wk,p ↪→ Bk

p,∞,

where Wk,p denotes the classical Sobolev space of Lp functions with all the derivatives up to the order k in Lp .
Let us recall now some basic facts about paradifferential calculus, as introduced by J.-M. Bony in [8]. Again, one

can refer also to [3] and [32].
Given two tempered distributions u and v, formally one has uv = ∑

j,k �ju�kv. Now, due to the spectral local-
ization of cut-off operators, we can write the Bony decomposition:

uv = Tuv + Tvu + R(u, v), (14)

where we have defined the paraproduct and remainder operators respectively as

Tuv :=
∑
j

Sj−1u�jv and R(u, v) :=
∑
j

∑
|k−j |�1

�ju�kv.

Paraproduct and remainder operators enjoy some continuity properties on the class of Besov spaces.

Theorem 2.3.

(i) For any (s,p, r) ∈ R× [1,+∞]2 and t > 0, the paraproduct operator T maps L∞ × Bs
p,r in Bs

p,r , and B−t∞,r1
×

Bs
p,r2

in Bs−t
p,q , with 1/q := min{1,1/r1 + 1/r2}. Moreover, the following estimates hold true:

‖Tuv‖Bs
p,r

� C‖u‖L∞‖∇v‖
Bs−1

p,r
and ‖Tuv‖Bs−t

p,q
� C‖u‖B−t∞,r1

‖∇v‖
Bs−1

p,r2
.

(ii) For any (s1,p1, r1) and (s2,p2, r2) in R× [1,∞]2 such that s1 + s2 � 0, 1/p := 1/p1 + 1/p2 � 1 and 1/r :=
1/r1 + 1/r2 � 1 the remainder operator R maps B

s1
p1,r1 × B

s2
p2,r2 in B

s1+s2
p,r , with∥∥R(u, v)

∥∥
B

s1+s2
p,r

� Cs1+s2+1

s1 + s2
‖u‖

B
s1
p1,r1

‖v‖
B

s2
p2,r2

if s1 + s2 > 0,∥∥R(u, v)
∥∥

B0
p,∞ � Cs1+s2+1‖u‖

B
s1
p1,r1

‖v‖
B

s2
p2,r2

if s1 + s2 = 0, r = 1.

Combining Theorem 2.3 with Bony’s paraproduct decomposition (14), we get the following “tame estimate”.

Corollary 2.4. Let a be a bounded function such that ∇a ∈ Bs−1
p,r for some s > 0 and (p, r) ∈ [1,+∞]2. Then for any

b ∈ Bs
p,r ∩ L∞ we have ab ∈ Bs

p,r ∩ L∞ and there exists a constant C, depending only on N , p and s, such that

‖ab‖Bs
p,r

� Cx
(‖a‖L∞‖b‖Bs

p,r
+ ‖b‖L∞‖∇a‖

Bs−1
p,r

)
.

Let us also recall the action of composition by smooth functions on Besov spaces.

Theorem 2.5. Let f ∈ C∞(R) such that f (0) = 0, s > 0 and (p, r) ∈ [1,+∞]2.
If u ∈ L∞ ∩ Bs

p,r , then so does f ◦ u and moreover

‖f ◦ u‖Bs
p,r

� C‖u‖Bs
p,r

,

for a constant C depending only on s, f ′ and ‖u‖L∞ .

We can state another result (see paper [23, Section 2], for its proof), which is strictly related to the previous one.

Proposition 2.6. Let I ⊂R be an open interval and f : I → R be a smooth function.
Then, for all compact subset J ⊂ I , s > 0 and (p, r) ∈ [1,+∞]2, there exists a constant C such that, for all

functions u valued in J and with gradient ∇u ∈ Bs−1
p,r , we have that also ∇(f ◦ u) ∈ Bs−1

p,r and∥∥∇(f ◦ u)
∥∥

Bs−1
p,r

� C‖∇u‖
Bs−1

p,r
.
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2.2. The space A of the coefficients

Let us now introduce the functional spaces where we will take the coefficient ω.
Modulo its extension (by 0 out of Ω), we can suppose it to be defined for any x ∈ R

N , where, for the sake of
generality, we will consider the general instance of any N � 1.

Let us first recall the classical definition, stated for pointwise conditions.

Definition 2.7. A function f ∈ L∞(RN) is said to be log-Lipschitz continuous, and we write f ∈ LL(RN), if

|f |LL,∞ := sup
x,y∈RN , |y|<1

( |f (x + y) − f (x)|
|y| log(1 + 1

|y| )

)
< +∞.

We set ‖f ‖LL := ‖f ‖L∞ + |f |LL,∞.

Let us define also some Zygmund classes.

Definition 2.8. A function g ∈ L∞(RN) is said to be log-Zygmund continuous, and we write g ∈ LZ(RN), if

|g|LZ,∞ := sup
x,y∈RN , |y|<1

( |g(x + y) + g(x − y) − 2g(x)|
|y| log(1 + 1

|y| )

)
< +∞.

We set ‖g‖LZ := ‖g‖L∞ + |g|LZ,∞.
The space Z(RN) of Zygmund continuous functions is defined instead by the condition

|g|Z,∞ := sup
x,y∈RN , |y|<1

( |g(x + y) + g(x − y) − 2g(x)|
|y|

)
< +∞,

and, analogously, we set ‖g‖Z := ‖g‖L∞ + |g|Z,∞.

Let us recall that Z ≡ B1∞,∞ (see e.g. [11] for the proof), while the space LZ coincides with the logarithmic Besov

space B
1−log∞,∞ (see [15, Section 3]), which is defined by the condition

‖u‖
B

1−log∞,∞
:= sup

ν�−1

(
2ν(ν + 1)−1‖�νu‖L∞

)
< +∞.

Logarithmic Sobolev spaces were first introduced in [19]: they come out in a natural way in the study of wave equa-
tions with non-Lipschitz coefficients. For the generalization to the class of logarithmic Besov spaces, one can refer
to [27]. However, it is enough to keep in mind that they are intermediate classes between the classical ones, of which
they enjoy the most of the properties (the proofs can be obtained with just slight modifications of the classical argu-
ments).

We do not have an exact identification of Lipschitz-type classes as Besov spaces; however we can characterize the
space LL by the condition (on the low frequencies)

sup
ν�−1

(
(ν + 1)−1‖∇Sνu‖L∞

)
< +∞

(see paper [17, Proposition 3.3]).
Let us recall the following embeddings: Z ↪→ LL ↪→ LZ. The latter is evident from the definitions, while the

former can be proved thanks again to Littlewood–Paley decomposition. It’s easy to see that they hold true also for
integral assumptions.

Note that LL is an algebra, and it is invariant under the transformation I : z �→ 1/z for functions which fulfill (4).
Furthermore, by Bony’s paraproduct decomposition and their dyadic characterization, it turns out that both Z and LZ

are algebras; the fact that they are still invariant under the action of I follows from Proposition 2.6 and hypothesis (4).
In an analogous way, by use of Proposition 2.10 below, it’s possible to see that also integral log-Lipschitz, Zygmund

and log-Zygmund conditions, together with hypothesis (4), define an algebra, invariant under the action of I . Then,
the reduction from (WE) to system (3) we made in the introduction is completely justified.
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2.3. On the Zygmund condition

We defined the class A of the coefficients by integral conditions. A fortiori, Theorems 1.1 and 1.3 hold true under
the pointwise conditions

sup
x∈R

∣∣ω(x + y) − ω(x)
∣∣ � C|y| log

(
1 + 1

|y|
)

,

sup
x∈R

∣∣ω(x + y) + ω(x − y) − 2ω(x)
∣∣ � C|y|

(and their analogue for the log-Zygmund behavior), which we introduced in the previous subsection.
So, it is natural to generalize the Zygmund classes in the following sense. Again, we present the subject in the

general instance of RN .

Definition 2.9. Let p ∈ [1,+∞]. We define the spaces Zp(RN) as the set of f ∈ Lp(RN) such that there exists a
constant C > 0 for which∥∥f (· + y) + f (· − y) − 2f (·)∥∥

Lp(RN)
� C|y|

for all y ∈ R
N with |y| < 1. We set |f |Zp

the infimum of the constants C for which the previous inequality holds true.
Similarly, the space LZp is the set of f ∈ Lp(RN) such that, for some constant C > 0,∥∥f (· + y) + f (· − y) − 2f (·)∥∥

Lp(Rd )
� C|y| log

(
1 + 1

|y|
)

for all y ∈R
N with |y| < 1. We then set |f |LZp

the smallest constant C for which the previous inequality is true.

Note that Z, introduced in Definition 2.8, coincides with Z∞, while the integral conditions (6) and (9) define
respectively the spaces Z1 and LZ1.

Exactly as for the L∞ instance, the following proposition holds true.

Proposition 2.10. For any p ∈ [1,+∞], the classes Zp(RN) and LZp(RN) coincide, respectively, with the Besov

spaces B1
p,∞(RN) and B

1−log
p,∞ (RN).

Proof. We will closely follow the lines of the classical proof (for p = +∞). Let us just focus on the Zp instance: the
logarithmic loss can be handled in an analogous way.

(i) Let us first consider an f ∈ B1
p,∞ and take x and y ∈R

N , with |y| < 1. For all fixed n ∈N we can write

f (x + y) + f (x − y) − 2f (x) =
∑
k<n

(
�kf (x + y) + �kf (x − y) − 2�kf (x)

)
+

∑
k�n

(
�kf (x + y) + �kf (x − y) − 2�kf (x)

)
.

First, we take advantage of the Taylor formula up to second order to handle the former terms; then, we take the
Lp-norms of both sides. Using also Definition 2.2 and Bernstein’s inequalities, we get∥∥f (x + y) + f (x − y) − 2f (x)

∥∥
L

p
x
� C|y|2

∑
k<n

∥∥∇2�kf
∥∥

L
p
x

+ 4
∑
k�n

‖�kf ‖L
p
x

� C

(
|y|2

∑
k<n

2k +
∑
k�n

2−k

)
� C

(|y|22n + 2−n
)
.

As |y| < 1, the choice n = 1 + [log2(1/|y|)] (where with [σ ] we mean the greatest positive integer less than or equal
to σ ) completes the proof of the first part.
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(ii) Now, given a function f ∈ Zp , we want to estimate the L∞-norm of its localized part �kf .
Notice that applying the operator �k plays the same role as the convolution with the inverse Fourier transform

of the function ϕ(2−k·), which we call hk(x) = 2kNh(2k·), where we set h = F−1
ξ (ϕ). As ϕ is an even function, so

does h; moreover we have∫
h(z) dz =

∫
F−1

ξ (ϕ)(z) dz = ϕ(ξ)|ξ=0 = 0.

Therefore, we can write

�kf (x) = 2kN−1
∫

h
(
2ky

)(
f (x + y) + f (x − y) − 2f (x)

)
dy.

Applying Minkowski inequality (see e.g. Chapter 1 of [3]) and using the definition of the space Zp complete the proof
of the second part.

Analogous arguments show the equivalence also for logarithmic spaces. The proposition is then completely
proved. �
Corollary 2.11. Z1 ≡ B1

1,∞. In particular, W 1,1 ↪→Z1.

Example 2.12. In [38] an example is given of a Z1(0,2π) function w, but for which there is no constant C such that,
for all 0 < h < 1, one has

2π−h∫
0

∣∣w(x + h) − w(x)
∣∣dx � Ch.

Recall (see [6, Chapter 8]) that the space BV(Ω) (in any dimension N � 1) is characterized by the following
property: there exists a constant C > 0 such that, for all Θ ⊂⊂ Ω and all |h| < dist(Θ,Ω), one has∫

Θ

∣∣w(x + h) − w(x)
∣∣dx � C|h|.

After a simple rescaling of Tarama’s example, we then have that the Weierstrass function

w(x) =
+∞∑
n=1

2−n cos
(
2n+1πx

)
is in the class Z1(Ω), but not in BV(Ω).

Therefore, from this point of view, Theorem 1.1 represents an extension of the result of [28] for BV coefficients.
However Zygmund conditions are much more related with the second variation of a function, and they actually set in
a different context.

2.4. Energy estimates for hyperbolic operators with rough coefficients

Due to the sidewise energy estimates technique, which we will explain in the next section, our results strongly rely
on energy estimates for second order strictly hyperbolic operators with non-Lipschitz coefficients

Lv(τ, y) := ∂2
τ v(τ, y) − ω(τ)∂2

y v(τ, y), (15)

defined in some strip [0,T ] × Ry . Let us point out that we are considering the 1-dimensional case, which is enough
for our purposes, even if all the facts we are going to quote in the present subsection are true also in the general
instance R

N
y , with N � 1.

Here ω enjoys property (4) as before, and belongs to the space A(Rτ ), where A can be, as before, LL, Z or LZ

(defined either by pointwise or integral conditions).
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It is well-known that energy estimates are relevant to prove the well-posedness of the Cauchy problem for the
operator L on Sobolev spaces. Such a question for operator (15) with non-Lipschitz coefficients has been studied for
a long time (see for instance papers [30] and [13]), and there is a quite broad literature devoted to it. Nevertheless, in
despite of this, the problem is still not completely well-understood.

Just to have an idea, keep in mind that, under a Lipschitz continuity condition on the coefficient ω, an energy
estimate with no loss of derivatives holds true (in suitable Sobolev norms). Whenever the Lipschitz condition fails,
instead, one can find, in general, energy estimates with (finite or infinite) loss of derivatives: namely, the regularity of
the solution deteriorates as the time goes on, and one can control just Sobolev norms of the solution which are worse
than the ones of the initial data.

In what follows, we limit ourselves to quote just the results we will need to prove our statements. For an overview
of the problem and the present state of the art, we refer e.g. to [16] and the references therein.

So, let us start recalling a result under a log-Lipschitz condition, whose proof can be found in [13]. We refer to
paper [17] for the case of log-Lipschitz continuous coefficients ω = ω(τ, y).

Proposition 2.13. Let us consider the operator L, defined by (15), with ω fulfilling condition (8) and such that 0 <

ω∗ � ω(τ) � ω∗.
There exists a β > 0 (depending only on ω∗ and ω∗ and on |ω|LL1 ) such that for any s ∈ R, a positive constant C

(depending just on s, ω∗ and ω∗), such that for τ ∈ [0,T ] one has

∥∥v(τ)
∥∥

Hs−β + ∥∥∂τ v(τ )
∥∥

Hs−1−β � C

(∥∥v(0)
∥∥

Hs + ∥∥∂τ v(0)
∥∥

Hs−1 +
τ∫

0

∥∥Lv
(
τ ′)∥∥

Hs−1−β dτ ′
)

(16)

for all v ∈ C2([0,T ];H∞(Ry)).

Let us mention another result, whose proof can be found in paper [12]. It stems that any intermediate modulus of
continuity between the Lipschitz and the log-Lipschitz ones always entails a loss of derivatives in the energy estimates.
The necessity of such a loss was proved by construction of a counterexample: we will come back to it in Section 4.

Proposition 2.14. Let μ : [0,1] → [0,1] be continuous and strictly increasing, with μ(0) = 0, and suppose that ω

fulfills

sup
τ∈R

∣∣ω(τ + σ) − ω(τ)
∣∣ �K|σ | log

(
1 + 1

|σ |
)

μ
(|σ |)

for some constant K > 0, for any |σ | < 1.
Then, for any δ > 0 and any s ∈ R, there is a constant C (depending on s, δ, ω∗ and ω∗), such that

∥∥v(τ)
∥∥

Hs−δ + ∥∥∂τ v(τ )
∥∥

Hs−1−δ � C

(∥∥v(0)
∥∥

Hs + ∥∥∂τ v(0)
∥∥

Hs−1 +
τ∫

0

∥∥Lv
(
τ ′)∥∥

Hs−1−δ dτ ′
)

(17)

for any τ ∈ [0,T ] and for all v ∈ C2([0,T ];H∞(Ry)).

Now, let us focus on the second variation of the coefficients. The following result was stated in [38] for integral
conditions. See also works [14–16] for some generalizations.

Proposition 2.15. Fix s ∈R, and let v ∈ C2([0,T ];H∞(Ry)).

(i) If ω verifies the integral inequality (6), then

∥∥v(τ)
∥∥

Hs + ∥∥∂τ v(τ )
∥∥

Hs−1 � C

(∥∥v(0)
∥∥

Hs + ∥∥∂τ v(0)
∥∥

Hs−1 +
τ∫

0

∥∥Lv
(
τ ′)∥∥

Hs dτ ′
)

, (18)

for a constant C which depends only on s, ω∗, ω∗ and |ω|Z1 .
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(ii) If ω fulfills instead (9), then an estimate analogous to (16) holds true, for positive constants β (depending only
on ω∗, ω∗ and on |ω|LZ1 ) and C (depending also on s, but not on |ω|LZ1 ).

We expect that a statement analogous to Proposition 2.14 holds true also for intermediate conditions between the
Zygmund and the log-Zygmund ones. However, this goes beyond the scope of the present paper, and it will be matter
of next studies.

Remark 2.16. Going along the lines of the proofs to Propositions 2.13 and 2.15 (and assuming, without loss of
generality, that ω∗ < 1), it is possible to see that the constant β occurring in (16) is given by, respectively,

βLL = β̃|ω|LL1

1

ω∗
and βLZ = β̃|ω|LZ1

1

ω2∗
,

for some “universal” constant β̃ > 0.

3. Proof of the results

Let us now start the proof of our main results. It will be based on genuinely 1-dimensional arguments, following the
main ideas of [28] (see also [41]): in particular, we will apply the sidewise energy estimates technique. It consists in
changing the role of the variables, seeing x as the new evolution parameter, and in establishing bounds for the energy
associated to the “new” equation.

We will then use the results of Section 2.4. We remark that this is possible due to the finite propagation speed issue,
proved in [13] under more general assumptions than the ones we impose on our coefficient.

3.1. Time evolution

As, under both hypotheses of Theorems 1.1 and 1.3, ω is bounded and we have finite propagation speed, we get
(see [30]) the existence and uniqueness of a solution u to the problem (3), such that

u ∈ C
([0, T ];H 1

0 (Ω)
) ∩ C1([0, T ];L2(Ω)

)
and for which we have the conservation of the “classical” energy:

E0(t) := 1

2

∫
Ω

(
ω(x)

∣∣∂tu(t, x)
∣∣2 + ∣∣∂xu(t, x)

∣∣2)
dx.

As a matter of fact, an easy computation gives E′
0(t) ≡ 0.

Actually, due to the time reversibility of our equation, we can consider also the evolution for negative times, for
which we still have conservation of energy. In particular, there exists a constant C > 0 such that, for any T ∗ > 0,

sup
[−T ∗,T ∗]

( ∫
Ω

(
ω(x)

∣∣∂tu(t, x)
∣∣2 + ∣∣∂xu(t, x)

∣∣2)
dx

)
� C

(‖u0‖2
H 1

0 (Ω)
+ ‖u1‖2

L2(Ω)

)
. (19)

Let us now focus on the integral Zygmund instance for a while. Under the hypothesis of Theorem 1.1, as explained
in Remark 1.2(i), it makes sense to consider the trace of ∂xu at any point x ∈ Ω .

Then, with the terminology we will introduce in the next subsection, we can consider the “sidewise” problem: we
invert Eq. (3) and we look at the evolution with respect to x. Thanks to space reversibility, applying Proposition 2.15
with the slice (u, ∂xu)|x as new initial data (and using again finite propagation speed), for any x ∈ Ω we find

sup
y∈[0,x]

( T +Tωy∫
−Tωy

(∣∣∂tu(t, y)
∣∣2 + ∣∣∂xu(t, y)

∣∣2)
dt

)
� C

T +Tωx∫
−Tωx

(
ω(x)

∣∣∂tu(t, x)
∣∣2 + ∣∣∂xu(t, x)

∣∣2)
dt. (20)

In particular, the previous relation is true when we compute the left-hand side at y = 0:
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T∫
0

∣∣∂xu(t,0)
∣∣2

dt � C

T +Tωx∫
−Tωx

(
ω(x)

∣∣∂tu(t, x)
∣∣2 + ∣∣∂xu(t, x)

∣∣2)
dt

for any x ∈ Ω . Note that, a priori, the right-hand side might be equal to +∞. However, by (20) we see that either it
is +∞ on an interval [x0,1], for some 0 < x0 < 1, or just in the extreme point x = 1. The former case is excluded by
what we are going to say in a while, and reversing this argument (and essentially thanks to the freedom in choosing
T ∗ in (19)) shows that also the latter is impossible.

So, let us integrate the last relation with respect to x: we get

T∫
0

∣∣∂xu(t,0)
∣∣2

dt � C

T +Tω∫
−Tω

E(t) dt � C(T + 2Tω)
(‖u0‖2

H 1
0 (Ω)

+ ‖u1‖2
L2(Ω)

)
, (21)

which tells us also that the right-hand side of (7) is finite.
We now focus on the case when ω is in the integral log-Lipschitz or log-Zygmund classes, as in hypothesis of

Theorem 1.3. In this instance, we need to deal with higher order time derivatives.
Let us start with a lemma.

Lemma 3.1. For all integer k � 0, define the quantity

Ek(t) := 1

2

∫
Ω

(
ω(x)

∣∣∂k+1
t u(t, x)

∣∣2 + ∣∣∂k
t ∂xu(t, x)

∣∣2)
dx. (22)

Then Ek is conserved in the time evolution: for all t ∈ [0, T ],

Ek(t) ≡ Ek(0) = 1

2

∫
Ω

(
ω(x)

∣∣∂k+1
t u(0, x)

∣∣2 + ∣∣∂k
t ∂xu(0, x)

∣∣2)
dx. (23)

Proof. We apply operator ∂k
t to (3) and we get the equation

∂k+2
t u − ω(x)∂2

x ∂k
t u = 0.

Note that the null boundary conditions are still fulfilled. Now, it is just matter of computing E′
k(t) and use the previous

relation. �
Notice that, thanks to (4), we have

Ek(t) ∼ ∥∥∂k+1
t u(t)

∥∥2
L2(Ω)

+ ∥∥∂k
t ∂xu(t)

∥∥2
L2(Ω)

.

For simplicity, for the time being let us restrict to m = 1 in Theorem 1.3: this corresponds to the case 0 < β < 1
in Propositions 2.13 or 2.15, or to the case of Proposition 2.14. If we define v1 := ∂tu, then it satisfies the following
system:{

ω(x)∂2
t v1 − ∂2

x v1 = 0,

v1|t=0 = u1, ∂t v1|t=0 = Dωu0.
(24)

By hypothesis, we have v1|t=0 ∈ H 1(Ω) and ∂tv1|t=0 ∈ L2(Ω); then

v1 ∈ L∞([0, T ];H 1(Ω)
) ∩ W 1,∞([0, T ];L2(Ω)

)
.

From this we infer (as done in the case without loss) that the trace of ∂xv1 = ∂t ∂xu at any point x ∈ Ω is well-defined.
Moreover, by Propositions 2.13 or 2.15 and arguing as before, we find

T∫ ∣∣∂xv1(t,0)
∣∣2

dt � C

T +Tωx∫ (
ω(x)

∣∣∂2
t v1(t, x)

∣∣2 + ∣∣∂t ∂xv1(t, x)
∣∣2)

dt
0 −Tωx
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for any x ∈ Ω . Integrating over Ω this last relation and using Lemma 3.1 above with k = 2, we end up with

T∫
0

∣∣∂t ∂xu(t,0)
∣∣2

dt � C(T ,Tω)

∫
Ω

(
ω(x)

∣∣∂2
t v1(0, x)

∣∣2 + ∣∣∂t ∂xv1(0, x)
∣∣2)

dx.

This relation tells us that the right-hand side of observability estimate (11) (with m = 1) is finite. As a matter of fact,
it is enough to notice that (24) implies

∂2
t v1|t=0 = Dωu1 and ∂t ∂xv1|t=0 = ∂xDωu0,

and these quantities belong to L2(Ω) due to our hypothesis.
In the general instance m > 1 it is just a matter of arguing by induction.
So, let us define vk := ∂k

t u for any k � 0. From system (24) and the one for v2,{
ω(x)∂2

t v2 − ∂2
xv2 = 0,

v2|t=0 = Dωu0, ∂t v2|t=0 = Dωu1,

it easily follows by induction that, for any k � 0, the odd time derivatives fulfill{
ω(x)∂2

t v2k+1 − ∂2
x v2k+1 = 0,

v2k+1|t=0 = Dk
ωu1, ∂t v2k+1|t=0 = Dk+1

ω u0,

while the even time derivatives satisfy the system{
ω(x)∂2

t v2k − ∂2
xv2k = 0,

v2k|t=0 = Dk
ωu0, ∂t v2k+1|t=0 = Dk

ωu1.

Now, in order to prove that the quantity in the right-hand side of inequality (11) is well-defined, we have to analyze
the equation for vm, which will be one of the previous two ones depending if m is either odd or even. Thanks to the
assumptions of Theorem 1.3 (recall in particular Remark 1.4(iii)), we find that

vm = ∂m
t u ∈ L∞([0, T ];H 1(Ω)

) ∩ W 1,∞([0, T ];L2(Ω)
)
,

so the trace of ∂xvm at any point x ∈ Ω is well-defined. To prove that it is in L2(0, T ), i.e. that the right-hand side of
(11) is finite, we have to apply Proposition 2.13 or Proposition 2.15 (recall that m = [β] + 1): we get

T∫
0

∣∣∂m
t ∂xu(t,0)

∣∣dt � C(T + 2Tω)E2m(0).

Then, to conclude it is enough to notice that

∂tv2m|t=0 = ∂2m+1
t u|t=0 = Dm

ω u1 and ∂xv2m|t=0 = ∂x∂
2m
t u|t=0 = ∂xD

m
ω u0

both belong to L2(Ω) thanks to our hypothesis.

3.2. Sidewise energy estimates

Now, we apply the “sidewise energy estimates” technique. The fundamental observation is that the roles of the time
and the space variables are interchangeable in Eq. (3). Hence, we can consider the “new” evolution problem

∂2
xu − ω(x)∂2

t u = 0, (25)

where this time we are looking at the evolution in x.
With this new point of view in mind, for any k ∈ N we define the sidewise k-energy as

Fk(x) := 1

2

T −Tωx∫ (
ω(x)

∣∣∂k+1
t u(t, x)

∣∣2 + ∣∣∂k
t ∂xu(t, x)

∣∣2)
dt, (26)
Tωx
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where Tω was defined in (5). Let us immediately note that, thanks to (4), we have

Fk(0) ∼
T∫

0

∣∣∂k
t ∂xu(t,0)

∣∣2
dt.

Our task is then finding suitable estimates for Fk . As the “new” equation (25) reads like (15), we can use the results
of Section 2.4. At this point, let us focus on the case of loss of derivatives, i.e. ω fulfilling an integral log-Lipschitz or
log-Zygmund hypothesis.

Hence, we apply Propositions 2.13 and 2.15(ii) to Eq. (25): from inequality (16) with s = 1 and the fact that
u(t,0) ≡ 0, we get∥∥∂tu(t, x)

∥∥2
L2(Tωx,T −Tωx)

+ ∥∥∂xu(t, x)
∥∥2

L2(Tωx,T −Tωx)
� C

∥∥∂xu(t,0)
∥∥2

Hβ(0,T )
. (27)

Let us emphasize that the Sobolev norms which appear in this estimate are in time variable.
Now we remark that ‖∂xu(·,0)‖Hβ(0,T ) � ‖∂xu(·,0)‖H [β]+1(0,T ), where [β] denotes the biggest integer smaller

than or equal to β: we want to work with local operators, and so we need derivatives of integer order.
Therefore, recalling also definition (26) and the hyperbolicity condition (4) for ω, from (27) we infer the estimate

F0(x) � C

[β]+1∑
k=0

Fk(0).

Integrating the previous relation with respect to the space variable, we find

T −Tω∫
Tω

∫
Ω

(
ω(x)

∣∣∂tu(t, x)
∣∣2 + ∣∣∂xu(t, x)

∣∣2)
dx dt � C

T∫
0

[β]+1∑
k=0

∣∣∂k
t ∂xu(t,0)

∣∣2
dt.

At this point, we use Lemma 3.1 for E0: this leads us to

(T − 2Tω)E0(0)� C

T∫
0

[β]+1∑
k=0

∣∣∂k
t ∂xu(t,0)

∣∣2
dt. (28)

Now, to obtain (11), it is enough to replace the non-homogeneous Sobolev norm with the homogeneous one, leaving
just the highest order term ∂m

t ∂xu(t,0) (see also Remark 3.2 below), with m = [β] + 1.
Theorem 1.3 is now completely proved.

Remark 3.2. Let us stress again that it is possible to control the right-hand side of (28) by the L2-norm of just the
m-th time derivative of ∂xu|x=0. This fact can be recovered using a classical compactness-uniqueness argument.

More precisely, arguing by contradiction, we are going to show that

T∫
0

∣∣∂xu(t,0)
∣∣2

dt � C

T∫
0

∣∣∂m
t ∂xu(t,0)

∣∣2
dt (29)

for u solution of system (3), with m � 1.
In fact, suppose that the previous relation is not true; then it is possible to find a sequence (un)n of solutions to

Eq. (3), such that

T∫
0

∣∣∂xu
n(t,0)

∣∣2
dt ≡ 1 and

T∫
0

∣∣∂m
t ∂xu

n(t,0)
∣∣2

dt → 0.

By sidewise energy estimates (28) and interpolation (to make just the highest and the lowest order terms appear), in
particular we infer that (un)n is a bounded sequence in L∞([0, T ];H 1(Ω)) ∩ W 1,∞([0, T ];L2(Ω)).
0
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Therefore, by extracting a subsequence, there exists a u such that{
un ∗

⇀ u in L∞([0, T ];H 1
0 (Ω)

) ∩ W 1,∞([0, T ];L2(Ω)
)
,

∂xu
n(·,0) ⇀ ∂xu(·,0) in Hm(0, T ).

By the first property we gather that u is still a solution to (3); combining the second property with the compact
embedding Hm(0, T ) ↪→ L2(0, T ) we get instead strong convergence in L2 (by extracting a sub-subsequence), and
then also

T∫
0

∣∣∂xu(t,0)
∣∣2

dt = 1.

In particular, this relation tells us that u �= 0. On the other hand, Fatou’s lemma implies

T∫
0

∣∣∂m
t ∂xu(t,0)

∣∣2
dt = 0,

and then we deduce ∂m
t ∂xu|x=0 = 0.

Define now vk := ∂k
t u for any 0 � k � m. Applying the operator ∂m

t to (3) we find that vm solves the equation

∂2
x vm − ω(x)∂2

t vm = 0,

with 0 initial data. By uniqueness, this implies that vm = ∂m
t u ≡ 0 over Ω × [0, T ], and hence

u(t, x) = k0(x) + k1(x)t + · · · + km−1(x)tm−1.

From this relation and the boundary conditions u(t,0) = u(t,1) ≡ 0 for all t , we infer that kj (0) = kj (1) = 0 for all
0 � j �m − 1.

But u has to fulfill Eq. (3): therefore,

m−1∑
j=0

k′′
j (x)tj =

m−1∑
j=2

j (j − 1)kj (x)tj−2.

We now compare the terms of the same order (in t ): in particular, we find

k′′
m−1(x) = 0 ⇒ km−1(x) ≡ 0 in Ω

(using also that km−1(0) = km−1(1) = 0), and the same for km−2.
Then, it is easy to see that kj (x) ≡ 0 for all 0 � j � m − 1, and so u(t, x) ≡ 0, which is in contrast with what we

said before. Inequality (29) is then verified.

Let us also spend a few words on the proof of Theorem 1.1.

Proof of Theorem 1.1. To prove inequality (7), one can just repeat the same arguments as above, i.e. sidewise energy
estimates. But this time it is enough to consider the energies E0 and F0, because of the use of estimate (18), which
involves no loss of regularity. �

We conclude the present section stating a result for moduli of continuity slightly better than the log-Lipschitz one.
It is a direct consequence of Proposition 2.14 and sidewise energy estimates.

Theorem 3.3. Let us consider the strictly hyperbolic problem (3)–(4), with T > 2Tω. Assume also that ω satisfies, for
any 0 < h < 1,

sup
x∈R

∣∣ω(x + h) − ω(x)
∣∣ � K0h log

(
1 + 1

h

)
μ(h), (30)

where μ : [0,1] → [0,1] is a continuous strictly increasing function such that μ(0) = 0.
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Then, for any fixed δ > 0, there exists a constant C > 0 (depending only on T , ω∗, ω∗, δ and K0) such that the
following inequality,

‖u0‖2
H 1

0 (Ω)
+ ‖u1‖2

L2(Ω)
� C

∥∥∂xu(·,0)
∥∥2

Hδ(0,T )
, (31)

holds true for any initial data u0 ∈ H 3(Ω) ∩ H 1
0 (Ω) and u1 ∈ H 2(Ω) such that Dωu0 ∈ H 1(Ω).

Note that δ can be taken arbitrarily small. However, in the following section we are going to prove that it cannot be
taken equal to 0, i.e. an estimate of the form (7) fails, in general, under assumption (30).

4. Sharpness of the results

We discuss here the sharpness of our results.
In a first time, we will focus on Zygmund type assumptions. Then, we will consider the first variation of the

coefficient: by construction of two explicit counterexamples, we are able to provide a full characterization of the
observability estimates (with no, finite or infinite loss of derivatives) depending on the modulus of continuity of ω. In
particular, this will imply a full classification also in the context of the second variation of the coefficients.

For convenience, throughout all this section we will focus on pointwise conditions.

4.1. Remarks on Zygmund type conditions

Let us consider Zygmund type conditions for the coefficient ω.
As recalled in Section 2.2, by dyadic decomposition it is possible to characterize Z as the Besov space B1∞,∞ and

the Hölder class Cα , for any 0 < α < 1, as Bα∞,∞; LZ, instead, is equivalent to the logarithmic Besov space B
1−log∞,∞ .

Moreover, for any 0 < α1 < α2 < 1 we have the following chain of strict embeddings:

B1∞,∞ ↪→ B
1−log∞,∞ ↪→ Bα2∞,∞ ↪→ Bα1∞,∞. (32)

The previous relations (32) suggest that Theorems 1.1 and 1.3, are optimal in the context of second variations. In
fact, given a modulus of continuity μ, we trivially have∣∣ω(x + h) − ω(x)

∣∣ � Cμ(h) ⇒ ∣∣ω(x + h) + ω(x − h) − 2ω(x)
∣∣� 2Cμ(h).

Therefore, thanks to the counterexamples we will establish in the next subsection (see Theorems 4.2 and 4.3), this
implies that our results are sharp, i.e. we have the classification:

• if ω is Zygmund continuous, then observability estimates hold true with no loss;
• if ω verifies a condition (on second variation) between the Zygmund and the log-Zygmund ones, then observability

estimates hold with a loss of derivatives, which cannot be avoided;
• if the second variation of ω has a worse behavior than the log-Zygmund one, then an infinite loss of derivatives in

general occurs in observability estimates.

4.2. About the first variation of the coefficients

The present subsection is devoted to prove a complete characterization of the relation between observability esti-
mates and modulus of continuity of ω, in the sense that follows:

• if ω is Lipschitz continuous, there are observability estimates with no loss (we recall that this result is true also
for BV coefficients);

• if the modulus of continuity of ω is strictly between the Lipschitz and the log-Lipschitz ones, a loss of derivatives
has to occur, even if arbitrarily small (see Theorem 3.3);

• if ω is even slightly worse than log-Lipschitz (for instance, Hölder), an infinite loss of derivatives occurs, and it is
impossible to recover observability estimates.
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Let us note that the BV part was proved in [28], and this result is sharp in the context of first variation of the
coefficients.

The counterexample for Hölder continuous ω, instead, was established in [9]. To prove the third point of the previ-
ous classification, we will improve it, verifying also that observability estimates fail even if we add the contribution of
any high order time derivative of ∂xu|x=0. In order to do this, we will resort also to some ideas of the corresponding
counterexample for the Cauchy problem, which can be found in [17].

Let us point out here some important issues.

Remark 4.1.

(i) We will just prove the failure of observability estimates at x = 0. However, repeating the same construction
performed in [9], it is possible to prove the analogous result also at x = 1 and in the interior of Ω .

(ii) In fact, in the third point of the classification, we are going to construct a coefficient which is smooth on the
whole Ω , but not at x = 0, where it presents a pathological behavior. Also the initial data will be smooth out of
the origin. So the additional compatibility conditions involving the operator Dω will be automatically satisfied.

Let us now state the main issue of this subsection. It asserts that an infinite loss of derivatives occurs whenever the
modulus of continuity of ω is even slightly worse than the log-Lipschitz one.

Theorem 4.2. Let ψ : [1,+∞[ → [1,+∞[ be strictly increasing and strictly concave, such that ψ(1) = 1 and

lim
σ→+∞ψ(σ) = +∞. (33)

Then there exists ω satisfying (4) and (for any 0 < h < 1/2)

sup
x

∣∣ω(x + h) − ω(x)
∣∣ � Kh|logh|ψ(|logh|), (34)

and smooth initial data (u0, u1) (with u0(0) = u0(1) = 0) for which observability estimates with finite loss cannot
hold. More precisely, inequality (11) fails for any observability time T and at any order m ∈ N.

In the intermediate instance between the Lipschitz and the log-Lipschitz ones, instead, we are able to prove that a
loss of derivatives has to occur, in general.

Theorem 4.3. Let λ : ]0,1] → [1,+∞[ be a continuous, strictly decreasing function such that λ(1) = 1 and it fulfills
the following conditions:

lim
σ→0+ λ(σ ) = +∞ and lim

σ→0+
λ(σ )

log(1 + 1
σ
)

= 0. (35)

Then there exists a sequence of density functions (ωj )j∈N, satisfying (4) uniformly with respect to j and also, for
any j ∈N and for any 0 < h < 1,

sup
x

∣∣ωj (x + h) − ωj (x)
∣∣ � Kjhλ(h), (36)

and a sequence of initial data (u
j

0, u
j

1)j∈N ⊂ H 1
0 (Ω) × L2(Ω) such that the respective constants Cj in (7) diverge

to +∞ for j → +∞.

As a corollary, we get that (7), i.e. observability estimates without loss, fails in general for moduli of continuity
which are worse than the Lipschitz one.

However, we will see that the constants Kj in Theorem 4.3 diverge to +∞ for j → +∞: therefore the previous
statement is somehow weaker than the one given in Theorem 4.2. As a matter of fact, the sub-logarithmic divergence of
λ near 0 is inadequate in order to construct a unique coefficient which presents strange pathologies in the concentration
of the energy. So we have to add some bad behavior, which is responsible for the growth of the Kj ’s. Note also that we
couldn’t argue by contradiction and use the result of [12] for the Cauchy problem: in order to have the null boundary
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condition at x = 1 fulfilled, we would have to work in a time interval [0, T ] with T < 2Tω, which is in contrast with
our assumptions.

The proofs of Theorems 4.2 and 4.3 will strictly follow the construction in [9] by Castro and Zuazua. The main
difference is to find suitable oscillations, adapted to the new behaviors of the respective coefficients ω, in order to
reproduce concentration phenomena which entail the loss of observability properties. At this step, let us notice that,
under our assumptions, both ψ in Theorem 4.2 and λ in Theorem 4.3 are invertible, and the inverse functions are still
strictly monotone of the same type. This remark will be useful in the sequel.

4.2.1. Proof of Theorem 4.2
We will prove Theorem 4.2 in various steps, following closely the construction of [9].
In a first time, we will recall some preliminary results; then, we will construct simultaneously the coefficient ω

and a sequence of “quasi-eigenfuncions” related to it, in the sense specified below. Finally, we will prove the lack of
boundary observability.

Step 1: preparatory results. For the sake of completeness, let us quote here two fundamental ODEs lemmas. For
further discussions on them, we refer to [20, Section 2], and [9, Section 2].

Lemma 4.4. There is a ε > 0 such that, for all ε ∈ ]0, ε[, two even functions αε and wε exist, which are C∞(R), which
fulfill

(ODE)

{
w′′

ε + αε(x)wε = 0,

wε(0) = 1, w′
ε(0) = 0

and such that, for some positive constants M , C and γ independent of ε, they verify:

(i) αε is 1-periodic both on x < 0 and x > 0,
(ii) αε ≡ 4π2 in a neighborhood of x = 0,

(iii) |αε(x) − 4π2|� Mε and |α′
ε(x)| � Mε;

(A) wε(x) = pε(x)e−ε|x|, where pε which is 1-periodic on x < 0 and x > 0,
(B) |wε(x)| + |w′

ε(x)| + |w′′
ε (x)| � C,

(C)
∫ 1

0 wε(x)dx � γ ε.

Remark 4.5. In particular, combining properties (A) and (ii) with (ODE), we gather that

wε(x) = e−ε|x|, w′
ε(x) = 0, w′′

ε (x) = −4π2e−ε|x|

whenever x = ±n, for all integers n� 0.

Lemma 4.6. Let φ be a solution of the equation (for x ∈ R)

φ′′ + h2α(x)φ = 0,

where h ∈ Z and α ∈ C1 is a strictly positive function, and define the “energies”

Eφ(x) := 4π2h2
∣∣φ(x)

∣∣2 + ∣∣φ′(x)
∣∣2

,

Ẽφ(x) := 4h2α(x)
∣∣φ(x)

∣∣2 + ∣∣φ′(x)
∣∣2

.

Then, for all x1 and x2 in R, the following estimates hold true:

Eφ(x2) � Eφ(x1) exp

∣∣∣∣∣h
x2∫

x1

∣∣4π2 − α(x)
∣∣dx

∣∣∣∣∣,
Ẽφ(x2) � Ẽφ(x1) exp

∣∣∣∣∣
x2∫ |α′(x)|

α(x)
dx

∣∣∣∣∣.

x1
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We quote here also Proposition 1 of [9], which will be very useful later on.

Proposition 4.7. Let ω ∈ L∞(Ω), 0 < ω∗ � ω(x) � ω∗, and T > 0 given. If z satisfies⎧⎪⎨⎪⎩
ω(x)∂2

t z − ∂2
x z = 0 in Ω × ]0, T [,

z(t,0) = f (t), z(t,1) = g(t) in ]0, T [,
z(0, x) = ∂t z(0, x) = 0 in Ω,

then there exists a constant C(T ) > 0 such that the following estimates hold true:

T∫
0

∫
Ω

(
ω(x)

∣∣∂t z(t, x)
∣∣2 + ∣∣∂xz(t, x)

∣∣2)
dx dt � C(T )ω∗(‖f ‖2

W 2,∞(0,T )
+ ‖g‖2

W 2,∞(0,T )

)
,

T∫
0

(∣∣∂xz(t,0)
∣∣2 + ∣∣∂xz(t,1)

∣∣2)
dx dt � C(T )ω∗(‖f ‖2

W 3,∞(0,T )
+ ‖g‖2

W 3,∞(0,T )

)
.

Step 2: the density ω and the quasi-eigenfunctions. As in [9], we will build simultaneously the density ω and a
sequence of “quasi-eigenfunctions” (in the sense detailed below) which produce the concentration phenomenon we
are looking for.

First of all, let us define a “fractal” partition of the interval Ω = [0,1]. We set

rj := 2−j (37)

and we define a sequence of intervals (Ij )j�2, centered in points mj and of length rj , with

mj := rj

2
+

+∞∑
k=j+1

rk and Ij :=
]
mj − rj

2
,mj + rj

2

]
.

In particular, we have ]0,1/2] = ⋃
j�2 Ij .

Now, we define the positive sequences (εj )j ↘ 0+ and (hj )j ↗ +∞ by

hj := exp
(
ψ−1(2Nj

))
and εjhj = loghjψ(loghj ), (38)

for a suitable N ∈ N to be chosen later. We will see in a while that the particular definition of εj will imply that
the coefficient ω has exactly the right modulus of continuity. Let us note that these choices are coherent with the
ones performed in [9], which correspond to the case ψ = Id. As a matter of fact, there the coefficient ω was Hölder
continuous of any order because, actually, it was just slightly worse than log-Lipschitz (it had an extra logarithmic
loss, represented by the (log)2 in the definition of εj ).

Remark 4.8. Up to take the quantity2 [ψ−1(2Nj )] + 1 in the definition of hj in (38), we can suppose that

hj rj ≡ nj → +∞, with (nj )j ⊂N.

The claim nj → +∞ follows from the fact that, due to the hypothesis over ψ , its inverse ψ−1 is strictly increasing
and convex, so that ψ−1(x) � kx for large x and suitable k.

We immediately fix N big enough (with respect to the constant M of Lemma 4.4) such that

εj �
1

2M
, 5M

+∞∑
k=j+1

εkrk � εj rj and 5M

j−1∑
k=1

εkhkrk � εjhj rj . (39)

2 Recall that we denote by [σ ] the biggest integer less than or equal to σ .
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Note that these inequalities are true for N sufficiently large, due to the following considerations. Firstly, (εj )j is
decreasing to 0 for any N � 2, and ε1 → 0 for N → +∞. Moreover,

εkrk(εj rj )
−1 = 2−(N+1)(k−j) ψ

−1(2Nk)

ψ−1(2Nj )
exp

(−ψ−1(2Nk
) + ψ−1(2Nj

))
,

εkhkrk(εjhj rj )
−1 = 2(N−1)(k−j) ψ

−1(2Nk)

ψ−1(2Nj )
;

therefore, it is easy to see that εkrk(εj rj )
−1 � δ

(k−j)
N , with δN → 0 for N → +∞, and that εkhkrk(εjhj rj )

−1 �
Γ

(k−j)
N , with ΓN → +∞ for N → +∞.

We can now define the coefficient ω: taking the αεj
’s introduced in Lemma 4.4, we set

ω(x) :=
{

αεj
(hj (x − mj)) if x ∈ Ij ,

4π2 if x ∈ [0,1] \ ⋃
j�2 Ij .

(40)

Note that ω ∈ C∞ in the interval ]0,1], because αε ∈ C∞(R) and ω ≡ 4π2 in a neighborhood of the extremes of Ij ,
due to properties (i) and (ii) of Lemma 4.4 (see also Remark 4.8).

We claim that ω, defined in this way, satisfies inequality (34) over the whole [0,1]. Indeed, thanks to properties (i)
and (iii) of Lemma 4.4, we have (recall that |x − y| < 1/2)

|αεj
|ψ,R := sup

x,y∈R
|αεj

(x) − αεj
(y)|

|x − y||log |x − y||ψ(|log |x − y||)

� sup
x,y∈[0,1]

|αεj
(x) − αεj

(y)|
|x − y||log |x − y||ψ(|log |x − y||) � CMεj .

Therefore, for all j � 2, we get

|ω|ψ,Ij
:= sup

x,y∈Ij

|ω(x) − ω(y)|
|x − y||log |x − y||ψ(|log |x − y||)

� sup
x,y∈R

|αεj
(hj (x − mj)) − αεj

(hj (y − mj))|
|x − y||log |x − y||ψ(|log |x − y||)

� hj sup
hj |x−y|<1/2

|αεj
(hj (x − mj)) − αεj

(hj (y − mj))|
hj |x − y||log |x − y||ψ(|log |x − y||)

� CMεjhj

loghjψ(loghj )
� CM.

Now we set Iz to be the interval of the family (Ij )j such that z ∈ Iz, and we denote by �z and rz its left and right
extremes respectively. Then

sup
x,y∈[0,1]

|ω(x) − ω(y)|
|x − y||log |x − y||ψ(|log |x − y||) � sup

0�x�y�1

|ω(x) − ω(rx)| + |ω(�y) − ω(y)|
|x − y||log |x − y||ψ(|log |x − y||)

� 2 sup
j�2

|ω|ψ,Ij
, (41)

where we have used also the fact that ω(rx) = ω(�y) (see also Remark 4.8). So, we gather that ω fulfills (34) with
K = 2CM over the whole [0,1].

Finally, thanks to issue (ii) in Lemma 4.4 and the first relation in (39), we have also

2π2 � ω(x) � 8π2, ∀x ∈ [0,1].
The following step consists then in defining the sequence of quasi-eigenfunctions (φj )j�2 as the solutions of{

φ′′
j + h2

jω(x)φj = 0 for x ∈ [0,1],
φj (mj ) = 1, φ′ (mj ) = 0.

(42)

j
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As already pointed out in [9], these functions do not satisfy the null boundary conditions at x = 0 and x = 1. However,
as we will see in a while, they are concentrated in the interior of each interval Ij , so that their values at the extremes
of [0,1] are exponentially small. This is the reason why we refer to them as “quasi-eigenfunctions”.

Let us observe that, due to the definition of ω in (40), φj satisfies{
φ′′

j + h2
jαεj

(
hj (x − mj)

)
φj = 0,

φj (mj ) = 1, φ′
j (mj ) = 0

(43)

for x ∈ Ij , which implies that

φj (x) ≡ wεj

(
hj (x − mj)

)
(44)

in the interval Ij , where wεj
are the functions introduced in Lemma 4.4, associated to αεj

. Therefore, combining
Remarks 4.5 and 4.8, after easy computations we infer that∫

Ij

∣∣φj (x)
∣∣2

dx � C

h3
j

, (45)

∣∣φj (mj ± rj /2)
∣∣2 + ∣∣φ′

j (mj ± rj /2)
∣∣2 = exp(−εjhj rj ). (46)

Due to the definitions (37) and (38) of our sequences, we have

εjhj rj

loghj

= 2−jψ(loghj ) = 2(N−1)j → +∞ for j → +∞.

From this property, we deduce that, roughly speaking, the energy of the quasi-eigenfunctions φj is concentrated inside
the subintervals Ij . Formally, for any fixed p > 0,

exp(−εjhj rj ) � Cph
−p
j . (47)

We will show now that the energy remains exponentially small also at x = 0 and x = 1. As a matter of fact, we fix
an x � mj − rj /2 and we estimate

Eφj
(x) := 4π2h2

j

∣∣φj (x)
∣∣2 + ∣∣φ′

j (x)
∣∣2

.

By Lemma 4.6, recalling the definition of ω in (40) and property (iii) of Lemma 4.4, we infer

Eφj
(x) � Eφj

(mj − rj /2) exp

(
hj

mj −rj /2∫
x

∣∣4π2 − ω(y)
∣∣dy

)

� Eφj
(mj − rj /2) exp

(
Mhj

+∞∑
k=j+1

εkrk

)
.

Taking into account (46) (in order to control the first term on the right-hand side) and the second condition in (39) (in
order to control the series in the exponential term), we find

Eφj
(x) � 4π2h2

j exp(−εjhj rj ) exp

(
1

5
hjεj rj

)
� 4π2h2

j exp

(
−4

5
εjhj rj

)
.

Therefore, we have found that for any x � mj − rj /2, for all p > 0,∣∣φj (x)
∣∣2 + ∣∣φ′

j (x)
∣∣2 � Cph

−p
j ; (48)

in particular, this relation holds true also at x = 0.
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Let us perform the analysis at the point x = 1. As ω ≡ 4π2 in ]1/2,1], if we define

Ẽφj
(x) := h2

jω(x)
∣∣φj (x)

∣∣2 + ∣∣φ′
j (x)

∣∣2
,

Lemma 4.6 gives us Ẽφj
(1) � Ẽφj

(1/2). Now, for any mj + rj /2 � x � 1/2, we use the same lemma: keeping in
mind also definition (40), the positivity of ω and property (iii) in Lemma 4.4, we discover that

Ẽφj
(x) � Ẽφj

(mj + rj /2) exp

( x∫
mj +rj /2

|ω′(y)|
ω(y)

dy

)

� Ẽφj
(mj + rj /2) exp

(
M

j−1∑
k=1

εkhkrk

)

� h2
j exp

(
−4

5
εjhj rj

)
,

where in the last step we have used also the third condition in (39) and estimate (46). Then, for any mj + rj /2 � x �
1/2, we get∣∣φj (x)

∣∣2 + ∣∣φ′
j (x)

∣∣2 � Cph
−p
j ; (49)

for all p > 0; in particular, (49) holds true also at x = 1/2, and therefore at x = 1.

Step 3: lack of the boundary observability. We now prove that observability estimate (11) fails for the density ω

constructed in the previous step, for any T > 0 and any m ∈N.
Note that, thanks to the definition of (φj )j , for any j ∈ N the function

vj (t, x) := φj (x)eihj t

is a solution of the first equation in (3), but it does not necessarily fulfill the null boundary condition at x = 0 and
x = 1, because the φj ’s don’t.

So, let us define the sequence (zj )j in the following way: for any j , zj is the unique solution to the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω(x)∂2

t zj − ∂2
x zj = 0 in Ω × ]0, T [,

zj (t,0) = −vj (t,0) = −eihj tφj (0) in ]0, T [,
zj (t,1) = −vj (t,1) = −eihj tφj (1) in ]0, T [,
zj (0, x) = ∂t zj (0, x) = 0 in Ω.

(50)

Then, defined uj (for all j � 1) as

uj := vj + zj ,

the sequence (uj )j is a family of “true” solutions to system (3). Our aim is now proving that

lim
j→+∞

∫
Ω

(ω(x)|∂tuj (0, x)|2 + |∂xuj (0, x)|2) dx∫ T

0 |∂m
t ∂xuj (t,0)|2 dt

= +∞ (51)

for any T > 0 and any m ∈ N.
Let us start by considering the numerator. By definitions and the lower bound for ω, we have∫

Ω

(
ω(x)

∣∣∂tuj (0, x)
∣∣2 + ∣∣∂xuj (0, x)

∣∣2)
dx = (

ω(x)
∣∣∂tvj (0, x)

∣∣2 + ∣∣∂xvj (0, x)
∣∣2)

dx

=
∫
Ω

(
h2

jω(x)
∣∣φj (x)

∣∣2 + ∣∣φ′
j (x)

∣∣2)
dx

� 2π2h2
j

∫ ∣∣φj (x)
∣∣2

dx.
Ω
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Taking the integral just on the interval Ij rather than on the whole Ω = [0,1], and recalling estimate (45), it follows
that ∫

Ω

(
ω(x)

∣∣∂tuj (0, x)
∣∣2 + ∣∣∂xuj (0, x)

∣∣2)
dx � Ch−1

j . (52)

We now focus on the denominator in (51):

T∫
0

∣∣∂m
t ∂xuj (t,0)

∣∣2
dt �

T∫
0

(∣∣∂m
t ∂xvj (t,0)

∣∣2 + ∣∣∂m
t ∂xzj (t,0)

∣∣2)
dt

� T
∣∣φ′

j (0)
∣∣2

(hj )
m +

T∫
0

∣∣∂m
t ∂xzj (t,0)

∣∣2
dt.

Keeping in mind (50), it is possible to see that the derivative ∂m
t zj fulfills the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω(x)∂2
t

(
∂m
t zj

) − ∂2
x (∂m

t zj ) = 0 in Ω × ]0, T [,
∂m
t zj (t,0) = −(ihj )

meihj tφj (0) in ]0, T [,
∂m
t zj (t,1) = −(ihj )

meihj tφj (1) in ]0, T [,
∂m
t zj (0, x) = ∂m+1

t zj (0, x) = 0 in Ω.

Then, applying Proposition 4.7 entails

T∫
0

∣∣∂m
t ∂xzj (t,0)

∣∣2
dt � C(T )ω∗(hj )

2(m+3)
(∣∣φj (0)

∣∣2 + ∣∣φj (1)
∣∣2)

.

Inserting this relation into the previous one, we find

T∫
0

∣∣∂m
t ∂xuj (t,0)

∣∣2
dt � C

(
T ,ω∗)(hj )

2(m+3)
(∣∣φj (0)

∣∣2 + ∣∣φj (1)
∣∣2 + ∣∣φ′

j (0)
∣∣2)

. (53)

Now, recall that inequality (48) is true both at x = 0 and x = 1. So, if we put estimates (52) and (53) together, for
all T > 0, all m ∈ N and all p > 0 we find, for a suitable Cp > 0,∫

Ω
(ω(x)|∂tuj (0, x)|2 + |∂xuj (0, x)|2) dx∫ T

0 |∂m
t ∂xuj (t,0)|2 dt

�
Ch−1

j

C(T ,ω∗)(hj )2(m+3)Cph
−p
j

,

which diverges to +∞ if we take p > 2m + 7.
Relation (51) is then satisfied, and Theorem 4.2 is completely proved.

4.2.2. Proof of Theorem 4.3
Let us spend a few words on the proof of Theorem 4.3. It can be carried out following the same arguments as

before, even if we have to pay attention to the choice of the sequences (εj )j and (hj )j .
So, we define (rj )j and the subintervals (Ij )j as before, but we replace (38) by

hj := 1

λ−1(2Nj )
and εjhj = λ(1/hj ) loghj ,

where N is a suitable integer, to be fixed later.
Notice that, by hypothesis, logσ � λ(1/σ) for σ � σ0. Taking σ = ex , as λ−1 is decreasing, we infer

ex � 1
−1

⇒ hj � exp
(
2Nj

)
.

λ (x)
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From this we get, in particular, that hj rj → +∞, as in Remark 4.8. Moreover, up to take the entire parts, we can
suppose (hj rj )j ⊂N.

It is also easy to see (exactly as before) that we can fix N ∈N large enough, such that

εj �
1

2M
, 5M

+∞∑
k=j+1

εkrk � εj rj and 5M

j−1∑
k=1

εkhkrk � εjhj rj .

Now, we can define the sequence (ωj )j∈N in the following way: for any j ∈N we set

ωj (x) :=
{

αεj
(hj (x − mj)) if x ∈ Ij ,

4π2 if x ∈ [0,1] \ Ij .
(54)

The properties of ωj are of easy verification, and they can be proved arguing as above. In particular, we have that ωj

fulfills (36) with Kj = CM loghj , for some suitable constant C independent of j ∈N.
Then we define the sequence of quasi-eigenfunctions (φj )j�2 as the solutions of{

φ′′
j + h2

jωj (x)φj = 0 for x ∈ [0,1],
φj (mj ) = 1, φ′

j (mj ) = 0.
(55)

Due to the definition of ωj in (54), for x ∈ Ij , φj satisfies{
φ′′

j + h2
j αεj

(
hj (x − mj)

)
φj = 0,

φj (mj ) = 1, φ′
j (mj ) = 0,

which implies, exactly as before, that

φj (x) ≡ wεj

(
hj (x − mj)

)
in the interval Ij , where wεj

are the functions introduced in Lemma 4.4, associated to αεj
. Therefore, also in this case

we infer that∫
Ij

∣∣φj (x)
∣∣2

dx � C

h3
j

, (56)

∣∣φj (mj ± rj /2)
∣∣2 + ∣∣φ′

j (mj ± rj /2)
∣∣2 = exp(−εjhj rj ). (57)

Due to the definitions of our sequences, we have moreover that

εjhj rj

loghj

= λ(1/hj )rj = 2(N−1)j → +∞ for j → +∞. (58)

As before, this property tells us that the energy of the quasi-eigenfunctions φj is concentrated inside the Ij ’s.
Finally, as done before, it is easy to see that the j -th energy is small at x = 0 and x = 1:∣∣φj (x)

∣∣2 + ∣∣φ′
j (x)

∣∣2 � Ch2
j exp

(
−4

5
εjhj rj

)
.

Now, the proof of the lack of the boundary observability follows as before: we define

vj (t, x) := φj (x)eihj t and uj := vj + zj ,

where zj is still defined by (50). Actually we don’t have to consider higher order derivatives, and we have just to show
that, for all T > 0,

lim
j→+∞

∫
Ω

(ω(x)|∂tuj (0, x)|2 + |∂xuj (0, x)|2) dx∫ T

0 |∂xuj (t,0)|2 dt
= +∞.

Arguing exactly as before and keeping in mind the estimates for the energy inside the intervals Ij ’s and at the
extremities x = 0 and x = 1, we are led to the inequality
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∫
Ω

(ω(x)|∂tuj (0, x)|2 + |∂xuj (0, x)|2) dx∫ T

0 |∂xuj (t,0)|2 dt
�

Ch−1
j exp(C′εjhj rj )

C′′h6
j

,

for some suitable positive constants C, C′ and C′′. At this point, it’s enough to use (58) to conclude.

5. Controllability results

As discussed in the introduction, the observability results stated in this paper have direct counterparts at the level
of controllability: the present section is devoted to them.

Consider the controlled wave equation:⎧⎪⎨⎪⎩
ω(x)∂2

t y − ∂2
xy = 0 in Ω × ]0, T [,

y(t,0) = f (t), y(t,1) = 0 in ]0, T [,
y(0, x) = y0(x), ∂ty(0, x) = y1(x) in Ω.

(59)

We are interested in the problem of null controllability: namely, whether for a given initial datum (y0, y1) there exists
a control f = f (t) such that the solution of (59) satisfies

y(T , x) = ∂ty(T , x) = 0 in Ω. (60)

Let us remark that, in general, the product by a coefficient ω ∈ A is not continuous from Hs into itself (see also
Remark 1.4(iii)). For this reason, as already done for instance in [9] and [28], we have to assume a priori that ωy1
belongs to H−1.

First of all, we analyze the consequences of the sharp observability result in Theorem 1.1. In this case, it is well-
known that the observability inequality (7) is equivalent to the fact that for all (y0,ωy1) ∈ L2(Ω) × H−1(Ω) there
exists a control f ∈ L2(0, T ) such that the solution of (59) satisfies (60) (see also [42]).

Theorem 5.1. Consider system (59), where the coefficient ω satisfies the hyperbolicity condition (4) and the integral
Zygmund assumption (6). Let the time T > 2Tω, where Tω is defined by (5).

Then, for any (y0,ωy1) ∈ L2(Ω) × H−1(Ω), there exists a control f ∈ L2(0, T ) such that the solution y to
system (59) satisfies conditions (60).

Moreover, there exists a constant C, just depending on T and on ω∗, ω∗ and |ω|Z1 , such that one can choose f

fulfilling

‖f ‖L2(0,T ) � C
(‖y0‖L2(Ω) + ‖ωy1‖H−1(Ω)

)
.

Let us now turn our attention to the estimate in Theorem 1.3, where the observability is proved with a loss of a
finite number of derivatives. At the control level, this is equivalent to the fact that all initial data (y0,ωy1) ∈ L2(Ω) ×
H−1(Ω) are controllable with controls in a larger space f ∈ H−m(0, T ).

Theorem 5.2. Assume, this time, that the coefficient ω belongs to the integral classes LL1 or LZ1, defined respectively
by conditions (8) and (9). Let the time T > 2Tω.

Then, for any (y0,ωy1) ∈ L2(Ω) × H−1(Ω), there exist an m ∈ N and a control f ∈ H−m(0, T ) such that the
solution y to system (59) satisfies conditions (60).

Moreover, there exists a constant C, just depending on T and on ω∗, ω∗ and |ω|LL1 or |ω|LZ1 respectively, such
that one can choose f fulfilling

‖f ‖H−m(0,T ) � C
(‖y0‖L2(Ω) + ‖ωy1‖H−1(Ω)

)
.

Remark 5.3. In view of Theorem 4.3, we must have m > 0.

Note that, as shown in [22], similar phenomena occur, for instance, in the control of the wave equation in planar
networks, where, depending on the Diophantine approximation properties of the mutual lengths of the strings entering
in the network, a finite number of derivatives can be lost both at the observation and control level.
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Similarly, as a consequence of the negative results in Section 4, one can deduce that when the coefficients of the
equation are too rough for observability inequalities to hold, the same occurs at the controllability level. In other
words, the controllability results above fail whenever the observability ones do it.

Theorem 5.4. Let ψ be as in the hypothesis of Theorem 4.2.
There exists a density function ω which verifies conditions (4) and (34), and such that the following fact holds true:

for any control time T > 0, there exist initial data (y0,ωy1) ∈ L2(Ω) × H−1(Ω) for which, for any m ∈ N and any
control f ∈ H−m(0, T ), the solution y to system (59) doesn’t satisfy (60).

The proof of this result can be performed arguing by contradiction. In particular, one can show that, under the
controllability assumption, the map

S : L2(Ω) × H−1(Ω) → H−∞(0, T ) :=
⋃
m�0

H−m(0, T ),

(y0,ωy1) �→ f

is linear and continuous, in the sense that

‖f ‖H−m(0,T ) � C
∥∥(y0,ωy1)

∥∥
L2×H−1

if f ∈ H−m(0, T )\H−m+1(0, T ). In particular, this inequality is equivalent to observability estimates. We refer to [9]
(see in particular the proof of Theorem 3) for more details.

Remark 5.5. Observability inequalities we proved in the previous section have a direct counterpart also at level of
stabilization of the wave equation in presence of a damping term (see also paper [40] for the case of networks).

In particular, using the same techniques as in [40] (see also [5]) classical observability estimates of the form (7)
would lead to an exponential decay of the energy, while observability estimates with finite loss as in (11) would give
a polynomial decay.

However, the exact statements and the corresponding proofs go beyond the scope of this paper: hence, we will not
address these questions here.

6. Further comments and results

In this section we collect further results, closely related to the ones presented above, and discuss some open prob-
lems.

(i) The multi-dimensional case.
Let us spend a few words on the multi-dimensional case:⎧⎪⎨⎪⎩

ω(x)∂2
t y − �xy = 0 in Ω × ]0, T [,

y(t, ·)|∂Ω = f (t) in ]0, T [,
y(0, x) = y0(x), ∂ty(0, x) = y1(x) in Ω,

(61)

on a (smooth) bounded domain Ω ⊂R
N , N � 2.

In this instance, internal and boundary observability estimates read respectively as follows:

E(0)� C

T∫
0

∫
Θ

(
ω(x)

∣∣∂tu(t, x)
∣∣2 + ∣∣∇u(t, x)

∣∣2)
dx dt,

E(0)� C

T∫ ∫ ∣∣∂νu(t, x)
∣∣2

dσ dt,
0 ∂Ω
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where Θ is an open subset of Ω , ∂ν is the normal derivative and dσ is the (N − 1)-dimensional measure at the
boundary ∂Ω .

At this level, the questions which arise in dimension bigger than 1 are mainly two. The first one (already for smooth
coefficients) is finding the “form” of the characteristic rays. This is related with the problem of verifying the GCC for
subdomains of Ω .

The second concerns instead the minimal regularity assumptions on the coefficients in order to define character-
istics. Even assuming the GCC to be fulfilled by the observability domain, the microlocal analysis tools used in the
study of the control problem for (61) require much more smoothness on the coefficients: one asks for C2 regularity in
order to define and solve the corresponding Hamiltonian system, propagate informations along rays and get suitable
observability estimates.

On the other hand, under stronger geometric conditions than the GCC on the observability domain, Carleman
estimates allow to recover observability for C1 coefficients. This was done e.g. in paper [26] by Duyckaerts, Zhang
and Zuazua by use of a refined Carleman estimate for hyperbolic operators with potentials.

At present, whether results in the same spirit of the ones of Section 1 are true also in higher dimensions is still an
open problem, and it will be matter of next studies. The issue of [26] suggests us that Carleman estimates could be
a good approach, possibly combined it with Littlewood–Paley decomposition (see also papers [24] and [25], where
dyadic decomposition is applied in observability problems), in order to take into account the loss of regularity (due to
the bad behavior of the coefficients) at different frequencies.

Nevertheless, some negative results can be inferred: by separation of variables (as done in [9, Section 6]), the
counterexamples we provided in the previous section can be extended also in the instance of higher dimensions.
However, as remarked in [9] for Hölder continuity, these results do not have a direct counterpart in the setting of
geometric optics and microlocal analysis techniques (we are even below the C1 regularity hypothesis).

(ii) About the transport equation.
Due to the D’Alambert formula for solutions to the 1-dimensional wave equation

∂2
t u(t, x) − c2∂2

xu(t, x) = 0

(c ∈R constant), it is natural to look at the transport equation (still in dimension 1)

(T ) ∂tf + v∂xf = 0

as a “toy-model” for our problem. Here we assume that the transport velocity v depends just on x, and that it has some
special modulus of continuity.

Solutions of (T ) are constant along characteristics: if f|t=0 = f0, then, at any time t and any point x,
f (t,X(t, x)) ≡ f0(x), where X is the flow map associated to v:

X(t, x) = x +
t∫

0

v
(
X(τ, x)

)
dτ.

Hence, to understand the dynamics one can just focus on X, which solves the ordinary differential equation

X′(t, x) = v
(
X(t, x)

)
(62)

with the initial condition X(0, x) = x.
It is well-known that, if v has an Osgood modulus of continuity, i.e. for any 0 < y < 1

∣∣v(x + y) − v(x)
∣∣ � Cμ(y), with

1∫
0

1

μ(s)
ds = +∞,

then Eq. (62) is uniquely solvable, locally in time. However, the regularity of the solution strictly depends on the
modulus of continuity μ, and loss of derivatives phenomena may occur in the non-Lipschitz instance. Correspond-
ingly, one infers the respective counterparts for the transport equation (T ). We refer to Chapter 3 of [3] for a complete
discussion and the exact statements, as well as for the original references.
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Nevertheless, the general picture is still far to be completely well-understood. See for instance the works by Colom-
bini and Lerner [18] and by Ambrosio [1] about uniqueness for BV velocity fields.

On the control side, as the evolution is driven by characteristic curves, for smooth coefficients it is sufficient to
control just one of the extremities of the characteristics in order to control the whole system. This is true up to C1

regularity, as proved by Guerrero and Lebeau in [29], where the authors investigated also the cost of control in the
vanishing viscosity framework.

By analogy with the study performed in the present paper, we plan to consider the transport problem for non-
Lipschitz velocity fields. We might expect that a vanishing viscosity argument (as used by Guerrero and Lebeau)
would lead also in this instance to observability estimates, eventually admitting some loss of derivatives. On the other
hand, we want to investigate also if some strange concentration phenomena, similar to the ones shown in Section 4.2,
occur for transport equations under suitable low regularity assumption on the velocity filed v.

(iii) On Strichartz and Sogge estimates.
Let us observe that, as done in [9] and [10] for Hölder continuous coefficients, the counterexamples we established

in Section 4.2 can be adapted to prove also the lack of some dispersive type estimates.
First of all, we consider Strichartz estimates for the wave equation in the whole R

N :{
ω(x)∂2

t y − �xy = 0 in R
N × ]0,+∞[,

y(0, x) = y0(x), ∂ty(0, x) = y1(x) in R
N.

(63)

We say that the pair (p, q) ∈ [2,+∞]2 is admissible if

1

p
+ N − 1

q
� N − 1

2
.

If ω is constant and N � 2, it is well-known that, for any admissible pair (p, q) such that (N,p,q) �= (3,2,+∞), one
has

‖y‖Lp([0,T ];Lq(RN
x )) � CT

(‖y0‖Hs(RN) + ‖y1‖Hs−1(RN)

)
, (64)

where s is defined by

s := N

(
1

2
− 1

q

)
− 1

p
.

Analogous estimates were proved by Tataru in [39] in the case of variable coefficients, when ω ∈ Cα , for some
0 � α � 2 (where we mean L∞ if α = 0, C0,α if α ∈ ]0,1[, the Lipschitz space C0,1 if α = 1 and C1,α−1 if 1 < α � 2).
In particular, there it is proved that, under these hypotheses, (64) holds true for a constant CT depending just on the
Cα norm of ω, provided that

s = N

(
1

2
− 1

q

)
− σ − 1

p
, with σ = 2 − α

2 + α
.

In [36], by construction of counterexamples, Smith and Tataru proved that this result is sharp: if (64) is fulfilled, then
s has to be greater than or equal to the previous value. By counterexamples of different nature (close to the first one
presented in Section 4.2), in [10] Castro and Zuazua proved instead the following statement.

Proposition 6.1. If ω ∈ L∞ and inequality (64) holds true for some constant C > 0, then

s � N

(
1

2
− 1

q

) (
or, in an equivalent way, q � 2N

N − 2s

)
. (65)

If instead ω ∈ C0,α , for some 0 < α < 1, then

s � N

(
1

2
− 1

q

)
− αN

2
.
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Note that the first issue, for α = 0, is sharp, because the value of s coincides with the one found in [36].
Repeating the same construction of the first counterexample in Section 4.2 and arguing as in [10], it is easy to see

that an analogous result is true also under the hypothesis of Theorem 4.2. More precisely, we recall that the function
μ(r) = rψ(r) is a weight, in the sense of Definition 3.1 of [17] (see also Section 5 of the same paper), and then

μ(r) ∼ rk0 for large r,

for some k0 ∈ N. Therefore, an ω which fulfills (34) is α-Hölder continuous of any exponent α ∈ ]0,1[. So, repeating
the same steps of the proof given in [9], we can find the following statement.

Theorem 6.2. Let ω be as in the hypothesis of Theorem 4.2, and suppose that inequality (64) holds true for some
constant C > 0. Then necessarily one has

s > N

(
1

2
− 1

q

)
− N

2
. (66)

Note that, due to the complicate modulus of continuity which comes into play, we are not able to refine this
condition, as done e.g. in Proposition 6.1 for Hölder coefficients. Roughly speaking, there the choice εj ∼ h−α

j was
fundamental, while in our case the presence of loghjψ(loghj ) makes a direct comparison of growth impossible. Note
that the strict inequality is necessary.

In the instance of Theorem 4.3 an analogous result holds true.
We want to discuss here also another issue, strictly connected with Strichartz estimates. This time we restrict to the

N -dimensional torus TN , and we consider the eigenvalue problem

−�φ + λ2ω(x)φ = 0 in T
N, (67)

with 0 < ω∗ � ω � ω∗ as usual. We are interested in Sogge estimates for the projection operators over spectral clusters
of eigenfunctions.

Let (λn)n be the sequence of eigenvalues, and (φn)n the corresponding orthonormal basis of L2(TN). For any
λ ∈ R, we consider the orthogonal projection operator Πλ onto the subspace generated by the eigenfunctions with
frequencies in the range [λ,λ + 1[:

Πλf =
∑

λn∈[λ,λ+1[
(f,φn)φn,

where we denoted by (·,·) the scalar product in L2(TN).
For any q ∈ [2,+∞] and any N � 1, we are interested in estimates of the type

‖Πλf ‖Lq(TN) � Cλγ ‖f ‖L2(TN ), (68)

where the exponent γ may depend on the dimension N and on the summability index q , but not on the coefficient ω.
We denote by γm(N,q) the minimum value of γ for which the previous inequality holds true.

Such a kind of estimates were proved for the first time by Sogge in [37], for any second order elliptic operator with
smooth coefficients, defined on a smooth compact manifold without boundary. More precisely, Sogge proved that (68)
holds true for γ = γ̃ (N,q) and q ∈ [qN,+∞], where we defined

γ̃ (N,q) := N

(
1

2
− 1

q

)
− 1

2
and qN := 2(N + 1)

N − 1
;

for 2 � q � qN , (68) is still true, up to change the value of γ . This result was then extended by Smith in [33] to the
case of C1,1 regularity.

Under lower smoothness assumptions, however, Sogge’s estimate (68) can fail in the previous range of parameters
γ and q . For instance, in [35] and [36] the authors constructed counterexamples for coefficients of the operator in
Cα(TN), when 0 � α < 2 (coefficients Lipschitz continuous for α = 1).
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On the other hand, in [34] Smith was able to recover some weakened version of inequality (68) when the coefficients
are in the Hölder classes Cα , 1 � α < 2 (again, C0,1 for α = 1). In fact, under these hypotheses, he proved that Sogge’s
estimate still holds true when the parameters satisfy the following conditions:

γm(N,q)� γ̃ (N,q) + 2 − α

q(2 + α)
� 1 and qN � q � +∞.

As far as we know, it is still open if (68) can be recovered under the previous constraints (which are not in contrast
with the negative results of [36]), for 0 � α < 1. A partial result was however given in [10].

Proposition 6.3. If ω ∈ C0,α , for 0 � α < 1 (ω ∈ L∞ if α = 0), and qN < q � +∞, then necessarily we must have

γm(N,q)� γ̃ (N,q) + 1 − αN

2
.

Moreover, the previous claim can be easily adapted to cover also the case of any compact manifold (with or without
boundary).

For the same reasons explained in the case of Strichartz estimates, our first counterexample in Section 4.2 can used
to prove an analogous but rough statement.

Theorem 6.4. Let ω be as in the hypothesis of Theorem 4.2 and qN < q �+∞. Then necessarily one has

γm(N,q) > γ̃ (N,q) + 1 − N

2
= N

(
1

2
− 1

q

)
− N

2
.

The previous statement is a consequence of Proposition 6.3, keeping in mind that ω is α-Hölder continuous for any
α ∈ ]0,1[.

An analogous result holds true also under the hypothesis of Theorem 4.3.
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