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Abstract

We present a simple and easy-to-use Nash–Moser iteration theorem tailored for singular perturbation problems admitting a
formal asymptotic expansion or other family of approximate solutions depending on a parameter ε → 0. The novel feature is to
allow loss of powers of ε as well as the usual loss of derivatives in the solution operator for the associated linearized problem. We
indicate the utility of this theorem by describing sample applications to (i) systems of quasilinear Schrödinger equations, and (ii)
existence of small-amplitude profiles of quasilinear relaxation systems in the degenerate case that the velocity of the profile is a
characteristic mode of the hyperbolic operator.
© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Because the expansions themselves furnish arbitrarily accurate approximate solutions, and because the associated
linearized estimates are often stiff in terms of amplitude and or smoothness, Nash–Moser iteration appears particularly
well-adapted to the verification of asymptotic expansions such as arise in various singular perturbation problems
depending on a small parameter ε → 0. However, standard Nash–Moser theorems allow only for loss of derivatives
and not loss of powers of ε in the estimates on the linearized solution operator, so that to apply Nash–Moser iteration
to problems that do lose powers of ε would appear to require a careful accounting of constants throughout the entire
Nash–Moser iteration to check that the argument closes.

The purpose of this article therefore is to present a simple and general-purpose theorem carrying out this account-
ing, which can be applied as an easy-to-use black box to this type of problem. We conclude by presenting two sample
applications for which both loss of derivatives and of powers of ε naturally occur for the linearized problem, one for
systems of quasilinear Schrödinger equations and one in existence of small-amplitude profiles of quasilinear relaxation
systems. The latter, due to Métivier, Texier and Zumbrun, was treated in [17] by the approach presented here; though
special cases may be treated by other methods [23,9,10,3], we do not know of any other solution in the generality
considered there.

* Corresponding author.
E-mail addresses: texier@math.jussieu.fr (B. Texier), kzumbrun@indiana.edu (K. Zumbrun).

1 Research of B.T. was partially supported under NSF grant number DMS-0505780. B.T. acknowledges support from the Agence Nationale de
la Recheche through grant ANR-08-BLAN-0301-01.

2 Research of K.Z. was partially supported under NSF grants No. DMS-0300487 and DMS-0801745.
0294-1449/$ – see front matter © 2011 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.anihpc.2011.05.001



500 B. Texier, K. Zumbrun / Ann. I. H. Poincaré – AN 28 (2011) 499–527
Our approach follows a very simple proof given by Xavier Saint-Raymond [22] of a (parameter-independent)
Nash–Moser implicit function theorem [8,18] in a Sobolev space setting. A novel aspect is our treatment of unique-
ness, which we have not seen elsewhere – in particular the incorporation of a phase condition in the case that the
linearized operator has a kernel. (See Theorem 2.20.)

We note that a parameter-dependent Nash–Moser scheme was recently used by Alvarez-Samaniego and Lannes [2]
to prove local-in-time well-posedness of model equations in oceanography. Alvarez-Samaniego and Lannes do not
allow losses in ε in the linearized solution operator, which is the main point here.

In [5], Iooss, Plotnikov and Toland use a parameter-dependent Nash–Moser to prove the existence of periodic
standing water-waves in the case of an infinite depth. They deal with a situation in which the linearized operator might
not be invertible on small sets on ε, and proceed by taking out corresponding bad regions in ε. Here we consider
everywhere invertible linearized operators, with losses (materialized by inverse powers of ε in the estimates) for all
values of the parameter ε, and proceed by keeping track of these losses.

An important reference on Nash–Moser-type theorems is Hamilton [4]. Another good reference is Alinhac and
Gérard’s book [1].

Plan of the paper and scheme of the main proof. In Section 2, we state the main theorem on ε-dependent Nash–
Moser iteration, giving the proof afterward in Section 3.

The proof classically combines an iteration step (Newton’s method) with a regularization procedure (in Sobolev
spaces, high-frequency truncation). It is largely based on Xavier Saint-Raymond’s elegant and short proof [22]. The
key in our context is to show that the bounds can be made uniform in the small parameter. Our main observation is that
this can be achieved under the condition that the regularizing sequence is diverging to +∞ fast enough, depending on
the small parameter (see (3.19)).

In Section 4, we describe applications to systems of quasilinear Schrödinger equations, and in Section 5 to existence
of small-amplitude profiles of quasilinear relaxation systems in the degenerate case that the velocity of the relaxation
profile is a characteristic mode of the hyperbolic operator.

2. A simple Nash–Moser theorem

2.1. Setting

Consider two families of Banach spaces {Es}s∈R, {Fs}s∈R, and a family of equations

Φε
(
uε

) = 0, uε ∈ Es, (2.1)

indexed by ε ∈ (0,1), where for some m � 0, s0, s1 ∈ R, with s0 + 2m � s1, for all ε,

Φε ∈ C2(Es,Fs−m), for all s0 + m � s � s1. (2.2)

Let | · |s denote the norm in Es and ‖ · ‖s denote the norm in Fs. The norms | · |s and ‖ · ‖s and spaces Es and Fs are
possibly ε-dependent, as in our applications in Sections 4 and 5. We assume that the embeddings

Es′ ↪→ Es, Fs′ ↪→ Fs, s � s′, (2.3)

hold, and have norms less than one:

| · |s � | · |s′ , ‖ · ‖s � ‖ · ‖s′, s � s′. (2.4)

We assume the interpolation property:

| · |s+σ � | · |
σ ′−σ

σ ′
s | · |

σ
σ ′
s+σ ′, 0 < σ < σ ′, (2.5)

where |u|s � |v|s′ stands for |u|s � C|v|s′ , for some C > 0 possibly depending on s and s′ but not on ε, nor on u

and v. We assume in addition the existence of a family of regularizing operators

Sθ :Es → Es, θ > 0,

such that for all s � s′,
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|Sθu − u|s � θs−s′ |u|s′ , (2.6)

|Sθu|s′ �
(
1 + θs′−s

)|u|s . (2.7)

Example 2.1. Let

Es = Hs
(
R

d
)
, Fs = Hs

(
R

d
) × Hs+1(

R
d
)
,

with ε-dependent norms defined by

|v|s := ‖v‖Hs
ε

:= ∥∥(
1 + |εξ |2)s/2

(F v)(ξ)
∥∥

L2(Rd
ξ )

,
∥∥(f, g)

∥∥
s
= |f |s + |g|s+1, (2.8)

where F v denotes the Fourier transform of v. Then (2.3), (2.4) and (2.5) hold. A family of regularizing operators
Es → Es is given by

Sθ :u → Sθ (u) := F −1(χ(
θ−1ξ

)
û
)
,

where χ : Rd → [0,1] is a smooth truncation function, identically equal to 1 for |ξ | � 1, and identically equal to 0 for
|ξ | � 2. The family {Sθ }θ>0 satisfies (2.6) and (2.7).

Remark 2.2. The family of norms ‖ · ‖Hs
ε

satisfies Moser’s inequality

‖uv‖Hs
ε

� |u|L∞‖v‖Hs
ε
+ ‖u‖Hs

ε
|v|L∞ , s � 0, u, v ∈ Hs ∩ L∞,

and, if F is smooth and satisfies F(0) = 0, for some non-decreasing C : R+ → R+,∥∥F(u)
∥∥

Hs
ε

� C
(|u|L∞

)‖u‖Hs
ε
, s > d/2, u ∈ Hs.

Example 2.3. Consider the family of maps

Φε(u) =
( ∑

1�j�d

Aj (u)ε∂xj
u,u

)
,

where Aj :u ∈ R
n → Aj(u) ∈ R

n×n is smooth. By Moser’s inequality (Remark 2.2), for s > 1 + d/2, the application
Φε maps smoothly Hs to Hs−1 × Hs, that is, with the notation of Example 2.1, Es to Fs−1.

2.2. First assumption: tame direct bounds

We assume bounds for Φε and its first two derivatives.

Assumption 2.4. For some γ0 � 0, γ1 � 0, for all s such that s0 + m � s � s1 − m, for all u,v,w ∈ Es+m, there
holds ∥∥Φε(u)

∥∥
s
� C0

(
1 + |u|s+m

)
, (2.9)∥∥(

Φε
)′
(u) · v∥∥

s
� C1

(
ε−γ1 |v|s0+m|u|s+m + |v|s+m

)
, (2.10)∥∥(

Φε
)′′

(u) · (v,w)
∥∥

s
� C2

(
ε−2γ1 |v|s0+m|w|s0+m|u|s+m + ε−γ1 |w|s0+m|v|s+m + ε−γ1 |v|s0+m|w|s+m

)
, (2.11)

where the functions Cj = Cj (ε, (|u|s0+m̃)0�m̃�m) satisfy

sup
{
Cj , j = 0,1,2, ε ∈ (0,1), |u|s0+m � εγ0

}
< +∞.

The simplest example is given by a product map:

Example 2.5. Consider the map Φ0 :u ∈ Hs(Rd ;R) → (u2, u) ∈ Hs × Hs(Rd ;R), for d/2 < s. There holds, by
Remark 2.2,∥∥Φ0(u)

∥∥
s s � |u|L∞‖u‖Hs + ‖u‖Hs ,
Hε ×Hε ε ε
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where the weighted norm ‖ · ‖Hs
ε

is defined in (2.8). For small ε, the classical Sobolev embedding Hs ↪→ L∞, for
d/2 < s0 � s, has a large norm if Hs is equipped with the weighted norm ‖ · ‖Hs

ε
:

|u|L∞ � ε−d/2‖u‖
H

s0
ε

,

so that∥∥Φ0(u)
∥∥

Hs
ε ×Hs

ε
�

(
1 + ε−d/2‖u‖

H
s0
ε

)‖u‖Hs
ε
,

and ∥∥Φ ′
0(u) · v∥∥

Hs
ε ×Hs

ε
�

(
1 + ε−d/2‖u‖

H
s0
ε

)‖v‖Hs
ε
+ ε−d/2‖v‖

H
s0
ε

‖u‖Hs
ε
.

In particular, Assumption 2.4 holds with m = 0, γ0 = γ1 = d/2.

Another simple example is given by the map defined in Example 2.3:

Example 2.6. Consider the map Φε :Es → Fs−1, introduced in Example 2.3, where the families of functional spaces
Es and Fs and their ε-dependent norms were introduced in Example 2.1. Let d/2 < s0 < 1 + d/2 be given. Just like
in the above remark, for small ε, the classical Sobolev embedding

HN+s0
(
R

d
)
↪→ WN,∞(

R
d
)
, N ∈ N,

has a large norm

|v|WN,∞ � ε−N−d/2|v|N+s0 , (2.12)

where | · |s = ‖ · ‖Hs
ε

is defined in (2.8). By Remark 2.2, for s � s0,∣∣Aj(u)ε∂xj
u
∣∣
s
� CAj

(|u|L∞
)(|u|s+1 + |ε∂xj

u|L∞|u|s
)
,

where CAj
: R+ → R+ is non-decreasing and depends only on Aj , s and d. By (2.12), for s � s0 + 1,∣∣Aj(u)ε∂xj

u
∣∣
s
� CAj

(
ε−d/2|u|s0

)(
1 + ε−d/2|u|s0+1

)|u|s+1,

and (2.9) holds with

C0 = 1 +
∑

1�j�d

CAj

(
ε−d/2|u|s0

)(
1 + ε−d/2|u|s0+1

)
. (2.13)

Besides,∥∥(
Φε

)′
(u)v

∥∥
s
�

∑
1�j�d

∣∣(A′
j (u) · v)

ε∂xj
u
∣∣
s
+ ∣∣Aj(u)ε∂xj

v
∣∣
s
+ |v|s+1

�
∑

1�j�d

CAj ,A′
j

(|u|L∞
)(

ε−d/2|v|s0+1|u|s+1 + (
1 + ε−d/2|u|s0+1

)|v|s+1
)

and (2.10) holds with γ0 = γ1 = d/2 and

C1 = 1 +
∑

1�j�d

CAj ,A′
j

(
ε−d/2|u|s0

)(
1 + ε−d/2|u|s0+1

)
.

The bound for (Φε)′′ is similar. We conclude that Assumption 2.4 holds with γ0 = γ1 = d/2.

Remark 2.7. In connection with (2.12), where the embedding constant blows up to +∞ as ε decreases to 0, the
“constants” Cj in Assumption 2.4 are not assumed to be non-decreasing in their arguments; in Example 2.6 this is
reflected in (2.13).

Example 2.8. Given T > 0, consider the functional spaces

Es = C1([0, T ],H s−1(
R

d
)) ∩ C0([0, T ],H s

(
R

d
))

, Fs−1 = C0([0, T ],H s−1(
R

d
)) × Hs

(
R

d
)
,
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with norms

|u|s := sup
0�t�T

(∥∥ε∂tu(t)
∥∥

Hs−1
ε

+ ∥∥u(t)
∥∥

Hs
ε

)
,

∥∥(f1, f2)
∥∥

s−1 := sup
0�t�T

∥∥f1(t)
∥∥

Hs−1
ε

+ ‖f2‖Hs
ε
,

where the weighted Sobolev ‖ · ‖Hs
ε

norms are defined in (2.8).
Let s0 and s1 be given such that d/2 < s0 < 1 + d/2 < s1, with s0 + 2 � s1. Let a bounded family (f ε)ε∈(0,1) ⊂

Fs1−1; meaning f ε ∈ Fs1−1 for all ε, with supε∈(0,1) ‖f ε‖s1−1 < ∞.

Consider the family of maps defined by

Φε(u) :=
(

ε∂tu +
∑

1�j�d

Aj (u)ε∂xj
u − f ε

1 , u|t=0 − f ε
2

)
, (2.14)

where the maps Aj :u ∈ R
n → Aj(u) ∈ R

n×n are smooth. Then, Φε maps Es to Fs−1 for s0 + 1 � s � s1, and we
can check exactly as in Example 2.6 that Assumption 2.4 holds with γ0 = γ1 = d/2.

Remark 2.9. Assumption 2.4 is stable by shifts that are both smooth and small, in the following sense: if Φε satisfy
Assumption 2.4, with associated parameters m, s0, s1, and γ0, and if (aε)ε∈(0,1) ⊂ Es1, with supε∈(0,1) ε

−γ0 |aε|s0+m <

∞, then Φ̃ε := Φε(aε + ·) satisfies Assumption 2.4 with the same parameters.

2.3. Second assumption: tame inverse bounds

Our second and key assumption states that if u is small enough in some “low” norm, then (Φε)′(u) has a right
inverse, with a right-inverse bound (2.16) that is possibly stiff with respect to ε and may show a loss of derivatives:

Assumption 2.10. For some r � 0, r ′ � 0, there holds s0 + m � s1 − max(m, r), and for some γ � 0, κ � 0, for all
s such that s0 + m � s � s1 − max(m, r), for all u ∈ Es+r such that

|u|s0+m+r � εγ , (2.15)

the map (Φε)′(u) :Es+m → Fs has a right inverse Ψ ε(u):(
Φε

)′
(u)Ψ ε(u) = Id :Fs → Fs,

satisfying, for all g ∈ Fs+r ′,∣∣Ψ ε(u)g
∣∣
s
� Cε−κ

(‖g‖s0+m+r ′ |u|s+r + ‖g‖s+r ′
)
, (2.16)

where C = C(ε, |u|s0+m+r ) satisfies

sup
{
C, ε ∈ (0,1), |u|s0+m+r � εγ

}
< ∞.

Remark 2.11 (On stiffness of the right-inverse bound (2.16)). The right-inverse bound (2.16) is stiff with respect to ε

if κ > 0. The case κ = 0 corresponds to no loss in ε and is covered for instance by the result of Alvarez-Samaniego
and Lannes [2].

Remark 2.12 (On losses of derivatives in the right-inverse bound (2.16)). The loss of derivatives is parameterized
by r and r ′. Estimate (2.16) states indeed that we can solve the linearized equation (Φε)′(u)v = g, with a bound for
the solution v = Ψ ε(u)g that gives a control of the low norm |v|s in terms of high norms, |u|s+r and ‖g‖s+r ′, of the
background and source.

The case r = r ′ = 0 corresponds to no loss and can typically be handled by Picard iteration, as in the classical
existence proof for quasilinear symmetric systems.

Estimate (2.16) in Assumption 2.10 is tame with respect to r and r ′. This is essential: one may check that the proof
of Theorem 2.19 (given in Section 3) collapses if it is not.

The distinction between r and r ′ is somewhat illusory, since we can always redefine Fs and m, so that r ′ = 0. We
also note that the proof with r ′ 
= 0 is the same as with r ′ = 0.
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A simple example of a family of maps satisfying Assumption 2.10 is given by systems of symmetric quasilinear
equations in a semi-classical setting, as detailed in the following example. (This example is meant to test our theory
in the favorable context of symmetric quasilinear systems, where a Lax iteration scheme is certainly preferable to a
Nash–Moser scheme.)

Example 2.13. Consider the functional spaces and the family of maps introduced in Example 2.8. Again, T > 0 and
d/2 < s0 < 1 + d/2 < s1, are given, with s1 measuring the regularity of (f ε

1 , f ε
2 ), and s0 + 2 � s1. Then, as discussed

in Example 2.8, Assumption 2.4 holds with γ0 = γ1 = d/2 and m = 1.

Given s such that s0 + 1 � s � s1 − 1, and u ∈ Es+1, g = (g1, g2) ∈ Fs, consider the equation (Φε)′(u)v = g,

corresponding to the linearized initial-value problem⎧⎨
⎩

ε∂tv +
∑

1�j�d

Aj (u)ε∂xj
v = g1 −

∑
1�j�d

A′
j (u)vε∂xj

u,

v|t=0 = g2.

(2.17)

Assume that the maps Aj take values in the symmetric matrices. Then, by the classical linear hyperbolic theory, there
exists a unique v ∈ Es solution of (2.17). We now show that v satisfies an estimate of the form (2.16).

The classical commutator estimate gives, for 0 � |α| � s and w ∈ Hs,

�e
(
(ε∂x)

αAj (u)ε∂xj
w, (ε∂x)

αw
)
L2 � C

(|u|L∞
)(|ε∂xu|L∞‖w‖2

Hs
ε
+ ‖u‖Hs

ε
|w|L∞‖w‖Hs

ε

)
, (2.18)

where the weighted Sobolev norm ‖ · ‖Hs
ε

is defined in (2.8). Besides, by Remark 2.2,∥∥A′
j (u)wε∂xj

u
∥∥

Hs
ε

� C
(|u|L∞

)(|ε∂xj
u|L∞

(‖w‖Hs
ε
+ ‖u‖Hs

ε
|w|L∞

) + ‖u‖
Hs+1

ε
|w|L∞

)
. (2.19)

If we now use (2.12) with N = 0,1, together with estimates (2.18) and (2.19), we find that the solution v to (2.17)
satisfies

∥∥v(t)
∥∥2

Hs
ε

� ‖g2‖2
Hs

ε
+

t∫
0

ε−1‖g1‖Hs
ε
‖v‖Hs

ε
dt ′ +

t∫
0

C
(
ε−1−d/2‖u‖

H
s0+1
ε

)‖v‖2
Hs

ε
dt ′

+
t∫

0

C
(
ε−d/2‖u‖

H
s0+1
ε

)
ε−1−d/2‖u‖

Hs+1
ε

‖v‖
H

s0
ε

‖v‖Hs
ε
dt ′. (2.20)

We now restrict to a background u ∈ Hs+1 satisfying

|u|s0+2 � ε1+d/2. (2.21)

Then, by Gronwall’s Lemma, estimate (2.20) used with s = s0, implies the bound

max
[0,T ]

‖v‖
H

s0
ε

� ‖g2‖H
s0
ε

+ ε−1 max
[0,T ]

‖g1‖H
s0
ε

, (2.22)

which we use back in (2.20) to obtain

max
[0,T ]

‖v‖Hs
ε

� ‖g2‖Hs
ε
+ ε−1 max

[0,T ]
‖g1‖Hs

ε

+ ε−1−d/2
(
‖g2‖H

s0
ε

+ ε−1 max
[0,T ]

‖g1‖H
s0
ε

)
max
[0,T ]

‖u‖
Hs+1

ε
. (2.23)

By using Eq. (2.17)(i) directly, we find the bound

‖ε∂tv‖
Hs−1

ε
� C

(|u|L∞ , |ε∂xu|L∞
)(‖v‖Hs

ε
+ ‖u‖Hs

ε

(|v|L∞ + |ε∂xv|L∞
))

. (2.24)

Note in (2.24) the occurrence of |ε∂xv|L∞, which cannot be controlled by (2.22). This forces us to go back to (2.20)
with s = s0 +1. At this point we make full use of (2.21), while a bound for |u|s0+1 sufficed in order to estimate ‖v‖Hs

ε
,

and obtain

max‖v‖
H

s0+1
ε

� ‖g2‖
H

s0+1
ε

+ ε−1 max‖g1‖
H

s0+1
ε

. (2.25)

[0,T ] [0,T ]



B. Texier, K. Zumbrun / Ann. I. H. Poincaré – AN 28 (2011) 499–527 505
Combining (2.23), (2.24) and (2.25), we obtain that, if u satisfies (2.21), then there holds

|v|s � ε−2−d/2‖g‖s0+1|u|s+1 + ε−1‖g‖s .

We can conclude that if for all j, Aj is symmetric, then the family of maps and functional spaces defined in Exam-
ple 2.8 satisfy Assumption 2.10 with γ = 1 + d/2, κ = 2 + d/2, r = 1 and r ′ = 0.

Remark 2.14. If Φε satisfies Assumption 2.10 with parameters γ, κ, r, r ′, given a family (aε)ε∈(0,1) ⊂ Es1, if
supε∈(0,1) ε

−γ |aε|s0+m+r < ∞, then Φ̃ε := Φε(aε + ·) satisfies Assumption 2.10, with the same parameters as Φε.

2.4. Third assumption: existence of an approximate solution

We consider a family of maps Φε :Es → Fs−m satisfying Assumptions 2.4 and 2.10, with associated parameters
m, s0, s1, and γ0, γ1, γ, r, r ′, and κ.

Assumption 2.15. Let k be such that

max(κ + γ0,2κ + γ1, κ + γ ) < k. (2.26)

For some positive function p̄ = p̄(m, r, r ′, γ0, γ1, γ, κ, k) � 2m + max(r, r ′) specified in Remark 2.23, there holds

s0 + m + max
(
r, r ′) + p̄ < s1, (2.27)

and, for some s satisfying

s0 + m + max
(
r, r ′) � s < s1 − p̄, (2.28)

there holds∥∥Φε(0)
∥∥

s
� εk. (2.29)

We first comment on (2.27):

Remark 2.16. In Example 2.13, the index s1 measures the regularity of the source f ε
1 and the initial datum f ε

2 ; in
this view inequality (2.27) should be understood as a regularity requirement on the data. In particular, as discussed in
Remark 2.23, as k approaches from above the limiting value max(κ + γ0,2κ + γ1, κ + γ ), the parameter p̄ blows up
to +∞, meaning that we require the data to be infinitely regular in this limit.

In our examples, inequality (2.29) reflects the existence of a family of approximate solutions to Φε = 0:

Remark 2.17. Consider a family of maps Φε ∈ C2(Es,Fs−m) satisfying Assumptions 2.4 and 2.10, and an associated
family of approximate solutions uε

a ∈ Es1 to the equations Φε = 0, in the sense that ‖Φε(uε
a)‖s � εk, with k and s

satisfying (2.26)–(2.28). Then, the maps Φ̃ε := Φε(uε
a + ·) satisfy Assumption 2.15.

For quasilinear systems, small initial data give crude examples of approximate solutions:

Example 2.18. Consider the initial-value problem

∂tu +
∑

1�j�d

Aj (u)∂xj
u = 0, u|t=0 = εσ a(x), (2.30)

and the associated family of maps Φε defined in (2.14), with (f ε
1 , f ε

2 ) ≡ (0, εσ a). Assume that a ∈ Hs1 , with s1
satisfying (2.27). As described in Examples 2.8 and 2.13, if Aj is symmetric for all j, then Assumptions 2.4 and 2.10
hold for Φε in the functional spaces Es, Fs introduced in Example 2.8, for any T > 0, for s satisfying (2.28).

If the maps u → Aj(u) satisfy the bounds |Aj (u)| � |u|�, for � � 0, in particular if they are �-homogeneous,
then there holds ‖Φε(εσ a)‖s1−1 � εσ(1+�)+1. Using Remark 2.17 above, and the specific values of γ0, γ1, γ and
κ given in Examples 2.8 and 2.13, this implies that if σ(1 + �) > 3(1 + d/2), then Assumption 2.15 is satisfied by
Φ̃ε := Φε(εσ a + ·).
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2.5. Results

Our main result gives existence in Es+m, where s satisfies (2.28), of a solution to Eq. (2.1).

Theorem 2.19 (Existence). Under Assumptions 2.4, 2.10 and 2.15, for ε small enough, there exists a real sequence θε
j ,

satisfying θε
j → +∞ as j → +∞ and ε is held fixed, such that the sequence

uε
0 := 0, uε

j+1 := uε
j + Sθε

j
vε
j , vε

j := −Ψ ε
(
uε

j

)
Φε

(
uε

j

)
, (2.31)

is well defined and converges, as j → ∞ and ε is held fixed, to a solution uε of (2.1) in s + m norm, with s as
in (2.28), which satisfies the bound∣∣uε

∣∣
s
� εk−κ . (2.32)

In applications (Sections 4 and 5), we apply Theorem 2.19 to a map Φε(uε
a + ·), with the notation of Remark 2.17,

so that in practice Theorem 2.19 is not a result about small solutions: the smallness condition (2.32) bears on the
perturbation variable u, the full solution to Φε = 0 being uε

a + u. The smallness condition (2.29) is an accuracy
condition bearing on the approximate solution uε

a; we show in Remark 2.22 that this condition is sharp in the usual
implicit function theorem setting without losses in derivatives.

We supplement the above existence result by the following local uniqueness theorem. Contrary to Theorem 2.19,
Theorem 2.20 does not rely on a Nash–Moser iterative scheme.

Theorem 2.20 (Local uniqueness). Under Assumptions 2.4, 2.10 and 2.15, for ε small enough, if (Φε)′ is invertible,
i.e., Ψ ε is also a left inverse, then the solution described in Theorem 2.19 is unique in a ball of radius o(εmax(κ+γ1,γ0,γ ))

in s0 + 2m + r ′ norm. More generally, if ûε is a second solution within this ball, then (ûε − uε) is approximately
tangent to Ker(Φε)′(uε), in the sense that its distance in s0 norm from Ker(Φε)′(uε) is o(|ûε −uε|s0). In particular, if
Ker(Φε)′(uε) is finite-dimensional, then u is the unique solution in the ball satisfying the additional “phase condition”

Πuε

(
ûε − uε

) = 0, (2.33)

where Πuε is any uniformly bounded projection onto Ker(Φε)′(uε). (In a Hilbert space, any orthogonal projection
onto Ker(Φε)′(uε).)

In a non-Hilbertian context, the existence of such a projection Πuε is discussed in Remark 2.25 below.

2.6. Remarks

We first remark that the proofs use only part of the information contained in (2.16) and (2.11):

Remark 2.21. An examination of the proofs of Theorems 2.19 and 2.20 reveals that for existence we require esti-
mate (2.16) only for f in the image of Φε or (Φε)′′, since Ψ ε is estimated only in composition with one or the other
of these operators, while for uniqueness we need only the estimate for Ψ ε(u)(Φε)′′(u) that would result by composing
estimates (2.16) and (2.11).

Next we remark that the approximation rate is sharp by comparison with the standard Newton scheme:

Remark 2.22. For γ0, γ � κ + γ1, corresponding to a critical value kc = 2κ + γ1 in (2.26), Theorem 2.19 states that a
loss of ε−κ in the linear estimates means that, with the notation of Remark 2.17, ‖Φε(uε

a)‖s � ε2κ+γ1+η, any η > 0,

is the accuracy needed on the approximate solution.
This condition is sharp even for convergence of a standard Newton iteration scheme

uε
n+1 := uε

n − Ψ ε
(
uε

n

)
Φε

(
uε

n

)
, uε

0 := uε
a,

∣∣uε
a

∣∣
s+m

� εγ1 ,

for problems with no loss of derivatives (r = r ′ = 0), corresponding by the computation
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∥∥Φε
(
uε

1

)∥∥
s
=

∥∥∥∥∥
1∫

0

(1 − t)
(
Φε

)′′(
uε

0 + t
(
uε

1 − uε
0

)) · (uε
1 − uε

0, u
ε
1 − uε

0

)∥∥∥∥∥
s

�
(
ε−2γ1

(∥∥uε
0

∥∥
s
+ ∥∥uε

1 − uε
0

∥∥
s

) + ε−γ1
)∥∥uε

1 − uε
0

∥∥2
s

� ε−γ1
∥∥uε

1 − uε
0

∥∥2
s

� ε−γ1
∣∣Ψ ε

(
uε

0

)
Φε

(
uε

0

)∣∣2
s

� ε−(2κ+γ1)
∥∥Φε

(
uε

0

)∥∥2
s

� εη
∥∥Φε

(
uε

0

)∥∥
s

in the case m = 0 to the condition that error (‖Φε(uε
n)‖s)n∈N decreases at the first step.

We make precise the parameter p̄ that appears in Assumption 2.15:

Remark 2.23. From (3.23), we find that p̄ is

p̄ = m + inf
N>N0

(N + 1)(m + max(r, r ′) + M)

1 − κ
k

− M
, (2.34)

with

N0 := κ + km′

k − (2κ + γ1)
, M := max

(
γ0

k
,
γ

k
,

1

2

(
1 + γ1

k
+ m′

N
+ κ

kN

))
, m′ := max

(
m + r ′, r

)
.

We observe the following asymptotic behavior as k approaches from above the critical value kc :=
max(κ + γ0,2κ + γ1, κ + γ ) given in (2.26):

• If kc = 2κ + γ1, then p̄ blows up like (k − kc)
−2 as k ↓ kc.

• If kc = κ + γ0, or kc = κ + γ, then p̄ blows up like (k − kc)
−1 as k ↓ kc.

The phase condition (2.33) can in some situations be made explicit:

Remark 2.24. Let Πu be a bounded projection onto ker(Φε)′(u), as in (2.33). If the map (u, v) → Πuv is continuous
in Es0 × Es0, uniformly in ε, then the implicit phase condition (2.33) can be replaced by the explicit

Π0
(
ûε − uε

) = 0.

See [21, Section 2], for related discussions of uniqueness up to phase conditions.

We discuss the existence of the projection mentioned in Theorem 2.20:

Remark 2.25. We first remark that if Ker(Φε)′(uε) is finite-dimensional, then a bounded projection exists by the
Hahn–Banach Theorem; see, e.g., [19].

In the infinite-dimensional case, we note that a projection Π onto a subspace S of a Banach space is bounded
if and only if the distance from s ∈ S to KerΠ is greater than or equal to |s|/C for some uniform C > 0. (Indeed,
|s| = |Π(s − t)| � C|s − t | for all s ∈ S, t ∈ KerΠ is equivalent to the statement that Π is bounded, since s − t runs
over the entire Banach space as s and t are varied.)

This implies that if there is an isometry between spaces Fε
s and a common set of spaces F 0

s , and if that
Ker(Φε)′(uε), considered (under mapping by this isometry) as a subset of F 0

s is finite-dimensional, with a limit
as ε → 0, then, there exist a family of projections Πε onto Ker(Φε)′(uε) that are uniformly bounded with respect to
ε in each Fε

s , for ε sufficiently small.
Indeed, by the above note (second paragraph of the present remark), there exists a bounded projection Π0 onto the

limit as ε → 0 of Ker(Φε)′(uε). Denote by F̃ := KerΠ0 the associated complementary subspace. Defining Πε to be
the projection along F̃ onto Ker(Φε)′(uε), we find by the Hahn–Banach Theorem, compactness of the intersection of
the unit ball with Ker(Φε)′(uε), and continuity, that Πε is bounded for ε sufficiently small.
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We finally describe a somewhat artificial application for orientation:

Example 2.26. Consider the quasilinear initial-value problem (2.30), with associated maps Φε. The datum εσ a is
assumed to belong to Hs1 , with s1 as in (2.27).

By Examples 2.8 and 2.13, if the matrices Aj are symmetric, then Assumptions 2.4 and 2.10 hold in Es, Fs, for
any T > 0, for s satisfying (2.28).

By Remarks 2.9 and 2.14, if the initial datum is small enough: σ > d/2, then Assumptions 2.4 and 2.10 still hold,
with the same parameters, for the translated maps Φ̃ε := Φε(εσ a + ·).

By Example 2.18, if σ > σc := max(d/2,3(1 + �)−1(1 + d/2)), then the translated maps Φ̃ε satisfy in addition
Assumption 2.15.

We can conclude that Theorem 2.19 yields existence in C0([0, T ],H s(Rd)) of a solution to (2.30). If � = 1, the
smallness condition for the initial datum if σ > 3/2 + 3d/4.

We thus partly recovered a classical small-amplitude, existence result of the quasilinear hyperbolic theory. Note
that, as mentioned in Remark 2.16, if σ − σc is small, then p̄ is large, hence s, satisfying (2.28), is much smaller
than s1, meaning that the solution is much less regular than the datum.

For quasilinear symmetric systems, the Lax iteration scheme gives an existence result with no smallness assumption
on the datum, and with the sharp regularity criterion s > 1+d/2. In this view, it is much better suited for the resolution
of quasilinear symmetric systems than the Nash–Moser scheme described above.

3. Proofs of Theorems 2.19 and 2.20

We write Φ for Φε, θj for θε
j , etc. Let θ0 be such that

θ−α
0 � εmax(γ0,γ1,γ ), (3.1)

for some α > 0 to be chosen later. Introduce the family of inequalities C1(j), for j ∈ N,

C1(j ;q,α): |vj |s+q � θ−α
j

depending on α and some q � m and s to be chosen later. We assume that Assumptions 2.4, 2.10, and 2.15 hold, and
start by proving three lemmas.

Lemma 3.1. Assume that s0 < s � s1 − q, and

• the sequence uj is well defined,
• limj→+∞ ‖Φ(uj )‖s = 0,

• condition C1(j ;q,α) holds for all j,

• the series θ−α
j is convergent, with

+∞∑
j=0

θ−α
j � θ−α

0 . (3.2)

Then uj converges, in s + q norm, to a solution of (2.1) which satisfies

|u|s+q � θ−α
0 . (3.3)

Proof. If C1(j) holds for all j, then the sequence uj converges, in s + q norm, to u ∈ Es+q, and we have the estimate

|uj |s+q �
j−1∑

θ−α
j , (3.4)
j=0
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which implies (3.3). There holds

∥∥Φ(u)
∥∥

s
�

∥∥Φ(uj )
∥∥

s
+

∥∥∥∥∥
1∫

0

Φ ′(uj + t (u − uj )
) · (u − uj ) dt

∥∥∥∥∥
s

, (3.5)

and the first term in the upper bound tends to 0 as j → ∞. We note that, by (3.2), (3.3), (3.4), and (3.1), there holds
|uj |s+m + |u|s+m � εγ0 . Hence, by the tame direct bound (2.10) in Assumption 2.4,∥∥∥∥∥

1∫
0

Φ ′(uj + t (u − uj )
) · (u − uj ) dt

∥∥∥∥∥
s

� |u − uj |s+m.

The upper bound tends to 0 as j → +∞. With (3.5), this implies that u solves (2.1). �
Let p be such that

q + max
(
r, r ′ + m

)
� p, s0 + m + max

(
r, r ′) + p � s1. (3.6)

Introduce the family of inequalities C2(j), for j ∈ N and N � 0:

C2(j ;q,α,p,N):

⎧⎪⎨
⎪⎩

|uj |s+q � θ−α
0 ,∥∥Φ(uj )

∥∥
s
� θ−1

j ,

|uj |s+p � θN
j .

Lemma 3.2. Assume that s0 + m + max(r, r ′) � s � s1 − p, and

• for all j ′ � j, uj ′ is well defined and condition C1(j
′) holds,

• there holds
j∑

j ′=0

θ−α
j � θ−α

0 , (3.7)

• condition C2(j) holds, with parameters satisfying

θ
m−q−α
j + ε−γ0θ−2α

j � θ−1
j+1, (3.8)

ε−κθ
max(m+r ′,r)
j θN

j � θN
j+1. (3.9)

Then vj+1 is well defined in Es+q and C2(j + 1) holds.

Proof. If conditions C1(j
′) hold for all j ′ � j and if (3.7) holds, then

|uj+1|s+q � θ−α
0 . (3.10)

Bound (3.10) is C2(j + 1)(i). Besides, (3.10) and (3.1) imply that uj+1 also satisfies (2.15), so that, by C2(j + 1)(iii),
the first bound in (3.6) and the tame inverse bound (2.16) in Assumption 2.10, vj+1 is defined in Es+q .

To prove C2(j + 1)(ii), we use the fact that (2.31) is almost a Newton’s scheme:∥∥Φ(uj+1)
∥∥

s
� E1 + E2,

where E1 is the error due to the regularization:

E1 = ∥∥Φ ′(uj ) · (Sθj
vj − vj )

∥∥
s
,

and E2 is the error due to the scheme:

E2 =
∥∥∥∥∥

1∫
(1 − t)Φ ′′(uj + tSθj

vj ) · (Sθj
vj , Sθj

vj ) dt

∥∥∥∥∥
s

.

0



510 B. Texier, K. Zumbrun / Ann. I. H. Poincaré – AN 28 (2011) 499–527
Conditions (C1(j
′))1�j ′�j−1, together with (3.1) and (3.7), imply |uj |s+m � εγ0 . Together with the tame direct

bound (2.10) in Assumption 2.4, this gives

E1 � |Sθj
vj − vj |s+m,

and with (2.6) and C1(j),

E1 � θ
m−q−α
j . (3.11)

By C1(j), (2.7), and (3.1), there holds |Sθj
vj |s+m � εγ0 . With the tame direct bound (2.11) in Assumption 2.4, this

gives

E2 � ε−2γ1 |Sθj
vj |2s0+m

(|uj |s+m + |Sθj
vj |s+m

) + ε−γ1 |Sθj
vj |s+m|Sθj

vj |s0+m,

and, bounding s0 + m norms by s + m norms, and using |uj |s+m + |vj |s+m � θ−α
j , a consequence of (C1(j

′))j ′�j ,

and (3.7), we obtain

E2 � ε−γ1θ−2α
j . (3.12)

Bounds (3.11), (3.12) and (3.8) imply C2(j + 1)(ii). Finally, to prove C2(j + 1)(iii), we remark that, by (2.7),

|uj+1|s+p � |uj |s+p + |Sθj
vj |s+p

� |uj |s+p + θ
max(m+r ′,r)
j |vj |s+p−max(m+r ′,r). (3.13)

Under (3.6), the tame direct bound (2.9) in Assumption 2.4 and the tame inverse bound (2.16) in Assumption 2.10
imply

|vj |s+p−max(m+r ′,r) � ε−κ
(|uj |s+p

∥∥Φ(uj )
∥∥

s0+m+r ′ +
∥∥Φ(uj )

∥∥
s+p−max(m+r ′,r)+r ′

)
� ε−κ

(
1 + |uj |s+p

)(
1 + ∥∥Φ(uj )

∥∥
s0+m+r ′

)
� ε−κθN

j . (3.14)

Bounds (3.13), (3.14) and (3.9) imply C2(j + 1)(iii). �
Lemma 3.3. Let j be such that

ε−κθ
−β
j � θ−α

j (3.15)

where

β := (
p′ + max

(
r, r ′))−1((

p′ − q
) − N

(
q + max

(
r, r ′))), p′ := p − max

(
m + r ′, r

)
.

Then condition C2(j) implies C1(j).

Proof. Bound C2(j)(i), together with (3.1), implies that uj satisfies (2.15). Then, bound C2(j)(iii) implies that vj is
well defined in Es+p−max(m+r ′,r), and we can check, exactly as in the proof of (3.14) in Lemma 3.2, that the bound

|vj |s+p−max(m+r ′,r) � ε−κθN
j (3.16)

holds. Besides, by the tame inverse bound (2.16) in Assumption 2.10,

|vj |s−max(r,r ′) � ε−κ
(|uj |s

∥∥Φ(uj )
∥∥

s0+m
+ ∥∥Φ(uj )

∥∥
s

)
� ε−κ

(
1 + θ−α

0

)∥∥Φ(uj )
∥∥

s

� ε−κθ−1
j . (3.17)

Finally, bounds (3.16), (3.17) and the interpolation property (2.5) imply

|vj |s+q � |vj |
p′−q

p′+r′′
s−r ′′ |vj |

q+r′′
p′+r′′
s+p′

� ε−1θ
−β
j , (3.18)

where r ′′ = max(r, r ′), and the lemma follows, with (3.15). �
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End of proof of Theorem 2.19, existence. Let q = m + α. Define

θ0 := ε−k, θj+1 := θ
ζ
j , j � 0, (3.19)

for some ζ > 1 to be chosen below. Then (3.1) is satisfied if

max

(
γ0

α
,
γ

α

)
� k, (3.20)

and (3.7) is satisfied.
By (3.19) and Assumption 2.15, condition C2(0) is satisfied. Condition (3.15) is satisfied as soon as

κ

β − α
� k. (3.21)

By Lemma 3.3, (3.21) also implies that condition C1(0) is satisfied. With definition (3.19), conditions (3.8) and (3.9)
translate respectively into

γ1

k
< 2α − ζ, and

κ

Nζ − N − max(m + r ′, r)
� k. (3.22)

Suppose now that for all 0 � j ′ � j, uj ′ is well defined and C1(j
′) and C2(j

′) hold. Then by Lemma 3.2, condition
C1(j + 1) is satisfied if (3.22) holds, and by Lemma 3.3, condition C2(j + 1) is satisfied if (3.21) holds.

We just proved that, under (3.20), (3.21) and (3.22), conditions C1(j) and C2(j) hold for all j.

Conditions (3.20), (3.21) and (3.22) are equivalent to

M � 1

2

(
ζ + γ1

k

)
< α �

(
1 + 1

p0

)−1(
1 − κ

k
− 1

p0

(
m + r ′′)) (3.23)

with

M := max

(
γ0

k
,
γ

k
,

1

2

(
1 + γ1

k
+ m′

N
+ κ

kN

))
, p0 := p − m′ + max(r, r ′)

N + 1
,

and m′ := max(m + r ′, r). Under (2.26), if N and p are large enough, namely

κ + km′

k − (2κ + γ1)
=: N0 < N, p̄ < p, (3.24)

where p̄ is specified in Remark 2.23, then we can find α and ζ satisfying (3.23).
Let now α, ζ, N, and p be such that (3.23) holds. By (3.19) and ζ > 1, the series θ−α

j is convergent and satis-
fies (3.2). Besides, conditions C2(j) imply ‖Φ(uj )‖s → 0. We can thus apply Lemma 3.1: the sequence uj converges
to a solution u of (2.1) in s + q norm, satisfying (3.3). Besides, as (3.17) holds for all j,

|uj |s � ε−κ

j∑
j ′=0

θ
−β

j ′ � ε−κθ−1
0 ,

hence (2.32). �
Proof of Theorem 2.20, local uniqueness. Suppressing ε, let û be a second solution in Es0+2m+r ′ of Φ(u) = 0, lying
within o(εmax(κ+γ1,γ0,γ )) of u (and thus of 0). Then, Taylor expanding, and using Assumption 2.4, we have

0 = Φ(û) − Φ(u) = Φ ′(u)(û − u) + B(u, û),

where

B(u, û) :=
1∫

0

(1 − t)Φ ′′(tu + (1 − t)û
) · (û − u, û − u)dt.

Applying Ψ (u) and using Assumption 2.10, we thus have

(û − u) + Ψ (u)B(u, û) ∈ KerΦ ′(u),
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where∣∣Ψ (u)B(u, û)
∣∣
s0

� ε−κ−γ1
(
1 + ε−γ1

(|û|s0+m + |u|s0+m

))|û − u|2s0+2m+r ′

= o
(|û − u|s0+2m+r ′

)
.

This verifies tangency. Finally, from û − u + o(|û − u|) ∈ Ker(Φε)′(uε), we have

û − u + o
(|û − u|) = Πuε

(
ûε − uε

) + o
(|Πuε ||û − u|),

which, with (2.33) and the assumed uniform boundedness of |Πuε |, gives

û − u = o
(|û − u|) + o

(|Πuε ||û − u|) = o
(|û − u|),

and thus û − u = 0. �
4. Application: systems of quasilinear Schrödinger equations

Consider systems of quasilinear Schrödinger equations in v = (v1, . . . , vn) ∈ C
n,

∂tvj + iλj�xvj =
∑

1�j ′�n

bjj ′(v, ∂x)vj ′ + cjj ′(v, ∂x)v̄j ′ , 1 � j � n, t � 0, x ∈ R
d , (4.1)

with d � 2. The λj are assumed to be real and pairwise distinct, and the coefficients bjj ′ and cjj ′ are first-order
differential operators: (bjj ′ , cjj ′)(v, ∂x) = ∑

1�k�d(bkjj ′(v), ckjj ′(v))∂xk
, where the maps v ∈ C → (bkjj ′ , ckjj ′)(v) ∈

C
2 are smooth and satisfy, for some � ∈ N with � � 2, and some C > 0, for all 0 � |α| � 2, for all v,∣∣∂α

v bkjj ′(v)
∣∣ + ∣∣∂α

v ckjj ′(v)
∣∣ � C|v|�−|α|. (4.2)

We make the following assumption:

Assumption 4.1. For all j, j ′ such that λj + λj ′ = 0, there holds cjj ′ = cj ′j . For all j, there holds �mbjj ≡ 0.

Assumption 4.1 is a “transparency” condition, similar to Assumptions 2.1, 2.5 and 2.10 in [6] and Assumption 2.15
in [20]. It means that the singular source terms in (4.6) possess some favorable structure (cancellation or symmetry)
at the resonances.

Consider a family of initial data

vε(0, x) = εσ aε(x), with sup
ε∈(0,1)

‖aε‖H
s1
ε

< ∞, (4.3)

where σ > 0 and aε is for instance concentrating: aε(x) = a0( x
ε
), or oscillating: aε(x) = a0(x)eix·ξ0/ε, for some

ξ0 ∈ R
d; in both cases a0 ∈ Hs1, for some large s1.

Our goal is to show that, under Assumption 4.1, for s1 and σ large enough, any T > 0 and ε small enough, we
can apply Theorem 2.19 to prove existence over [0, T ], in weighted Sobolev spaces, for the initial-value problem
(4.1)–(4.3).

Example 4.2. Our assumptions are satisfied in particular by systems{
∂tv1 + i�v1 = b12(v, ∂x)v2 + c11(v, ∂x)v̄1 + c(v)∂xv̄2,

∂t v2 − i�v2 = b22(v, ∂x)v2 + c(v)∂xv̄1 + c22(v, ∂x)v̄2,

if b22 is real, b12, b22, c11, and c22 are first-order differential operators, and all coefficients are �-homogeneous in v,

for some integer � � 2.

Remark 4.3. Rauch and Métivier give in [13, Theorem 1.5]; see also [12, Theorem 8.1.2] a local existence and
uniqueness result for the Cauchy problem for (4.1), under Assumption 4.1, for data in Hs, with s > 1 + d/2. There is
no small parameter in their setting. We compare Rauch and Métivier’s result with ours in Remark 4.7.
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4.1. Semi-classical setting

Introducing u = (v, v̄)T ∈ C
2n, we obtain a system

∂tu + iA(∂x)u = B(u, ∂x)u, (4.4)

where A is the diagonal, second-order, constant-coefficient operator

A(∂x) = diag(λ1, . . . , λn,−λ1, . . . ,−λn)�x, (4.5)

and B is the first-order operator

B =
(

B C
C̄ B̄

)
, B := (bjj ′)1�j,j ′�n, C := (cjj ′)1�j,j ′�n.

Let

J := {(
j, j ′), λj + λj ′ = 0

}
,

and χ ∈ C∞
c (Rd ,R) be a frequency truncation, such that 0 � χ � 1, χ ≡ 1 for |ξ | � 1/2 and χ ≡ 0 for |ξ | � 1.

The source B in (4.4) decomposes into the sum of a resonant, a non-resonant term, and a low-frequency term: B =
Br + Bnr + Blf , where

• the resonant term is

Br := diag(b11, . . . , bnn, b̄11, . . . b̄nn) +
(

0 CJ

C̄J 0

)
,

with the notation (CJ )jj ′ := cjj ′ if (j, j ′) ∈ J, and (CJ )jj ′ := 0 otherwise. The key is that, under Assumption 4.1,
for all v, ξ, the matrix Br(v, ξ) is hermitian;

• the non-resonant term is

Bnr :=
(

B1 C 1

C̄ 1 B̄1

)
,

where (B1)jj ′ := (1 − χ)bjj ′ if j 
= j ′, (B1)jj ′ := 0 otherwise; (C 1)jj ′ := (1 − χ)cjj ′ if (j, j ′) /∈ J, (C 1)jj ′ := 0
otherwise;

• the low-frequency term is

Blf :=
(

B0 C 0

C̄ 0 B̄0

)
,

where (B0)jj ′ := χbjj ′ if j 
= j ′, (B0)jj ′ := 0 otherwise; (C 0)jj ′ := χcjj ′ if (j, j ′) /∈ J, (C 0)jj ′ := 0 otherwise.

By assumption, B is homogeneous degree one in ξ. Taking into account the dependence of the datum in x/ε, and
using the homogeneity of A and B, we work with weighted derivatives, and rewrite (4.4) as

∂tu + i

ε2
A(ε∂x)u = 1

ε
B(u, ε∂x)u. (4.6)

The family of initial-value problems (4.6)–(4.3) corresponds to the equation Φε(u) = 0 for the family of maps

Φε(u) :=
(

ε2∂tu + iA(ε∂x)u − εB(u, ε∂x)u

u|t=0 − εσ aε

)
. (4.7)

Given T > 0, consider the functional spaces

Es = Hs
(
R

d
)
, Fs−2 = C0([0, T ],H s−2(

R
d
)) × Hs

(
R

d
)
, (4.8)

with norms

|u|s := sup
0�t�T

(∥∥ε2∂tu(t)
∥∥

Hs−2
ε

+ ∥∥u(t)
∥∥

Hs
ε

)
,

∥∥(f1, f2)
∥∥

s−2 := sup
0�t�T

∥∥f1(t)
∥∥

Hs−2
ε

+ ‖f2‖Hs
ε
,

where the weighted Sobolev norms ‖ · ‖Hs
ε

are defined in (2.8). By definition, Φε belongs to C2(Es,Fs−2), for all s

such that s0 + 2 � s � s1, for any d/2 < s0 < 1 + d/2.
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4.2. Tame direct bounds

Given a0 ∈ Hs1, there holds supε∈(0,1) ‖a0(x/ε)‖
H

s1
ε

< ∞, supε∈(0,1) ‖a0(x)eix·ξ0/ε‖
H

s1
ε

< ∞. We assume that

s0 + 4 � s1. Let s0 + 2 � s � s1 − 2, and u ∈ Hs+2. There holds∥∥Φε(u)
∥∥

s
� εσ C

(
a0, s

) + C(λj )|u|s+2 + ε
∥∥B(u, ε∂x)u

∥∥
Hs

ε
, (4.9)

for some C(a0, s) > 0 and C(λj ) > 0.

Lemma 4.4. The family Φε defined in (4.7) satisfies Assumption 2.4 with (γ0, γ1) ∈ R+ × R+ such that

1 − d�

2
+ γ0� + min(0, γ1 − γ0) � 0

1 − d + min(γ0 + γ1,2γ1) � 0

⎫⎬
⎭ if � = 2,

1 − d�

2
+ γ0� + min

(
0, γ1 − γ0,2(γ1 − γ0)

)
� 0, if � � 3. (4.10)

Proof. We start from (4.9) and bound the differential operator B(u, ε∂x)u as in Example 2.6. By (4.2), for s > d/2
and |u|L∞ � M0, there holds ‖d(u)‖Hs

ε
� C(M0)|u|�−1

L∞ ‖u‖Hs
ε
, with d = bjj ′ , cjj ′ . Thus we obtain

ε
∥∥B(u, ε∂x)u

∥∥
Hs

ε
� ε1−d�/2‖u‖�

H
s0+1
ε

‖u‖
Hs+1

ε
. (4.11)

It follows that (2.9) holds for any γ0 such that 1−d�/2+γ0� � 0. The first derivative (Φε)′(u) involves (∂uB(u, ε∂x) ·
v)u + B(u, ε∂x)v, where (∂uB(u, ε∂x) · v)u is a differential operator acting on u, with coefficients depending on v,

and satisfies

ε
∥∥(

∂uB(u, ε∂x) · v)
u
∥∥

Hs
ε

� ε1−d�/2‖u‖�−1

H
s0+1
ε

(‖v‖
H

s0
ε

‖u‖
Hs+1

ε
+ ‖u‖

H
s0+1
ε

‖v‖Hs
ε

)
.

The other term in the first derivative, B(u, ε∂x)v, is bounded as in (4.11), and we obtain∥∥(
Φε

)′
(u)v

∥∥
s
� |v|s+2 + ε1−d�/2‖u‖�−1

H
s0+1
ε

(‖u‖
H

s0+1
ε

‖v‖
Hs+1

ε
+ ‖v‖

H
s0
ε

‖u‖
Hs+1

ε

)
.

The bound for the second derivative is similar, and we obtain the bounds of Assumption 2.4 under condi-
tion (4.10). �
4.3. Tame inverse bounds

For the linearized system of quasilinear Schrödinger equations (Φε)′(u)u = (f1, f2), explicitly⎧⎨
⎩ ∂tu + i

ε2
A(ε∂x)u = 1

ε
B(u, ε∂x)u + (

∂uB(u, ∂x) · u)
u + 1

ε2
f1,

u|t=0 = f2,

(4.12)

we give a tame bound for u, of the form (2.16), by using the “transparency” condition expressed in Assumption 4.1.
The key is that, by Assumption 4.1, the matrix Br(u, ξ) is hermitian for all (u, ξ), while Bnr(u, ξ) corresponds to
non-resonant interactions and can be eliminated by a normal form reduction. The other singular term, (1/ε)Blf , is a
low-frequency term, hence its singular prefactor does not harm the estimate. The non-singular term ∂uB(u, ∂x) · u)u

is a differential operator acting on u; we denote it D := D(u,u, ∂xu).

In the proof of Lemma 4.5, we use the notation and results of Section 4.6 on pseudo-differential symbols and
operators.

Lemma 4.5. Given T > 0, s0 + 2 � s � s1 − 2, f ∈ Fs+2 and u ∈ Es+2, if u satisfies

|u|s0+4 � εγ , γ = d

2
+ d

2(� − 1)
, (4.13)

then there exists a unique u ∈ Es satisfying (4.12), and there holds

|u|Hs
ε

� ε−2‖f ‖s + ε−3‖f ‖s0+2|u|s+2. (4.14)
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Proof. Our goal is to prove estimates over [0, T ] for (4.12); existence and uniqueness then follow by classical argu-
ments. We do not expect the estimates to be uniform in ε, and aim for polynomials prefactors in ε−κeCt , for some
C > 0; in this view, the only obstacle is the singular term (1/ε)B(u, ε∂x) in the right-hand side, which, by direct
bounds and Gronwall’s Lemma, a priori contributes eCt/ε.

We look for a pseudo-differential matrix symbol M = M(u, ξ) = (Mjj ′(u, ξ))1�j,j ′�2n that belongs to the class
Γ −1

s defined below in Section 4.6, such that, using the notation (4.20) for pseudo-differential operators in semi-
classical quantization, the map

ǔ := (
Id + εopε(M)

)−1
u (4.15)

satisfies an equation that will allow an estimate of the form (4.14). If u solves (4.12), then ǔ solves ∂t ǔ = Aǔ + g,

where

A := (
Id + εopε(M)

)−1
(

− i

ε2
A(ε∂x) + 1

ε
B(u, ε∂x) + D

)(
Id + εopε(M)

)
,

and g := (Id + εopε(M))−1(ε−2f1 − εopε(∂tM)ǔ). By Lemma 4.11,

A = − i

ε2
A(ε∂x) + 1

ε
(Br + Blf )(u, ε∂x)u + 1

ε
opε(H) + D + opε(E),

where

H(t, x, ξ) := Bnr

(
u(t, x), iξ

) − i
[
A(iξ),M

(
u(t, x), ξ

)]
,

and the remainder E is

opε(E) := opε(M̃)
(−iA(ε∂x) + ε(Br + Blf )(u, ε∂x) + ε2D

)(
Id + εopε(M)

) − R(A,M)

+ opε(M)
(−iA(ε∂x) + ε(Br + Blf )(u, ε∂x) + ε2D

)
opε(M),

with ε2opε(M̃) := (Id + εopε(M))−1 − Id + εopε(M). We used above the notation R for remainders introduced in
Lemma 4.11.

By the diagonal structure of A, the matrix commutator [A(iξ),M] is[
A(iξ),M

] = (
(Λj − Λj ′)Mjj ′

)
1�j,j ′�2n

,

where

Λj = −λj |ξ |2, if 1 � j � n, Λj = λj−n|ξ |2, if n + 1 � j � 2n,

in accordance with (4.5). We note that, since the λj are pairwise distinct, Λj − Λj ′ = 0 if and only if 1 � j � n and
n + 1 � j ′ � 2n with (j, j ′ − n) ∈ J, or n + 1 � j � 2n and 1 � j ′ � n, with (j − n, j ′) ∈ J. By definition of Bnr in
Section 4.1, for such couples (j, j ′ − n) and (j − n, j ′), there holds (Bnr)jj ′ ≡ 0. Besides, by definition of Bnr, for
small ξ there holds Bnr ≡ 0. This implies that

Mjj ′
(
u(t, x), ξ

) :=
{−i(Λj (ξ) − Λj ′(ξ))−1(Bnr)jj ′(u(t, x), iξ), if Λj − Λj ′ 
= 0,

0, if Λj − Λj ′ = 0,

defines a symbol M ∈ Γ −1
s . With this choice of M, there holds H ≡ 0, and the equation in ǔ simplifies into

∂t ǔ + i

ε2
A(ε∂x)ǔ = 1

ε
(Br + Blf )(u, ε∂x)ǔ + D + opε(E)ǔ + g. (4.16)

We now perform direct estimates on the reduced equation (4.16). By reality of the λj ,

�e
i

ε2

(
A(ε∂x)ǔ, ǔ

)
Hs

ε
= 0.

By the hermitian structure of Br(u, ξ) and Lemma 4.12,

�e
1(

Br(u, ε∂x)ǔ, ǔ
)
Hs � |u|�−1

L∞ |u|W 1,∞‖ǔ‖2
Hs + ε−1−d/2|u|�−1

L∞ ‖ǔ‖ s0+1‖u‖Hs
ε
‖ǔ‖Hs

ε
.

ε ε ε Hε
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By Lemma 4.10 with m = s0 − s, under (4.13),

1

ε

∥∥Blf (u, ε∂x)ǔ
∥∥

Hs
ε

� ε−1‖ǔ‖
H

s0
ε

(|u|�L∞ + ε−d/2|u|�−1
L∞ ‖u‖Hs

ε

)
.

The zeroth-order term D satisfies

‖D‖Hs
ε

� |u|�−1
L∞ |∂xu|L∞‖ǔ‖Hs

ε
+ ε−d/2|u|�−2

L∞ |u|W 1,∞‖ǔ‖
H

s0
ε

‖u‖
Hs+1

ε
.

The change of variable M satisfies, for all w ∈ Hs−1,∥∥opε(M)w
∥∥

Hs
ε

� C
(|u|L∞

)(|u|�L∞‖w‖
Hs−1

ε
+ ε−d/2|u|�−1

L∞ ‖w‖
H

s0
ε

‖u‖Hs
ε

)
.

Let us now restrict to a background u satisfying (4.13). Then, the above bounds become

�e
1

ε

(
Br(u, ε∂x)ǔ, ǔ

)
Hs

ε
�

(
ε−1+γ ‖ǔ‖Hs

ε
+ ε−1‖ǔ‖

H
s0+1
ε

‖u‖Hs
ε

)‖ǔ‖Hs
ε
,

1

ε

∥∥Blf (u, ε∂x)ǔ
∥∥

Hs
ε

�
(
ε−1+γ ‖ǔ‖

H
s0
ε

+ ε−1‖ǔ‖
H

s0
ε

‖u‖Hs
ε

)‖ǔ‖Hs
ε
,

‖D‖Hs
ε

� ε−1+γ ‖ǔ‖Hs
ε
+ ε−1‖ǔ‖

H
s0
ε

‖u‖
Hs+1

ε
,∥∥opε(M)w

∥∥
Hs

ε
� εγ ‖w‖

Hs−1
ε

+ ‖w‖
H

s0
ε

‖u‖Hs
ε
,

for all w ∈ Hs−1. In particular, for all w ∈ Hs0,∥∥opε(M)w
∥∥

H
s0
ε

� εγ ‖w‖
H

s0
ε

. (4.17)

A consequence of (4.17) is that, given k � 2, the operator opε(M)k maps Hs to Hmax(s−k,s0), and for all w ∈
Hmax(s−k,s0),∥∥opε(M)kw

∥∥
Hs � M−1

0 (M)k‖w‖
Hs−k

ε
+ ε−d/2

∑
0�k′�k−1

M−1
0 (M)k

′
N−1

s−k′(M)‖w‖
H

s0
ε

� |u|�kL∞‖w‖
Hs−k

ε
+ ε−d/2

∑
0�k′�k−1

|u|�(k′+1)−1
L∞ ‖u‖

Hs−k′
ε

‖w‖
H

s0
ε

� εγ k‖w‖
Hs−k

ε
+ k‖u‖Hs

ε
‖w‖

H
s0
ε

.

It follows that opε(M̃) = ∑
k�2(−ε)k−2opε(M)k maps Hs to Hs−2, and for all w ∈ Hs−2,∥∥opε(M̃)w

∥∥
Hs

ε
� ε2(γ−1)‖w‖

Hs−2
ε

+ ‖u‖Hs
ε
‖w‖Hs0 .

The above bounds and Lemma 4.11 imply∥∥opε(E)ǔ
∥∥

Hs
ε

� ‖ǔ‖Hs
ε
+ ε−1‖ǔ‖

H
s0+1
ε

‖u‖
Hs+2

ε
.

The remainder g satisfies

‖g‖Hs
ε

� ε−2‖f1‖Hs
ε
+ ε−2‖f1‖H

s0
ε

‖u‖Hs
ε
+ ε|u|�−1

L∞ |∂tu|L∞‖ǔ‖
Hs−1

ε

+ ε1−d/2|u|�−2
L∞ ‖ǔ‖

H
s0+1
ε

(|u|L∞‖∂tu‖Hs
ε
+ |∂tu|L∞‖u‖Hs

ε

)
� ε−2‖f1‖Hs

ε
+ ε−2‖f1‖H

s0
ε

‖u‖Hs
ε
+ ε−1+γ ‖ǔ‖

Hs−1
ε

+ ε−1+γ ‖ǔ‖
H

s0+1
ε

|u|s+2.

Collecting the above bounds, we obtain the estimate

∂t‖ǔ‖2
Hs

ε
� ‖ǔ‖2

Hs
ε
+ (

ε−1+γ ‖ǔ‖
H

s0+1
ε

+ ε−1‖ǔ‖
H

s0+1
ε

‖u‖
Hs+2

ε

+ ε−2‖f1‖Hs
ε
+ ε−2‖f1‖H

s0
ε

‖u‖Hs
ε

)‖ǔ‖Hs
ε
, (4.18)

valid for any s0 + 2 � s � s1 − 2. We now let s = s0 + 2 in (4.18), and obtain

‖ǔ‖ s0+2 � ‖f2‖ s0+2 + ε−2‖f1‖ s0+2 ,

Hε Hε Hε
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which we plug back in (4.18) to get

‖ǔ‖Hs
ε

� ‖f2‖Hs
ε
+ ε−2‖f1‖Hs

ε
+ ε−1(‖f2‖

H
s0+2
ε

+ ε−2‖f1‖
H

s0+2
ε

)‖u‖
Hs+2

ε
.

In order to estimate ε2∂t ǔ, we use (4.12) directly, and, via (4.15) and the estimate for the operator norm of opε(M),

we finally obtain (4.14). �
4.4. Result

Introduce σa � 0, such that ‖aε‖H
s1
ε

= O(εσa ). For instance, in the concentrating case: aε(x) = a0(x/ε), we have

σa = d/2, and in the oscillating case: aε(x) = a0(x)eix·ξ0/ε, we have σa = 0. Introduce also the critical index kc

defined by

kc = max(κ + γ0,2κ + γ1, κ + γ ),

where γ0, γ1 are given by Lemma 4.4, and γ , κ by Lemma 4.5, so that kc depends only on d and �.

Theorem 4.6. Under Assumption 4.1, if the initial datum (4.3) is small enough and smooth enough, meaning that s1
satisfies (2.27) and

1 + σ(� + 1) + σa > kc, (4.19)

then, for any T > 0, if ε is small enough, the initial-value problem (4.1)–(4.3) has a solution v ∈ C1([0, T ],H s−2(Rd))

∩ C0([0, T ],H s(Rd)), for s satisfying (2.28).

The regularity condition on the datum, (2.27), is meant here with m = r = 2, r ′ = 0, γ0, γ1 given by Lemma 4.4,
and γ , κ given by Lemma 4.5.

Proof. Let d/2 < s0 < 1 + d/2. The map Φε defined in (4.7) belongs to C2(Es,Fs−2), where the functional spaces
are defined in (4.8), for s such that s0 + 2 � s � s1, where s1 is the assumed regularity of the datum a0.

For the values of the parameters given just above, we saw in Section 4.2 that Φε satisfies Assumption 2.4; besides,
Lemma 4.5 states that Assumption 2.10 holds.

Let af be the solution to the free Schrödinger system, and Φ̃ε the family of shifted maps:

af (t, x) := εσ exp

(
−i

t

ε2
A(ε∂x)

)
aε, Φ̃ε := Φε(af + ·).

The family Φ̃ε satisfies Assumptions 2.4 and 2.10, with the same parameters as Φε, by Remarks 2.9 and 2.14. There
holds Φ̃ε(0) := (−εB(af , ε∂x)af ,0), so that∥∥Φ̃ε(0)

∥∥
s
� ε|af |�−1

L∞
(|af |L∞‖af ‖

Hs+1
ε

+ |ε∂xaf |L∞‖af ‖Hs
ε

)
� ε1+σ(�+1)‖aε‖Hs+1

ε
.

Condition (2.26) here takes the form (4.19). Under this condition, Φ̃ε also satisfies Assumption 2.15, and we conclude
by application of Theorem 2.19. �
4.5. Discussion and examples

Condition (4.19) relates the size of the datum in L∞ and H
s1
ε to the space dimension and the homogeneity of the

differential operators in the system of quasilinear Schrödinger equations (4.1).
The following remark explains how Theorem 4.6 extends Rauch and Métivier’s result mentioned in Remark 4.3:

Remark 4.7. In Rauch and Métivier’s result, Theorem 1.5 of [13], or Theorem 8.1.2 of [12], the existence time T ∗
s is

a decreasing function of the initial Sobolev norm ‖εσ aε‖Hs ; there holds T ∗
s → 0 as ε → 0 if the datum tends to +∞

in Hs norm as ε → 0, and T ∗
s → +∞ as ε → 0 if the datum tends to 0 in Hs norm; besides, T ∗

s′ � T ∗
s if s′ � s. This

features are shared with first-order quasilinear symmetric systems.
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The datum in (4.3) satisfies in the concentrating case ‖a0(x/ε)‖H 1+d/2 = O(ε−1), and in the oscillating case
‖a0(x)eix·ξ0/ε‖H 1+d/2 = O(ε−1−d/2). Let σ1 = 1 in the concentrating case and σ1 = 1 + d/2 in the oscillating case,
so that ‖εσ aε‖H 1+d/2 = O(εσ−σ1) in both cases. Let s and s1 be as in Theorem 4.6, and assume that a0 ∈ Hs1 .

Given any s0 > d/2, if σ < σ1, the datum εσ aε is large in H 1+s0 , hence large in Hs1; in particular, T ∗
s1

→ 0 as

ε → 0. Assume now that in addition to σ < σ1, condition (4.19) holds. Then the datum is small in H
1+s0
ε , but the

equation written in ε∂x derivatives, (4.6), has large source terms. Under Assumption 4.1, these terms are not present in
the normal form of the equation, and Theorem 4.6 grants an arbitrarily long existence time in Hs

ε . Thus, Theorem 4.6
extends Theorem 1.5 of [13] (Theorem 8.1.2 of [12]) in the case that both σ < σ1 and condition (4.19) hold, for very
regular data (indeed, s1 � 1 + d/2 in practice, see Remark 2.23).

For concentrating or oscillating data, the values of � and σ that allow both conditions σ < σ1 and (4.19) to hold
are described in the following:

Example 4.8. In two space dimensions, d = 2:

• in the concentrating case, conditions σ < σ1 and (4.19) are incompatible if � = 2 and � = 3, and they hold for
9

2(�+1)
< σ < 1 if � � 4;

• in the oscillating case, conditions σ < σ1 and (4.19) are incompatible if � = 2; they hold for 5
�+1 < σ < 2 if � � 3.

Example 4.9. In three space dimensions, d = 3:

• in the concentrating case, conditions σ < σ1 and (4.19) are incompatible if � = 2 and � = 3, and they hold for
4

�+1 < σ < 1 if � � 4;
• in the oscillating case, conditions σ < σ1 and (4.19) hold for 2 < σ < 5/2 if � = 2; they hold for 11

2(�+1)
< σ < 5/2

if � � 3.

4.6. Pseudo-differential symbols and operators

Given m,s ∈ R, we define the class Γ m
s as the space of symbols σ defined on R

d
x × R

d
ξ , such that, for all k ∈ N,

σ ∈ Ck(Rd
ξ ;Hs(Rd

x)), and

Nm
k,s(σ ) := sup

|β|�k

sup
ξ

(
1 + |ξ |2)(|β|−m)/2∥∥∂

β
ξ σ (·, ξ)

∥∥
Hs

ε
< ∞,

where ‖ · ‖Hs
ε

is defined in (2.8). Symbols in Sm
1,0 that do not depend on x are called Fourier multipliers of order m.

To a symbol σ ∈ Γ m
s , we associate the pseudo-differential operator opε(σ ) defined by its action on S(Rd) as

opε(σ )u := (2π)−d/2
∫
Rd

eix·ξ σ (x, εξ)û(ξ) dξ. (4.20)

Let

Mm
k,k′(σ ) := sup

|β|�k

sup
|β ′|=k′

sup
ζ

(
1 + |ξ |2)(|β|−m)/2∣∣∂β

ξ ∂β ′
x σ (·, ξ)

∣∣
L∞ .

Given a symbol σ ∈ Γ m
s , if s > k′ + d/2, there holds Mm

k,k′(σ ) < ∞.

The following three lemmas describe the action, composition, and adjoints of operators with symbols in Γ m
s , based

on the results of [14,7], and the identity

opε(σ )u = (hε)
−1op1(σ̃ )hε, σ̃ (x, ξ) := σ(εx, ξ), (4.21)

relating classical and semi-classical quantizations, where (hεf )(x) := εd/2f (εx), so that ‖hεf ‖1,s = ‖f ‖ε,s . In the
statements of these results, we shorten Nm

k,s and Mm
k,k′ into Nm

s and Mm
k′ , where it is understood that a certain number

of derivatives in ξ, depending only on d, are involved in the semi-norms.
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Lemma 4.10. Given m ∈ R, s � s0 > d/2, and σ ∈ Γ m
s , for all u ∈ Hs+m, there holds∥∥opε(σ )u

∥∥
Hs

ε
� Mm

0 (σ )‖u‖Hs+m
ε

+ ε−d/2Nm
s (σ )‖u‖

H
s0+m
ε

.

Proof. Use Theorem 1 in [7], and (4.21). �
Lemma 4.11. Let m1,m2, s2 ∈ R, and s0 > d/2. Let σ1 be a Fourier multiplier of order m1, and σ2 ∈ Γ

m2
s2 . If

s2 � s0 + max(m1,0) + 1, there holds

opε(σ1)opε(σ2) − opε(σ1σ2) = εR(σ1, σ2),

where for all s0 � s � s2 − max(m1,0), for all u ∈ Hs+m1+m2−1,∥∥R(σ1, σ2)u
∥∥

Hs
ε

� Mm1
0 (σ1)M

m2
1 (σ2)‖u‖

H
s+m1+m2−1
ε

+ ε−1−d/2Mm1
0 (σ1)N

m2
s+max(m1,0)(σ2)‖u‖

H
s0+m1+m2−max(m1,0)
ε

. (4.22)

Proof. Use Theorem 3(ii) in [7], and (4.21). �
Lemma 4.12. Given m ∈ R, s � 1 + s0 > 1 + d/2, and σ ∈ Γ m

s , there holds for all u ∈ Hs+m−1,∥∥(
opε(σ )∗ − opε

(
σ ∗))u∥∥

Hs
ε

� εM1(σ )‖u‖
Hs+m−1

ε
+ ε−d/2Ns(σ )‖u‖

H
s0+m
ε

.

Proof. A direct consequence of Lemma 4.10 and Proposition B.22 in [14]. �
5. Application: small-amplitude shock profiles for quasilinear relaxation equations with characteristic
velocities

We consider finally the problem of existence of relaxation profiles

U(x, t) = Ū (x − st), lim
z→±∞ Ū (z) = U± (5.1)

of a relaxation system

∂tU + A(U)∂xU = Q(U),

with

U =
(

u

v

)
, A =

(
A11 A12
A21 A22

)
, Q =

(
0
q

)
, (5.2)

in one spatial dimension, u ∈ R
n, v ∈ R

r , where, for some smooth v∗ and f , some θ > 0,

q
(
u,v∗(u)

) ≡ 0, �e σ
(
∂vq

(
u,v∗(u)

))
� −θ < 0, (5.3)

σ(·) denoting spectrum, and

(A11 A12 ) = ( ∂uf ∂vf ) . (5.4)

Here, we are thinking particularly of the case n bounded and r � 1 arising through discretization or moment closure
approximation of the Boltzmann equation or other kinetic models; that is, we seek estimates and proof independent
of the dimension of v. Recall, for Boltzmann’s equation and its finite approximants, that n = 5 is the dimension of
the equilibrium (u) system corresponding to standard gas-dynamical flow, whereas the total dimension n + r may be
arbitrarily large: for example, it is infinite for the continuous Boltzmann equations and 13 for the Grad 13-moment
approximation, with an increasing number of moments as the desired level of accuracy is increased.

For fixed n, r , the existence problem was treated in [23,9] under the additional assumption det(A − sI ) 
= 0 cor-
responding to non-degeneracy of the traveling-wave ODE, using standard center-manifold techniques for amplitudes
U+ − U− sufficiently small. However, as pointed out in [9,10], this assumption is satisfied in general only (by con-
siderations coming from the subcharacteristic condition) for 2 × 2 models r = n = 1, and is unrealistic for larger
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models (n > 1 or r > 1). Moreover, it is not satisfied for the (infinite-dimensional) Boltzmann equations, for which
the eigenvalues of A are constant particle speeds of all values, hence cannot be uniformly satisfied for discrete velocity
or moment closure approximations as the number of modes goes to infinity, at least if they are faithful (consistent)
models of Boltzmann. For, the set of characteristic speeds, given by the eigenvalues of A, in that case must approach
a dense set in the limit as the number of modes goes to infinity, and so A cannot be uniformly invertible. Thus, the
region of validity for such center manifold arguments as in [23,9] in general shrinks to zero as the number of modes
goes to infinity.

A different argument for small-amplitude stability based on Chapman–Enskog expansion and Picard iteration was
presented in [15] for the semilinear case A ≡ constant. This yields results independent of dimension; indeed, with
slight modifications, it has been applied to the infinite-dimensional Boltzmann equation itself [16]. However, in the
quasilinear case, there seems to be an unavoidable loss of derivatives in the iteration process, and so the argument of
[15] does not close. This has been remedied in [17] using the Nash–Moser iteration of the present paper. We describe
this application here in a simplified case that illustrates the main issues while avoiding some technical details; for the
general case, see [17].

5.1. Assumptions

Let f , A, Q ∈ C∞. We assume the following:

(i) f scalar, corresponding to n = 1, u ∈ R.

(ii) A symmetric.
(iii) Q = ( 0 0

0 Q22

)
block diagonal, with �eQ22 := 1

2 (Q22 + QT
22) negative definite and v∗(u) ≡ 0.

(iv) A12 non-vanishing.
(v) f∗(u) := f (u,0) genuinely nonlinear in the sense of Lax, that is d2f∗(u) 
= 0.

In the general case, (ii) and (iii) can be achieved by coordinate transformations [17]. Under (ii) and (iii), condition
(iv) is the Kawashima genuine coupling condition, a consequence of which is that the skew matrix

K :=
(

0 A12
−A21 0

)

satisfies

�e (KA − Q) � cId, (5.5)

for some c > 0, uniformly in x ∈ R. Associated with (5.2) is a scalar viscous conservation law

∂tu + ∂xf∗(u) = ∂x

(
b∗(u)∂xu

)
, (5.6)

obtained by Chapman–Enskog expansion (described partly below), with f∗ defined in (v) above, and

b∗(u) := −A12Q
−1
22 A21(u,0). (5.7)

By our structural assumptions,

�e b∗ � θ > 0. (5.8)

Taking without loss of generality s = 0, we study the traveling-wave ODE

A(U)U ′ = Q(U). (5.9)

5.2. Chapman–Enskog approximation

Integrating the first equation of (5.9), we obtain

f (u, v) = f∗(u±),

A21(u, v)u′ + A22(u, v)v′ = q(u, v), (5.10)
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where f∗ is defined in (v), Section 5.1. Taylor expanding the first equation, we obtain

f∗(u) + fv(u,0)v + O
(
v2) = f∗(u±). (5.11)

Taylor expanding the second equation and inverting ∂vq , we obtain

v = ∂vq(u,0)−1A21(u,0)u′ + O
(|v|2) + O

(|v|∣∣u′∣∣) + O
(∣∣v′∣∣). (5.12)

Substituting (5.12) into (5.11) and rearranging, we obtain the approximate viscous profile ODE

b∗(u)u′ = f∗(u) − f∗(u±) + O
(
v2) + O

(|v|∣∣u′∣∣) + O
(∣∣v′∣∣). (5.13)

Motivated by (5.12)–(5.13), we define an approximate solution (uCE, vCE) of (5.10) by choosing uCE as a solution
of

b∗(uCE)u′
CE = f∗(uCE) − f∗(u±), (5.14)

and vCE as the first approximation given by (5.12)

vCE = c∗(uCE)u′
CE. (5.15)

Here, (5.14) can be recognized as the traveling-wave ODE associated with approximating scalar viscous conservation
law (5.6), with s = 0. From standard scalar ODE considerations (normal forms), we obtain the following description
of solutions.

Proposition 5.1. Under the assumptions of Section 5.1, for u0 such that df∗(u0) = 0, in a neighborhood of (u0, u0)

in R
1 × R

1, there is a smooth curve S passing through (u0, u0), such that for (u−, u+) ∈ S with amplitude ε :=
|u+ −u−| > 0 sufficiently small, the zero speed shock profile equation (5.14) has a unique (up to translation) solution
uCE local to u0. The shock profile is necessarily of Lax type: i.e., with df∗(u−) > 0 > df∗(u+).

Moreover, there is θ > 0 and for all k there is Ck independent of (u−, u+) and ε, such that∣∣∂k
x (uCE − u±)

∣∣ � Ckε
k+1e−θε|x|, x ≷ 0. (5.16)

We denote by S+ the set of (u−, u+) ∈ S with amplitude ε := |u+ −u−| > 0 sufficiently small that the profile uCE

exists. Given (u−, u+) ∈ S+ with associated profile uCE , we define vCE by (5.15) and

UCE := (uCE, vCE). (5.17)

It is an approximate solution of (5.10) in the following sense:

Corollary 5.2. For fixed u− and amplitude ε := |u+ − u−| sufficiently small,

Ru := f (uCE, vCE) − f∗(u±) = O
(∣∣u′

CE

∣∣2) = O
(
ε4e−θε|x|),

Rv := g(uCE, vCE)′ − q(uCE, vCE) = O
(∣∣u′′

CE

∣∣) = O
(
ε3e−θε|x|) (5.18)

satisfy∣∣∂k
x Ru(x)

∣∣ � Ckε
k+4e−θε|x|,∣∣∂k

x Rv(x)
∣∣ � Ckε

k+3e−θε|x|, x ≷ 0, (5.19)

where Ck is independent of (u−, u+) and ε = |u+ − u−|.

Proof. For k = 0, bounds (5.19) follow by expansions (5.11) and (5.12), definitions (5.14) and (5.15), and
bounds (5.16). Bounds for k > 0 follow similarly. �
Remark 5.3. One may continue this process to obtain Chapman–Enskog approximations (uN

CE, vN
CE) to all orders,

with truncation errors (∂k
x RN

u , ∂k
x RN

v ) ∼ (εN+k+4, εN+k+3) [17].
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5.3. Statement of the main theorem

We are now ready to state the main result. Define a base state U0 = (u0,0) with df∗(u0) = 0, and a neighborhood
U of U0.

Theorem 5.4. Under the assumptions of Section 5.1, there are ε0 > 0 and δ > 0 such that for (u−, u+) ∈ S+ with
amplitude ε := |u+ − u−| � ε0, the standing-wave equation (5.9) has a solution Ū in U , with associated Lax-type
equilibrium shock (u−, u+), satisfying for all k:∣∣∂k

x (Ū − UCE)
∣∣ � Ckε

k+2e−δε|x|,∣∣∂k
x (ū − u±)

∣∣ � Ckε
k+1e−δε|x|,∣∣∂k

x (v̄ − v∗(ū)
∣∣ � Ckε

k+2e−δε|x|, x ≷ 0, (5.20)

where UCE = (uCE, vCE) is the approximating Chapman–Enskog profile defined in (5.14), and Ck is independent of ε.
Moreover, up to translation, this solution is unique within a ball of radius cε about UCE in norm

ε−1/2‖ · ‖L2 + ε−3/2‖∂x · ‖L2 + · · · + ε−11/2
∥∥∂5

x ·∥∥
L2, (5.21)

for c > 0 sufficiently small and K sufficiently large.

That is, behavior of profiles is well-described by Chapman–Enskog approximation. By (iii), the equilibrium v∗
in (5.20) is v∗ ≡ 0. Note that UCE − U± is order O(ε) in the norm (5.21), by (5.20)(ii)–(iii). A consequence of the
bounds (5.20), via [11], is that the Chapman–Enskog profiles are spectrally stable; see [17].

5.4. Functional equation and spaces

Defining the perturbation variable U := Ū − UCE , where UCE is defined in (5.17), we obtain from (5.10) the
nonlinear perturbation equations Φε(U) = 0, where

Φε(U) :=
(

f (UCE + U) − f∗(u−)

A21(UCE + U)(uCE + u)′ + A22(UCE + U)(vCE + v)′ − q(UCE + U)

)
. (5.22)

Formally linearizing Φε about a background profile U , we obtain

(Φε)′(U)U =
(

A11u + A12v

A21u
′ + A22v

′ + b2U − ∂vqv

)
, (5.23)

where

A = A(UCE + U), ∂vq = ∂vq(UCE + U),

and

b2U = (
∂u(A21 + A22)(UCE + U) · u + ∂v(A21 + A22)(UCE + U) · v)

(UCE + U)′.
The associated linearized equation for a given forcing term h = (h1, h2) is(

Φε
)′
(U)U = h. (5.24)

The coefficients and the error term R from Corollary 5.2 are smooth functions of UCE and its derivatives, so behave
like smooth functions of εx. Thus, it is natural to solve the equations in spaces which reflect this scaling. We observe
that ∥∥f (ε·)∥∥

L2 = ε−1/2‖f ‖L2 ,
∥∥f (ε·)∥∥

Hs = ε−1/2
s∑

k=0

εk
∥∥∂k

xf
∥∥

L2, (5.25)

in one space dimension, for s ∈ N. We do not introduce explicitly the change of variables x̃ = εx, but introduce
exponentially weighted norms which correspond to usual weighted Hs norms in the x̃ variable: for s ∈ N and δ � 0,

we let, in accordance with (5.25),

‖f ‖ε,δ,s := ε1/2
∑

ε−k
∥∥eδε(1+|·|2)1/2

∂k
xf

∥∥
L2 , (5.26)
0�k�s
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the exponential weight accounting for the exponential decay of the source and the solution. For fixed δ, we introduce
the spaces Es := Hs(R), and Fs := Hs+1(R) × Hs(R), with norms

|h|Es := ‖h‖ε,δ,s ,
∣∣(h1, h2)

∣∣
Fs

:= ‖h1‖ε,δ,s+1 + ‖h2‖ε,δ,s .

In particular, the Chapman–Enskog approximate solution of Section 5.2 satisfies, by (5.16),∣∣∂j
x UCE

∣∣
L∞ � εj+1Cj ,

∣∣∂j+1
x UCE

∣∣
Es

� εj+2Cj,s, for j � 0, (5.27)

where the constants Cj > 0, Cj,s > 0 do not depend on ε, for all s ∈ N.

Remark 5.5. Moser’s inequality in the weighted norms (5.26) is

‖fg‖ε,δ,s � |f |L∞‖g‖ε,δ,s + ‖f ‖ε,δ,s |g|L∞ , s � 0, f, g ∈ L∞ ∩ Hs,

and the Sobolev embedding has norm∣∣∂k
xf

∣∣
L∞ � ε−1/2‖f ‖ε,δ,k+1+[d/2], k � 0, f ∈ Hk+1+[d/2].

5.5. Nash–Moser iteration scheme

Lemma 5.6. The application Φε, defined in (5.22), maps smoothly Es to Fs−1, for any s. It satisfies Assumption 2.4
with s0 = 1, γ0 = γ1 = 1/2, s1 = +∞, and Assumption 2.15, with k = N.

Proof. The bounds of Assumption 2.4, describing the action of Φε and its first two derivatives, follow directly from
Moser’s inequality and the definition of the weighted Sobolev norms. The bound on Φε(0) is immediate from (5.19)
and (5.26). �
Proposition 5.7. Under the assumptions of Theorem 5.4, for ε and δ small enough, the map Φε satisfies Assump-
tion 2.10 with r = 1, r ′ = 0, γ = 1, and κ = 1.

The proof of this proposition is carried out in Section 5.6. Once it is established, existence and uniqueness follow
by Theorems 2.19 and 2.20:

Proof of Theorem 5.4 (Existence). The profile UCE exists if ε is small enough. Comparing, we find that Lemma 5.6,
Proposition 5.7, and Corollary 5.2 verify, respectively, Assumptions 2.4, 2.10, and 2.15 of our Nash–Moser iteration
scheme, with s0 = 3, γ0 = γ1 = 1/2, γ = 1, m = r = 1, r ′ = 0, arbitrary s1, and k = N large enough. Taking s1
sufficiently large, and applying Theorem 2.19, we thus obtain existence of a solution Uε of (5.22) with |Uε|

Hs+1
ε,δ

�
Cε2. Defining Ū ε := Uε

CE + Uε , and noting by Sobolev embedding that |h|
Hs+1

ε,δ
controls |eδε|x|h|L∞ , we obtain the

result. �
Proof of Theorem 5.4 (Uniqueness). Applying Theorem 2.20 for s0 = 3, γ0 = γ1 = 1/2, γ = 1, k = 3, m = r = 1,
r ′ = 0, we obtain uniqueness in a ball of radius cε in H 4

ε,0, c > 0 sufficiently small, under the additional phase
condition (2.33). We obtain unconditional uniqueness from this weaker version by the observation that phase condition
(2.33) may be achieved for any solution Ū = UCE + U with∥∥U ′∥∥

L∞ � cε2 � U ′
CE(0) ∼ ε2

by translation in x, yielding Ūa(x) := Ū (x + a) = UCE(x) + Ua(x) with

Ua(x) := UCE(x + a) − UCE(x) + U(x + a)

so that, defining φ := Ū ′/|Ū ′|, we have ∂a〈φ,Ua〉 ∼ 〈φ,U ′
CE + U ′〉 = 〈φ, (1 + o(1))Ū ′ + U ′〉 = (1 + o(1))|Ū ′| ∼ ε2

and so (by the implicit function theorem applied to h(a) := ε−2〈φ,Ua〉, together with the fact that 〈φ,U0〉 = o(ε) and
that 〈φ, Ū ′

NS〉 ∼ |Ū ′
NS | ∼ ε2) the inner product 〈φ,Ua〉, hence also ΠUa may be set to zero by appropriate choice of

a = o(ε−1) leaving Ua in the same o(ε) neighborhood, by the computation Ua − U0 ∼ ∂aU · a ∼ o(ε−1)ε2. �
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5.6. Linearized estimates

We here carry out the main step in the proof of obtaining corresponding a priori estimates; see Proposition 5.12
below. The remaining step of demonstrating existence for the linearized problem can be carried out by the vanishing
viscosity method as in [16], with viscosity coefficient η > 0, obtaining existence for each positive η by standard
boundary-value theory, and noting that the a priori bounds (5.40) of Proposition 5.12 persist under regularization for
sufficiently small viscosity η > 0, so that we can obtain a weak solution in the limit by extracting a weakly convergent
subsequence. We omit this step, referring the reader to [15, Section 8], for details. The asserted estimates then follow
in the limit by continuity.

The rest of this subsection is devoted to establishing the asserted a priori estimates.

5.6.1. Internal and high frequency estimates
Let s ∈ N, and some background profile U ∈ Hs. We consider Eq. (5.24), and its differentiated form:(

AU ′ − dQ + b
)
U = (

h′
1, h2

)
, (5.28)

in which bU := (b1U,b2U), where b2 is defined in Section 5.4, and b1 is defined similarly, by differentiating the
coefficients A11, A12 in the first line of (5.24). The coefficients A, b, and dQ are smooth functions of UCE + U. The
bound for UCE, (5.27), and the assumed bound for U imply the coefficient bounds{∣∣∂j+1

x C
∣∣
L∞ + ∣∣∂j

x b
∣∣
L∞ � cj ε

2+j , 0 � j � s − 1,∥∥∂k+1
x C

∥∥
L2 + ∥∥∂k

x b
∥∥

L2 � Ckε
1/2+k

(
ε + |U |ε,0,s+1

)
, 0 � k � s,

(5.29)

where C = A,Q,K, the matrix K being the Kawashima multiplier introduced in Section 5.1. In (5.29), the constants

cj depend on |∂j ′
x (UCE + U)|L∞ , for 0 � j ′ � j, while, by the classical Moser’s inequality, the constants Ck depend

on |UCE + U |L∞ .

We give in the following proposition an estimate for the internal variables U ′ = (u′, v′) and v.

Proposition 5.8. For k � 1, for come C > 0, for ε and δ small enough, given h ∈ Fk+1, if U ∈ Hk satisfies (5.28)
with |U |E2 � ε, there holds∣∣∂k

xU ′∣∣
E0

+ ∣∣∂k
x v

∣∣
E0

� C
(∣∣∂k

xH
∣∣
E0

+ εk
(∣∣U ′∣∣

Ek−1
+ ε|v|Ek−1 + ε|u|E0

))
+ Cεk+1|U |Ek+2

(|v|E1 + ε|U |E2

)
, (5.30)

where H = (h1, h
′
1, h

′′
1, h2, h

′
2).

In order to prove Proposition 5.8, we start with an L2 estimate for the internal variables:

Lemma 5.9. For some C > 0, for ε sufficiently small, given (h1, h2) ∈ H 2 × H 1, if U ∈ H 1 satisfies (5.28) with
‖U‖ε,0,2 � ε, there holds∥∥U ′∥∥

L2 + ‖v‖L2 � C
(‖h1‖H 2 + ‖h2‖H 1 + ε‖u‖L2

)
. (5.31)

Sketch of proof. The key is to bound the L2 scalar product (Sh,U)L2 from above and from below, where S is
the symmetrizer S = ∂2

x + ∂x ◦ K − λ, for an appropriate choice of λ ∈ R, using symmetry of A, and positivity of
KA − Q (5.5). A complete proof in given in [17, Section 5.4.1]. �
Proof of Proposition 5.8. We use Lemma 5.9 for ε1/2eδε〈x〉U, which solves (5.28) with the source term

ε1/2eδε〈x〉((h′
1, h2

) + δε〈x〉′ÃU
)
.

This gives∣∣U ′∣∣
E0

+ |v|E0 � C
(|H |E0 + ε|u|E0

)
, (5.32)

i.e., estimate (5.30) with k = 0. Estimate (5.30) with k > 0 is obtained in a similar way, differentiating (5.28) k times.
For more details, see [17, Proposition 5.5]. �
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5.6.2. Linearized Chapman–Enskog estimate
It remains only to estimate the weighted L2 norm |u|E0 in order to close the estimates and establish the bound

claimed in Proposition (5.7). To this end, we work with the first equation in (5.24) and estimate it by comparison
with the Chapman–Enskog approximation of Section 5.2. From the second equation in (5.24), in which, by (5.29),
b = O(ε2), we find, for small ε,

v = (∂vq − b22)
−1(A21u

′ + A22v
′ + b21u − h2

)
, (5.33)

where b2U =: b21u + b22v. Introducing now (5.33) in the first equation of (5.24), we obtain the linearized profile
equation

A12(∂vq − b22)
−1A21u

′ + (
A11 + A12(∂vq − b22)

−1b21
)
u = h�, (5.34)

where h� depends on the source h and on v′, but not on v nor on u:

h� := −A12(∂vq − b22)
−1A22v

′ + h1 + A12(∂vq − b22)
−1h2.

Introduce the notation

b� := (
A12(∂vq − b22)

−1A21
)
(UCE + ·),

f � := (
A11 + A12(∂vq − b22)

−1b21
)
(UCE + ·).

Then (5.34) takes the form(
b�∂x − f �

)
(U)u = −h�. (5.35)

We estimate the solution of (5.35) by the following:

Proposition 5.10. Given U ∈ H 4, with |U |E4 � ε, if ε is sufficiently small, then the operator (b�∂x − f �)(U) has a
right inverse (b�∂x − f �)(U)†, satisfying the bound∥∥(

b�∂x − f �
)
(U)†h

∥∥
E0

� Cε−1‖h‖E0, (5.36)

and uniquely specified by the property that the solution u to (5.35) satisfies

�ε · u(0) = 0 (5.37)

for certain unit vector �ε .

Proof. Working in x̃ = εx coordinates, and noting that ε−1|f �(0) − f �(U±)| ∼ e−θ |x̃|, by (5.16), we obtain using
∂x = ε∂x̃ the equation(

b�∂x̃ − ε−1f �
)
u = ε−1h, u(0) = 0. (5.38)

This is a rather standard boundary-value ODE problem with exponentially convergent coefficients at spatial infinity.
Using the extra condition u(0) = 0, we may break it into a pair of boundary values problems on (−∞,0] and [0,+∞),
each of which, by the Lax condition df∗(u−) > 0 > df∗(u+), implying that there is a one-dimensional manifold of
decaying solutions as x̃ → −∞ or as x̃ → +∞, is well-posed, from Hs

ε,δ to itself, so long as δ is strictly smaller that

ε−1 min |df∗(u±)|. Taking account of the ε−1 factor in the right-hand side of (5.38), we obtain the result. �
Combining Proposition 5.8 with k = 1 and Proposition 5.10, we obtain:

Proposition 5.11. For some C > 0, for ε and δ small enough, given h ∈ F2, and U ∈ H 4 satisfying |U |E4 � ε, if
U = (u, v) ∈ H 2 satisfies (5.24), with u satisfying (5.37), there holds

|U |E2 � Cε−1|h|F2 . (5.39)

Knowing a bound for ‖u‖L2 , Proposition 5.8 implies by induction the following final result.

ε,δ
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Proposition 5.12. For s � 3, for some C > 0, for ε and δ small enough, given h ∈ Fs and U ∈ Hs+1 with |U |E4 � ε,

if U ∈ Hs satisfies (5.24) and (5.37), then

|U |Es � ε−1C
(|U |Es+1 |h|F2 + |h|Fs

)
. (5.40)

Proposition 5.12 can be used to establish Proposition 5.7 by a vanishing viscosity argument; see [15].

5.7. Why Nash–Moser?

We conclude by discussing why we seem to need Nash–Moser to close the argument. Recall the standard proof
of existence for quasilinear symmetric hyperbolic systems ut + A(u)ux = S using energy estimates. One writes an
iteration scheme

un+1
t + A

(
un

)
un+1

x = S,

which gives Hs bounds |un+1|Hs � C|g|Hs so long as |un|Hs is small, and contraction in lower norms on small time
intervals, giving the result.

But, it is easily checked that this does not work for equations in conservative form ut + (A(u)u)x = S, for which

un+1
t + (

A
(
un

)
un+1)

x
= S,

gives Hs bounds |un+1|Hs � C|S|Hs rather for |un|Hs+1 small, hence involves loss of derivatives.
Usually, for a conservative equation ut + f (u)x = S, this is no problem, since we are free to write it in non-

conservative form ut + df (u)ux = S. In the present case, however, it is essential for the key Chapman–Enskog
estimation of the macroscopic variable u that we write the first row of our equation in integrated form f (u, v) = s,
enforcing a linearization A11u + A12v = s̃. But, in the part of our argument in which we control microscopic vari-
ables by energy estimates, we differentiate this equation and group it with the second row, thus leading to a partially
conservative form in which the energy estimates lose a derivative.

That is, the Chapman–Enskog part of our argument does not seem to be compatible with the non-conservative form
needed to close energy estimates without losing a derivative. We have not been able to find a direct way around this
(using some alternative scheme), and so for the moment Nash–Moser iteration appears essential for the argument.
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