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Abstract

We prove global existence of nonnegative weak solutions to a degenerate parabolic system which models the interaction of two
thin fluid films in a porous medium. Furthermore, we show that these weak solutions converge at an exponential rate towards flat
equilibria.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we consider the following system of degenerate parabolic equations{
∂tf = ∂x(f ∂xf ) + R∂x(f ∂xh),

∂th = ∂x(f ∂xf ) + Rμ∂x

[
(h − f )∂xh

] + R∂x(f ∂xh),
(t, x) ∈ (0,∞) × (0,L), (1.1)

which models two-phase flows in porous media under the assumption that the thickness of the two fluid layers is small.
Indeed, the system (1.1) has been obtained in [4] by passing to the limit of small layer thickness in the Muskat problem
studied in [3] (with homogeneous Neumann boundary condition). Similar methods to those presented in [4] have been
used in [6,8], where it is rigorously shown that, in the absence of gravity, appropriate scaled classical solutions of
the Stokes’ and one-phase Hele-Shaw problems with surface tension converge to solutions of thin film equations

∂th + ∂x

(
ha∂3

xh
) = 0,

with a = 3 for Stoke’s problem and a = 1 for the Hele-Shaw problem.
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Fig. 1. The physical setting.

In our setting f is a nonnegative function expressing the height of the interface between the fluids while h � f is
the height of the interface separating the fluid located in the upper part of the porous medium from air, cf. Fig. 1. We
assume that the bottom of the porous medium, which is located at y = 0, is impermeable and that the air is at constant
pressure normalised to be zero. The parameters R and Rμ are given by

R := ρ+
ρ− − ρ+

and Rμ := μ−
μ+

R,

where ρ−, μ− [resp. ρ+, μ+] denote the density and viscosity of the fluid located below [resp. above] in the porous
medium. Of course, we have to supplement system (1.1) with initial conditions

f (0) = f0, h(0) = h0, x ∈ (0,L), (1.2)

and we impose no-flux boundary conditions at x = 0 and x = L:

∂xf = ∂xh = 0, x = 0,L. (1.3)

It turns out that the system is parabolic if we assume that h0 > f0 > 0 and R > 0, that is, the denser fluid lies
beneath. Existence and uniqueness of classical solutions to (1.1) have been established in this parabolic setting in [4].
Furthermore, it is also shown that the steady states of (1.1) are flat and that they attract at an exponential rate in H 2

solutions which are initially close by.
In this paper we are interested in the degenerate case which appears when we allow f0 = 0 and h0 = f0 on

some subset of (0,L). Owing to the loss of uniform parabolicity, existence of classical solutions can no longer be
established by using parabolic theory and we have to work within an appropriate weak setting. Furthermore, the
system is quasilinear and, as a further difficulty, each equation contains highest order derivatives of both unknowns
f and h, i.e. it is strongly coupled. In order to study the problem (1.1) we shall employ some of the methods used in
[2] to investigate the spreading of insoluble surfactant. However, in our case the situation is more involved since we
have two sources of degeneracy, namely when f and g := h − f become zero. It turns out that by choosing (f, g) as
unknowns, the system (1.1) is more symmetric:{

∂tf = (1 + R)∂x(f ∂xf ) + R∂x(f ∂xg),

∂tg = Rμ∂x(g∂xf ) + Rμ∂x(g∂xg),
(t, x) ∈ (0,∞) × (0,L), (1.4)

since, up to multiplicative constants, the first equation can be obtained from the second by simply interchanging f

and g. Corresponding to (1.4) we introduce the following energy functionals:

E1(f, g) :=
L∫

0

[
(f lnf − f + 1) + R

Rμ

(g lng − g + 1)

]
dx

and

E2(f, g) :=
L∫

0

[
f 2 + R(f + g)2]dx.

It is not difficult to see that both energy functionals E1 and E2 dissipate along classical solutions of (1.4). While in the
classical setting the functional E2 plays an important role in the study of the stability properties of equilibria [4], in
the weak setting we strongly rely on the weaker energy E1 which, nevertheless, provides us with suitable estimates
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for solutions of a regularised problem and enables us to pass to the limit to obtain weak solutions. Note also that E1
appears quite natural in the context of (1.4), while, when considering (1.1), one would not expect to have an energy
functional of this form.

Our main results read as follows:

Theorem 1.1. Assume that R > 0, Rμ > 0. Given f0, g0 ∈ L2((0,L)) with f0 � 0 and g0 � 0 there exists a global
weak solution (f, g) of (1.4) satisfying

(i) f � 0, g � 0 in (0, T ) × (0,L),

(ii) f,g ∈ L∞((0, T ),L2((0,L))) ∩ L2((0, T ),H 1((0,L))),

for all T > 0 and

L∫
0

f (T )ψ dx −
L∫

0

f0ψ dx = −
T∫

0

L∫
0

(
(1 + R)f ∂xf + Rf ∂xg

)
∂xψ dx dt,

L∫
0

g(T )ψ dx −
L∫

0

g0ψ dx = −Rμ

T∫
0

L∫
0

(g∂xf + g∂xg)∂xψ dx dt

for all ψ ∈ W 1∞((0,L)). Moreover, the weak solutions satisfy

(a)
∥∥f (T )

∥∥
1 = ‖f0‖1,

∥∥g(T )
∥∥

1 = ‖g0‖1,

(b) E1
(
f (T ), g(T )

) +
T∫

0

L∫
0

[
1

2
|∂xf |2 + R

1 + 2R
|∂xg|2

]
dx dt � E1(f0, g0),

(c) E2
(
f (T ), g(T )

) +
T∫

0

L∫
0

[
f

(
(1 + R)∂xf + R∂xg

)2 + RRμg(∂xf + ∂xg)2]dx dt � E2(f0, g0)

for almost all T ∈ (0,∞).

Remark 1.2. If f0 = 0 for instance, a solution to (1.4) is (0, g) where g solves the classical porous medium equation
∂tg = Rμ∂x(g∂xg) in (0,∞) × (0,L) with homogeneous Neumann boundary conditions and initial condition g0.

Additionally to the existence result, we show that the weak solutions constructed in Theorem 1.1 converge at an
exponential rate towards the unique flat equilibrium (which is determined by mass conservation) in the L2-norm:

Theorem 1.3 (Exponential stability). Under the assumptions of Theorem 1.1, there exist positive constants M and ω

such that∥∥∥∥∥f (t) − 1

L

L∫
0

f0 dx

∥∥∥∥∥
2

2

+
∥∥∥∥∥g(t) − 1

L

L∫
0

g0 dx

∥∥∥∥∥
2

2

� Me−ωt for a.e. t � 0.

Remark 1.4. Theorem 1.3 suggests that degenerate solutions become classical after evolving over a certain finite
period of time, and therefore would converge in the H 2-norm towards the corresponding equilibrium, cf. [4].

The outline of the paper is as follows. In Section 2 we regularise the system (1.4) and prove that the regularised
system has global classical solutions, the global existence being a consequence of their boundedness away from
zero and in H 1((0,L)). The purpose of the regularisation is twofold: on the one hand, the regularised system is
expected to be uniformly parabolic and this is achieved by modifying (1.4) and the initial data such that the comparison
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principle applied to each equation separately guarantees that f � ε and g � ε for some ε > 0. On the other hand, the
regularised system is expected to be weakly coupled, a property which is satisfied by a suitable mollification of ∂xg

in the first equation of (1.4) and ∂xf in the second equation of (1.4). The energy functional E1 turns out to provide
useful estimates for the regularised system as well. In Section 3 we show that the classical global solutions of the
regularised problem converge, in appropriate norms, towards a weak solution of (1.4), and that they satisfy similar
energy inequalities as the classical solutions of (1.4) for both energy functionals E1 and E2. Finally, we give a detailed
proof of Theorem 1.3.

Throughout the paper, we set Lp := Lp((0,L)) and W 1
p := W 1

p((0,L)) for p ∈ [1,∞], and H 2α := H 2α((0,L)) for
α ∈ [0,1]. We also denote positive constants that may vary from line to line and depend only on L, R, Rμ, and (f0, g0)

by C or Ci , i � 1. The dependence of such constants upon additional parameters will be indicated explicitly.

2. The regularised system

In this section we introduce a regularised system which possesses global solutions provided they are bounded in
H 1 and also bounded away from zero. In Section 3 we show that these solutions converge towards weak solutions
of (1.4).

We fix two nonnegative functions f0 and g0 in L2 (the initial data of system (1.4)) and first introduce the space

H 2
B := {

f ∈ H 2((0,L)): ∂xf (0) = ∂xf (L) = 0
}
.

We note that for each ε > 0, the elliptic operator (1 − ε2∂2
x ) : H 2

B → L2 is an isomorphism. This property is preserved
when considering the restriction(

1 − ε2∂2
x

) : {f ∈ C2+α
([0,L]): ∂xf (0) = ∂xf (L) = 0

} → Cα
([0,L]), α ∈ (0,1).

Given f,g ∈ L2, we let then

Fε := (
1 − ε2∂2

x

)−1
f, Gε := (

1 − ε2∂2
x

)−1
g, (2.1)

and consider the following regularised problem{
∂tfε = (1 + R)∂x(fε∂xfε) + R∂x

(
(fε − ε)∂xGε

)
,

∂tgε = Rμ∂x

(
(gε − ε)∂xFε

) + Rμ∂x(gε∂xgε),
(t, x) ∈ (0,∞) × (0,L), (2.2a)

supplemented with homogeneous Neumann boundary conditions

∂xfε = ∂xgε = 0, x = 0,L, (2.2b)

and with regularised initial data

fε(0) = f0ε := (
1 − ε2∂2

x

)−1
f0 + ε, gε(0) = g0ε := (

1 − ε2∂2
x

)−1
g0 + ε. (2.2c)

Note that the regularised initial data (f0ε, g0ε) ∈ H 2
B × H 2

B and, invoking the elliptic maximum principle, we have

f0ε � ε, g0ε � ε. (2.3)

Letting F0ε := (1− ε2∂2
x )−1f0 and G0ε := (1− ε2∂2

x )−1g0, we obtain by multiplying the relation F0ε − ε2∂2
xF0ε = f0

by F0ε and integrating over (0,L) the following relation

‖F0ε‖2
2 + ε2‖∂xF0ε‖2

2 =
L∫

0

f0F0ε dx � ‖f0‖2‖F0ε‖2,

which gives a uniform L2-bound for the regularised initial data:

‖f0ε‖2 � ‖f0‖2 + ε
√

L and ‖g0ε‖2 � ‖g0‖2 + ε
√

L. (2.4)

Concerning the solvability of problem (2.2), we use quasilinear parabolic theory, as presented in [1], to prove the
following result:
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Theorem 2.1. For each ε ∈ (0,1) problem (2.2) possesses a unique global nonnegative solution Xε := (fε, gε) with

fε, gε ∈ C
([0,∞),H 1) ∩ C

(
(0,∞),H 2

B
) ∩ C1((0,∞),L2

)
.

Moreover, we have

fε � ε, gε � ε for all (t, x) ∈ (0,∞) × (0,L).

In order to prove this global result, we establish the following lemma which gives a criterion for global existence
of classical solutions of (2.2):

Lemma 2.2. Given ε ∈ (0,1), the problem (2.2) possesses a unique maximal strong solution Xε = (fε, gε) on a
maximal interval [0, T+(ε)) satisfying

fε, gε ∈ C
([

0, T+(ε)
)
,H 1) ∩ C

((
0, T+(ε)

)
,H 2

B
) ∩ C1((0, T+(ε)

)
,L2

)
.

Moreover, if for every T < T+(ε) there exists C(ε,T ) > 0 such that

fε � ε/2 + C(ε,T )−1, gε � ε/2 + C(ε,T )−1, and max
t∈[0,T ]

∥∥Xε(t)
∥∥

H 1 � C(ε,T ), (2.5)

then the solution is globally defined, i.e. T+(ε) = ∞.

Proof. Let ε ∈ (0,1) be fixed. To lighten our notation we omit the subscript ε in the remainder of this proof. Note
first that problem (2.2) has a quasilinear structure, in the sense that (2.2) is equivalent to the system of equations:⎧⎨⎩

∂tX + A(X)X = F(X) in (0,∞) × (0,L),

BX = 0 on (0,∞) × {0,L},
X(0) = X0 on (0,L),

(2.6)

where the new variable is X := (f, g) with X0 = (f0, g0), and the operators B and F are respectively given by

BX := ∂xX, F (X) := ∂x

(
R(f − ε)∂xG

Rμ(g − ε)∂xF

)
.

Letting

a(X) :=
(

(1 + R)f 0
0 Rμg

)
,

the operator A is defined by the relation A(X)Y := −∂x(a(X)Y ). We shall prove first that (2.6) has a weak solution
defined on a maximal time interval, for which we have a weak criterion for global existence. We then improve in
successive steps the regularity of the solution to show that it is actually a classical solution, so that this criterion
guarantees also global existence of classical solutions.

Given α ∈ [0,1], the complex interpolation space H 2α
B := [L2,H

2
B]α is known to satisfy, cf. [1],

H 2α
B =

{
H 2α, α � 3/4,

{f ∈ H 2α: ∂xf = 0 for x = 0,L}, α > 3/4.

Furthermore, for each β ∈ (1/2,2] we define the set

V β

B := {
f ∈ H

β

B : ε/2 < f
}
,

which is open in H 2
B. Choose now γ := 1/2 − 2ξ > 0, where ξ ∈ (0,1/18). We infer from (2.2c), that X0 ∈

V 1−ξ

B × V 1−ξ

B . In order to obtain existence of a unique weak solution of (2.6) we verify the assumptions of [1, Theo-
rem 13.1]. With the notation of [1, Theorem 13.1] we define

(σ, s, r, τ ) := (3/2 − 3ξ,1 + ξ,1 − ξ,−ξ), 2α̂ := 3/2 − 3ξ.

Since 1−ξ −1/2 > γ, we conclude that V 1−ξ

B ⊂ Cγ ([0,L]), meaning that the elements of a(X) belong to Cγ ([0,L])
for X ∈ V 1−ξ × V 1−ξ . Since a(X) is positive definite, we conclude in virtue of γ > 2α̂ − 1 that
B B
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(A, B) ∈ C1−(
V 1−ξ

B × V 1−ξ

B , E α̂(0,L)
)
,

the notation E α̂(0,L) being defined in [1, Sections 4 and 8]. Moreover, since (1 − ε2∂2
x )−1 ∈ L(L2,H

2
B) we also have

F ∈ C1−(
V 1−ξ × V 1−ξ ,H−ξ

)
,

whereby, in the notation of [1], H−ξ = H
−ξ

B because |ξ | < 1/2, cf. [1, Eq. (7.5)]. Thus, we find all the assumptions of

[1, Theorem 13.1] fulfilled, and conclude that, for each X0 ∈ V 2
B , there exists a unique maximal weak H

3/2−ξ

B -solution
X = (f, g) of (2.6), that is

f,g ∈ C
([0, T+), V 1−ξ

B
) ∩ C

(
(0, T+),H

3/2−ξ

B
) ∩ C1((0, T+),H

−1/2−3ξ

B
)
,

and the first equation of (2.6) is satisfied for all t ∈ (0, T+) when testing with functions belonging to H
1/2+3ξ

B . More-

over, if X|[0, T ] is bounded in H 1
B × H 1

B and bounded away from ∂V 1−ξ

B for all T > 0, then T+ = ∞, which yields
the desired criterion (2.5).

We show now that this weak solution has even more regularity, to conclude in the end that the existence time of
the strong solution of (2.6) coincides with that of the weak solution (of course they are identical on each interval
where they are defined). Indeed, given δ > 0, it holds that X ∈ C([δ, T+),H

3/2−3ξ

B )∩C1([δ, T+),H
−1/2−3ξ

B ). Hence,
if 0 < 2ρ < 2, we conclude from [1, Theorem 7.2] and [7, Proposition 1.1.5] that X is actually Hölder continuous

X ∈ Cρ
([δ, T+),H

3/2−3ξ−2ρ

B
)
.

Choosing ρ := ξ and μ := 1 − 6ξ > 0, we have that H
3/2−3ξ−2ρ

B ↪→ Cμ([0,L]), so that the elements of the matrix
a(X(t)) belong to Cμ([0,L]) for all t ∈ [δ, T+). Defining 2μ̂ := 2 − 8ξ > 0, we observe that μ > 2μ̂ − 1 and(

A(X), B
) ∈ Cρ

([δ, T+), E μ̂((0,L))
)
.

Finally, with 2ν := 3/2 + ξ , our choice for ξ implies(
X(δ),F (X)

) ∈ H 2ν−2
B × Cρ

([δ, T+),H
−ξ

B
) ⊂ H 2ν−2

B × Cρ
([δ, T+),H 2ν−2

B
)
,

and the assertions of [1, Theorem 11.3] are all fulfilled. Whence, the linear problem⎧⎨⎩
∂tY + A(X)Y = F(X) in (δ, T+) × (0,L),

BY = 0 on (δ, T+) × {0,L},
Y (δ) = X(δ) on (0,L),

(2.7)

possesses a unique strong H 2ν -solution Y , that is

Y ∈ C
([δ, T+),H 2ν−2

B × H 2ν−2
B

) ∩ C
(
(δ, T+),H 2ν

B × H 2ν
B

) ∩ C1((δ, T+),H 2ν−2
B × H 2ν−2

B
)
.

In view of [1, Remark 11.1] we conclude that both X and Y are weak H
3/2−3ξ

B -solutions of (2.7), whence we infer
from [1, Theorem 11.2] that X = Y, and so

f,g ∈ C
([δ, T+),H

−1/2+ξ

B
) ∩ C

(
(δ, T+),H

3/2+ξ

B
) ∩ C1((δ, T+),H

−1/2+ξ

B
)
.

Interpolating as we did previously and taking into account that δ was arbitrarily chosen, we have f,g ∈
Cθ([δ, T+),C1+θ ([0,L])) if we set 4θ � ξ. Hence, we find that(

X(δ),
(
A(X),F (X)

)) ∈ L2 × Cθ
([δ, T+), H

(
H 2

B × H 2
B,L2 × L2

) × (L2 × L2)
)
,

where H(H 2
B ×H 2

B,L2 ×L2) denotes the set of linear operators in L2 ×L2 with domain H 2
B ×H 2

B which are negative
infinitesimal generators of analytic semigroups on L2 × L2, and, in virtue of [1, Theorem 10.1],

X ∈ C
(
(δ, T+),H 2

B × H 2
B
) ∩ C1((δ, T+),L2 × L2

)
for all δ ∈ (0, T+). Hence, the strong solution of (2.6), which is obtained by applying [1, Theorem 12.1] to that
particular system, exists on [0, T+) and the proof is complete. �
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The remainder of this section is devoted to prove that T+(ε) = ∞ for the strong solution (fε, gε) of (2.2) con-
structed in Lemma 2.2. In view of Lemma 2.2, it suffices to prove that (fε, gε) are a priori bounded in H 1 and
away from zero. Concerning the latter, we note that we may apply the parabolic maximum principle to each equation
of the regularised system (2.2a) separately. Indeed, owing to the boundary conditions (2.2b), the constant function
(t, x) 
→ ε solves the first equation of (2.2a) and (2.2b) while we have f0ε � ε by (2.2c). Consequently, fε � ε in
[0, T+(ε)) × [0,L] and, using a similar argument for gε , we conclude that

fε � ε, gε � ε for all (t, x) ∈ [
0, T+(ε)

) × (0,L). (2.8)

Next, owing to (2.2b) and the nonnegativity of fε and gε , it readily follows from (2.2a) that the L1-norm of fε and gε

is conserved in time, that is,∥∥fε(t)
∥∥

1 = ‖f0ε‖1 = ‖f0‖1 + εL,
∥∥gε(t)

∥∥
1 = ‖g0ε‖1 = ‖g0‖1 + εL (2.9)

for all t ∈ [0, T+(ε)). The next step is to improve the previous L1-bound to an H 1-bound as required by Lemma 2.2.
To this end, we shall use the energy E1 for the regularised problem, see (2.13) below. As a preliminary step, we collect
some properties of the functions (Fε,Gε) defined in (2.1) in the next lemma.

Lemma 2.3. For all t ∈ (0, T+(ε))∥∥Fε(t)
∥∥

2 �
∥∥fε(t)

∥∥
2,

∥∥Gε(t)
∥∥

2 �
∥∥gε(t)

∥∥
2, (2.10)∥∥∂xFε(t)

∥∥
2 �

∥∥∂xfε(t)
∥∥

2,
∥∥∂xGε(t)

∥∥
2 �

∥∥∂xgε(t)
∥∥

2, (2.11)

ε
∥∥∂2

xFε(t)
∥∥

2 �
∥∥∂xfε(t)

∥∥
2, ε

∥∥∂2
xGε(t)

∥∥
2 �

∥∥∂xgε(t)
∥∥

2. (2.12)

Proof. The proof of (2.10) is similar to that of (2.4). We next multiply the equation Fε − ε2∂2
xFε = fε by −∂2

xFε ,
integrate over (0,L) and use the Cauchy–Schwarz inequality to estimate the right-hand side and obtain (2.11)
and (2.12). �
Lemma 2.4. Given T ∈ (0, T+(ε)), we have that

E1
(
fε(T ), gε(T )

) +
T∫

0

L∫
0

(
1

2
|∂xfε|2 + R

1 + 2R
|∂xgε|2

)
dx dt � E1

(
fε(0), gε(0)

)
. (2.13)

Proof. Using (2.11) and Hölder’s inequality, we get

d

dt
E1(fε, gε) =

L∫
0

∂t

(
fε log(fε)

) + R

Rμ

∂t

(
gε log(gε)

)
dx

= −
L∫

0

(
(1 + R)|∂xfε|2 + R

fε − ε

fε

∂xfε∂xGε + R
gε − ε

gε

∂xgε∂xFε + R|∂xgε|2
)

dx

� −(1 + R)‖∂xfε‖2
2 + R‖∂xfε‖2‖∂xGε‖2 + R‖∂xgε‖2‖∂xFε‖2 − R‖∂xgε‖2

2

� −1

2
‖∂xfε‖2

2 −
(

1 + 2R

2
‖∂xfε‖2

2 − 2R‖∂xfε‖2‖∂xgε‖2 + R‖∂xgε‖2
2

)
� −1

2
‖∂xfε‖2

2 − R

1 + 2R
‖∂xgε‖2

2.

Integrating with respect to time, we obtain the desired assertion. �
Since z ln z − z + 1 � 0 for all z ∈ [0,∞), relation (2.13) gives a uniform estimate in (ε, t) ∈ (0,1) × (0, T+(ε))

of (∂xfε, ∂xgε) in L2((0, T ),L2 × L2) in dependence only of the initial condition (f0, g0). Indeed, on the one hand,
since ln z � z − 1 for all z ∈ [0,∞), we have
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z ln z − z + 1 � z(z − 1) − (z − 1) = (z − 1)2 for all z � 0, (2.14)

so that

E1(f0ε, g0ε) �
L∫

0

(
(f0ε − 1)2 + R

Rμ

(g0ε − 1)2
)

dx � C1 (2.15)

for all ε ∈ (0,1) by (2.4). On the other hand, owing to the Poincaré–Wirtinger inequality and (2.9), we have∥∥fε(t)
∥∥

2 �
∥∥∥∥fε(t) − 1

L

∥∥fε(t)
∥∥

1

∥∥∥∥
2
+ ‖fε(t)‖1√

L
� C

(∥∥∂xfε(t)
∥∥

2 + 1
)
.

A similar bound being available for gε , we infer from (2.13), (2.15), and the nonnegativity of E1 that, for T ∈
(0, T+(ε)),

T∫
0

(∥∥fε(t)
∥∥2

H 1 + ∥∥gε(t)
∥∥2

H 1

)
dt � C

T∫
0

(
1 + ∥∥∂xfε(t)

∥∥2
2 + ∥∥∂xgε(t)

∥∥2
2

)
dt

� C
[
T + E1(f0ε, g0ε)

]
� C2(T ). (2.16)

We next use this estimate to prove that the solution (fε, gε) of (2.2) is bounded in L∞((0, T ),H 1 × H 1) for all
T < T+(ε). While the estimates were independent of ε up to now, the next ones have a strong dependence upon ε

which explains the need of a regularisation of the original system.

Lemma 2.5. Given (ε, T ) ∈ (0,1) × (0, T+(ε)), there exists a constant C(ε,T ) > 0 such that the solution (fε, gε) of
(2.2) fulfills∥∥fε(t)

∥∥
H 1 + ∥∥gε(t)

∥∥
H 1 � C(ε,T ) for all t ∈ [0, T ]. (2.17)

Proof. We prove first the bound for fε . Given z ∈ R, let q(z) := z2/2. With this notation, the first equation of (2.2a)
reads

∂tfε − (1 + R)∂2
xq(fε) = R∂x

(
(fε − ε)∂xGε

)
.

Multiplying this relation by ∂tq(fε) and integrating over (0,L), we get

L∫
0

∂tfε∂tq(fε) dx − (1 + R)

L∫
0

∂2
xq(fε)∂tq(fε) dx = R

L∫
0

∂x

(
(fε − ε)∂xGε

)
∂tq(fε) dx.

Using an integration by parts and Young’s inequality, we come to the following inequality

‖√fε∂tfε‖2
2 + 1 + R

2

d

dt

∥∥∂xq(fε)
∥∥2

2 � 1

2
‖√fε∂tfε‖2

2 + R2

2

L∫
0

fε

[
∂x

(
(fε − ε)∂xGε

)]2
dx.

Whence, we have shown that

‖√fε∂tfε‖2
2 + (1 + R)

d

dt

∥∥∂xq(fε)
∥∥2

2 � R2

L∫
0

[
f 3

ε

(
∂2
xGε

)2 + fε(∂xfε)
2(∂xGε)

2]dx, (2.18)

and the second term on the right-hand side of (2.18) may be estimated, in view of (2.8), by

L∫
0

fε(∂xfε)
2(∂xGε)

2 dx � 1

ε

L∫
0

f 2
ε (∂xfε)

2(∂xGε)
2 dx = 1

ε

L∫
0

(
∂xq(fε)

)2
(∂xGε)

2 dx

� 1‖∂xGε‖2∞
∥∥∂xq(fε)

∥∥2
2.
ε
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Now, since Gε is the solution of Gε −ε2∂2
xGε = gε with homogeneous Neumann boundary conditions at x = 0,L, and

gε � ε, the elliptic maximum principle guarantees that Gε � ε. Hence, −ε2∂2
xGε � gε , and therefore, for x ∈ (0,L),

−ε2∂xGε(x) �
x∫

0

gε dx � ‖gε‖1 and ε2∂xGε(x) �
L∫

x

gε dx � ‖gε‖1,

so that ε2‖∂xGε‖∞ � ‖gε‖1. In view of (2.9), we arrive at

L∫
0

fε(∂xfε)
2(∂xGε)

2 dx � 1

ε5
‖gε‖2

1

∥∥∂xq(fε)
∥∥2

2 � C(ε)
∥∥∂xq(fε)

∥∥2
2. (2.19)

Concerning the first term on the right-hand side of (2.18), it follows from (2.8) and (2.12) that

L∫
0

f 3
ε

(
∂2
xGε

)2
dx � 1

ε

L∫
0

f 4
ε

(
∂2
xGε

)2
dx � 4

ε

∥∥q(fε)
∥∥2

∞
∥∥∂2

xGε

∥∥2
2 � 4

ε3

∥∥q(fε)
∥∥2

∞‖∂xgε‖2
2.

In order to estimate ‖q(fε)‖∞, we choose xε ∈ (0,L) such that Lfε(xε) = ‖fε‖1. By the fundamental theorem of
calculus, we get

q(fε)(x) = q(fε)(xε) +
x∫

xε

∂xq(fε) dx � 1

2L2
‖fε‖2

1 + √
L

∥∥∂xq(fε)
∥∥

2 for all x ∈ (0,L).

Summarising, we obtain in view of (2.18) and (2.19), that

d

dt

∥∥∂xq(fε)
∥∥2

2 � C(ε)
(
1 + ‖∂xgε‖2

2

)(
1 + ∥∥∂xq(fε)

∥∥2
2

)
, (2.20)

and from (2.16) and (2.20)

∥∥∂xq
(
fε(t)

)∥∥2
2 �

(
1 + ∥∥∂xq(f0ε)

∥∥2
2

)
exp

(
C(ε)

t∫
0

(
1 + ‖∂xgε‖2

2

)
ds

)
� C(ε,T ), t ∈ [0, T ].

Since fε � ε, we then have∥∥∂xfε(t)
∥∥2

2 � C(ε,T ) for all t ∈ [0, T ].
Using (2.9) and the Poincaré–Wirtinger inequality, we finally obtain that∥∥fε(t)

∥∥
H 1 � C(ε,T ) for all t ∈ [0, T ].

Moreover, due to the symmetry of (2.2a), gε satisfies the same estimate as fε, and this completes our argument. �
Proof of Theorem 2.1. The proof is a direct consequence of Lemma 2.2, the lower bounds (2.8), and Lemma 2.5. �

We end this section by showing that, though E2 is not dissipated along the trajectories of the regularised sys-
tem (2.2), a functional closely related to E2 is almost dissipated, with non-dissipative terms of order ε.

Lemma 2.6. For ε ∈ (0,1) and T > 0, we have

E2,ε

(
fε(T ), gε(T )

) +
T∫

0

[
fε

∣∣(1 + R)∂xfε + R∂xGε

∣∣2 + RRμgε

∣∣∂x(Fε + gε)
∣∣2]

dt

� E2,ε(f0ε, g0ε) + εC2

T∫
�ε(t) dt, (2.21)
0
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with �ε := ‖∂xfε‖2
2 + ‖∂xgε‖2

2 and

2E2,ε(fε, gε) := (1 + R)‖fε‖2
2 + R‖gε‖2

2 + R

L∫
0

(Fεgε + Gεfε) dx. (2.22)

Proof. We multiply the first equation of (2.2) by (1 + R)fε + RGε and integrate over (0,L) to obtain

L∫
0

∂tfε

(
(1 + R)fε + RGε

)
dx = −

L∫
0

fε

(
(1 + R)∂xfε + R∂xGε

)2
dx + I1,ε (2.23)

with

I1,ε := εR

L∫
0

∂xGε

(
(1 + R)∂xfε + R∂xGε

)
dx.

Thanks to Hölder’s inequality and (2.11), we have

|I1,ε| � εR(1 + R)
(‖∂xGε‖2‖∂xfε‖2 + ‖∂xGε‖2

2

)
� εC

(‖∂xfε‖2
2 + ‖∂xgε‖2

2

)
. (2.24)

Similarly, multiplying the second equation of (2.2) by R(Fε + gε) and integrating over (0,L) give

R

L∫
0

∂tgε(Fε + gε) dx = −RRμ

L∫
0

gε(∂xFε + ∂xgε)
2 dx + I2,ε (2.25)

with

I2,ε := εRRμ

L∫
0

∂xFε∂x(Fε + gε) dx.

Using again Hölder’s inequality and (2.11), we obtain

|I2,ε| � εRRμ

(‖∂xFε‖2
2 + ‖∂xgε‖2‖∂xFε‖2

)
� εC

(‖∂xfε‖2
2 + ‖∂xgε‖2

2

)
. (2.26)

Observing that

L∫
0

∂tfε

(
(1 + R)fε + RGε

)
dx + R

L∫
0

∂tgε(Fε + gε) dx

= 1 + R

2

d

dt
‖fε‖2

2 + R

L∫
0

Gε

(
∂tFε − ε2∂2

x ∂tFε

)
dx + R

2

d

dt
‖gε‖2

2 + R

L∫
0

Fε

(
∂tGε − ε2∂2

x ∂tGε

)
dx

= 1

2

d

dt

(
(1 + R)‖fε‖2

2 + R‖gε‖2
2 + 2R

L∫
0

FεGε dx

)
+ ε2R

L∫
0

(∂xGε∂t∂xFε + ∂xFε∂t ∂xGε) dx

= 1

2

d

dt

(
(1 + R)‖fε‖2

2 + R‖gε‖2
2 + 2R

L∫
0

(
FεGε + ε2∂xFε∂xGε

)
dx

)
,

we sum (2.23) and (2.25), use (2.24) and (2.26) to obtain



J. Escher et al. / Ann. I. H. Poincaré – AN 28 (2011) 583–598 593
1

2

d

dt

(
(1 + R)‖fε‖2

2 + R‖gε‖2
2 + 2R

L∫
0

(
FεGε + ε2∂xFε∂xGε

)
dx

)

� −
L∫

0

fε

(
(1 + R)∂xfε + R∂xGε

)2
dx − RRμ

L∫
0

gε(∂xFε + ∂xgε)
2 dx + εC2�ε.

Since

2

L∫
0

(
FεGε + ε2∂xFε∂xGε

)
dx =

L∫
0

(
2FεGε − ε2Gε∂

2
xFε − ε2Fε∂

2
xGε

)
dx

=
L∫

0

(Gεfε + Fεgε) dx,

the claimed inequality follows from the above two identities after integration with respect to time. �
3. Weak solutions

Given T ∈ (0,∞], we let QT := (0, T ) × (0,L). Furthermore, given ε ∈ (0,1), we let (fε, gε) be the global
strong solution of the regularised problem (2.2) constructed in Theorem 2.1. We shall prove that (fε, gε) converges,
in appropriate function spaces over QT , towards a pair of functions (f, g) which turns out to be a weak solution of
(1.4) in the sense of Theorem 1.1.

Recall that, by (2.8), (2.4), (2.9), and (2.13), (fε, gε) satisfies the following estimates

(a) fε � ε, gε � ε on Q∞,

(b) ‖f0ε‖2 + ‖g0ε‖2 � ‖f0‖2 + ‖g0‖2 + 2
√

L,

(c)
∥∥fε(t)

∥∥
1 = ‖f0‖1 + εL,

∥∥gε(t)
∥∥

1 = ‖g0‖1 + εL, (3.1)

(d) E1
(
fε(t), gε(t)

) +
t∫

0

(
1

2
‖∂xfε‖2

2 + R

1 + 2R
‖∂xgε‖2

2

)
ds � E1

(
fε(0), gε(0)

)
,

for t � 0. Using (3.1), we show that:

Lemma 3.1 (Uniform estimates). Let h ∈ {f,g,F,G}. There exists a positive constant C4(T ) such that, for all (ε, T ) ∈
(0,1) × (0,∞), we have

(i)

T∫
0

(∥∥hε(t)
∥∥2

H 1 + ∥∥hε(t)
∥∥3

3

)
dt � C4(T ), (3.2)

(ii)

T∫
0

∥∥∂thε(t)
∥∥6/5

(W 1
6 )′ dt � C4(T ). (3.3)

Proof. The estimate for hε in L2(0, T ,H 1) is obtained from the energy estimate (2.13), by taking also into account
relations (2.9), (2.10), (2.11), (2.15), the nonnegativity of E1, and the Poincaré–Wirtinger inequality as in the proof
of (2.16). In order to prove the second estimate of (3.2), we note that, since H 1 is continuously embedded in L∞ and
(fε) is bounded in L2(0, T ,H 1), (fε) is uniformly bounded with respect to ε in L∞(0,∞;L1)∩L2(0, T ;L∞) for all
T > 0. The claimed L3-bound then follows from the inequality ‖fε‖3

3 � ‖fε‖2∞‖fε‖1. Next, an obvious consequence
of the definition of Fε is that ‖Fε‖p � ‖fε‖p for p ∈ [1,∞], from which we deduce the expected bound in L3 for (Fε).
A similar argument shows that (gε) and (Gε) satisfy the second estimate in (3.2).
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In order to prove (ii), consider first h ∈ {f,g}. From (3.2) and Hölder’s inequality we obtain that (fε∂xfε),
((fε − ε)∂xGε), ((gε − ε)∂xFε), and (gε∂xgε) are uniformly bounded in L6/5(QT ). Therefore, the equations of (2.2a)
may be written in the form ∂thε = ∂xH

h
ε , for some function Hh

ε which is uniformly bounded in L6/5(QT ) and satisfies
homogeneous Dirichlet conditions Hh

ε (0) = Hh
ε (L) = 0. Given φ ∈ W 1

6 , we have

∣∣〈∂thε|φ〉L2

∣∣ =
∣∣∣∣∣

L∫
0

φ∂xH
h
ε dx

∣∣∣∣∣ =
∣∣∣∣∣

L∫
0

Hh
ε ∂xφ dx

∣∣∣∣∣ �
∥∥Hh

ε

∥∥
6/5‖∂xφ‖6.

Consequently,∥∥∂thε(t)
∥∥

(W 1
6 )′ �

∥∥Hh
ε (t)

∥∥
6/5 for t ∈ (0, T ),

and the families (∂tfε), (∂tgε) are both uniformly bounded in L6/5(0, T ; (W 1
6 )′).

Finally, we have 〈(1 − ε2∂2
x )p|q〉L2 = 〈p|(1 − ε2∂2

x )q〉L2 for all p,q ∈ H 2
B , and choosing p := (1 − ε2∂2

x )−1∂tfε ,
q = (1 − ε2∂2

x )−1φ with φ ∈ W 1
6 , we have

〈∂tFε|φ〉L2 = 〈(
1 − ε2∂2

x

)−1
∂tfε

∣∣φ〉
L2

= 〈
∂tfε

∣∣(1 − ε2∂2
x

)−1
φ
〉
L2

= 〈
∂xH

f
ε

∣∣(1 − ε2∂2
x

)−1
φ
〉
L2

= −〈
Hf

ε

∣∣(1 − ε2∂2
x

)−1
∂xφ

〉
L2

.

Since (1 − ε2∂2
x )−1 is a contraction in L6, we obtain that∣∣〈∂tFε|φ〉L2

∣∣ �
∥∥Hf

ε

∥∥
6/5

∥∥(
1 − ε2∂2

x

)−1
∂xφ

∥∥
6 �

∥∥Hf
ε

∥∥
6/5‖φ‖W 1

6
,

and the assertion (ii), when h = F, follows at once. Invoking a similar argument for (Gε), we complete the proof. �
This lemma enables us to use a result from [9] and show that (fε), (gε), (Fε), and (Gε) are relatively compact

in L2(0, T ;Cα([0,L])), provided that α ∈ (0,1/2). This will allow us to identify a limit point for each of these
sequences, and find in this way a candidate for solving (1.4). Indeed, we have:

Lemma 3.2. Given h ∈ {f,g,F,G}, and α ∈ (0,1/2), there exists a subsequence (hεk
) of (hε) which converges

strongly in L2(0, T ;Cα([0,L])).

Proof. Invoking the Rellich–Kondrachov theorem, we have the following sequence of embeddings

H 1 ↪→ Cα
([0,L]) ↪→ (

W 1
6

)′
, α < 1/2,

with compact embedding H 1 ↪→ Cα([0,L]). Furthermore, in view of Lemma 3.1(i), the family (hε) is uni-
formly bounded in L2(0, T ;H 1), while, by Lemma 3.1(ii), (∂thε) is uniformly bounded in L1(0, T ; (W 1

6 )′).
Whence, the assumptions of [9, Corollary 4] are all fulfilled, and we conclude that (hε) is relatively compact in
L2(0, T ;Cα([0,L])). �
3.1. Construction of weak solutions

Using the uniform estimates deduced at the beginning of this section, we now establish the existence of a weak
solution of (1.4). Owing to Lemma 3.2, there are f,g,F,G ∈ L2(0, T ;Cα([0,L])) such that, for α ∈ (0,1/2),

fεk
→ f, gεk

→ g, Fεk
→ F, Gεk

→ G in L2
(
0, T ;Cα

([0,L])). (3.4)

Furthermore, by Lemma 3.1(i), the subsequences (∂xfεk
), (∂xgεk

), (∂xFεk
), and (∂xGεk

) are uniformly bounded in
the Hilbert space L2(QT ). Hence, we may extract further subsequences (denoted again by (fεk

), (gεk
), (Fεk

), and
(Gεk

)) which converge weakly:

∂xfεk
⇀ ∂xf, ∂xgεk

⇀ ∂xg, ∂xFεk
⇀ ∂xF, ∂xGεk

⇀ ∂xG in L2(QT ). (3.5)
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In fact, we have that

f = F and g = G a.e. in QT . (3.6)

Indeed, (3.6) follows by multiplying the relation Fεk
− ε2

k∂
2
xFεk

= fεk
by a test function in H 1, integrating by parts,

and letting then k → ∞ with the help of (3.4) and (3.5). In view of (3.4)–(3.6), we then have

fεk
∂xfεk

⇀ f ∂xf, fεk
∂xGεk

⇀ f ∂xg in L1(QT ),

gεk
∂xFεk

⇀ g∂xf, gεk
∂xgεk

⇀ g∂xg in L1(QT ). (3.7)

Using the fact that (fε, gε) are strong solutions of (2.2), we obtain by integration with respect to space and time
that

L∫
0

fεk
(T )ψ dx −

L∫
0

f0εk
ψ dx = −

∫
QT

[
(1 + R)fεk

∂xfεk
+ R(fεk

− εk)∂xGεk

]
∂xψ dx dt,

L∫
0

gεk
(T )ψ dx −

L∫
0

g0εk
ψ dx = −Rμ

∫
QT

[
(gεk

− εk)∂xFεk
+ gεk

∂xgεk

]
∂xψ dx dt, (3.8)

for all T > 0, ε ∈ (0,1), and ψ ∈ W 1∞. Since

f0εk
→ f0 and g0εk

→ g0 in L2 (3.9)

by classical arguments, we may pass to the limit as k → ∞ in (3.8) and use (3.4), (3.5), (3.7), and (3.9) to conclude
that (f, g) is a weak solution of (2.2) in the sense of Theorem 1.1. The fact that (f, g) can be defined globally follows
by using a standard Cantor’s diagonal argument (using a sequence Tn ↗ ∞).

3.2. Energy estimates for weak solutions

Letting ε → 0 in the relation (3.1)(c), we find in view of (3.4), that∥∥f (t)
∥∥

1 = ‖f0‖1,
∥∥g(t)

∥∥
1 = ‖g0‖1, t ∈ (0,∞).

We show now that the weak solution found above satisfies the energy estimate

E1
(
f (T ), g(T )

) +
∫

QT

(
1

2
|∂xf |2 + R

1 + 2R
|∂xg|2

)
dx dt � E1(f0, g0) (3.10)

for T ∈ (0,∞). Recall that, by Lemma 2.4, we have

E1
(
fεk

(T ), gεk
(T )

) +
∫

QT

(
1

2
|∂xfεk

|2 + R

1 + 2R
|∂xgεk

|2
)

dx dt � E1(f0εk
, g0εk

) (3.11)

for all k ∈ N. On the one hand, note that (3.4) and Fatou’s lemma ensure that

E1
(
f (T ), g(T )

)
� lim inf

k→∞ E1
(
fεk

(T ), gεk
(T )

)
for T ∈ (0,∞), (3.12)

while (3.5) implies∫
QT

|∂xf |2 dx dt � lim inf
k→∞

∫
QT

|∂xfεk
|2 dx dt,

∫
|∂xg|2 dx dt � lim inf

k→∞

∫
|∂xgεk

|2 dx dt. (3.13)
QT QT
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We still have to pass to the limit in the right-hand side of (3.11). By (3.9), we may assume that (f0εk
) and (g0εk

)

converge almost everywhere towards f0 and g0, respectively. Furthermore, since 0 � x lnx − x + 1 � 1 + 2x3/2 for
x � 0, we have∫

E

|f0εk
lnf0εk

− f0εk
+ 1|dx � |E| + 2

∫
E

f
3/2
0εk

dx � |E| + 2|E|1/4‖f0εk
‖3/2

2 � C|E|1/4

for all k ∈ N and all measurable subsets E of (0,L), meaning that the family (f0εk
lnf0εk

− f0εk
+ 1) is uniformly

integrable. Clearly, the same is true also for (g0εk
lng0εk

−g0εk
+1). We infer then from Vitali’s convergence theorem,

cf. [5, Theorem 2.24], that the limit of the right-hand side of (3.11) exists and

lim
k→∞ E1(f0εk

, g0εk
) = E1(f0, g0).

Whence, passing to the limit in (3.11), we obtain in view of (3.12) and (3.13) the desired estimate (3.10).
Finally, we show that weak solutions of (1.4) satisfy

E2
(
f (T ), g(T )

) +
∫

QT

[
f

(
(1 + R)∂xf + R∂xg

)2 + RRμg(∂xf + ∂xg)2]dx dt � E2(f0, g0) (3.14)

for T ∈ (0,∞). In virtue of (3.4), (3.5), and (3.6) we have√
fεk

→ √
f , ∂xfεk

⇀ ∂xf, and ∂xGεk
⇀ ∂xg in L2(QT )

which implies that
√

fεk
∂xfεk

⇀
√

f ∂xf and
√

fεk
∂xGεk

⇀
√

f ∂xg in L1(QT ). Consequently,√
fεk

(
(1 + R)∂xfεk

+ R∂xGεk

)
⇀

√
f

(
(1 + R)∂xf + R∂xg

)
in L1(QT ),

and, by a similar argument,
√

gεk
(∂xFεk

+ ∂xgεk
) ⇀

√
g(∂xf + ∂xg) in L1(QT ).

Now, owing to (3.2), the sequence (�εk
) defined in Lemma 2.6 is bounded in L2((0, T )) and we then infer from

Lemma 2.6 that both (
√

fεk
((1 + R)∂xfεk

+ R∂xGεk
)) and (

√
gεk

(∂xFεk
+ ∂xgεk

)) are bounded in L2(QT ). The pre-
vious weak convergences in L1(QT ) may then be improved to weak convergence in L2(QT ) (upon extracting a further
subsequence if necessary) and we can then pass to the limit in (2.21) to conclude that (3.14) holds true, using weak
lower semicontinuity arguments in the left-hand side and the property εk�εk

→ 0 in L2((0, T )) in the right-hand side.

3.3. Exponential convergence towards equilibria

In this last part of the paper we prove our second main result, Theorem 1.3. The proof is based on the interplay
between estimates for the two energy functionals E1 and E2, with the specification that we use E1 to estimate the time
derivative of the stronger energy functional E2, and obtain exponential decay of weak solutions in the L2-norm. Recall
from (3.1)(c) that

Ak := ‖f0‖1

L
+ εk = ‖fεk

(t)‖1

L
and Bk := ‖g0‖1

L
+ εk = ‖gεk

(t)‖1

L

for all k ∈ N and t ∈ [0,∞). Introducing

Fk :=
L∫

0

[(
fεk

ln

(
fεk

Ak

)
− fεk

+ Ak

)
+ R

Rμ

(
gεk

ln

(
gεk

Bk

)
− gεk

+ Bk

)]
dx

+ 1

2

L∫
0

{
(fεk

− Ak)
2 + R

[
(fεk

− Ak)
2 + (gεk

− Bk)
2 + (gεk

− Bk)(Fεk
− Ak)

+ (fεk
− Ak)(Gεk

− Bk)
]}

dx,
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we infer from (3.1)(c) and the proofs of Lemmas 2.4 and 2.6 that

dFk

dt
=

L∫
0

[
∂tfεk

lnfεk
+ R

Rμ

∂tgεk
lngεk

]
dx + 1

2

d

dt

L∫
0

{
(1 + R)f 2

εk
+ R

[
g2

εk
+ fεk

Gεk
+ gεk

Fεk

]}
dx

� −1

2
‖∂xfεk

‖2
2 − R

1 + 2R
‖∂xgεk

‖2
2 + εkC3

(‖∂xfεk
‖2

2 + ‖∂xgεk
‖2

2

)
� −1

3
‖∂xfεk

‖2
2 − R

2 + 2R
‖∂xgεk

‖2
2

provided k is large enough. Using the Poincaré–Wirtinger inequality, we find a positive constant C5 such that

dFk

dt
� −C5

(‖fεk
− Ak‖2

2 + ‖gεk
− Bk‖2

2

)
(3.15)

for large k and all t ∈ (0,∞). We show now that the right-hand side of (3.15) can be bounded by −ωFk for some
small positive number ω. Indeed, arguing as in Lemma 2.3, we find that∣∣∣∣∣

L∫
0

[
(gεk

− Bk)(Fεk
− Ak) + (fεk

− Ak)(Gεk
− Bk)

]
dx

∣∣∣∣∣
� ‖gεk

− Bk‖2‖Fεk
− Ak‖2 + ‖fεk

− Ak‖2‖Gεk
− Bk‖2

� 2‖gεk
− Bk‖2‖fεk

− Ak‖2 � ‖fεk
− Ak‖2

2 + ‖gεk
− Bk‖2

2. (3.16)

Recalling (2.14), we end up with

‖fεk
− Ak‖2

2 + ‖gεk
− Bk‖2

2

=
L∫

0

(
A2

k

∣∣∣∣fεk

Ak

− 1

∣∣∣∣2

+ Bk

∣∣∣∣gεk

Bk

− 1

∣∣∣∣2)
dx

�
L∫

0

[
A2

k

(
fεk

Ak

ln

(
fεk

Ak

)
− fεk

Ak

+ 1

)
+ B2

k

(
gεk

Bk

ln

(
gεk

Bk

)
− gεk

Bk

+ 1

)]
dx

� min
k

{
Ak,

RμBk

R

} L∫
0

[(
fεk

ln

(
fεk

Ak

)
− fεk

+ Ak

)
+ R

Rμ

(
gεk

ln

(
gεk

Bk

)
− gεk

+ Bk

)]
dx. (3.17)

Combining (3.15), (3.16), and (3.17), we conclude that if ‖f0‖1 > 0 and ‖g0‖1 > 0, then

dFk

dt
(t) � −ωFk(t)

for some positive constant ω and k sufficiently large. Whence,∥∥fεk
(t) − Ak

∥∥
L2

+ ∥∥gεk
(t) − Bk

∥∥
L2

� Ce−ωt ,

which yields, for k → ∞, the desired estimate by (3.4) and (3.6), as stated in Theorem 1.3.
If f0 = 0 [resp. g0 = 0], then f = 0 [resp. g = 0], while g [resp. f ] is a weak solution of the one-dimensional

porous medium equation and converges therefore even in the L∞-norm to flat equilibria (if f0 = 0, then uniqueness of
solutions to (2.6) implies that fε = ε and ∂tgε = Rμ(gε∂xgε)), cf. [10, Theorem 20.16]. Convergence in this stronger
norm is due to the fact that comparison methods may be used for the one-dimensional porous media equation, while
for our system they fail because of the structure of the system.
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