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Abstract

In this paper we give a detailed study of the global attractors for parabolic equations governed by the p-Laplacian in a heteroge-
neous medium. Not only the existence but also the infinite dimensionality of the global attractors is presented by showing that their
ε-Kolmogorov entropy behaves as a polynomial of the variable 1/ε as ε tends to zero, which is not observed for non-degenerate
parabolic equations. The upper and lower bounds for the Kolmogorov ε-entropy of infinite-dimensional attractors are also obtained.
© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

In order to describe the long-time behaviour of many dissipative systems generated by the evolution of PDEs in
mathematical physics, one often uses the notion of the so-called global attractor, which is a compact invariant set in
the phase space X which attracts the images of all bounded subsets under the temporal evolution. If the global at-
tractor exists, its properties guarantee that the dynamical system reduced to the attractor A contains all the nontrivial
dynamics of the initial system. One of the important questions in this theory is in what sense the dynamics reduced
to the attractor are finite or infinite dimensional. It is well known that usually for regular (non-degenerate) dissipa-
tive autonomous PDEs in a bounded domain Ω , the Kolmogorov ε-entropy Hε(A,X) of their attractors A has the
asymptotic property such as:

C1|Ω| log2(1/ε) � Hε(A,X) � C2|Ω| log2(1/ε),

where |Ω| denotes the volume of Ω and Ci (i = 1,2) are some constants independent of |Ω|.
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In contrast to non-degenerate parabolic PDEs, not so much is known on the long-time behaviour for the degenerate
case (see [6,12,8,5]). In particular, the degenerate parabolic equations of the form

(E)

⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
= �pu(x, t) + u(x, t), (x, t) ∈ Ω × [0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞),

u(x,0) = u0(x), x ∈ Ω,

with �pu = div(|∇u|p−2∇u), p > 2 are investigated in our previous paper [3], where the following features are
revealed:

(a) infinite dimensionality of attractor,
(b) polynomial asymptotics of its ε-Kolmogorov entropy,
(c) difference of the asymptotics of the ε-Kolmogorov entropy depending on the choice of the underlying phase

spaces,

which one cannot observe in non-degenerate cases.

Remark 1. It is also known that some non-degenerate parabolic equations in unbounded domains may possess infinite-
dimensional global attractors. For these cases, however, the asymptotics of their Kolmogorov entropy are always
logarithmic (see [4]).

Remark 2. It should be noted that the usual method for obtaining lower bounds of the Kolmogorov entropy (or
dimension) of attractors is based on the instability index of hyperbolic equilibria (see [13]), which in turn requires
a differentiability of the associated semigroup with respect to the initial data. However, this method may not be
applicable for degenerate parabolic equations, since the associated semigroups are usually not differentiable.

The main purpose of the present paper is to give a detailed study of the global attractors for much more wider class
of parabolic equations with p-Laplacian in a heterogeneous medium, that is

(E)p

⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
= �pu(x, t) − g

(
x,u(x, t)

) + h(x), (x, t) ∈ Ω × [0,∞), (E1)

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞), (E2)

u(x,0) = u0(x), x ∈ Ω, (E3)

where Ω is a bounded domain in R
N with smooth boundary ∂Ω .

The present paper is composed as follows. In Section 1, we first prepare basic results on the existence, uniqueness
and regularity of solutions of (E1)–(E3) and under these preparations, the existence of the global attractor for the
semigroup generated by (E1)–(E3) will be presented in Section 2. The infinite dimensionality of the global attractors
and the asymptotics of their Kolmogorov entropy is given in Section 3. In particular, we show that its Kolmogorov
entropy admits polynomial asymptotics which shed light on completely new phenomena (see Remark 1). We here note
that one cannot apply the direct approach developed in [3] for (E)p , so to achieve our goal, it requires new ideas. To
carry this through, we rely on some comparison results and some special scale transformations which will play a very
important role in our arguments. Thus parabolic equations with p-Laplacian of the form (E1) give natural examples
of dissipative equations of mathematical physics in heterogeneous media with infinite-dimensional attractors. We
especially emphasize that the method developed in this paper has a general nature and can be applied to other classes
of degenerate evolution equations.

2. Existence of global solutions and a priori estimates

In this section, we investigate the solvability of the initial–boundary value problem (E)p . To this end, we assume
that g(x, ξ) can be decomposed into two parts, the monotone part g0(x, ξ) and the non-monotone part g1(x, ξ), i.e.,
g(x, ξ) = g0(x, ξ) + g1(x, ξ) and we further assume that g0, g1 satisfy the following conditions:
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(a) g0(x,0) = 0, g0(x, ξ) ∈ C(Ω × R
1) and g0(x, ξ) is monotone increasing with respect to ξ for all x ∈ Ω .

(b) g1(x, ξ) ∈ C(Ω × R
1) and g1(x, ξ) is a globally Lipschitz function with respect to ξ , i.e., there exists a constant

L > 0 such that

sup
x∈Ω

∣∣g1(x, ξ) − g1(x, η)
∣∣ � L|ξ − η| ∀ξ, η ∈ R

1. (1)

Then (E)p admits a unique global solution in the following sense.

Theorem 1. Assume that (a) and (b) are satisfied. Then, for any u0, h ∈ L2(Ω), there exists a unique solution u of
(E)p satisfying

u ∈ C
([0, T ];L2(Ω)

)
,

√
tut ∈ L2(0, T ;L2(Ω)

)
, �pu ∈ L2

loc

(
(0, T ];L2(Ω)

)
,

u ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)
, G0(u) ∈ L1(0, T ),

t‖∇u‖p

Lp(Ω), t G0(u) ∈ L∞(0, T ), ∀T ∈ (0,∞),

where G0(u) = ∫
Ω

G0(x,u(x, t)) dx, G0(x, ξ) = ∫ ξ

0 g0(x, s) ds.
Furthermore S(t) :u0(·) 	→ u(·, t) is continuous in the strong topology of L2(Ω).

Proof. By assumption (a), it is immediate to see that u 	→ −�pu + g0(·, u) is monotone in L2(Ω). However, from
(a) alone it is impossible to say whether it is maximal monotone in L2(Ω). Hence, to show the existence of solutions
for (E)p , we cannot rely on the solvability of abstract evolution equations governed by maximal monotone operators
with Lipschitz perturbations (see [1]). To cope with this difficulty, we introduce some approximation procedure and
make use of L∞-Energy Method (see [10,11]) and the smoothing effect of the p-Laplacian in L∞-space.

Step 1. Let u0, h ∈ L∞(Ω) and consider

(E)Mp

⎧⎪⎨⎪⎩
∂u

∂t
− �pu + ∂IM(u) + g(x,u) � h, (x, t) ∈ Ω × [0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞),

u(x,0) = u0(x), x ∈ Ω,

(2)

where IM(·) is the indicator function of the closed convex set {u ∈ L2(Ω); |u| � M a.e. x ∈ Ω}:
IM(u) =

{0 if |u(x)| � M a.e. x ∈ Ω,

+∞ otherwise
and ∂IM(·) denotes its subdifferential operator given by

∂IM(u) =
{0 if |u(x)| < M,

[0,+∞] if u(x) = M,

[−∞,0] if u(x) = −M.

(3)

Here we define ϕM(·) by

ϕM(u) =
{

1
p
‖∇u‖p

Lp + IM(u) if |u(x)| � M a.e. x ∈ Ω, u ∈ W
1,p

0 (Ω),

+∞ otherwise.

Then ϕM(·) is a lower semicontinuous convex functional from L2(Ω) into [0,+∞] and its subdifferential ∂ϕM(·)
satisfies

∂ϕM(u) = −�pu + ∂IM(u),

D(ϕM) = {
u ∈ W

1,p

0 (Ω); ∣∣u(x)
∣∣ � M a.e. x ∈ Ω

}
,

D(∂ϕM) = {
u ∈ D(ϕM); �pu ∈ L2(Ω)

}
.

By putting B(u) = g(·, u(·)), we can reduce our approximate equation (E)Mp to the following abstract equation:

(AE)Mp
du

(t) + ∂ϕM

(
u(t)

) + B
(
u(t)

) � h, u(0) = u0.

dt
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In order to assure the existence of global solutions of (AE)Mp , we apply Theorem III and Corollary IV of [9] by taking

H = L2(Ω), ϕt (·) = ϕM(·), B(t, ·) = B(·) = g(·, u(·)). To this end, we need to check compactness condition (A1),
demiclosedness condition (A2) and boundedness conditions (A5) and (A6) given in [9]. In fact, for any L > 0, the
level set {u; ϕM(u) + ‖u‖2

H � L} is compact in L2(Ω) by virtue of Rellich’s compact embedding theorem, which
assures (A1). The demiclosedness of the operator B :u 	→ B(u) = g(·, u(·)) in L2(Ω) × L2(Ω) (i.e., the graph G(B)

of B is closed in L2
s (Ω) × L2

w(Ω) endowed with the strong topology L2
s and the weak topology L2

w) is easily derived
from (a) and (b), whence (A2) follows. As for the boundedness condition, since u ∈ D(∂ϕM) implies that |u(x)| � M,

we easily get∥∥B(u)
∥∥

L2(Ω)
� CM ∀u ∈ D(∂ϕM),

whence follow (A5) and (A6). Thus we see that for any u0 ∈ D(∂ϕM) = {u; |u(x)| � M} and h ∈ L2(Ω), (AE)Mp
admits a global solution u satisfying u ∈ C([0, T ];L2(Ω)),

√
tut ,

√
t�pu ∈ L2(0, T ;L2(Ω)) ∀T > 0. Furthermore,

the uniqueness follows easily from the monotonicity of u 	→ −�pu+g0(·, u(·)) in L2(Ω) and the Lipschitz continuity
of u 	→ g1(·, u(·)) in L2(Ω).

A priori estimate 1. We multiply (E)Mp by |u|r−2u and integrate over Ω to get

∥∥u(t)
∥∥r−1

Lr

d

dt

∥∥u(t)
∥∥

Lr + (r − 1)

∫
Ω

|u|r−2|∇u|p dx +
∫
Ω

∂IM(u)|u|r−2udx

+
∫
Ω

g0(x,u)|u|r−2udx �
∫
Ω

{∣∣g1(x,u)
∣∣ + ∣∣h(x)

∣∣}|u|r−2udx

� L‖u‖r
Lr + C

(
1 + ‖h‖L∞

)‖u‖r−1
Lr .

Here we used (1) and the fact that ∂IM(u)|u|r−2u � 0, g0(x,u)|u|r−2u � 0, which are assured by (3) and (a). Hence,
by Gronwall’s inequality, we have

sup
0�t�T

∥∥u(t)
∥∥

Lr �
(‖u0‖Lr + C

(
1 + ‖h‖L∞

)
T

)
eLT .

Here letting r → ∞, we obtain (see [10,11])

sup
0�t�T

∥∥u(t)
∥∥

L∞ �
(‖u0‖L∞ + C

(
1 + ‖h‖L∞

)
T

)
eLT =: CT . (4)

For each u0 ∈ L∞(Ω) and T > 0, fix M so that CT < M , then by virtue of (3) and (4), we find that ∂IM(u(t)) = 0
∀t ∈ [0, T ], which implies that u(t) gives a solution of (E)p on [0, T ].

Step 2. Let un
0, hn ∈ L∞(Ω), un

0 → u0, hn → h in L2(Ω) as n → ∞, and let un be the global solution of (E)p with
u0 = un

0, h = hn, i.e.,

(E)p,n un
t − �pun + g0

(
x,un

) = −g1
(
x,un

) + hn, un
0(0) = un

0 .

A priori estimate 2. We first note that the monotonicity of g0(·, ξ) and the definition of G0 imply

G0(x, ξ) =
ξ∫

0

g0(x, s) ds � g0(x, ξ)ξ.

Hence, multiplying (E)p,n by un, we get

1

2

d

dt

∥∥un(t)
∥∥2

L2 + ∥∥∇un(t)
∥∥p

Lp + G0
(
un(t)

)
�

(∥∥g1
(·, un

)∥∥
L2 + ∥∥hn

∥∥
L2

)∥∥un(t)
∥∥

L2

� L
∥∥un(t)

∥∥2
2 + (

C + ∥∥hn
∥∥

2

)∥∥un(t)
∥∥

2 , (5)

L L L
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whence it follows that

sup
0�t�T

∥∥un(t)
∥∥2

L2 +
T∫

0

(∥∥∇un(t)
∥∥p

Lp + G0
(
un(t)

))
dt � C0

(‖u0‖L2 ,‖h‖L2

)
. (6)

Next multiply (E)p,n by t (un)t and integrate over [0, T ] with respect to t , then we have

t
∥∥(

un
)
t

∥∥2
L2 + t

d

dt

(
1

p

∥∥∇un(t)
∥∥p

Lp + G0
(
un(t)

))
�

(∥∥g1
(
un(t)

)∥∥
L2 + ∥∥hn

∥∥
L2

)
t
∥∥(

un
)
t

∥∥
L2 � 1

2
t
∥∥(

un
)
t

∥∥2
L2 + C0,

sup
0�t�T

t

(
1

p

∥∥∇un(t)
∥∥p

Lp + G0
(
un(t)

)) +
T∫

0

t
∥∥(

un
)
t

∥∥2
L2 dt � C0. (7)

Hence, from Eq. (E)p,n, we derive the a priori bound∥∥√
t
(−�pun + g0

(
x,un

))‖L2(Q) � C0, Q = Ω × (0, T ). (8)

However, this does not assure the boundedness of ‖√t�pun‖L2(Q). Nevertheless, by applying a comparison theorem,
which will be given in Lemma 1, between un and v±, solutions of (17) satisfying (20), we can derive some a priori
estimate for un in L∞(Ω) as follows. We first note that v± also satisfy (15), so by the same reasoning as used
for (12), we can obtain the a priori bound for ‖v±‖L2(Ω). Then integrating (15) on [0, T ], we derive, by Poincaré’s
inequality, the a priori bound for ‖v±‖Lp(Q) depending only on ‖u0‖L2(Ω), ‖h‖L2(Ω). Hence the right-hand side of
(20) is bounded by some constant independent of n on [δ, T ] for each δ > 0, which together with (18) yields the
following estimate:

∀δ > 0, ∃Cδ = C(δ,C0) s.t. sup
δ�t�T

∥∥un(·, t)∥∥
L∞(Ω)

� Cδ,

whence, by (8), it follows that

sup
δ�t�T

∥∥g0
(·, un(t)

)∥∥
L∞(Ω)

� Cδ,
∥∥�pun

∥∥
L2(δ,T ;L2(Ω))

� Cδ. (9)

Convergence. w = um − un satisfies

wt − (
�pum − �pun

) + (
g0

(
x,um

) − g0
(
x,un

)) = −(
g1

(
x,um

) − g1
(
x,un

))
. (10)

Multiplying (10) by w and using the monotonicity of u 	→ −�pu + g0(·, u) in L2(Ω) and condition (b), we get

1

2

d

dt

∥∥w(t)
∥∥2

L2 � L
∥∥w(t)

∥∥2
L2 ,

whence it follows that∥∥w(t)
∥∥

L2 �
∥∥um

0 − un
0

∥∥
L2e

Lt ,

which implies that {un} forms a Cauchy sequence in L2(Ω). Thus, in view of (6), (7) and (9), we find that there exists
a subsequence of {un} denoted again by {un} such that

un → u strongly in C
([0, T ];L2(Ω)

)
, and a.e. (x, t) ∈ Q,

g1
(
x,un

) → g1(x,u) strongly in C
([0, T ];L2(Ω)

)
,

∇un → ∇u weakly in Lp
([0, T ];Lp(Ω)

)
,√

tun
t → √

tut weakly in L2(Q),

g0
(
x,un

) → g0(x,u) weakly star in L∞(Qδ),

�pun → �pu weakly in L2(Qδ), Qδ = Ω × [δ, T ], ∀δ > 0.



570 M.A. Efendiev, M. Ôtani / Ann. I. H. Poincaré – AN 28 (2011) 565–582
Here we used the demiclosedness of g0(·, u),−�pu, i.e., their graphs are closed in Hs × Hw , where Hs and Hw

denote L2(Qδ) endowed with the strong topology and the weak topology respectively. Furthermore, by virtue of the
lower-semicontinuity of ‖∇u‖p

Lp , G0(u), we easily see that ‖t |∇u|p‖L∞(0,T ;L1(Ω)), ‖G0(u)‖L1(0,T ), ‖t G0(u)‖L∞(0,T )

are all bounded. �
Remark 3. If g(x,u) ∈ C(Ω ×R

1) satisfies g(x,0) = 0, g′
τ (x, τ ) � −K ∀(x, τ ) ∈ Ω ×R

1, then by putting g0(x, τ ) =
g(x, τ ) + Kτ ((g0)

′
τ (x, τ ) � 0), g1(x, τ ) = −Kτ, we find that g(·, u) falls within our class.

In particular, g(x, τ ) = C1(x)|τ |q1−2τ − C2(x)|τ |q2−2τ (2 � q2 < q1 < +∞) satisfies (a) and (b), provided that
C1(x),C2(x) ∈ L∞(Ω) and 0 < c1 � C1(x) ∀x ∈ Ω . Since g′

τ (x, τ ) = |τ |q2−1(C1(x)(q1 − 1)|τ |q1−q2 − C2(x)(q2 −
1)) � −K ∀(x, τ ) ∈ Ω × R

1.

As for the a priori bounds for solutions of (E1)–(E3), we obtain the following result.

Theorem 2. Assume that (a) and (b) are satisfied and let 2N
N+2 < p < ∞, u0 ∈ L2(Ω) and h ∈ L∞(Ω). For the case

2N
N+2 < p � 2, we further assume∣∣g0(s)

∣∣ � k0|s|1+θ − k1 (θ, k0, k1 > 0). (11)

Then, for any 0 < δ1 < δ2 < δ3 � 1, there exist constants C1, C2, C3 depending on δ1, δ2, δ3 but not on the initial data
u0 ∈ L2(Ω) such that every solution of (E1)–(E3) satisfies∥∥u(t)

∥∥
L2(Ω)

� C1 ∀t ∈ [δ1,+∞), (12)∥∥u(t)
∥∥

L∞(Ω)
� C2 ∀t ∈ [δ2,+∞), (13)∥∥u(t)

∥∥
C1,α(Ω)

� C3 ∀t ∈ [δ3,+∞). (14)

Proof. Multiply (E1) by u, then the same argument as for (5) gives

1

2

d

dt

∥∥u(t)
∥∥2

L2 + ‖∇u‖p
Lp + G0(u) � L

∥∥u(t)
∥∥2

L2 + (
C + ‖h‖L2

)‖u‖L2 . (15)

Then by Poincaré’s inequality, we get for the case p > 2

1

2

d

dt

∥∥u(t)
∥∥2

L2 + γ1‖u‖p

L2 � γ2, (16)

for some γ1, γ2 > 0. Hence Ghidaglia-type estimate (see [13]) assures (12). For the case 2N
N+2 � p � 2, (11) yields the

same estimate as (16) with p = 2 + θ , whence follows (12).
In order to derive the L∞-estimate, we need the following lemma.

Lemma 1. Let v± be the unique solution of

v±
t = �pv± − k̃0

∣∣v±∣∣θ v± − g1
(
v±) ± (|h| + k̃1

)
, v±∣∣

∂Ω
= 0 (17)

with the initial condition v±(x,0) = ±|u0(x)| respectively, where k̃i = 0 for p > 2 and k̃i = ki for p � 2 (i = 0,1).
Then the solution u of (E)p satisfies

v−(x, t) � u(x, t) � v+(x, t) for a.e. (x, t) ∈ Ω × [0,+∞). (18)

Proof. Let u+(x, t) be the unique solution of (E)p with h and u0 replaced by |h| and |u0| respectively.
Then it is easy to see that u+ � 0 and (u+ − v+) satisfies(

u+ − v+)
t
= �pu+ − �pv+ − g0

(
u+) + k̃0

∣∣v+∣∣θ v+ − k̃1 − g1
(
u+) + g1

(
v+)

. (19)

Multiply (19) by [u+ − v+]+ = max(u+(x, t) − v+(x, t),0). Then noting that
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(
�pu+ − �pv+,

[
u+ − v+]+) = −∥∥∇([

u+ − v+]+)∥∥p

Lp � 0,(−g0
(
u+) + k̃0

∣∣v+∣∣θ v+ − k̃1,
[
u+ − v+]+)

� −k̃0
(∣∣u+∣∣θu+ − ∣∣v+∣∣θ v+,

[
u+ − v+]+)

� 0,(−g1
(
u+) + g1

(
v+)

,
[
u+ − v+]+)

� L
∥∥[

u+ − v+]+∥∥2
L2 ,

we get∥∥[
u+ − v+]+

(t)
∥∥2

L2 �
∥∥[

u+ − v+]+
(0)

∥∥2
L2e

2Lt ,

whence follows 0 � u+ � v+. By much the same argument as above, we also find u � u+. Thus repeating this
procedure for u− (the solution of (E)p with h and u0 replaced by −|h| and −|u0|) and v−, we obtain (18). �
Proof of Theorem 2 (continued). Since Eqs. (17) have the simple form, the L∞-estimate for v± has been fully
investigated by many authors. For instance, Theorem 3.2 of Chapter 5 of [2] gives the estimate:

sup
x∈Ω

∣∣v±(x, t)
∣∣ � max

(
1,C

(
t

p
N + 1

t

) 1
q−δ

( t∫
0

∫
Ω

∣∣v±∣∣δ dx dτ

) p
N(q−δ)

)
(20)

where δ = 2 + θ for p � 2, δ = p for p > 2 and q = p(N + 2)/N .
Here [2] requires the condition p � δ < p N+2

N
, which is obviously satisfied for p > 2. As for the case where

2N
N+2 < p � 2, since 2N

N+2 < p implies 2 < p N+2
N

, we can choose a sufficiently small θ0 such that p � 2+ θ0 < p N+2
N

.
If θ0 < θ , it is clear that (11) is satisfied with θ and k1 replaced by θ0 and k0 + k1 respectively. As is seen in the proof
of Theorem 1, a priori estimate 2, v± satisfy (16) with p = p or p = 2 + θ . Hence, integrating this on [t, t + 1], we
get, by (12)

sup
t�1

∥∥v±∥∥
Lδ(t,t+1;Lδ(Ω))

� C1. (21)

Thus the estimate (13) is derived from (18), (20) and (21).
Now we can rewrite (E1) as ut (x, t) = �pu(x, t) + h̃(x, t), where h̃(x, t) = −g0(x,u(x, t)) − g1(x,u(x, t)) +

h(x). Note that (13) assures h̃ ∈ L∞(Ω × [δ2,+∞)). Consequently, by virtue of Theorem 1.2 in Chapter 10 of [2],
we can derive the C1,α(Ω)-bound for u on [δ3,+∞). �
3. Global attractor and Kolmogorov’s ε-entropy

Let Φ be a Banach space. The set A ⊂ Φ is called a global attractor of the semigroup S(t) in Φ if the following
conditions are satisfied:

(1) The set A is a compact subset of the phase space Φ .
(2) It is strictly invariant, i.e., S(t)A = A for all t � 0.
(3) For every bounded subset B ⊂ Φ , limt→∞ dist(S(t)B, A) = 0, where dist(X,Y ) = supx∈X infy∈Y ‖x − y‖Φ .

Our existence result for global attractors of (E1)–(E3) in Φ = L2(Ω) can be stated as follows.

Theorem 3. Let all the assumptions in Theorem 2 be satisfied. Then the semigroup S(t) associated with Eqs. (E1)–
(E3) possesses a global attractor A in the phase space L2(Ω) which is globally bounded in C1,α(Ω) with α ∈ (0,1]
and has the following structure: A := K0 := {u(0); {u(t)}t∈R1 ∈ K}, where K is the set of all bounded solutions of
(E1)–(E2) defined on R

1, i.e.,

K =
{{

u(t)
}
t∈R1; u(t) is a solution of (E1)–(E2) on R

1, sup
t∈R1

∥∥u(t)
∥∥

L2 < +∞
}
.

Proof. In order to prove the existence of the global attractor A for (E1)–(E3), it suffices to show that the semigroup
S(t) associated with (E1)–(E3) is continuous in the topology of L2(Ω) for each t > 0 and that there exists a pre-
compact absorbing set B in L2(Ω) such that for every x ∈ L2(Ω), there exists T = T (x) > 0 such that S(t)x ∈ B
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∀t ∈ [T ,+∞). (See [13, Theorem 1.1].) For our case, the first property is assured by Theorem 1 and the second by
Theorem 2. The characterization of A in terms of K is derived by standard arguments. �

Next we present lower bounds for Kolmogorov’s ε-entropy of the attractor A in Φ = Lp(Ω) (1 � p � ∞), denoted
by Hε(A,Φ), which is defined by the base 2 logarithm of Nε(A,Φ), that is, Hε(A,Φ) := log2 Nε(A,Φ). Here we
denote by Nε(A,Φ) the minimal number of ε-balls in Φ that covers A (recall that A is a compact set in Φ). From
now on we assume that p > 2, h ≡ 0 and g(·, u) satisfies the following assumption.

(I)g There exist an open bounded subset ω of Ω and α > 0 such that gα(x,u) = g(x,u) + αu satisfies:
(I)1 There exist a(s), ρ � 0 and h(x, s, v) satisfying

s
−p+1
p−2 gα

(
x, s

1
p−2 v

) = a(s)|v|ρh(x, s, v), (x, s, v) ∈ ω × [0,1] × R
1,

h(x, s, v), h′
v(x, s, v) ∈ C

(
ω × [0,1] × R

1), h(x, s,0) = 0,

a � 0, a ∈ L1(0,1), sa2 ∈ L1(0,1).

(I)2 There exist C > 0 and δ > 0 such that

|v|ρ∣∣h(x, s, v)
∣∣ � C|v|1+δ, (x, s, v) ∈ ω × [0,1] × [0,1].

Then our result on the infinite dimensionality of global attractors for (E1)–(E3) is as follows.

Theorem 4. Let (I)g be satisfied and assume that (E1)–(E3) possess a global attractor A in the topology of L2(Ω).
Then the fractal dimension of A is infinite.

The presentation of condition (I)g might be somewhat obscure. In order to clarify the meaning of this condition,
we show below that it covers a very large class of nonlinearity.

(Ex.1). Let g(x,u) = −αu + b1(x)|u|q1−2u − b2(x)|u|q2−2u, α > 0, 2 < q2 < q1, b1, b2 ∈ C(ω), then g(·, u) satis-
fies (I)g .

In fact, since gα(x,u) = b1(x)|u|q1−2u − b2(x)|u|q2−2u, we get

s
−p+1
p−2 gα

(
x, s

1
p−2 v

) = s
−p+1
p−2

{
b1(x)s

q1−1
p−2 |v|q1−2v − b2(x)s

q2−1
p−2 |v|q2−2v

}
= s

q2−p

p−2 |v|q2−2{b1(x)s
q1−q2
p−2 |v|q1−q2v − b2(x)v

}
.

Hence we can put

a(s) = s
q2−p

p−2 , ρ = q2 − 2 > 0, h(x, s, v) = b1(x)s
q1−q2
p−2 |v|q1−q2v − b2(x)v.

Then it is easy to see that

h(x, s, v), h′
v(x, s, v) ∈ C

(
Ω × [0,1] × R

1), h(x, s,0) = 0,

|a|L1 =
1∫

0

s
q2−p

p−2 ds = p − 2

q2 − 2
,

∣∣sa2
∣∣
L1 =

1∫
0

ss
2q2−2p

p−2 ds = p − 2

2q2 − 4
,

|v|ρ∣∣h(x, s, v)
∣∣ � C|v|q2−1 = C|v|1+δ, (x, s, v) ∈ ω × [0,1] × [0,1],

δ = q2 − 2 > 0.

(Ex.2). Let g(x,u), g′
u(x,u), g′′

u(x,u) ∈ C(ω × R
1), g′

u(x,0) = −α < 0, g(x,0) = 0, then g(·, u) satisfies (I)g .
In fact, we first note that

g(x,u) = g(x,0) + g′
u(x,0)u +

u∫
(u − t)g′′

u(x, t) dt, gα(x,u) =
u∫
(u − t)g′′

u(x, t) dt.
0 0
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Then we get

s
−p+1
p−2 gα

(
x, s

1
p−2 v

) = s
−p+1
p−2

s
1

p−2 v∫
0

(
s

1
p−2 v − t

)
g′′

v (x, t) dt

= s
−p+1
p−2

v∫
0

(
s

1
p−2 v − s

1
p−2 t

)
g′′

v

(
x, s

1
p−2 t

)
s

1
p−2 dt

= s
3−p
p−2

v∫
0

(v − t)g′′
v

(
x, s

1
p−2 t

)
dt,

and we put

ρ = 0, h(x, s, v) =
v∫

0

(v − t)g′′
v

(
x, s

1
p−2 t

)
dt, a(s) = s

3−p
p−2 .

Hence we obtain

h(x, s, v), h′
v(x, s, v) =

v∫
0

g′′(x, s
1

p−2 t
)
dt ∈ C

(
ω × [0,1] × R

1), h(x, s,0) = 0,

|a|L1 =
1∫

0

s
3−p
p−2 ds = (p − 2),

∣∣sa2
∣∣
L1 =

1∫
0

ss
6−2p
p−2 ds = p − 2

2
,

|v|ρ∣∣h(x, s, v)
∣∣ =

∣∣∣∣∣
v∫

0

(v − t)g′′
v

(
x, s

1
p−2 t

)
dt

∣∣∣∣∣ �
|v|∫

0

∣∣∣∣1 − t

v

∣∣∣∣∣∣g′′
v

(
x, s

1
p−2 t

)∣∣dt |v|

� max
(x,s)∈ω×[0,1]

∣∣g′′(x, s)
∣∣|v|2, (x, s, v) ∈ ω × [0,1] × [0,1], δ = 1.

In order to establish the estimate from below for ε-Kolmogorov entropy of our global attractor A, we rely on the
following fact.

Lemma 2. Let K− be the set of all bounded solutions of (E1)–(E2) on R
1−, i.e., K− = {{u(t)}t∈R

1−; u(t) satisfies (E1)–

(E2) on R
1−, supt∈R

1− ‖u(t)‖L2 < +∞}, where R
1− := (−∞,0] and let K−(t) be the section of K− at t = t ∈ R

1−, i.e.,

K−(t) = {u(t); {u(t)}t∈R
1− ∈ K−}. Then K−(0) ⊂ A holds true.

Proof. Put B = ⋃
t∈R

1− K−(t). Then, since B is bounded in L2(Ω), for arbitrary η > 0, there exists T > 0 such that

dist(S(T )B, A) < η. For any a0 ∈ K−(0), there exists aT ∈ K−(−T ) ⊂ B such that S(T )aT = a0. Hence we get

dist(a0, A) = dist
(
S(T )aT , A

)
� dist

(
S(T )B, A

)
< η, ∀η > 0,

which implies dist(a0, A) = 0, i.e., a0 ∈ Ā = A ∀a0 ∈ K−(0). Thus K−(0) ⊂ A is derived. �
Before we proceed to the proof of Theorem 4, we prepare a couple of results on the following auxiliary equation:

(E)tp

{
wt = pα

(
�pw − a(t)|w|ρh(x, t,w)

)
, (x, t) ∈ ω × (0,1),

w|∂ω = 0, t ∈ [0,1], w(x,0) = w0(x), x ∈ ω,
(22)

where pα = 1 . As for the solvability of this equation, the following result holds.

α(p−2)
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Lemma 3. Let (I)g be satisfied. Then for every w0 ∈ L∞(ω), there exists T0 = T0(‖w0‖L∞) > 0 such that (E)tp admits
a unique solution w on [0, T0] satisfying

w ∈ C
([0, T0];L2(ω)

) ∩ C
(
(0, T0];W 1,p

0 (ω)
) ∩ L∞(

ω × (0, T0)
)
,√

twt ,
√

t�pw ∈ L2(ω × (0, T0)
)
. (23)

Furthermore there exists a (sufficiently small) ε0 > 0 such that if ‖w0‖L∞ � ε0, then the solution w of (E)tp given
above can be continued up to [0,1] and satisfies supt∈[0,1] ‖w(t)‖L∞ � 1.

Proof. We again apply the L∞-Energy Method as in the proof of Theorem 1 (Step 1). Take 0 � an(t) ∈ C([0,1]) so
that an(t) → a(t) in L1(0, T ) and

√
tan(t) → √

ta(t) in L2(0, T ) as n → ∞. Put M = ‖w0‖L∞ + 1 and consider the
following equations:

(E)t,Mp,n

{
wn

t ∈ pα

(
�pwn − ∂IM

(
wn

) − an(t)
∣∣wn

∣∣ρh
(
x, t,wn

))
in ω × (0,1),

wn
∣∣
∂ω

= 0, t ∈ [0,1], wn(x,0) = w0(x), x ∈ ω,
(24)

where ∂IM(·) is the subdifferential of IM(·), given by (3). As in the proof of Theorem 1, we can reduce (E)t,Mp,n

to some abstract Cauchy problem such as (AE)Mp , and apply Theorem III and Corollary IV of [9] by taking H =
L2(Ω), ϕt (·) = pαϕM(·), B(t,w) = pαan(t)|w|ρh(x, t,w). Here we note that w0 ∈ D(∂ϕM) = {u; |u(x)| � M =
‖w0‖L∞ + 1}. Thus the existence of solutions of (24) is verified.

A priori estimates. We first note that

∣∣h(x, s, v)
∣∣ =

∣∣∣∣∣
v∫

0

h′
τ (x, s, τ ) dτ

∣∣∣∣∣ � �0
(|v|)|v|,

�0(r) = max
{∣∣h′

v(x, s, v)
∣∣; x ∈ ω, s ∈ [0,1], |v| � r

}
.

Here �0(r) is monotone increasing in r ∈ [0,+∞). Then, as in the proof of Theorem 1 (a priori estimate 1), by
multiplying (E)t,Mp,n by |u|r−2u, we get

1

r

d

dt

∥∥wn(t)
∥∥r

Lr � pαan(t)
∥∥wn(t)

∥∥ρ

L∞�0
(∥∥wn(t)

∥∥
L∞

)∥∥wn(t)
∥∥r

Lr ,

∥∥wn(t)
∥∥

Lr � ‖w0‖Lr +
t∫

0

an(s)�1
(∥∥wn(s)

∥∥
L∞

)∥∥wn(s)
∥∥

Lr ds, with �1(r) = pαrρ�0(r).

Then letting r → ∞, we obtain (see [10,11])

∥∥wn(t)
∥∥

L∞ � ‖w0‖L∞ +
t∫

0

an(s)�
(∥∥wn(s)

∥∥
L∞

)
ds, with �(r) = �1(r)r. (25)

Here define a positive number δ and choose T0 such that

δ = 1

�(M) + 1
,

T0∫
0

a(s) ds <
δ

2
. (26)

Then, since an → a in L1(0,1), there exists N such that

T0∫
an(s) ds < δ ∀n � N. (27)
0
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We claim that∥∥wn(t)
∥∥

L∞ < ‖w0‖L∞ + 1 = M ∀t ∈ [0, T0], ∀n � N. (28)

To see this, we put

zn(t) = ‖w0‖L∞ +
t∫

0

an(s)�
(∥∥wn(s)

∥∥
L∞

)
ds.

Then it is clear that zn(t) ∈ C([0,1]) and ‖wn(t)‖L∞ � zn(t) ∀t ∈ [0,1]. Hence, since �(·) is monotone increasing,
zn(·) satisfies

zn(t) � ‖w0‖L∞ +
t∫

0

an(s)�
(
zn(s)

)
ds ∀t ∈ [0,1], (29)

and hence

zn(t) < ‖w0‖L∞ + 1 = M ∀t ∈ [0, T0], ∀n � N. (30)

In fact, if (30) does not hold, there exists t0 ∈ (0, T0) such that zn(t0) � M , then since zn(t) is continuous on [0,1]
and zn(0) = ‖w0‖L∞ < M , there exists t1 ∈ (0, t0) such that

zn(t1) = M, zn(t) < M ∀t ∈ [0, t1).

Hence, by (26), (27) and (29), we get

M = zn(t1) = ‖w0‖L∞ +
t1∫

0

an(s)�
(
zn(s)

)
ds � ‖w0‖L∞ + �(M)

t1∫
0

an(s) ds

� ‖w0‖L∞ + �(M)/
{
�(M) + 1

}
< ‖w0‖L∞ + 1 = M,

which leads to a contradiction. This yields (30), whence follows (28). Hence ∂IM(wn(t)) = 0 ∀t ∈ [0, T0], ∀n � N ,
so wn(t) satisfies

wn
t ∈ pα

(
�pwn − an(t)

∣∣wn
∣∣ρh

(
x, t,wn

))
, (x, t) ∈ ω × (0, T0), n � N. (31)

By virtue of (28), multiplication of (31) by wn gives

1

2

d

dt

∥∥wn(t)
∥∥2

L2 + pα

∥∥∇wn(t)
∥∥p

Lp � C0an(t), t ∈ (0, T0), n � N,

where C0 denotes a general constant depending only on ‖w0‖L∞ . Hence we get

sup
0�t�T0

∥∥wn(t)
∥∥2

L2 +
T0∫

0

∥∥∇wn(t)
∥∥p

Lp dt � C0 ∀n � N. (32)

Furthermore, the multiplication of (31) by twn
t gives

t
∥∥wn

t (t)
∥∥2

L2 + pαt

p

d

dt

∥∥∇wn(t)
∥∥p

Lp � C0an(t)t
∥∥wn

t (t)
∥∥

L2 � 1

2
t
∥∥wn

t (t)
∥∥2

L2 + 1

2
C2

0 t
∣∣an(t)

∣∣2
.

Then integrating this on [0, T0], by (32) we get∥∥√
twn

t

∥∥
L2(ω×(0,T0))

+ ∥∥√
t�pwn

∥∥
L2(ω×(0,T0))

+ sup
0�t�T0

t
∥∥∇wn(t)

∥∥p

Lp � C0. (33)

Convergence. Since −�p is monotone in L2, we easily see that U(t) = wn(t) − wm(t) satisfies

1 d ∥∥U(t)
∥∥2

L2 � pα

(
an(t )̃h

(
x, t,wn(t)

) − am(t )̃h
(
x, t,wm(t)

)
,U(t)

)
L2,
2 dt
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where h̃(x, s, v) = |v|ρh(x, s, v) satisfies

h̃′
v(x, s, v) = ρ|v|ρ−2vh(x, s, v) + |v|ρh′

v(x, s, v)

= |v|ρ
(

ρ

1∫
0

h′
v(x, s, τv) dτ + h′

v(x, s, v)

)
∈ C

(
ω × [0,1] × R

1).
Then, in view of (28), we have, for all n,m � N∣∣̃h(

x, t,wn(x, t)
) − h̃

(
x, t,wm(x, t)

)∣∣ � C0
∣∣wn(x, t) − wm(x, t)

∣∣, (x, t) ∈ ω × [0, T0].
Hence, again by (28), we get

1

2

d

dt

∥∥U(t)
∥∥2

L2 �
∣∣an(t) − am(t)

∣∣∥∥h̃
(·, t,wn(·, t))∥∥

L2

∥∥U(t)
∥∥

L2 + C0am(t)
∥∥U(t)

∥∥2
L2,

d

dt

∥∥U(t)
∥∥

L2 � C0
∣∣an(t) − am(t)

∣∣ + C0am(t)
∥∥U(t)

∥∥
L2 , n,m � N.

Then we obtain

sup
0�t�T0

∥∥U(t)
∥∥

L2 � C0

( T0∫
0

∣∣an(t) − am(t)
∣∣dt

)
e
∫ T0

0 am(t) dt , n,m � N, (34)

which implies that {wn(·, t)}n�N forms a Cauchy sequence in C([0, T0];L2(ω)). Therefore, by virtue of (33), we can
extract a subsequence of {wn(t)} denoted again by {wn(t)} such that

wn → w strongly in C
([0, T0];L2(ω)

)
, and a.e. (x, t) ∈ ω × [0, T0],

∇wn → ∇w weakly in Lp
([0, T0];Lp(ω)

)
,

√
twn

t → √
twt weakly in L2(ω × [0, T0]

)
,

√
t�pwn → √

t�pw weakly in L2(ω × [0, T0]
)
,

√
tan(t)

∣∣wn
∣∣ρh

(
x, t,wn(x, t)

) → √
ta(t)|w|ρh

(
x, t,w(x, t)

)
weakly in L2(ω × [0, T0]

)
.

Furthermore, the fact that t |∇w(t)|p ∈ L∞(0, T0;L1(ω)) assures the continuity of w(t) on (0, T0] in the weak topol-
ogy of W

1,p

0 (ω) and the fact that
√

twt ,
√

t�pw ∈ L2(ω × [0, T0]) assures the absolute continuity of ‖∇w(t)‖p

Lp(ω)

on (0, T0]. Hence, by virtue of the uniform convexity of W
1,p

0 , we find that w(t) ∈ C((0, T0];W 1,p

0 (ω)).
The uniqueness of the solution is derived by exactly the same arguments used for (34) with an(·) = am(·) = a(·).

Global existence. We first note that by assumption (I)2 and the same verification as for (25) with an(t), wn(t) replaced
by a(t), w(t), we can obtain

∥∥w(t)
∥∥

L∞ � ‖w0‖L∞ +
t∫

0

a(s)pαC
∥∥w(s)

∥∥1+δ

L∞ ds, (35)

as long as sup0�s�t ‖w(s)‖L∞ � 1 holds true. Here we define ε0 ∈ (0,1/2) by

ε0 = 1

2

(
1

21+δCpα|a|L1(0,1) + 1

)1/δ

(36)

and claim that if ‖w0‖L∞ � ε0, then

sup
∥∥w(t)

∥∥
L∞ � 2ε0 < 1, (37)
0�t�1
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which assures the existence of global solutions. To see this, we put

z(t) = ‖w0‖L∞ +
t∫

0

a(s)pαC
∥∥w(s)

∥∥1+δ

L∞ ds,

then z(t) is continuous and satisfies ‖w(t)‖L∞ � z(t) and

z(t) � ‖w0‖L∞ +
t∫

0

a(s)pαCz(s)1+δ ds. (38)

In order to prove (37), it suffices to show that sup0�t�1 z(t) � 2ε0, provided that ‖w0‖L∞ � ε0. Suppose that this
does not hold, then there exists t1 ∈ (0,1) such that

z(t1) = 2ε0, z(t) < 2ε0 ∀t ∈ [0, t1).

Hence, by (36) and (38), we get

2ε0 = z(t1) � ‖w0‖L∞ +
t1∫

0

a(s)pαCz(s)1+δ ds � ε0 + |a|L1(0,t1)
pαC21+δεδ

0ε0 < 2ε0,

which leads to a contradiction. �
Here we prepare a comparison result which enables us to compare solutions of (E)tp with solutions of simplified

equations.

Lemma 4. Let w be a positive solution of (E)tp on [0,1] satisfying ‖w(x, t)‖L∞(ω×[0,1]) � 1 and (23) with T0 = 1,
and let w± satisfy (23) with T0 = 1 and

w−
t � pα

(
�pw− − Ca(t)w−)

, pα

(
�pw+ + Ca(t)w+)

� w+
t , t ∈ (0,1),

w−(x,0) � w(x,0) � w+(x,0).

Then it holds that w−(x, t) � w(x, t) � w+(x, t) for a.e. x ∈ ω, ∀t ∈ [0,1].

Proof. Since ‖w(x, t)‖L∞(ω×[0,1]) � 1, by (I)2, it is easy to see that w satisfies

pα

(
�pw − Ca(t)w

)
� wt � pα

(
�pw + Ca(t)w

) ∀t ∈ (0,1).

Hence we get

1

pα

(
w(t) − w+(t)

)
t
� �pw(t) − �pw+(t) + Ca(t)

(
w(t) − w+(t)

)
.

Multiplying this by [w − w+]+(t) = max(w(t) − w+(t),0), we have

1

2pα

d

dt

∥∥[
w − w+]+

(t)
∥∥2

L2 � Ca(t)
∥∥[

w − w+]+
(t)

∥∥2
L2 a.e. t ∈ (0,1).

Then, integrating this on [δ, t] with δ > 0 and applying Gronwall’s inequality, we obtain∥∥[
w − w+]+

(t)
∥∥2

L2 �
∥∥[

w − w+]+
(δ)

∥∥2
L2e

2pαC
∫ t

0 a(ξ) dξ . (39)

Since ‖[w −w+]+(+0)‖L2 = 0, letting δ → 0 in (39), we conclude that w(x, t) � w+(x, t) for a.e. x ∈ ω, ∀t ∈ [0,1].
The assertion w−(x, t) � w(x, t) can be verified by much the same arguments as above. �

Now we are ready to prove Theorem 4.
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Proof of Theorem 4. We introduce a new time scale s± = s±(t) by

(S)±
⎧⎨⎩

d

dt
s±(t) = e±

p (t) := pα

(
e∓ ∫ t

0 pαCa(ξ) dξ
)2−p

, t ∈ (0,1),

s±(0) = 0.

(40)

Since e±
p (t) is strictly positive and bounded on [0,1], there exist unique solutions s±(t) of (S)±, which are strictly

increasing on [0,1]. Define

T ±
1 := s±(1) =

1∫
0

e±
p (ξ) dξ, (41)

then 0 < T −
1 < pα < T +

1 and s±(t) ∈ [0, T ±
1 ] ∀t ∈ [0,1].

Consider

(P)
∂

∂s
w(x, s) = �pw(x, s), (x, s) ∈ R

N × (0,+∞).

Then the following facts are well known:

(P1) Lr -norms are Lyapunov functions for (P), i.e., every solution w(s) of (P) satisfies ‖w(s)‖Lr � ‖w(0)‖Lr ∀s ∈
[0,+∞), ∀r ∈ [1,∞].

(P2) (P) admits the following Barenblatt-type solutions

wδ,γ (x, s) = (s + δ)−k

[
γ − q

( |x|
(s + δ)k/N

) p
p−1

] p−1
p−2

+
, [r]+ = max(r,0),

k =
(

p − 2 + p

N

)−1

, q = p − 2

p

(
k

N

) 1
p−1

, δ, γ > 0.

(P3) suppwδ,γ (x, s) is monotone increasing in s.
(P4) (wδ,γ (x, s))s , �pwδ,γ (x, s) belong to C(Rn × [0,+∞)).

Let K be the unit ball in R
N centered at the origin, then by (P2), fixing the parameters δ, γ suitably, we can choose

a solution w1(x, s) of (P) so that

0 � w1(x, s) � 1 ∀(x, s) ∈ R
n × [

0, T +
1

]
,

suppw1(·, s) ⊂ K ∀t ∈ [
0, T +

1

]
,∥∥w1

(·, T +
1

)∥∥
Lr � δ0 ∀r ∈ [1,∞], (42)

where δ0 is a positive constant independent of r . (Since we can assume that suppw1(·, T +
1 ) = K1 is small enough to

satisfy |K1| � 1 without loss of generality, if we take ‖w1(·, T +
1 )‖L1 � δ0, then (42) is satisfied for all r ∈ [1,∞].)

Furthermore it is easy to see that wε(x, s) := εw(ε
2−p
p x, s) is a solution of (P) and satisfies

0 � wε(x, s) � ε ∀(x, s) ∈ R
n × [

0, T +
1

]
,

suppwε(·, s) ⊂ Kε := ε
p−2
p K ∀t ∈ [

0, T +
1

]
. (43)

Moreover wε(x −xi, s) also gives a solution of (P) and for sufficiently small ε, there exists a finite set Rε := {xi} ⊂
ω such that

(R1) (xi + Kε) ∩ (xj + Kε) = ∅, ∀xi, xj ∈ Rε, i �= j,

(R2) #Rε � Cω

(
1

ε

)N(p−2)
p

,

(R3)
#Rε⋃

(xi + Kε) � ω.
i=1
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Consequently, for every �m ∈ {0,1}#Rε := { �m = (m1,m2, . . . ,m#Rε ); mj = 0 or 1, j = 1,2, . . . ,m#Rε }, the function

w �m,ε(x, s) =
#Rε∑
i=1

miwε(x − xi, s) (44)

solves (P) and is supported in ω. On the other hand, for �m1 �= �m2, we obviously have∥∥w �m1,ε(x, s) − w �m2,ε(x, s)
∥∥

L∞ = ε
∥∥w1(x, s)

∥∥
L∞ ∀s ∈ [

0, T +
1

]
. (45)

Thus we find 2#Rε different solutions of (P) supported in ω having the form (44). Furthermore, as for the measurement
in the topology of Lr (1 � r < ∞), instead of (45), we get∥∥w �m1,ε(x, s) − w �m2,ε(x, s)

∥∥
Lr � ε

pr+N(p−2)
pr

∥∥w1(x, s)
∥∥

Lr ∀s ∈ [
0, T +

1

]
. (46)

Here we define new functions V ±
�m,ε

(x, t) via new time scales s±(t) defined by (40) as follows:

V ±
�m,ε

(x, t) := w �m,ε

(
x, s±(t)

)
, t ∈ [0,1]. (47)

Then, by (40), we easily find⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
V ±

�m,ε
(x, t) = d

dt
s±(t)

∂

∂s± w �m,ε

(
x, s±) = e±

p (t)�pV ±
�m,ε

(x, t),

V ±
�m,ε

(x,0) = w �m,ε(x,0),

suppw �m,ε(·,0) ⊂ suppV ±
�m,ε

(·, t) ⊂ suppw �m,ε

(·, T ±
1

) ∀t ∈ [0,1].
(48)

We further introduce new functions w̃±
�m,ε

by

w̃±
�m,ε

(x, t) := e±(t)V ±
�m,ε

(x, t), e±(t) := e± ∫ t
0 pαCa(ξ) dξ , t ∈ [0,1]. (49)

Then, by (48), it is easy to see

∂

∂t
w̃±

�m,ε
(x, t) = e±(t)

∂

∂t
V ±

�m,ε
(x, t) ± pαCa(t)e±(t)V ±

�m,ε
(x, t)

= pα

(
e±(t)

)p−1
�pV ±

�m,ε
(x, t) ± pαCa(t)w̃±

�m,ε
(x, t).

Thus we find⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
w̃±

�m,ε
(x, t) = pα

(
�pw̃±

�m,ε
(x, t) ± Ca(t)w̃±

�m,ε
(x, t)

)
, t ∈ [0,1],

w̃±
�m,ε

(x,0) = w �m,ε(x,0),

suppw �m,ε(·,0) ⊂ supp w̃±
�m,ε

(·, t) ⊂ suppw �m,ε

(·, T ±
1

) ∀t ∈ [0,1].
(50)

Let w̃ �m,ε(x, t) be the unique solution of (E)tp on [0,1] with w̃ �m,ε(x,0) = w �m,ε(x,0), whose existence is assured
by Lemma 3 for all ε ∈ (0, ε0]. Then, by the comparison theorem given in Lemma 4 (note that w̃±

�m,ε
(x, t) satisfy the

regularity required there), we observe⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂

∂t
w̃ �m,ε(x, t) = pα

(
�pw̃ �m,ε(x, t) − a(t)|w̃ �m,ε|ρh(x, t, w̃ �m,ε)

)
,

w̃ �m,ε(x,0) = w �m,ε(x,0),

w̃−
�m,ε

(x, t) � w̃ �m,ε(x, t) � w̃+
�m,ε

(x, t) a.e. ω, ∀t ∈ [0,1],
suppw �m,ε(·,0) ⊂ supp w̃ �m,ε(·, t) ⊂ suppw �m,ε

(·, T ±
1

) ∀t ∈ [0,1].

(51)

Hence, by virtue of the choice of Rε , supp w̃ �m,ε(·, t) does not touch the boundary of ω for all t ∈ [0,1]. Therefore, the
zero extension of w̃ �m,ε(·, t) to Ω , denoted again by w̃ �m,ε(·, t), becomes a solution of (E)tp with ω replaced by Ω .

We introduce another time scale τ = τ(t) ∈ (−∞,0] by

τ(t) = pα log t, t ∈ (0,1] ⇐⇒ t (τ ) = eα(p−2)τ , τ ∈ (−∞,0], dt = α(p − 2)t

dτ



580 M.A. Efendiev, M. Ôtani / Ann. I. H. Poincaré – AN 28 (2011) 565–582
and define a new function W̃ �m,ε(x, τ ) by

W̃ �m,ε(x, τ ) = w̃ �m,ε

(
x, t (τ )

)
, (x, τ ) ∈ Ω × (−∞,0].

Then we have

∂

∂τ
W̃ �m,ε(x, τ ) = dt

dτ

∂

∂t
w̃ �m,ε(x, t)

= α(p − 2)tpα

(
�pw̃ �m,ε − a(t)|w̃ �m,ε|ρh

(
x, t, w̃ �m,ε(t)

))
= t

(
�pw̃ �m,ε − t

−p+1
p−2 gα

(
x, t

1
p−2 w̃ �m,ε(t)

))
.

Therefore we get⎧⎪⎪⎨⎪⎪⎩
∂

∂τ
W̃ �m,ε(x, τ ) = eα(p−2)τ�pW̃ �m,ε(x, τ ) − e−ατ gα

(
x, eατ W̃ �m,ε(x, τ )

)
,

W̃ �m,ε(x,0) = w̃ �m,ε(x,1),

suppw �m,ε(·,0) ⊂ supp W̃ �m,ε(·, τ ) ⊂ suppw �m,ε

(·, T ±
1

) ∀τ ∈ (−∞,0].
Now define

W �m,ε(x, τ ) = eατ W̃ �m,ε(x, τ ), (x, τ ) ∈ Ω × (−∞,0],
then

∂

∂τ
W �m,ε(x, τ ) = αW �m,ε(x, τ ) + eατ ∂

∂τ
W̃ �m,ε(x, τ )

= αW �m,ε(x, τ ) + eα(p−1)τ�pW̃ �m,ε(x, τ ) − gα
(
x,W �m,ε(x, τ )

)
,

whence it follows that⎧⎪⎪⎨⎪⎪⎩
∂

∂τ
W �m,ε(x, τ ) = �pW �m,ε(x, τ ) − g(x,W �m,ε), (x, τ ) ∈ Ω × (−∞,0],

W �m,ε(x,0) = w̃ �m,ε(x,1),

suppw �m,ε(·,0) ⊂ suppW �m,ε(·, τ ) ⊂ suppw �m,ε

(·, T ±
1

) ∀τ ∈ (−∞,0].
(52)

Thus we observe that{
W �m,ε(x, τ )

}
τ∈R

1−
∈ K− and W �m,ε(x,0) = w̃ �m,ε(x,1) ∈ K−(0). (53)

Next we put �ei = (0, . . . ,1, . . . ,0), i.e., the j -th component of �ei = δij (j = 1,2, . . . ,#Rε) and define

w̃ε(x − xi, t) = w̃�ei ,ε(x, t), t ∈ [0,1].
Then, by virtue of (43), (R1) and (51), we see that

supp w̃ε(x − xi, t) ∩ supp w̃ε(x − xj , t) = ∅, i �= j, ∀t ∈ [0,1].
Hence we can write

w̃ �m,ε(x, t) =
#Rε∑
i=1

miw̃ε(x − xi, t), t ∈ [0,1].

Therefore, if �m1 and �m2 differ at the i-th component, we have, by (53)∥∥W �m1,ε(x,0) − W �m2,ε(x,0)
∥∥

Lr = ∥∥w̃ �m1,ε(x,1) − w̃ �m2,ε(x,1)
∥∥

Lr

�
∥∥w̃ε(x − xi,1)

∥∥
Lr . (54)

Recalling (51), (47) and (49), we get

w̃ε(x − xi,1) � w̃−
ε (x − xi,1) = e−(1)wε

(
x − xi, T

−
1

)
.

Hence, since 0 < T − < T +, from (P1) and (42), we deduce that
1 1
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∥∥w̃ε(x − xi,1)
∥∥

Lr � e−(1)
∥∥wε

(
x − xi, T

−
1

)∥∥
Lr

� e−(1)
∥∥wε

(
x − xi, T

+
1

)∥∥
Lr

= e−(1)ε
pr+N(p−2)

pr
∥∥w1

(
x,T +

1

)∥∥
Lr

� e−(1)δ0ε
pr+N(p−2)

pr . (55)

Then, combining (54) with (55), we obtain∥∥W �m1,ε(x,0) − W �m2,ε(x,0)
∥∥

Lr � e−(1)δ0ε
pr+N(p−2)

pr ,

which can be rewritten as∥∥W �m1,(kε)β (x,0) − W �m2,(kε)β (x,0)
∥∥

Lr � 2ε, ∀ε ∈ (
0, (ε0/k)1/β

)
,

β = pr

pr + N(p − 2)
, k = 2

e−(1)δ0
.

This estimate implies that balls in Lr with radius ε > 0 can contain at most one element belonging to {W �m,(kε)β (x,0);
�m ∈ {0,1}#R

(kε)β } ⊂ K−(0) and its cardinality can be estimated, by (R2) and (53), as follows

#
{
W �m,(kε)β (x,0); �m ∈ {0,1}#R

(kε)β
}

� 2#R
(kε)β ,

#R(kε)β � Cω

(
1

(kε)β

)N(p−2)
p = Cω

(
1

kε

) Nr(p−2)
pr+N(p−2)

.

Hence, by the definition of Nε , Hε and Lemma 2, we get

Nε

(
K−(0),Lr

)
� 2#R

(kε)β ,

Hε

(
A,Lr

)
� Cω

(
1

kε

) Nr(p−2)
pr+N(p−2)

, r ∈ [1,∞].

Moreover, since Kolmogorov’s ε-entropy of a bounded set of C1(Ω) in the topology of L∞ is estimated from above
by C( 1

ε
)N (see [7]), we obtain

Cω

(
1

kε

) N(p−2)
p+N(p−2)

� Cω

(
1

kε

) Nr(p−2)
pr+N(p−2)

� Hε

(
A,Lr

)
� C

(
1

ε

)N

∀r ∈ [1,∞]. (56)

To complete the proof of Theorem 4, it remains to recall that dimF (A,Lr), the fractal dimension of A, can be
expressed in terms of Kolmogorov’s ε-entropy via the definition: dimF (A,Lr) := lim supε→0

Hε(A,Lr )

log2
1
ε

. Letting ε → 0

in (56), we conclude

dimF

(
A,Lr

) = ∞ ∀r ∈ [1,∞]. �
Concluding remarks. (1) For the sake of the simplicity of the presentation, the monotone part g0(x, ξ) of g(x, ξ)

is here assumed to be single-valued and continuous with respect to ξ . However, Theorems 1, 2 and 3 hold true with
obvious modifications for any g0(x, ξ), which is a (possibly multivalued) maximal monotone graph in R

2 for a.e.
x ∈ Ω such that

0 ∈ g0(x,0), sup
{|z|; z ∈ g0(x, ξ), x ∈ Ω, |ξ | � M

}
� CM ∀M > 0.

(2) It is clear that Theorem 4 holds true for unbounded domains Ω , since the arguments in the proof are always
localized in a bounded domain ω.
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