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Abstract

We prove the existence of a spatially periodic weak solution to the steady compressible isentropic Navier–Stokes equations in
R

3 for any specific heat ratio γ > 1. The proof is based on the weighted estimates of both pressure and kinetic energy for the
approximate system which result in some higher integrability of the density, and the method of weak convergence.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper we prove the existence of a spatially periodic weak solution (ρ,u) to the following steady isentropic
compressible Navier–Stokes equations in R

3 for any specific heat ratio γ > 1:

div(ρu) = 0, (1.1)

−μ�u − μ̃∇ div u + div(ρu ⊗ u) + ∇P = ρf. (1.2)

Here u = (u1, u2, u3) is the velocity and ρ is the density, the viscosity constants μ and μ̃ satisfy μ > 0, μ̃ = μ + λ

with λ + 2μ/3 � 0, the pressure P for isentropic flows is given by P(ρ) = aργ with a being a positive constant and
γ > 1 being the specific heat ratio. f = (f1, f2, f3) is the external force, and for simplicity, we assume that

f ∈ L∞(
R

3).
Besides, we consider that (ρ,u) and f are periodic in each xi with period 2π for all 1 � i � 3.

For simplicity, throughout this paper, we denote by Ω the periodic cell (−π,π)3.
In general, there could be no solution for arbitrary f, since for a (smooth) solution, which is periodic in x with

period 2π , f has to satisfy the necessary condition:
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∫
Ω

ρfi dx = 0 for 1 � i � 3. (1.3)

However, if we consider f with symmetry

fi(x) = −fi

(
Yi(x)

)
and fi(x) = fi

(
Yj (x)

)
, if i �= j, i, j = 1,2,3, (1.4)

where

Yi(. . . , xi, . . .) = (. . . ,−xi, . . .), (1.5)

then u will have the same symmetry and ρ with the symmetry

ρ(x) = ρ
(
Yi(x)

)
for i = 1,2,3, (1.6)

and condition (1.3) is satisfied automatically. Moreover, u satisfies∫
Ω

ui(x) dx = 0 for all 1 � i � 3. (1.7)

So, in this paper we will consider the external force f that has the symmetry (1.4).
In the last decades, the well-posedness of Eqs. (1.1), (1.2) for large f has been investigated by a number of re-

searchers. In 1998, under the assumption that γ > 1 in two dimensions and γ > 5/3 in three dimensions, Lions [12]
proved the existence of weak solutions to (1.1), (1.2). Roughly speaking, the condition on γ comes from the integra-
bility of the density ρ in Lp . The higher integrability of ρ has, the smaller γ can be allowed. If f is potential, then
weak solutions are shown to exist for any γ > 3/2, see [14]. Then, Frehse, Goj and Steinhauer [6], Plotnikov and
Sokolowski [15] obtained an improved integrability bound for the density by deriving a new weighted estimate of
the pressure, assuming a priori the L1-boundedness of ρu2 which, unfortunately, was not shown to hold. Recently,
by combining the L∞-estimate of �−1P with the (usual) energy and density bounds, Březina and Novotný [2] were
able to show the existence of weak solutions to the spatially periodic problem with symmetries (1.4)–(1.6) for any
γ > (3 + √

41)/8 when f is potential, or for any γ > 1.53 when f ∈ L∞, without assuming the boundedness of ρu2

in L1. More recently, Frehse, Steinhauer and Weigant [8] established the existence of weak solutions to the Dirichlet
problem in three dimensions for any γ > 4/3 in the framework of [2]. Also, the existence of a weak solution to (1.1),
(1.2) with periodic or mixed boundary conditions was obtained in the two-dimensional isothermal case (γ = 1) [7].

The aim of this paper, inspired by the works [8,2], is to improve the existence result in [2], namely, we shall prove
the existence of spatially periodic weak solutions to the system (1.1), (1.2) for any γ > 1, thus extending the existence
in [2] from γ > 4/3 to γ > 1. Roughly speaking, the basic idea in our proof is to employ a careful bootstrap argument
to obtain the higher integrability of the density which eventually relaxes the restriction on γ in [2], see the paragraph
below Theorem 1.2 for more details on the proof idea.

We mention that for a 3D model of steady compressible heat-conducting flows (i.e., the steady compressible
Navier–Stokes–Fourier system), Mucha and Pokorný [13] recently studied the existence of weak solutions under
some assumptions on the pressure and heat-conductivity, which unfortunately excludes the case of polytropic idea
gases. For the corresponding non-steady system (to (1.1), (1.2)) with large initial data, Lions [12] first proved the
global existence of weak solutions in the case of γ � 3n/(n + 2) (n = 2,3: dimension). His result has been improved
and generalized recently in [5,10,11] and among others, where the condition γ > 3/2 is required in three dimensions
for general initial data.

Before defining a weak solution to (1.1), (1.2), we introduce the notation used throughout this paper.

Notation. Let G be a domain in R
3 or the periodic cell. We denote by Lp(G) the Lebesgue spaces, by Wk,p(G)

(k ∈ N) the usual Sobolev spaces, by Ck(G) (resp. Ck(G)) the space of k times continuously differentiable functions
in G (resp. G). We define

D
(
R

3) = {
φ(x) ∈ C∞(

R
3), φ(x) is periodic in xi of period 2π for all 1 � i � 3

}
and

D(G) = {
φ(x)

∣∣ ∃φ̃(x) ∈ D
(
R

3), s.t. φ(x) = φ̃(x), for x ∈ G
}
.
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By D′(R3) (resp. D′(G)), we denote the dual space of D(R3) (resp. D(G)). For example, D′(R3) is the space of
periodic distributions in R

3 (dual to D(R3)). We also introduce the space of symmetric functions: (W
k,p
sym(Ω))3 denotes

the space of vector functions in (Wk,p(Ω))3 which possess the symmetry (1.4), while L
p
sym(Ω) stands for the space

of functions in Lp(Ω) with symmetry (1.6). BR(a) := {x ∈ R
3: |x − a| < R} denotes the open ball centered at a with

radius R.
Now, let us recall the definition of a bounded energy weak solution to (1.1), (1.2).

Definition 1.1 (Renormalized bounded energy weak solution). We call (ρ,u) a renormalized bounded energy weak
solution to the spatially periodic problem of the system (1.1) and (1.2), if the following is satisfied.

(1) ρ � 0, ρ ∈ Lγ (Ω), u ∈ (H 1(Ω))3,
∫
Ω

ρ(x)dx = M > 0.

(2) (ρ,u) satisfies the energy inequality:∫
Ω

(
μ|∇u|2 + μ̃|div u|2)dx �

∫
Ω

ρf · udx. (1.8)

(3) The system (1.1), (1.2) holds in the sense of D′(Ω).
(4) The mass equation (1.1) holds in the sense of renormalized solutions, i.e.,

div
[
b(ρ)u

] + [
b′(ρ)ρ − b(ρ)

]
div u = 0 in D′(Ω) (1.9)

for any b ∈ C1(R), such that b′(z) = 0 when z is big enough.

Remark 1.1. In the periodic case, the periodic cell Ω in Definition 1.1 actually can be replaced by any cube in R
3

with length 2π .

The main result of the current paper reads as

Theorem 1.2. Let γ > 1 and f ∈ L∞(R3) satisfy (1.4). Then, there exists a renormalized bounded energy weak solution
(ρ,u), satisfying (1.6) and (1.4), to the spatially periodic problem of the system (1.1), (1.2).

The proof of Theorem 1.2 is based on the uniform a priori estimates for the approximate solutions and the weak
convergence method in the framework of Lions [12]. First, to get higher integrability of the density ρδ , we derive
the weighted estimates for both pressure Pδ and kinetic energy ρδ|uδ|2 which can be also understood as estimates
in a Morrey space. These weighted estimates are inspired by the papers [8,2]. However, the new idea in the current
paper is that both Pδ and ρδ|uδ|2 are bounded simultaneously (cf. Lemma 2.2), while in [8,2] a weighted estimate
only for the pressure Pδ was shown. This simultaneous boundedness of both Pδ and ρδ|uδ|2 plays a crucial role in the
derivation of the higher integrability of ρδ for any γ > 1, and moreover, implies some new uniform estimates for the
velocity uδ and the pressure Pδ (cf. Lemmas 2.4 and 2.6). Then, with the help of the higher integrability of ρδ and the
new estimates for (uδ,Pδ), we use a bootstrap argument to obtain the a priori uniform estimates for the approximate
solutions for any γ > 1 (cf. Theorem 2.1). To pass to the limit and obtain the existence of a weak solution, we cannot
directly use the arguments in [12], since ρδ ∈ Lp(Ω) (p > 5/3) is required in [12] and this is not the case here. In
fact, here we only have ρδ ∈ Lγr(Ω) with some r > 1 being very close to 1 when γ is close to 1. Instead, we exploit
the proved uniform boundedness of ρδuδ and ρδ|uδ|2 in Lr(Ω), and employ a careful analysis based on the classical
method of weak convergence to circumvent this difficulty to prove the existence.

This paper is organized as follows. In Section 2, we first construct a sequence of approximate solutions (ρδ,uδ)

and then derive the uniform weighted estimates for both pressure Pδ and kinetic energy ρδ|uδ|2. In Sections 2.2
and 2.3 we show the additional uniform estimates for the velocity uδ and the pressure Pδ in terms of the quantity
A = ‖Pδ|uδ|2 + ρ

β
δ |uδ|2+2β‖L1(Ω), 0 < β < 1. This is crucial in the derivation of the higher integrability of ρδ for

any γ > 1. In Section 2.4, by using of a bootstrap argument (see, for example, [2,6]), we prove that A is uniformly
bounded which in turn implies the uniform H 1-boundedness of uδ , and the Lr -boundedness of Pδ , ρδuδ andρδ|uδ|2.
In Section 3, we prove the main theorem by using the weak convergence method in the framework of Lions [12].
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2. Uniform estimates of the approximate solutions

2.1. The approximate system

To prove Theorem 1.2, we first work with the standard approximation by introducing an artificial pressure term:

Pδ(ρ) := aργ + δρ6,

where 0 < δ � 1. Here we choose ρ6 just for technical reason, and in fact we can take ρα for any α � 6 instead of ρ6.
We consider the following approximate problem in Ω :

div(ρδuδ) = 0, (2.1)

−μ�uδ − μ̃∇ div uδ + div(ρδuδ ⊗ uδ) + ∇Pδ(ρδ) = ρδf. (2.2)

According to [2], there is at least a weak solution (ρδ,uδ) to the problem (2.1), (2.2) with the following properties
(γ = max (γ,6)):

(1) ρδ ∈ L
2γ
sym(Ω), uδ ∈ (

W 1,2
sym(Ω)

)3
,

∫
Ω

ρδ dx = M; (2.3)

(2) div
[
b(ρδ)uδ

] + [
b′(ρδ)ρδ − b(ρδ)

]
div uδ = 0 in D′(Ω); (2.4)

(3)

∫
Ω

[
μ|∇uδ|2 + μ̃|div uδ|2

]
dx �

∫
Ω

ρδf · uδ dx, (2.5)

where b is the same as in (1.9).
In the rest of this section we will show some uniform-in-δ estimates for (ρδ, uδ) which will be used in passing to

the limit as δ → 0 in the next section to get a weak solution of the system (1.1), (1.2).
If we define

A = ∥∥Pδ|uδ|2 + ρ
β
δ |uδ|2+2β

∥∥
L1(Ω)

, 0 < β < 1, (2.6)

then, we have

Theorem 2.1. For A defined by (2.6), it holds for any 1 < r < 2 − 1/γ that

A + ‖uδ‖H 1(Ω) + ‖Pδ‖Lr(Ω) + ∥∥ρδ|uδ|2
∥∥

Lr(Ω)
+ ‖ρδuδ‖Lr(Ω) � C, (2.7)

δ

∫
Ω

ρ6
δ dx → 0 as δ → 0, (2.8)

where the constant C depends only on ‖f‖L∞(Ω), μ, μ̃, M , γ and β (but not on δ).

The proof of Theorem 2.1 is broken up into several lemmas given in Sections 2.2–2.4. We start with the following
potential estimate.

2.2. A potential estimate

In this section we first derive the weighted estimate for Pδ and ρδ|uδ|2 which can also be understood as an estimate
in a Morrey space, and then use this estimate to get an estimate for A by the classical theory of elliptic equations of
second order.

Lemma 2.2. Let (ρδ,uδ) be the solutions of the approximate problem (2.1), (2.2). Then the following estimate holds.∫
B1(x0)

Pδ + (ρδ|uδ|2)β
|x − x0| dx � C

(
1 + ‖Pδ‖L1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖uδ‖H 1(Ω)

)
(2.9)

for all β ∈ (0,1) and x0 ∈ Ω , where the constant C depends only on ‖f‖L∞(Ω), μ, μ̃,M,γ and β , but not on x0 and δ.
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Proof. For x0 ∈ Ω , we define φ = (φ1, φ2, φ3) with

φi(x) = (x − x0)
i

|x − x0|β η
(|x − x0|

)
in b(x0,π), i = 1,2,3,

where 0 < β � 1, b(x0,π) = {x = (x1, x2, x3) ∈ R
3: |xi − xi

0| < π, i = 1,2,3} is a periodic cell, and η ∈ C∞
0 (R) is

a cut-off function satisfying 0 � η(t) � 1, |Dη| � 2 and

η(t) =
{

1 |t | � 1,

0 |t | � 2.

If we extend φ to R
3 periodically in xi with period 2π for all 1 � i � 3, then φ ∈ H 1

loc(R
3) can be a test function.

Testing (2.2) with this φ, we find that∫
B2(x0)

Pδ divφ dx +
∫

B2(x0)

ρδu
i
δu

j
δ ∂jφ

i dx

= μ

∫
B2(x0)

∇uδ : ∇φ dx + μ̃

∫
B2(x0)

div uδ divφ dx +
∫

B2(x0)

ρδfφ dx. (2.10)

Since

divφ(x) = 3 − β

|x − x0|β η + (x − x0) · ∇η

|x − x0|β (2.11)

and ∫
B2(x0)

ρδu
i
δu

j
δ ∂jφ

i dx

=
∫

B2(x0)

ρδ|uδ|2
|x − x0|β η dx − β

∫
B2(x0)

ρδ[uδ · (x − x0)]2

|x − x0|2+β
η dx +

∫
B2(x0)

ρδu
i
δu

j
δ

(x − x0)
i

|x − x0|β ∂jη

� (1 − β)

∫
B2(x0)

ρδ|uδ|2
|x − x0|β η dx +

∫
B2(x0)

ρδu
i
δu

j
δ

(x − x0)
i

|x − x0|β ∂jη dx, (2.12)

we substitute (2.11) and (2.12) into (2.10) to obtain, after a straightforward calculation, that∫
B1(x0)

Pδ

|x − x0|β dx + (1 − β)

∫
B1(x0)

ρδ|uδ|2
|x − x0|β dx � C

(
1 + ‖Pδ‖L1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖uδ‖H 1(Ω)

)
,

from which it follows that∫
B1(x0)

Pδ

|x − x0| dx � C
(
1 + ‖Pδ‖L1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖uδ‖H 1(Ω)

)
for β = 1,

and ∫
B1(x0)

ρδ|uδ|2
|x − x0|β dx � C

1 − β

(
1 + ‖Pδ‖L1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖uδ‖H 1(Ω)

)
(2.13)

for any 0 < β < 1.
Using Hölder’s inequality, we easily see that for any 0 < β < 1,∫

B1(x0)

(ρδ|uδ|2)β
|x − x0| dx � C

1 − β

(
1 + ‖Pδ‖L1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖uδ‖H 1(Ω)

)
. (2.14)

Thus, (2.9) follows from (2.13) and (2.14) immediately. �
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The following lemma is similar to the potential estimate in Section 3 of [8], and for the convenience of the reader,
we give its proof in Appendix A.

Lemma 2.3. Let A be defined by (2.6), then we have

A � C‖uδ‖2
H 1(Ω)

(
1 + ‖Pδ‖L1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖uδ‖H 1(Ω)

)
, (2.15)

where the constant C depends on ‖f‖L∞(Ω), μ, μ̃, M , γ and β , but not on δ.

2.3. Uniform estimates

The next lemma shows that the H 1-norm of uδ can be bounded by some power of A.

Lemma 2.4. Let (ρδ,uδ) be the solution of the approximate problem (2.1), (2.2). Then,

‖uδ‖H 1(Ω) � CA
γ−β

4(γβ+γ−2β) , (2.16)

where the constant C depends only on ‖f‖L∞(Ω), μ, μ̃, M , γ and Ω ; β is the same as in Lemma 2.2.

Proof. First, we use the energy inequality (2.5) to obtain

μ

∫
Ω

|∇uδ|2 dx + μ̃

∫
Ω

|div uδ|2 dx �
∫
Ω

ρδf · uδ dx � ‖f‖L∞(Ω)‖ρδuδ‖L1(Ω). (2.17)

By Hölder’s and Sobolev’s inequalities, we see that

‖ρδuδ‖L1(Ω) =
∫
Ω

(
Pδu2

δ

) 1−β
2(γβ+γ−2β)

(
ρ

β
δ u2β+2

δ

) γ−1
2(γβ+γ−2β) ρ

2γβ+γ−3β
2(γβ+γ−2β)

δ

� CA
γ−β

2(γβ+γ−2β) , (2.18)

where we have used the fact that
∫
Ω

ρδ = M . Substituting (2.18) into (2.17), utilizing (1.7) and Poincaré’s inequality,
we obtain (2.16). This completes the proof. �

The following lemma is due to Bogovskii [1] and will be needed in Lemma 2.6.

Lemma 2.5. Suppose that the bounded domain Ω ⊂ R
n is starlike with respect to some ball contained in it, and

that 1 < p < ∞ and n � 2. Then, there exists a constant C > 0, depending only on n,p and Ω , such that for any
f ∈ Lp(Ω) with

∫
Ω

f (x)dx = 0, there is a vector field ω ∈ W 1
p(Ω) satisfying:{

divω = f in Ω,

ω = 0 on ∂Ω,
(2.19)

and

‖ω‖W 1
p(Ω) � C‖f ‖Lp(Ω). (2.20)

Now, if we take

f = P s−1
δ − 1

|Ω|
∫
Ω

P s−1
δ dx with 1 < s < 2

in (2.19), then by virtue of Lemma 2.5, there is at least one solution ωδ of (2.19) satisfying (2.20) and the estimate:

‖wδ‖
W

1, s
s−1 (Ω)

� C

∥∥∥∥ps−1
δ − 1

|Ω|
∫
Ω

P s−1
δ dx

∥∥∥∥
L

s
s−1 (Ω)

� C(s,Ω)‖Pδ‖s−1
s . (2.21)

With the help of Lemma 2.5, we can show now
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Lemma 2.6. Let (ρδ,uδ) be the solution of the approximate problem (2.1), (2.2). Then for s ∈ (1, β + 1 − β/γ ], we
have

‖Pδ‖s
Ls(Ω) � C

(
1 + A

γs−β
γβ+γ−2β

)
, (2.22)

where the constant C depends only on ‖f‖L∞(Ω), μ, λ, M , γ and Ω .

Proof. We use the function ωδ in (2.21) to test the momentum equation (2.2), and by a direct computation similar to
Lemma 2.3 in [6] we obtain

‖Pδ‖s
Ls(Ω) � C

(
1 + ‖uδ‖s

W 1,2(Ω)
+ ∥∥ρδ|uδ|2

∥∥s

Ls(Ω)

)
, (2.23)

where the last term can be bounded as follows, using Hölder’s and Sobolev’s inequalities.

∥∥ρδ|uδ|2
∥∥s

Ls(Ω)
=

∫
Ω

ρs
δ |uδ|2s =

∫
Ω

(
Pδ|uδ|2

) 2s−β−1
γβ+γ−2β

(
ρβ |uδ|2β+2) γ s+1−2s

γβ+γ−2β ρ

γβ+γ−β−γ s
γβ+γ−2β

δ

� C
∥∥Pδ|uδ|2

∥∥ 2s−β−1
γβ+γ−2β

L1(Ω)

∥∥ρ
β
δ |uδ|2β+2

∥∥ γ s+1−2s
γβ+γ−2β

L1(Ω)

� CA
γs−β

γβ+γ−2β . (2.24)

The estimate (2.24), together with (2.23) and (2.16), gives then

‖Pδ‖s
Ls(Ω) � C

(
1 + A

s(γ−β)
4(γβ+γ−2β) + A

γs−β
γβ+γ−2β

)
� C

(
1 + A

γs−β
γβ+γ−2β

)
,

which proves the lemma. �
2.4. Proof of Theorem 2.1

In this section we will first show that the quantity A is uniformly bounded (with respect to δ), then with the help of
this uniform boundedness, we can easily get (2.7) and (2.8).

Recalling that Lemma 2.6 is true for any s ∈ (1, β + 1 − β/γ ], we write s = 1 + ε, where ε will be chosen small
enough later on, and use (A.1), (2.16), (2.22) and (2.24) to infer that

A � C‖uδ‖2
H 1(Ω)

(
1 + ‖uδ‖H 1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖Pδ‖L1(Ω)

)
� CA

γ−β
2(γβ+γ−2β)

(
1 + A

γ−β
4(γβ+γ−2β) + A

γs−β
(γβ+γ−2β)

· 1
1+ε

)
� C

(
1 + A

3(γ−β)
2(γβ+γ−2β)

+O(ε))
. (2.25)

Since (2.25) remains valid for any β ∈ (0,1), if we write β = 1 − σ with 0 < σ < 1, then

γ >
1 − σ

1 − 2σ
⇒ 3(γ − β)

2(γβ + γ − 2β)
< 1,

where ε and σ can be arbitrary small. So, by our choice of the parameters ε and σ , the exponent 3(γ−β)
2(γβ+γ−2β)

+ O(ε)

can be made less than 1, and therefore we conclude by (2.25) that

A � C,

which immediately implies that

‖uδ‖H 1(Ω) � C,

‖pδ‖Lr(Ω) + ∥∥ρδ|uδ|2
∥∥

Lr(Ω)
� C,

‖ρδuδ‖r
Lr (Ω) =

∫
Ω

(
ρr

δ u2r
δ

) 1
2
(
ρr

δ

) 1
2 � C

∥∥ρr
δ u2r

δ

∥∥ 1
2
L1(Ω)

∥∥ρr
δ

∥∥ 1
2
L1(Ω)

� C,

δ

∫
Ω

ρ6
δ dx � Cδ

γ(s−1)
6+γ (s−1)

( ∫
Ω

δρ
6+γ (s−1)
δ dx

) 6
6+γ (s−1)

� Cδ
γ(s−1)

6+γ (s−1) .

From the above four inequalities, we obtain (2.7) and (2.8). This completes the proof of Theorem 2.1.
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3. Proof of Theorem 1.2

In this section we will take to the limit as δ → 0 for the approximate problem (2.1) and (2.2) to obtain a weak
solution of (1.1), (1.2) for any γ > 1. As mentioned in the introduction, we cannot directly use the arguments in [12]
to take to the limit, because we just have ρδ ∈ Lγr(Ω) with r being very close to 1 when γ is close to 1, while in [12]
ρδ ∈ Lp(Ω) (p > 5/3) is required. To overcome this difficulty, we exploit the estimates established in Theorem 2.1
and Lemma 3.1 to show the weak compactness of the effective viscous flux (see Sections 3.2, 3.3). Then, by the
standard procedure of the weak convergence method in Section 3.4, we can finish the proof of Theorem 1.2 (cf. [3,
12]).

3.1. Preliminaries

In this section we give the necessary preliminary lemmas which will be used in the proof of Theorem 1.2.

Lemma 3.1. Let 1 < p1,p2,p < ∞, p � p1 and Ω be a bounded domain in R
3. Suppose that

fn ⇀ f weakly in Lp1(Ω), (3.1)

gn → g strongly in Lp2(Ω), (3.2)

and

fngn are uniformly bounded in Lp(Ω). (3.3)

Then there is a subsequence of fngn (still denoted by fngn), such that

fngn ⇀ fg weakly in Lp(Ω).

Remark 3.1. We point out here that 1
p1

+ 1
p2

� 1 is not needed in Lemma 3.1.

Proof of Lemma 3.1. Since fngn is uniformly bounded in Lp(Ω), there exists a subsequence of fngn (still denoted
by fngn) and F ∈ Lp(Ω), such that

fngn ⇀ F weakly in Lp(Ω). (3.4)

On the other hand, (3.2) implies that for the subsequence gn in (3.4), there is a subsequence (still denoted by gn),
such that

gn → g a.e. in Ω.

By Egoroff’s theorem, for any m ∈ N, there exits a subset Em ⊂ Ω with |Em| < 1/(2m), such that

gn → g uniformly in Ω \ Em.

Since g ∈ Lp2(Ω), we see that g is finite a.e. in Ω , that is, for all k ∈ N,

lim
k→∞

∣∣{x ∈ Ω,
∣∣g(x)

∣∣ > k
}∣∣ = 0.

Hence, for any given m, there exists a sufficiently large Km ∈ N, such that

EKm
m := {

x ∈ Ω,
∣∣g(x)

∣∣ > Km

}
satisfy

∣∣EKm
m

∣∣ <
1

2m
.

Now, we denote Ωm := Ω \ (Em ∪ E
Km
m ), then |Ω \ Ωm| < 1/m, |g| � Km and gn → g in Ωm. Thus, for any

φ ∈ Lp′
(Ω), 1/p + 1/p′ = 1, one has

lim
n→∞

∫
(fngn − fg)φ dx = lim

n→∞

∫
(fn − f )gφ dx + lim

n→∞

∫
fn(gn − g)φ dx = 0. (3.5)
Ωm Ωm Ωm
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For any φ ∈ Lp′
(Ω), if we define

φ̃(x) =
{

φ(x), x ∈ Ωm,

0, x ∈ Ω \ Ωm,

we still have φ̃ ∈ Lp′
(Ω). Thus, in view of (3.4), we have

lim
n→∞

∫
Ω

(fngn − F)φ̃ dx = 0 = lim
n→∞

∫
Ωm

(fngn − F)φ dx. (3.6)

From (3.5) and (3.6) we easily get that

fg = F, a.e. in Ωm.

Let m → ∞, we arrive at

fg = F, a.e. in Ω,

which proves the lemma. �
Lemma 3.2 (Div–Curl lemma). Let 1 < p1,p2, q1, q2 < ∞ (1/p1 + 1/p2 = 1/p < 1), and Ω be a domain in R

3.
Assume that

fn ⇀ f weakly in
(
Lp1(Ω)

)3
, gn ⇀ g weakly in

(
Lp2(Ω)

)3
,

and

div fn → div f strongly in W−1,q1(Ω), curl gn → curl g strongly in
(
W−1,q2(Ω)

)3
.

Then

fn · gn ⇀ f · g weakly in Lp(Ω).

The Div–Curl lemma is a classical statement of the compensated compactness due to Murat (1978) and Tartar
(1975). Lemma 3.2 is one of its general formulation. For the proof of Lemma 3.2 we refer to, for example, the
reference [14]. Actually, in the current paper we will apply Lemma 3.2 with

div fn = 0, curl gn = 0.

At the end of this section we introduce the operator A = (A1, A2, A3) in R
3 by

Aj = ∂j�−1 = F −1
(

− iξj

|ξ |2
)

, j = 1,2,3, div A = id,

where �−1 is the inverse of the Laplace operator, and the Riesz operator defined by

Rij [v] = ∂j Ai[v], Rij = Rji , i, j = 1,2,3.

Lemma 3.3. Let Ω be a domain in R
3 and the operator A is defined as above, then we have

‖Aiv‖W 1,s (Ω) � C(s,Ω)‖v‖Ls(R3), 1 < s < ∞, i = 1,2,3. (3.7)

For the proof of Lemma 3.3 one can see, for example, the reference [16].

3.2. Vanishing limit as δ → 0

In this section we will study the limit for the problem (2.1), (2.2) as δ → 0.
By Theorem 2.1, and the compact embedding W 1,2(Ω) ↪→↪→ Lp(Ω), p ∈ [1,6), we have the following limits:
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δρ6
δ → 0 in D′(Ω),

uδ ⇀ u weakly in
(
W 1,2(Ω)

)3
,

uδ → u strongly in
(
Lp(Ω)

)3
, 1 � p < 6,

ρδ ⇀ ρ weakly in Lγr(Ω),

ρ
γ
δ ⇀ ργ weakly in Lr(Ω). (3.8)

It is easy to see that Theorem 2.1, together with Lemma 3.1 and (3.8), yields that

ρδuδ ⇀ ρu and ρδuδ ⊗ uδ ⇀ ρu ⊗ u in Lr(Ω). (3.9)

Letting δ → 0 in (2.1) and (2.2), applying (3.8) and (3.9), we find that the weak limit (ρ,u) of (ρδ,uδ) satisfies

div(ρu) = 0 in D′(Ω), (3.10)

div(ρu ⊗ u) + a∇ργ − μ�u − μ̃∇ div u = ρf in D′(Ω); (3.11)

div
[
b(ρδ)uδ

] + [
b′(ρδ)ρδ − b(ρδ)

]
div uδ = 0 in D′(Ω), (3.12)∫

Ω

[
μ|∇u|2 + μ̃|div u|2]dx �

∫
Ω

ρf · udx. (3.13)

So, to show that (ρ,u) is a weak solution of (1.1), (1.2), we have to prove

ργ = ργ a.e. on Ω. (3.14)

We will employ the weak convergence method in the framework of Lions (cf. [12,5]) to get (3.14).
If γ r � 2, then by use of the DiPerna–Lions transport theory, (ρ,u) satisfies the renormalized continuity equation

(1.9) in D′(Ω).
If 1 < γ r < 2, we will use the following cut-off function, due to Feireisl, Novotný and Petzeltová (cf. [5]), to prove

that (ρ,u) is a renormalized solution by replacing ρ by Tk(ρ) and letting then k → 0.

Tk(z) = kT

(
z

k

)
, k = 1,2, . . . ,

where

T (z) =
{

z, z � 1
2, z � 3

∈ C∞(R), concave, z ∈ R. (3.15)

Since (ρδ,uδ) is the renormalized solution (recalling ρδ ∈ L2(Ω)), we can take b(z) = Tk(z) in the definition of
renormalized solutions to get

div
(
Tk(ρδ)uδ

) + [
T ′

k(ρδ)ρδ − Tk(ρδ)
]

div uδ = 0 in D′(Ω).

Letting δ → 0 in the above identity and making use of (3.8), we deduce that

div
(
Tk(ρ)u

) + [
T ′

k(ρ)ρ − Tk(ρ)
]

div u = 0 in D′(Ω), (3.16)

where and in what follows, we denote by f (ρ) the weak limit of f (ρδ).

3.3. Effective viscous flux

The importance of the effective viscous flux for the existence of weak solutions has been addressed by a number
of authors (see, for example, [12,5,3]). In this section we introduce the effective viscous flux and prove its weak
compactness which will play a key role in the existence proof.

We define the effective viscous flux by

H̃δ := aρ
γ
δ − (μ + μ̃)div uδ ⇀ H̃ := aργ − (μ + μ̃)div u, as δ → 0,

and we have the following lemma.
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Lemma 3.4. For any φ ∈ C∞
0 (Ω), we have

lim
δ→0

∫
Ω

φ(x)H̃δTk(ρδ) dx =
∫
Ω

φ(x)H̃Tk(ρ) dx. (3.17)

Remark 3.2. By use of the density argument, one can actually take φ(x) ≡ 1.

Proof of Lemma 3.4. First, testing (2.2) by Φδ ≡ (Φ1δ,Φ2δ,Φ3δ) = φ(x)A[ξ(x)Tk(ρδ)] and (1.2) by Φ ≡
(Φ1,Φ2,Φ3) = φ(x)A[ξ(x)Tk(ρ)] with φ, ξ ∈ C∞

0 (Ω), we obtain
∫
Ω

φ(x)ξ(x)H̃δTk(ρδ) dx

= −
∫
Ω

ρδu
i
δu

j
δ ∂iφAj

[
ξTk(ρδ)

] −
∫
Ω

ρδu
i
δu

j
δφRij

[
ξTk(ρδ)

]

−
∫
Ω

(
aρ

γ
δ + δρ6

δ

)∇φ · A
[
ξ(x)Tk(ρδ)

]
dx + μ̃

∫
Ω

div uδ∇φ · A
[
ξ(x)Tk(ρδ)

]
dx

+ μ

∫
Ω

{
uδ · ∇φξ(x)Tk(ρδ) + ∇φ · ∇ui

δ Ai

[
ξ(x)Tk(ρδ)

] + ui
δ∂jφRij

[
ξ(x)Tk(ρδ)

]}
dx

−
∫
Ω

ρδfφ(x)Aj

[
ξTk(ρδ)

]
(3.18)

and ∫
Ω

φ(x)ξ(x)H̃Tk(ρ) dx

= −
∫
Ω

ρuiuj ∂iφAj

[
ξTk(ρ)

] −
∫
Ω

ρuiujφRij

[
ξTk(ρ)

]

−
∫
Ω

aργ ∇φ · A
[
ξ(x)Tk(ρ)

]
dx + μ̃

∫
Ω

div u∇φ · A
[
ξ(x)Tk(ρ)

]
dx

+ μ

∫
Ω

{
u · ∇φξ(x)Tk(ρ) + ∇φ · ∇ui Ai

[
ξ(x)Tk(ρ)

] + ui∂jφRij

[
ξ(x)Tk(ρ)

]}
dx

−
∫
Ω

ρfφ(x)Aj

[
ξTk(ρ)

]
. (3.19)

Next, we will pass to the limit in (3.18) as δ → 0. For any k, it is easy to see that∥∥Tk(ρδ)
∥∥

L∞(Ω)
� 2k, uniformly in δ,

from which, (3.7) and Sobolev’s embedding theorem it follows that

Rij

[
ξTk(ρδ)

]
⇀ Rij

[
ξTk(ρ)

]
in Lp(Ω), for any 1 < p < ∞,

A
[
ξTk(ρδ)

] → A
[
ξTk(ρ)

]
in C0(Ω). (3.20)

By (3.8), (3.9) and (3.20), we deduce that

lim
δ→0

∫
ρδu

i
δu

j
δ ∂iφAj

[
ξTk(ρδ)

]
dx =

∫
ρuiuj ∂iφAj

[
ξTk(ρ)

]
dx,
Ω Ω
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lim
δ→0

∫
Ω

(
aρ

γ
δ + δρ6

δ

)∇φ · A
[
ξTk(ρδ)

]
dx =

∫
Ω

aργ ∇φ · A
[
ξTk(ρ)

]
dx,

lim
δ→0

∫
Ω

div uδ∇φ · A
[
ξTk(ρδ)

]
dx =

∫
Ω

div u∇φ · A
[
ξTk(ρ)

]
dx,

lim
δ→0

∫
Ω

ρδfφ(x)Aj

[
ξTk(ρδ)

] =
∫
Ω

ρfφ(x)Aj

[
ξTk(ρ)

]
,

lim
δ→0

∫
Ω

(
uδ · ∇φξTk(ρδ) + ∇φ · ∇ui

δ Ai

[
ξTk(ρδ)

] + ui
δ∂jφRij

[
ξTk(ρδ)

])

=
∫
Ω

(
u · ∇φξTk(ρ) + ∇φ · ∇ui Ai

[
ξTk(ρ)

] + ui∂jφRij

[
ξTk(ρ)

])
. (3.21)

Next, we apply Lemmas 3.1 and 3.2 to prove the convergence of the second term on the right-hand side of (3.18).
First, for any given j , it can be easily verified that

curl Rij

[
ξTk(ρδ)

] = 0 and div(ρδuδ) = 0,

which combined with (3.9), (3.20) and Lemma 3.2 yields that

ρδu
i
δ Rij

[
ξTk(ρδ)

]
⇀ ρui Rij

[
ξTk(ρ)

]
in Lr̃(Ω) for any 1 < r̃ < r. (3.22)

On the other hand, one has

uδ → u in Lp(Ω), 1 � p < 6, and
∥∥ρδu

i
δu

j
δ Rij

[
ξTk(ρ)

]∥∥
Lr̃ (Ω)

� C. (3.23)

Moreover, Lemma 3.1 gives

ρδu
i
δu

j
δ Rij

[
ξTk(ρδ)

]
⇀ ρuiuj Rij

[
ξTk(ρ)

]
in Lr̃(Ω). (3.24)

Thus, by letting ξ ≡ 1, taking δ → 0 in (3.18) and utilizing (3.19)–(3.24), we obtain the lemma immediately. �
3.4. Strong convergence of the density

The main task for completing the proof of Theorem 1.2 consists now in establishing the strong convergence of ρδ

to ρ in L1(Ω). This task can be fulfilled by the following two lemmas, the proof of which can be found in [2,4].

Lemma 3.5 (Control of the oscillation of the density). Let Tk(z) be defined by (3.15), then

lim
δ→0

∥∥Tk(ρδ) − Tk(ρ)
∥∥

Lγ+1(Ω)
� C,

where the constant C is independent of k.

Lemma 3.6 (Renormalized continuity equation). The weak limit (ρ,u) is a renormalized solution of (1.1), i.e., (ρ,u)

satisfies

div
[
b(ρ)u

] + [
b′(ρ)ρ − b(ρ)

]
div u = 0 in D′(Ω)

for any b ∈ C1(R), b′(z) = 0 for sufficiently large z.

Now, by introducing a family of functions

Lk(z) =
{

z log z, 0 � z � k

z log k + z
∫ z

k
Tk(s)

s2 ds, z � k
∈ C1(R+) ∩ C0[0,∞),

and making use of Lemmas 3.5 and 3.6, we argue, in the same manner as in [2], to conclude that

lim ‖ρδ − ρ‖L1(Ω) = 0,

δ→0
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which, by (3.8) and the interpolation theory, implies that

ρδ → ρ strongly in Lp(Ω), ∀1 � p < γ r.

Consequently, we have

ργ = ργ , a.e.

Thus, we complete the proof of Theorem 1.2.
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Appendix A. Proof of Lemma 2.3

Lemma 2.3. Let A be defined by (2.6), then we have

A � C‖uδ‖2
H 1(Ω)

(
1 + ‖Pδ‖L1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖uδ‖H 1(Ω)

)
, (A.1)

where the constant C depends on ‖f‖L∞(Ω), μ, μ̃, M , γ and β , but not on δ.

Proof. Since Ω is a C0,1-domain in R
3, for any open set Ω ′ � Ω there exists a bounded linear extension operator E

from W 1,p(Ω) into W
1,p

0 (Ω ′), such that Eu = u in Ω and

‖Eu‖W 1,p(Ω ′) � C‖u‖W 1,p(Ω) for all u ∈ W 1,p(Ω), (A.2)

where C = C(k,Ω,Ω ′). We refer, for example, to [9, Theorem 7.25] for the proof.
Now, let Ω ′ � Ω be a bounded domain in R

3, then Euδ ∈ (W
1,2
0 (Ω ′))3. Since Pδ and uδ are periodic in xi with

period 2π for all 1 � i � 3, we can get from Lemma 2.2 that∫
Ω ′

Pδ + (ρδ|uδ|2)β
|x − x0| dx � C

(
1 + ‖Pδ‖L1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖uδ‖H 1(Ω)

)
(A.3)

for any 0 < β < 1 and x0 ∈ Ω ′, where the constant C is independent of δ and x0.
Let h be the unique weak solution of the elliptic problem:{

�h = Pδ + (ρδ|uδ|2)β � 0 in Ω ′,
h = 0 on ∂Ω ′.

Then by the classical theory for elliptic equations, we have

‖h‖L∞(Ω ′) � C sup
x0∈Ω ′

∫
Ω ′

Pδ + (ρδ|uδ|2)β
|x − x0| dx. (A.4)

For Euδ ∈ (W
1,2
0 (Ω ′))3, we consider now

A′ =
∫
Ω ′

[
Pδ + (

ρδ|uδ|2
)β]|Euδ|2 dx

=
∫
Ω ′

�h|Euδ|2 dx

� C‖Euδ‖W
1,2
0 (Ω ′)

∥∥|Euδ||∇h|∥∥
L2(Ω ′). (A.5)

On the other hand, integrating by parts, we infer that



498 S. Jiang, C. Zhou / Ann. I. H. Poincaré – AN 28 (2011) 485–498
∥∥|Euδ||∇h|∥∥2
L2(Ω ′) � C

∫
Ω ′

(|h||�h||Euδ|2 + |h||∇h||Euδ||∇uδ|
)
dx

� C‖h‖L∞(Ω ′)
(
A′ + ∥∥|Euδ||∇h|∥∥

L2(Ω ′)‖Euδ‖W
1,2
0 (Ω ′)

)
. (A.6)

Thus, inequalities (A.5) and (A.6) imply that

A′ � C‖Euδ‖2
W

1,2
0 (Ω ′)‖h‖L∞(Ω ′). (A.7)

Finally, from (A.2)–(A.4) and (A.7) we get

A � A′ � C‖uδ‖2
H 1(Ω)

(
1 + ‖Pδ‖L1(Ω) + ∥∥ρδ|uδ|2

∥∥
L1(Ω)

+ ‖uδ‖H 1(Ω)

)
,

which proves Lemma 2.3. �
Remark A.1. We point out here that Lemma 2.3 can be also obtained by using the arguments in [2].
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