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Abstract

In the present paper, we study the orbital stability and instability of standing waves of the Klein–Gordon–Schrödinger system.
Especially, we are interested in a standing wave which is expressed by the unique positive solution w1 to a certain scalar field
equation. By utilizing the property of the positive solution w1, we can apply the general theory of Grillakis, Shatah and Strauss
(1987) [11] and show the stability and instability of the standing wave.
© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the Klein–Gordon–Schrödinger system with Yukawa coupling:
{

i∂tu + �u = −2uv, (t, x) ∈ R × R
N,

∂2
t v − �v + v = |u|2, (t, x) ∈ R × R

N,
(1)

where u : R × R
N → C, v : R × R

N → R, and 1 � N � 5. The system (1) describes a classical model of the Yukawa
interaction of conserved nucleon field with neutral real meson field. The unknown function u is the complex scalar
nucleon field and the unknown function v is the real meson field.

We study the orbital stability and instability of standing waves (eiωtϕω,ψω) of the system (1), where ω > 0 and
(ϕω,ψω) is a nontrivial solution to

{−�ϕ + ωϕ = 2ϕψ, x ∈ R
N,

−�ψ + ψ = |ϕ|2, x ∈ R
N.

(2)

In our previous papers [14,15], we prove that the standing wave (eiωtϕω,ψω) is orbitally stable for sufficiently large
ω > 0 and orbitally unstable for sufficiently small ω > 0 in the case where N = 3 and (ϕω,ψω) is ground state.

In the present paper, we discuss the stability and the instability of standing waves (eiωtϕω,ψω) when ω is close
to 1. Note that the pair of functions (

√
2w1,w1) satisfies the system (2) with ω = 1, where w1 ∈ H 1(RN,R) is the

unique positive radial solution to the following scalar field equation:
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−�w + w − 2w2 = 0, x ∈ R
N (3)

(see Berestycki and P.L. Lions [5] for the existence and Kwong [16] for the uniqueness). We will prove that the
standing wave (

√
2eitw1,w1) is orbitally stable in the case where 1 � N � 3 and orbitally unstable in the case where

N = 4 or 5. We remark that Eq. (3) has no nontrivial solution in the case where N � 6.
First, we recall the Cauchy problem for the system (1). The Cauchy problem for the system (1) is locally well-

posed in the energy space X := H 1(RN,C) × H 1(RN,R) × L2(RN,R) (see [2] and also [3,7,12,13,18]). Namely,
for any (u0, v0, v1) ∈ X, there exist Tmax = Tmax(u0, v0, v1) > 0 and a local solution (u, v, ∂tv) ∈ C([0, Tmax),X) to
the system (1) with (u(0), v(0), ∂t v(0)) = (u0, v0, v1). Moreover, the solution satisfies the conservation laws:

E
(
u(t), v(t), ∂t v(t)

) = E(u0, v0, v1),
∥∥u(t)

∥∥
L2 = ‖u0‖L2 for t ∈ [0, Tmax),

where E(u,v,w) = J (u, v) + ‖w‖2
L2 and

J (u, v) = ‖∇u‖2
L2 + ‖∇v‖2

L2 + ‖v‖2
L2 − 2

∫

RN

|u|2v dx.

We note that in the case where 1 � N � 3, the solution to the system (1) is global, that is, Tmax = ∞.
We now discuss the orbital stability of standing waves. The stability and the instability are formulated as follows:

Definition 1. Let (ϕω,ψω) ∈ H 1(RN,C)×H 1(RN,R) be a solution to the system (2). We say that the standing wave
(eiωtϕω,ψω) is orbitally stable if for any ε > 0, there exists δ > 0 such that if (u0, v0, v1) ∈ X satisfies ‖(u0, v0, v1)−
(ϕω,ψω,0)‖X < δ, then the solution (u(t), v(t)) to the system (1) with (u(0), v(0), ∂t v(0)) = (u0, v0, v1) satisfies

inf
θ∈R, y∈RN

∥∥(
u(t), v(t), ∂t v(t)

) − (
eiθϕω(· + y),ψω(· + y),0

)∥∥
X

< ε

for all t � 0. Otherwise, (eiωtϕω,ψω) is said to be orbitally unstable.

Before stating our results, we recall the results concerning the standing wave eitw1 for the following nonlinear
Schrödinger equation:

i∂tu + �u + 2|u|u = 0, (t, x) ∈ R × R
N. (4)

It is well known that the standing wave eitw1 is orbitally stable in the case where 1 � N � 3 and orbitally unstable
in the case where N = 4 or 5 (see Cazenave and P.L. Lions [6] for the stability and Berestycki and Cazenave [4],
Weinstein [21] for the instability).

Our main results in this paper are the following:

Theorem 2.

(i) Let 1 � N � 5. There exists a constant ε∗ > 0 such that for ω ∈ (1 − ε∗,1 + ε∗), the system (2) has a so-
lution (ϕω,ψω) ∈ H 1

rad(R
N,R) × H 1

rad(R
N,R). Moreover, the mapping ω 	→ (ϕω,ψω) is C2 with values in

H 1
rad(R

N,R) × H 1
rad(R

N,R) satisfying (ϕ1,ψ1) = (
√

2w1,w1).
(ii) Let (ϕω,ψω) be the solution to the system (2), which is obtained in Theorem 2(i). Then there exists a constant

ε′∗ > 0 such that for ω ∈ (1 − ε′∗,1 + ε′∗), the standing wave (eiωtϕω,ψω) is orbitally stable in the case where
1 � N � 3 and orbitally unstable in the case where N = 4 or 5.

Let us admit Theorem 2(i) for the moment and explain the proof of Theorem 2(ii) briefly. To do this, we fix notation.
For each ω > 0, we put

Sω(u) = J (u) + ω‖u‖2
L2 .

Then we see that Sω ∈ C2(H 1(RN,C) × H 1(RN,R),R) and it is known that (ϕ,ψ) ∈ H 1(RN,C) × H 1(RN,R) is a
weak solution to the system (2) if and only if S′

ω(ϕω,ψω) = 0. To prove Theorem 2(ii), we use the general theory of
Grillakis, Shatah and Strauss [11]. By applying the theory to our system, we have the following proposition.
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Proposition 3. Let (ϕω,ψω) ∈ H 1(RN) × H 1(RN) be a solution to the system (2). Assume that

(i) the positive spectrum of the operator S′′
ω(ϕω,ψω) is bounded away from zero,

(ii) the kernel of the operator S′′
ω(ϕω,ψω) is spanned by t (iϕω,0) and t (∂xi

ϕω, ∂xi
ψω) for i = 1,2, . . . ,N , that is,

KerS′′
ω(ϕω,ψω) = Span

{
t (iϕω,0)

} ∪ Span
{
t (∂xi

ϕω, ∂xi
ψω)

∣∣ i = 1,2, . . . ,N
}
,

(iii) the operator S′′
ω(ϕω,ψω) has exactly one negative simple eigenvalue.

Then if ∂ω‖ϕω‖2
L2 > 0 (resp. < 0), the standing wave (eiωtϕω,ψω) is stable (resp. unstable).

For each (u, v) ∈ H 1(RN,C) × H 1(RN,R), we have〈
S′′

ω(ϕω,ψω)

(
u

v

)
,

(
u

v

)〉
=

〈
L1,ω

(
u1
v

)
,

(
u1
v

)〉
+ 〈L2,ωu2, u2〉,

where u1 = Reu, u2 = Imu and

L1,ω =
(−� + ω − 2ψω −2ϕω

−2ϕω −� + 1

)
, L2,ω = −� + ω − 2ψω.

We first verify the assumptions of Proposition 3 in the case where ω = 1. It is well known that the operator L2,1 =
−� + 1 − 2w1 is non-negative and KerL2,1 = Span{w1} (see e.g. Weinstein [22]). Thus, it is enough to investigate
the spectrum of the operator L1,1. To do this, diagonalization of the operator L1,1, which is already employed by Yew
[23] and Angulo and Linares [1], is very useful. More precisely, if we define the unitary operator A : L2(RN,R) ×
L2(RN,R) → L2(RN,R) × L2(RN,R) by

A = 1√
3

(√
2 1

1 −√
2

)
,

then we see that

AL1,1A =
(

T 0
0 S

)
, (5)

where T = −� + 1 − 4w1 and S = −� + 1 + 2w1. We note that the operator S is positive and the operator T is the
real part of linearized operator of Eq. (3). Since KerT = Span{∂xi

w1 | i = 1,2, . . . ,N} (see Weinstein [22] and Ni
and Takagi [17]), we infer that

KerL1,1 = Span
{
t (

√
2∂xi

w1, ∂xi
w1)

∣∣ i = 1,2, . . . ,N
}
. (6)

Furthermore, we can show that the operator L1,1 has exactly one negative simple eigenvalue from (5).

Remark 4. It follows from (6) that KerL1,1|H 1
rad×H 1

rad
= {0}. Thus, we can use the implicit function theorem and obtain

Theorem 2(i).

Next, we calculate ∂ω‖ϕω‖2
L2 |ω=1. In the previous results [11,19,20], the scale invariance of Eq. (4) is used to

calculate the derivative. Since the system (1) is not scale invariant, we encounter difficulties when we try to check the
sufficient condition. To overcome the difficulties, we use the diagonalization (5) again. Then we find that

1

2
∂ω‖ϕω‖2

L2 |ω=1 = 4 − N

3
‖w1‖2

L2 − 2

3

〈
S−1w1,w1

〉

(see Section 4 below). This yields that ∂ω‖ϕω‖2
L2 |ω=1 < 0 in the case where N = 4 or 5. In the case where 1 �

N � 3, we need a further investigation. We set f1 = S−1w1. Then we see that f1 ∈ H 1(RN,R) is positive radial
and decreasing function in |x|. These properties play an important role to show ∂ω‖ϕω‖2

L2 |ω=1 > 0 in the case where
1 � N � 3.
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Since the mapping ω 	→ ϕω is C2, the sign of ∂ω‖ϕω‖2
L2 does not change for ω ∈ (1 − ε′∗,1 + ε′∗) if ε′∗ is suffi-

ciently small. Furthermore, by using a perturbation method, we can verify the spectral assumptions of Proposition 3.
Therefore, we can obtain Theorem 2(ii).

The rest of this paper is organized as follows. In Section 2, we investigate the spectrum of the linearized operator
at ω = 1 and give the proof of Theorem 2(i). In Section 3, by using a perturbation method, we verify the linearized
operator satisfies the assumptions of Proposition 3 when ω is close to 1. In Section 4, we calculate ∂ω‖ϕω‖2

L2 and
prove Theorem 2(ii).

2. Spectrum of linearized operator at ω = 1

In this section, we check the linearized operator S′′
1 (

√
2w1,w1) satisfies the spectral assumptions of Proposition 3

and give the proof of Theorem 2(i). As we mentioned in Section 1, since it is known that the operator L2,1 = −� +
1 − 2w1 is non-negative operator and KerL2,1 = Span{w1}, it is enough to investigate the spectrum of the operator
L1,1, where

L1,1 =
(−� + 1 − 2w1 −2

√
2w1

−2
√

2w1 −� + 1

)
. (7)

Let A : L2(RN,R) × L2(RN,R) → L2(RN,R) × L2(RN,R) be defined by

A = 1√
3

(√
2 1

1 −√
2

)
.

Note that A = A∗ = A−1. Then by a direct computation, we obtain the following lemma.

Lemma 5. Let L1,1 : L2(RN,R) × L2(RN,R) → L2(RN,R) × L2(RN,R) be defined by (7). Then we have

AL1,1A =
(

T 0
0 S

)
,

where T = −� + 1 − 4w1 and S = −� + 1 + 2w1.

Since the function w1 is positive, we see that the operator S is positive. Note that the operator T is a real part of
linearized operator of Eq. (3). Concerning the operator T , we know that the following lemma holds (see Weinstein [22]
and Ni and Takagi [17]).

Lemma 6. Let 1 � N � 5. The operator T satisfies the following:

(i) σess(T ) = [1,∞),
(ii) KerT = Span{∂xi

w1 | i = 1,2, . . . ,N},
(iii) the operator T has exactly one negative eigenvalue −λ1 for some λ1 > 0.

Using Lemmas 5 and 6, we can easily get the following proposition.

Proposition 7. Let 1 � N � 5. The operator L1,1 satisfies the following:

(i) σess(L1,1) = [1,∞),
(ii) KerL1,1 = Span{t (√2∂xi

w1, ∂xi
w1) | i = 1,2, . . . ,N},

(iii) the operator L1,1 has exactly one negative simple eigenvalue −λ1, where −λ1 is the first eigenvalue of the
operator T .

We can show Theorem 2(i) from Proposition 7(ii).

Proof of Theorem 2(i). Clearly, we infer that KerL1,1|H 1
rad×H 1

rad
= {0}. Thus, the operator L1,1 is injective on

H 1 (RN,R) × H 1 (RN,R). Moreover, since w1(x) → 0 as |x| → ∞, we see that
rad rad
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(
2w1 −2

√
2w1

−2
√

2w1 0

)

is a compact operator. It follows from the Fredholm alternative theorem that the operator L1,1 is surjective.
Therefore, by using the implicit function theorem, we find that there exist ε∗ > 0 and the solution (ϕω,ψω) ∈
H 1

rad(R
N,R) × H 1

rad(R
N,R) to the system (2) for ω ∈ (1 − ε∗,1 + ε∗) with (ϕ1,ψ1) = (

√
2w1,w1). Further-

more, since Sω ∈ C2(H 1
rad(R

N,R) × H 1
rad(R

N,R),R), we see that the map ω 	→ (ϕω,ψω) is C2 with values in
H 1

rad(R
N,R) × H 1

rad(R
N,R). This completes the proof. �

3. Verification of spectral assumptions

In this section, we show that the operator S′′
ω(ϕω,ψω) satisfies the assumptions of Proposition 3 when ω is close

to 1. We first consider the operator L1,ω .

Proposition 8. There exists ε1 > 0 such that for ω ∈ (1 − ε1,1 + ε1), the operator L1,ω satisfies the following proper-
ties:

(i) σess(L1,ω) = [min{1,ω},∞),
(ii) the operator L1,ω has exactly one negative simple eigenvalue and

KerL1,ω = Span
{
t (∂xi

ϕω, ∂xi
ψω)

∣∣ i = 1,2, . . . ,N
}
.

Proof. (i) immediately follows from the Weyl’s essential theorem. Then following Grillakis [10], we show (ii). For
each ω > 0, there exists a negative eigenvalue of the operator L1,ω because 〈L1,ω �ϕω, �ϕω〉 = −3

∫ |ϕω|2ψω dx < 0,
where �ϕω = (ϕω,ψω). Moreover, we can easily find that ∂xi

�ϕω ∈ KerL1,ω for i = 1,2, . . . ,N , where ∂xi
�ϕω =

t (∂xi
ϕω, ∂xi

ψω).
Thus, it is enough to show that there is no other non-positive eigenvalue of the operator L1,ω. Suppose that there

exists {ωj } ⊂ (0,∞) with limj→∞ ωj = 1 such that the number of the non-positive eigenvalues of the operator
L1,ωj

(counting the multiplicity) is at least N + 2. We denote by Nj the number of the non-positive eigenvalues and

by �φi(ωj ) ∈ H 2(RN) × H 2(RN) (i = 1,2, . . . ,Nj ) the non-positive eigenfunctions. Let �ψi ∈ H 2(RN) × H 2(RN)

(i = 1,2, . . . ,N + 1) be the non-positive eigenfunctions of the operator L1,1. Then we can write

�φi(ωj ) =
N+1∑
k=1

bik(ωj ) �ψk + �ri(ωj )

for some bik ∈ R and �ri(ωj ) ∈ H 2(RN) × H 2(RN) with 〈�ri(ωj ), �ψk〉 = 0 for k = 1,2, . . . ,N + 1. Then using the as-

sumption that Nj > N + 1, there exist (α1(ωj ),α2(ωj ), . . . , αNj
(ωj )) ∈ R

Nj \ {0} such that
∑Nj

i=1 αi(ωj )bik(ωj ) = 0

for all k = 1,2, . . . ,N + 1. Then we put �p(ωj ) = ∑Nj

i=1 αi(ωj ) �φi(ωj ) = ∑Nj

i=1 αi(ωj )�ri(ωj ). Without loss of gener-
ality, we may assume ‖ �p(ωj )‖H 1×H 1 = 1. Then we can easily find that

0 � lim inf
j→∞

〈
L1,ωj

�p(ωj ), �p(ωj )
〉

= lim inf
{〈

L1,1 �p(ωj ), �p(ωj )
〉 + 〈

(L1,ωj
− L1,1) �p(ωj ), �p(ωj )

〉}
� δ

∥∥ �p(ωj )
∥∥2

H 1×H 1

= δ

for some δ > 0, which is a contradiction. Thus, we obtain the desired result. �
Concerning the operator L2.ω, we can show the following proposition by an argument similar to that in Proposi-

tion 8.
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Proposition 9. There exists ε2 > 0 such that for ω ∈ (1 − ε2,1 + ε2), the operator L2,ω satisfies the following proper-
ties:

(i) σess(L2,ω) = [ω,∞),
(ii) the operator L2,ω is non-negative and KerL2,ω = Span{ϕω}.

4. Proof of Theorem 2(ii)

In this section, we calculate ∂ω‖ϕω‖2
L2 and show Theorem 2(ii). Since the map ω 	→ (ϕω,ψω) is C2, it is enough

to show the following proposition.

Theorem 10. Let (ϕω,ψω) be the solution to the system (2), which is obtained in Theorem 2(i). Then we have

(i) ∂ω‖ϕω‖2
L2 |ω=1 < 0 if N = 4 or 5, (ii) ∂ω‖ϕω‖2

L2 |ω=1 > 0 if 1 � N � 3.

Before proving Theorem 10, we prepare the following lemma.

Lemma 11. Let w1 be the unique positive solution to Eq. (3). Then we have T −1w1 = −w1 − x · ∇w1/2, where
T = −� + 1 − 2w1.

Lemma 11 is already known (see e.g. Weinstein [22, Proposition B.1]). However, for the sake of the completeness,
we give the proof.

Proof of Lemma 11. We put wλ(·) = λw1(
√

λ·) for λ > 0. Then we see that wλ ∈ H 1(RN) satisfies

−�wλ + λwλ − 2w2
λ = 0, x ∈ R

N.

Differentiating the above equation with respect to λ > 0 and substituting with λ = 1, we have T (d/dλ)wλ|λ=1 = −w1.

Thus, we obtain T −1w1 = −(d/dλ)wλ|λ=1 = −w1 − x · ∇w1/2. �
We now give the proof of Theorem 10(i).

Proof of Theorem 10(i). Differentiating the system (2) with respect to ω > 0, we have{−�∂ωϕω + ω∂ωϕω − 2∂ωϕωψω − 2ϕω∂ωψω = −ϕω, x ∈ R
N,

−�∂ωψω + ∂ωψω − 2ϕω∂ωϕω = 0, x ∈ R
N.

We can rewrite the above system as follows:(−� + ω − 2ψω −2ϕω

−2ϕω −� + 1

)(
∂ωϕω

∂ωψω

)
=

(−ϕω

0

)
.

When ω = 1, we see that(−� + 1 − 2w1 −2
√

2w1
−2

√
2w1 −� + 1

)(
∂ωϕ1
∂ωψ1

)
=

(−√
2w1
0

)
.

Thus, it follows from Lemma 5 that(
∂ωϕ1
∂ωψ1

)
= −A

(
T −1 0

0 S−1

)
A

(√
2w1
0

)
.

Therefore, we obtain

1

2
∂ω‖ϕω‖2

L2 |ω=1 = √
2

∫
N

∂ωϕ1w1 dx
R
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=
〈(

∂ωϕ1
∂ωψ1

)
,

(√
2w1
0

)〉

= −
〈
A

(
T −1 0

0 S−1

)
A

(√
2w1
0

)
,

(√
2w1
0

)〉

= −4

3

〈
T −1w1,w1

〉 − 2

3

〈
S−1w1,w1

〉
.

From Lemma 11, we obtain

−4

3

〈
T −1w1,w1

〉 = 4

3

〈
w1 + 1

2
x · ∇w1,w1

〉
= 4 − N

3
‖w1‖2

L2 .

This yields that

1

2
∂ω‖ϕω‖2

L2 |ω=1 = 4 − N

3
‖w1‖2

L2 − 2

3

〈
S−1w1,w1

〉
. (8)

It follows from the positivity of the operator S that 〈S−1w1,w1〉 > 0. Therefore, we infer that ∂ω‖ϕω‖2
L2 |ω=1 < 0 if

N = 4 or 5. �
Next, we prove Theorem 10(ii). We set f1 = S−1w1. Then the function f1 ∈ H 1(RN,R) satisfies

−�f + f + 2w1f = w1. (9)

Since S : H 1
rad(R

N,R) → H 1
rad(R

N,R) is bijection and w1 ∈ H 1
rad(R

N,R), we see that the function f1 is radially
symmetric. We can also find that f1 ∈ C2(RN,R) by a standard elliptic regularity argument (see e.g. Gilbarg and
Trudinger [9, Chapter 8]). Moreover, we have the following lemma.

Lemma 12. The following properties hold:

(i) 1/2 � f1(x) � w1(x)/4w1(0) for all x ∈ R
N ,

(ii) the function f1(x) = f1(|x|) decreases in |x|.

Proof. (i) Using the fact that w1(0) = maxx∈RN w1(x) (see Gidas, Ni and Nirenberg [8]), we have

(−� + 1 + 2w1(x)
)(

f1(x) − w1(x)

4w1(0)

)
= w1(x) − w2

1(x)

w1(0)
� w1(x) − w1(x) = 0.

It follows from the strong maximum principle that f1(x) � w1(x)/4w1(0) for all x ∈ R
N .

Let x0 ∈ RN be such that f1(x0) = maxx∈RN f1(x). Since the function f1 is positive and −�f1(x)|x=x0 � 0, we
infer that 2w1(x0)f1(x0) � w1(x0), which implies that f1(x0) � 1/2.

(ii) We show this by contradiction. Suppose that the function f1 is not non-increasing in |x|. Then there exist local
minimum r1 � 0 and maximum r2 > 0 with r2 > r1.

We set xm = (r1,0, . . . ,0), xM = (r2,0, . . . ,0) and d = f1(xM) − f1(xm)(> 0). Since the function f1 is smooth,
there exists r0 > 0 such that

f1(x + xm) � f1(xm) + d/3, f1(x + xM) � f1(xM) − d/3

for all x ∈ B(0, r0). Therefore, for x ∈ B(0, r0), we have

(−� + 1)
(
f1(x + xm) − f1(x + xM)

)
= −2w1(x + xm)f1(x + xm) + w1(x + xm) + 2w1(x + xM)f1(x + xM) − w1(x + xM)

= w1(x + xm) − w1(x + xM) − 2f1(x + xm)
(
w1(x + xm) − w1(x + xM)

)
+ 2w1(x + xM)

(
f1(x + xM) − f1(x + xm)

)
.
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We take r0 > 0 sufficiently small so that |x +xm| < |x +xM | for all x ∈ B(0, r0). Then since the function w1 decreases
in |x|, we have

(−� + 1)
(
f1(x + xm) − f1(x + xM)

)
� w1(x + xm) − w1(x + xM) − 2 × 1

2

(
w1(x + xm) − w1(x + xM)

) + 2w1(x + xM) × d

3

= 2d

3
w1(x + xM) > 0. (10)

We have used the fact that ‖f1‖L∞ � 1/2.
Set g1(·) = f1(· + xm) − f1(· + xM). Then it follows from (10) that �g1(0) � g1(0) = −d . On the other hand,

since the function g1(·) attains a local minimum at x = 0, we have �g1(0) � 0, which is a contradiction. Thus, we see
that the function f1 is a non-increasing function in |x|.

Suppose that there exists an interval I (⊂ [0,∞)) such that f1(r) is constant for all r ∈ I . Then from (9), we have
f1(r) = w1/(1 + 2w1) for all r ∈ I , which is absurd because the function w1/(1 + 2w1) is a non-constant. This
completes the proof. �
Lemma 13. Let 1 � N � 5. We have

(i)
∫

RN

w2
1 dx = 4

∫

RN

w2
1f1 dx, (ii)

1

2

∫

RN

w2
1 dx >

∫

RN

w1f1 dx.

Proof. (i) Multiplying Eq. (3) by f1 and integrating the resulting equation, we have∫

RN

∇w1 · ∇f1 dx +
∫

RN

w1f1 dx − 2
∫

RN

w2
1f1 dx = 0. (11)

Similarly, multiplying Eq. (9) by w1 and integrating the resulting equation, we obtain∫

RN

∇w1 · ∇f1 dx +
∫

RN

w1f1 dx + 2
∫

RN

w2
1f1 dx =

∫

RN

w2
1 dx. (12)

Subtracting (11) from (12), we have
∫

RN w2
1 dx = 4

∫
RN w2

1f1 dx.
(ii) It is known that w1 is radially symmetric and ∂rw1(r) < 0 for all r > 0 (see Gidas, Ni and Nirenberg [8]).

Moreover, it follows from Lemma 12(ii) that ∂rf1 < 0 for all r > 0. Therefore, we see that

∫

RN

∇w1 · ∇f1 dx = CN

∞∫
0

∂rw1(r)∂rf1(r)r
N−1 dr > 0,

which yields that
∫

RN w1f1 dx < 2
∫

RN w2
1f1 dx = ∫

RN w2
1 dx/2 from (11) and Lemma 13(i). This completes the

proof. �
We are now in position to prove Theorem 10(ii).

Proof of Theorem 10(ii). It follows from Lemma 13(ii) that

2

3

〈
S−1w1,w1

〉 = 2

3

∫

RN

w1f1 dx <
2

3
× 1

2

∫

RN

w2
1 dx = 1

3
‖w1‖2

L2 .

Therefore, from (8), we have

1

2
∂ω‖ϕω‖2

L2 |ω=1 >
3 − N

3
‖w1‖2

L2 .

Thus, we obtain the desired result. �
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