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Abstract

We consider non-linear parabolic evolution equations of the form ∂tu = F(t, x,Du,D2u), subject to noise of the form
H(x,Du) ◦ dB where H is linear in Du and ◦dB denotes the Stratonovich differential of a multi-dimensional Brownian mo-
tion. Motivated by the essentially pathwise results of [P.-L. Lions, P.E. Souganidis, Fully nonlinear stochastic partial differential
equations, C. R. Acad. Sci. Paris Sér. I Math. 326 (9) (1998) 1085–1092] we propose the use of rough path analysis [T.J. Lyons,
Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (2) (1998) 215–310] in this context. Although the core
arguments are entirely deterministic, a continuity theorem allows for various probabilistic applications (limit theorems, support,
large deviations, . . . ).
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let us recall some basic ideas of (second order) viscosity theory [13,15] and rough path theory [41,42]. As for
viscosity theory, consider a real-valued function u = u(x) with x ∈ R

n and assume u ∈ C2 is a classical super-solution,

−G
(
x,u,Du,D2u

)
� 0,

where G is a (continuous) function, degenerate elliptic in the sense that G(x,u,p,A) � G(x,u,p,A + B) when-
ever B � 0 in the sense of symmetric matrices. The idea is to consider a (smooth) test function ϕ which touches u

from below at some point x̄. Basic calculus implies that Du(x̄) = Dϕ(x̄), D2u(x̄) � D2ϕ(x̄) and, from degenerate
ellipticity,

−G
(
x̄, ϕ,Dϕ,D2ϕ

)
� 0. (1.1)
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This suggests to define a viscosity super-solution (at the point x̄) to −G = 0 as a (lower semi-) continuous function
u with the property that (1.1) holds for any test function which touches u from below at x̄. Similarly, viscosity sub-
solutions are (upper semi-) continuous functions defined via test functions touching u from above and by reversing
inequality in (1.1); viscosity solutions are both super- and sub-solutions. Observe that this definition covers (com-
pletely degenerate) first order equations as well as parabolic equations, e.g. by considering ∂t − F = 0 on R

+ × R
n

where F is degenerate elliptic. The resulting theory (existence, uniqueness, stability, . . . ) is without doubt one of most
important recent developments in the field of partial differential equations. As a typical result,1 one has existence and
uniqueness result in the class of bounded solutions to the initial value problem (∂t −F)u = 0, u(0, ·) = u0 ∈ BUC(Rn),
provided F = F(t, x,Du,D2u) is continuous, degenerate elliptic and satisfies a (well-known) technical condition (see
Condition 1 below). In fact, uniqueness follows from a stronger property known as comparison: assume u (resp. v) is
a sub-solution (resp. super-solution) and u0 � v0; then u � v on [0, T )×R

n. A key feature of viscosity theory is what
workers in the field simply call stability properties. For instance, it is relatively straight-forward to study (∂t −F)u = 0
via a sequence of approximate problems, say (∂t −Fn)un = 0, provided Fn → F locally uniformly and some a priori
information on the un (e.g. locally uniform convergence, or locally uniform boundedness2). Note the stark contrast to
the classical theory where one has to control the actual derivatives of un.

The idea of stability is also central to rough path theory. Given a collection (V1, . . . , Vd) of (sufficiently nice)
vector fields on R

n and z ∈ C1([0, T ],R
d) one considers the (unique) solution y to the ordinary differential equation

ẏ(t) =
d∑

i=1

Vi(y)żi (t), y(0) = y0 ∈ R
n. (1.2)

The question is, if the output signal y depends in a stable way on the driving signal z. The answer, of course, depends
strongly on how to measure distance between input signals. If one uses the supremum norm, so that the distance
between driving signals z, z̃ is given by |z − z̃|∞;[0,T ], then the solution will in general not depend continuously on
the input.

Example 1. Take n = 1, d = 2, V = (V1,V2) = (sin(·), cos(·)) and y0 = 0. Obviously,

zn(t) =
(

1

n
cos

(
2πn2t

)
,

1

n
sin

(
2πn2t

))
converges to 0 in ∞-norm whereas the solutions to ẏn = V (yn)żn, yn

0 = 0, do not converge to zero (the solution to
the limiting equation ẏ = 0).

If |z − z̃|∞;[0,T ] is replaced by the (much) stronger distance

|z − z̃|1-var;[0,T ] = sup
(ti )⊂[0,T ]

∑
|zti ,ti+1 − z̃ti ,ti+1 |,

it is elementary to see that now the solution map is continuous (in fact, locally Lipschitz); however, this continuity
does not lend itself to push the meaning of (1.2): the closure of C1 (or smooth) paths in variation is precisely W 1,1,
the set of absolutely continuous paths (and thus still far from a typical Brownian path). Lyons’ theory of rough paths
exhibits an entire cascade of (p-variation or 1/p-Hölder type rough path) metrics, for each p ∈ [1,∞), on path-space
under which such ODE solutions are continuous (and even locally Lipschitz) functions of their driving signal. For
instance, the “rough path” p-variation distance between two smooth R

d -valued paths z, z̃ is given by

max
j=1,...,[p]

(
sup

(ti )⊂[0,T ]

∑∣∣z(j)
ti ,ti+1

− z̃
(j)
ti ,ti+1

∣∣p)1/p

where z
(j)
s,t = ∫

dzr1 ⊗· · ·⊗ dzrj with integration over the j -dimensional simplex {s < r1 < · · · < rj < t}. This allows
to extend the very meaning of (1.2), in a unique and continuous fashion, to driving signals which live in the abstract

1 BUC(. . .) denotes the space of bounded, uniformly continuous functions; BC(. . .) denotes the space of bounded, continuous functions.
2 What we have in mind here is the Barles–Perthame method of semi-relaxed limits. We shall use this method in the proof of Theorem 1 and

postpone precise references until then.
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completion of smooth R
d -valued paths (with respect to rough path p-variation or a similarly defined 1/p-Hölder

metric). The space of so-called p-rough paths3 is precisely this abstract completion. In fact, this space can be realized
as genuine path space,

C0,p-var([0, T ],G[p](
R

d
))

resp. C0,1/p-Höl([0, T ],G[p](
R

d
))

where G[p](Rd) is the free step-[p] nilpotent group over R
d , equipped with Carnot–Caratheodory metric; realized as

a subset of 1 + t[p](Rd) where

t[p](
R

d
) = R

d ⊕ (
R

d
)⊗2 ⊕ · · · ⊕ (

R
d
)⊗[p]

is the natural state space for (up to [p]) iterated integrals of a smooth R
d -valued path. For instance, almost ev-

ery realization of d-dimensional Brownian motion B enhanced with its iterated stochastic integrals in the sense of
Stratonovich, i.e. the matrix-valued process given by

B(2) :=
( ·∫

0

Bi ◦ dBj

)
i,j∈{1,...,d}

(1.3)

yields a path B(ω) in G2(Rd) with finite 1/p-Hölder (and hence finite p-variation) regularity, for any p > 2. (B is
known as Brownian rough path.) We remark that B(2) = 1

2B ⊗ B + A where A := Anti(B(2)) is known as Lévy’s
stochastic area; in other words B(ω) is determined by (B,A), i.e. Brownian motion enhanced with Lévy’s area.

Turning to the main topic of this paper, we follow [35,36,38] in considering a real-valued function of time and
space u = u(t, x) ∈ BC([0, T ) × R

n) which solves the non-linear partial differential equation

du = F
(
t, x,Du,D2u

)
dt +

d∑
i=1

Hi(x,Du)dzi

≡ F
(
t, x,Du,D2u

)
dt + H(x,Du)dz (1.4)

in viscosity sense. When z : [0, T ] → R
d is C1 then, subject to suitable conditions on F and H , this falls in the

standard setting of viscosity theory as discussed above. This can be pushed further to z ∈ W 1,1 (see e.g. [35, Remark 4]
and the references given there) but the case when z = z(t) has only “Brownian” regularity (just below 1/2-Hölder, say)
falls dramatically outside the scope of the standard theory. The reader can find a variety of examples (drawing from
fields as diverse as stochastic control theory, pathwise stochastic control, interest rate theory, front propagation and
phase transition in random media, . . . ) in the articles [36,34] justifying the need of a theory of (non-linear) stochastic
partial differential equations (SPDEs) in which z in (1.4) is taken as a Brownian motion.4 In the same series of
articles a satisfactory theory is established for the case of non-linear Hamiltonian with no spatial dependence, i.e.
H = H(Du). The contribution of this article is to deal with non-linear F and H = H(x,Du), linear in Du, although
we suspect that the marriage of rough path and viscosity methodology will also prove useful in further investigations
on fully non-linear (i.e. both F and H ) stochastic partial differential equations.5 To fix ideas, we give the following
example, suggested in [36] and carefully worked out in [8,9].

Example 2 (Pathwise stochastic control). Consider

dX = b(X;α)dt + W(X;α) ◦ dB̃ + V (X) ◦ dB,

where b,W,V are (collections of) sufficiently nice vector fields (with b,W dependent on a suitable control α =
α(t) ∈ A, applied at time t) and B̃,B are multi-dimensional (independent) Brownian motions. Define6

3 In the strict terminology of rough path theory: geometric p-rough paths.
4 . . . in which case (1.4) is understood in Stratonovich form.
5 The use of rough path analysis in the context of non-linear SPDEs was verbally conjectured by P.L. Lions in his 2003 Courant lecture.
6 Remark that any optimal control α(·) here will depend on knowledge of the entire path of B . Such anticipative control problems and their link

to classical stochastic control problems were discussed early on by Davis and Burnstein [14].
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v(x, t;B) = inf
α∈A

E

[(
g
(
X

x,t
T

) +
T∫

t

f
(
Xx,t

s , αs

)
ds

) ∣∣∣ B

]

where Xx,t denotes the solution process to the above SDE started at X(t) = x. Then, at least by a formal computation,

dv + inf
α∈A

[
b(x,α)Dv + Lav + f (x,α)

]
dt + Dv · V (x) ◦ dB = 0

with terminal data v(·, T ) ≡ g, and Lα = ∑
W 2

i in Hörmander form. Setting u(x, t) = v(x,T − t) turns this into the
initial value (Cauchy) problem,

du = inf
α∈A

[
b(x,α)Du + Lau + f (x,α)

]
dt + Du · V (x) ◦ dBT −·

with initial data u(·,0) ≡ g; and hence of a form which is covered by Theorem 1 below. Indeed, H = (H1,H2),
Hi(x,p) = p · Vi(x), is linear in p. (Moreover, the rough driving signal in Theorem 1 is taken as zt := BT −t (ω)

where B(ω) is a fixed Brownian rough path, run backwards in time.7)

Returning to the general setup of (1.4), the results [35,36,38] are in fact pathwise and apply to any continuous path
z ∈ C([0, T ],R

d), this includes Brownian and even rougher sources of noise; however, the assumption was made that
H = H(Du) is independent of x. The rôle of x-dependence is an important one (as it arises in applications such as
Example 2): the results of Lions–Souganidis imply that the map

z ∈ C1([0, T ],R
d
) �→ u(·,·) ∈ C

([0, T ],R
n
)

depends continuously on z in uniform topology; thereby giving existence/uniqueness results to

du = F
(
t, x,Du,D2u

)
dt +

d∑
i=1

Hi(Du)dzi

for every continuous path z : [0, T ] → R
d . When the Hamiltonian depends on x, this ceases to be true; indeed, take

F ≡ 0, d = 2 and Hi(x,p) = pVi(x) where V1,V2 are the vector fields from Example 1. Solving the characteristic
equations shows that u is expressed in terms of the (inverse) flow associated to dy = V1(y) dz1 + V2(y) dz2, and
we have already seen that the solution of this ODE does not depend continuously on z = (z1, z2) in uniform topol-
ogy.8

Of course, this type of problem can be prevented by strengthening the topology: the Lyons’ theory of rough paths
does exhibit an entire cascade of (p-variation or 1/p-Hölder type rough path) metrics (for each p � 1) on path-space
under which such ODE solutions are continuous functions of their driving signal. This suggests to extend the Lions–
Souganidis theory from a pathwise to a rough pathwise theory. We shall do so for a rich class of fully-non-linear F and
Hamiltonians H(x,Du) linear in Du. This last assumption allows for a global change of coordinates which mimicks a
classical trick in SPDE analysis (which, to the best of our knowledge, goes back to Tubaro [47], Kunita [32, Chapter 6]
and Rozovskiı̆ [46], see also Iftimie and Varsan [30]; similar techniques have also proven useful when H = H(x,u) –
we shall comment on this in Section 8) where a SPDE is transformed into a random PDE (i.e. one that can be solved
with deterministic methods by fixing the randomness). In doing so, the interplay between rough path and viscosity
methods is illustrated in a transparent way and everything boils down to combine the stability properties of viscosity
solution with those of differential equations in the rough path sense. We have the following result.9

Theorem 1. Let p � 1 and (zε) ⊂ C∞([0, T ],R
d) be Cauchy in (p-variation) rough path topology with rough path

limit z ∈ C0,p-var([0, T ],G[p](Rd)). Assume

uε
0 ∈ BUC

(
R

n
) → u0 ∈ BUC

(
R

n
)
,

7 Alternatively, the proof of Theorem 1 is trivially modified to directly accommodate terminal data problems.
8 We shall push this remark much further in Theorem 2 below.
9 Unless otherwise stated we shall always equip the spaces BC and BUC with the topology of locally uniform convergence.
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locally uniformly as ε → 0. Let F = F(t, x,p,X) be continuous, degenerate elliptic, and assume that ∂t −F satisfies
Φ(3)-invariant comparison (cf. Definition 1 below). Assume that V = (V1, . . . , Vd) is a collection of Lipγ+2(Rn;R

n)

vector fields with γ > p. Assume existence of (necessarily unique10) viscosity solutions uε ∈ BC([0, T ) × R
n) to

duε = F
(
t, x,Duε,D2uε

)
dt − Duε(t, x) · V (x)dzε(t), (1.5)

uε(0, ·) = uε
0 (1.6)

and assume that the resulting family (uε: ε > 0) is uniformly bounded.11 Then

(i) there exists a unique u ∈ BC([0, T ) × R
n), only dependent on z and u0 but not on the particular approximating

sequences, such that uε → u locally uniformly. We write (formally)

du = F
(
t, x,Du,D2u

)
dt − Du(t, x) · V (x)dz(t), (1.7)

u(0, ·) = u0, (1.8)

and also u = uz when we want to indicate the dependence on z;
(ii) we have the contraction property∣∣uz − ûz∣∣∞;Rn×[0,T ] � |u0 − û0|∞;Rn

where ûz is defined as limit of ûη, defined as in (1.5) with uε replaced by ûη throughout;
(iii) the solution map (z,u0) �→ uz from

Cp-var([0, T ],G[p](
R

d
)) × BUC

(
R

n
) → BC

([0, T ) × R
n
)

is continuous.

Our proof actually allows for BC initial data in the above theorem, since existence of solutions to the approximate
problems (1.5) is assumed. Our preference for BUC initial data comes from the fact that existence results are typ-
ically established under some assumption of uniform continuity (e.g. [12, Theorem 3.1]). Conversely, under a mild
sharpening of the structural assumption which is still satisfied in all our examples the solutions constructed in the
above theorem can be seen to be BUC (“bounded uniformly continuous”) in time-space. When F = F(Du,D2u),

as in the setting of [35,38], a spatial modulus is easy to obtain; in the above generality the comparison proof (based
on doubling of the spatial variable) can be adapted to obtain a spatial modulus of continuity, uniform in time (this is
implemented in [22] for instance). Curiously, a modulus in time cannot be established so directly; it is known however
that a “modulus of continuity in space” implies “modulus of continuity in time” (cf. Lemma 9.1 in [3]). We shall
return to such regularity questions in detail in a separate note.

The reader may wonder if u ∈ BC([0, T ) × R
n) constructed in the above theorem solves a well-defined “rough”

PDE, apart from the formal equation (1.7). The answer is, in essence, that u is also a solution in the sense of Lions
and Souganidis [35,36,38] provided their definition is translated, mutatis mutandis, to the present rough PDE setting.
While we suspect that such a point of view will be the key to a (rough) pathwise understanding of fully non-linear
stochastic partial differential equations, the present situation (H linear in Du) allows for a simpler understanding, still
in the spirit of Lions–Souganidis (to be specific, see [35, Theorem 2.4]). The details of this are best given after the
proof of Theorem 1; we thus postpone further discussion on this to Section 7.

2. Condition for comparison

We shall always assume that F = F(t, x,p,X) is continuous and degenerate elliptic. A sufficient condition12 for
comparison of (bounded) solutions to ∂t = F on [0, T ) × R

n is given by

10 This follows from the first 5 lines in the proof of this theorem.
11 A simple sufficient conditions is boundedness of F(·,·,0,0) on [0, T ] × R

n, and the assumption that uε
0 → u0 uniformly, as can be seen by

comparison with function of the type (t, x) �→ ±C(t + 1), with sufficiently large C.
12 . . . which actually implies degenerate ellipticity, cf. p. 18 in [13, (3.14)].
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Condition 1. (See [13, (3.14)].) There exists a function θ : [0,∞] → [0,∞] with θ(0+) = 0, such that for each fixed
t ∈ [0, T ],

F
(
t, x,α(x − x̃),X

) − F
(
t, x̃, α(x − x̃), Y

)
� θ

(
α|x − x̃|2 + |x − x̃|) (2.1)

for all α > 0, x, x̃ ∈ R
n and X,Y ∈ Sn (the space of n × n symmetric matrices) satisfy

−3α

(
I 0
0 I

)
�

(
X 0
0 −Y

)
� 3α

(
I −I

−I I

)
. (2.2)

Furthermore, we require F = F(t, x,p,X) to be uniformly continuous whenever p,X remain bounded.

Although this seems part of the folklore in viscosity theory13 only the case when R
n is replaced by a bounded

domain is discussed in the standard Refs. ([13, (3.14) and Section 8] or [15, Sections V.7, V.8]; in this case the very
last requirement on uniform continuity can be omitted). For this reason and the reader’s convenience we have included
a full proof of parabolic comparison on [0, T ) × R

n under the above condition in Appendix A.

Remark 1 (Stability under sup, inf etc.). Using elementary inequalities of the type∣∣sup(a) − sup(b)
∣∣ � sup |a − b| for a, b ∈ R,

one immediately sees that if Fγ ,Fγ,β satisfy (2.1) for γ,β in some index set with a common modulus θ , then infγ Fγ ,
supβ infγ Fβ,γ etc. again satisfy (2.1). Similar remarks apply to the uniform continuity property; provided there exists,
for any R < ∞, a common modulus of continuity σR , valid whenever p,X are of norm less than R.

3. Invariant comparison

To motivate our key assumption on F we need some preliminary remarks on the transformation behaviour of

Du = (∂1u, . . . , ∂nu), D2u = (∂ij u)i,j=1,...,n

under change of coordinates on R
n where u = u(t, ·), for fixed t . Let us allow the change of coordinates to depend

on t , say v(t, ·) := u(t,φt (·)) where φt : R
n → R

n is a diffeomorphism. Differentiating v(t, φ−1
t (·)) = u(t, ·) twice,

followed by evaluation at φt (y), we have, with summation over repeated indices,

∂iu
(
t, φt (x)

) = ∂kv(t, x)∂iφ
−1;k
t

∣∣
φt (x)

,

∂ij u
(
t, φt (x)

) = ∂klv(t, x)∂iφ
−1;k
t

∣∣
φt (x)

∂jφ
−1;l
t

∣∣
φt (x)

+ ∂kv(t, x)∂ijφ
−1;k
t

∣∣
φt (x)

.

We shall write this, somewhat imprecisely14 but convenient, as

Du|φt (x) = 〈
Dv|x,Dφ−1

t

∣∣
φt (x)

〉
,

D2u
∣∣
φt (x)

= 〈
D2v

∣∣
x
,Dφ−1

t

∣∣
φt (x)

⊗ Dφ−1
t

∣∣
φt (x)

〉 + 〈
Dv|x,D2φ−1

t

∣∣
φt (x)

〉
. (3.1)

Let us now introduce Φ(k) as the class of all flows of Ck-diffeomorphisms of R
n, φ = (φt : t ∈ [0, T ]), such

that φ0 = Id, ∀φ ∈ Φ(k) and such that φt and φ−1
t have k bounded derivatives, uniformly in t ∈ [0, T ]. We say that

φ(n) → φ in Φ(k) iff for all multi-indices α with |α| � k

∂αφ(n) → ∂αφt , ∂αφ(n)−1 → ∂αφ−1
t locally uniformly in [0, T ] × R

n.

Definition 1 (Φ(k)-invariant comparison; Fφ). Let k � 2 and define Fφ((t, x,p,X)) as

F
(
t, φt (x),

〈
p,Dφ−1

t

∣∣
φt (x)

〉
,
〈
X,Dφ−1

t

∣∣
φt (x)

⊗ Dφ−1
t

∣∣
φt (x)

〉 + 〈
p,D2φ−1

t

∣∣
φt (x)

〉)
. (3.2)

13 E.g. in Section 4.4. of Barles’ 1997 lecture notes, http://www.phys.univ-tours.fr/~barles/Toulcours.pdf, or Section V.9 in [15].
14 Strictly speaking, one should view (Du,D2u)|· as second order cotangent vector, the pull-back of (Dv,D2v)|x under φ−1

t .
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We say that ∂t = F satisfies Φ(k)-invariant comparison if, for every φ ∈ Φ(k), comparison holds for bounded solutions
of ∂t −Fφ = 0. More precisely, if u is a bounded upper semi-continuous sub- and v a bounded lower semi-continuous
super-solution to this equation and u(0, ·) � v(0, ·) then u � v on [0, T ) × R

n.

4. Examples

Example 3 (F linear). Suppose that σ(t, x) : [0, T ] × R
n → R

n×n′
and b(t, x) : [0, T ] × R

n → R
n are bounded,

continuous in t and Lipschitz continuous in x, uniformly in t ∈ [0, T ]. If F(t, x,p,X) = Tr[σ(t, x)σ (t, x)T X] +
b(t, x) ·p, then Φ(3)-invariant comparison holds. Although this is a special case of the following example, let us point
out that Fφ is of the same form as F with σ,b replaced by

σφ(t, x)km = σ i
m

(
t, φt (x)

)
∂iφ

−1;k
t

∣∣
φt (x)

, k = 1, . . . , n; m = 1, . . . , n′,

bφ(t, x)k = [
bi

(
t, φt (x)

)
∂iφ

−1;k
t

∣∣
φt (x)

] +
∑
i,j

(
σ i

mσ
j
m∂ijφ

−1;k
t

∣∣
φt (y)

)
, k = 1, . . . , n.

By defining properties of flows of diffeomorphisms, t �→ ∂iφ
−1;k
t |φt (x), ∂ijφ

−1;k
t |φt (y) is continuous and the C3-

boundedness assumption inherent in our definition of Φ(3) ensures that σφ, bφ are Lipschitz in x, uniformly in
t ∈ [0, T ]. It is then easy to see (cf. the argument of [15, Lemma 7.1]) that Fφ satisfies Condition 1 for every φ ∈ Φ(3).
This implies that Φ(3)-invariant comparison holds for bounded solutions of ∂t − Fφ = 0.

Example 4 (F quasi-linear). Let

F(t, x,p,X) = Tr
[
σ(t, x,p)σ (t, x,p)T X

] + b(t, x,p). (4.1)

We assume b = b(t, x,p) : [0, T ] × R
n × R

n → R is continuous, bounded and Lipschitz continuous in x and p,
uniformly in t ∈ [0, T ]. We also assume that σ = σ(t, x,p) : [0, T ] × R

n × R
n → R

n×n′
is a continuous, bounded

map such that

• σ(t, ·,p) is Lipschitz continuous, uniformly in (t,p) ∈ [0, T ] × R
n;

• there exists a constant c1 > 0, such that15

∀p,q ∈ R
n: ∣∣σ(t, x,p) − σ(t, x, q)

∣∣ � c1
|p − q|

1 + |p| + |q| (4.2)

for all t ∈ [0, T ] and x ∈ R
n.

We show that Fφ satisfies Condition 1 for every φ ∈ Φ(3); this implies that Φ(3)-invariant comparison holds for
∂t = F with F given by (4.1). To see this we proceed as follows. For brevity denote

p = α(x − x̃), J· = Dφ−1
t

∣∣
φt (·), H· = D2φ−1

t

∣∣
φt (·),

σ· = σ
(
t, φt (·), 〈p,J·〉

)
, a· = σ·σT· , b· = b

(
t, φt (·), 〈p,J·〉

)
so that

Fφ(t, x,p,X) = Tr
[
ax

(〈X,Jx ⊗ Jx〉 + 〈p,Hx〉
)] + bx

= Tr
[
JxaxJ

T
x X

] + bx + Tr
[
ax〈p,Hx〉

]
.

Hence

Fφ(t, x̃,p,Y ) − Fφ(t, x,p,X) = Tr
[
Jx̃ax̃J

T
x̃ Y − JxaxJ

T
x X

]︸ ︷︷ ︸
=:(i)

+bx̃ − bx︸ ︷︷ ︸
=:(ii)

+Tr
[
ax̃〈p,Hx̃〉 − ax〈p,Hx〉

]︸ ︷︷ ︸
=:(iii)

.

15 A condition of this type also appears also in [2].
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To estimate (i) note that JxaxJ
T
x = Jxσx(Jxσx)

T . The R
2n × R

2n matrix(
(Jxσx)(Jxσx)

T Jxσx(Jx̃σx̃)
T

(Jx̃σx̃)(Jxσx)
T Jx̃σx̃(Jx̃σx̃)

T

)
is positive semi-definite and thus we can multiply it to both sides of the inequality(

X 0
0 −Y

)
� 3α

(
I −I

−I I

)
.

The resulting inequality is stable under evaluating the trace and so one gets

Tr
[
Jxσx(Jxσx)

T · X − Jx̃σx̃(Jx̃σx̃)
T · Y ]

� 3α Tr
[
(Jxσx)(Jxσx)

T − Jxσx(Jx̃σx̃)
T − Jx̃σx̃(Jxσx)

T + Jx̃σx̃(Jx̃σx̃)
T
]

= 3α Tr
[
(Jxσx − Jx̃σx̃)(Jxσx − Jx̃σx̃)

T
]

= 3α‖Jxσx − Jx̃σx̃‖2

(using that Tr[. · .T ] defines an inner product for matrices and gives rise to the Frobenius matrix norm ‖.‖). Hence, by
the triangle inequality and Lipschitzness of the Jacobian of the flow (which follows a fortiori from the boundedness
of the second order derivatives of the flow),

‖Jxσx − Jx̃σx̃‖ � ‖Jxσx − Jxσx̃‖ + ‖Jxσx̃ − Jx̃σx̃‖
� ‖Jx‖‖σx − σx̃‖ + ‖Jx − Jx̃‖‖σx̃‖
� ‖Jx‖‖σx − σx̃‖ + c2(σ,φ)|x − x̃|.

Since σ(t, ·, q) is Lipschitz continuous (uniformly in (t, q) ∈ [0, T ]×R
n) and φt (·) is Lipschitz continuous (uniformly

in t ∈ [0, T ]), we can use our assumption (4.2) on σ , to see

‖σx − σx̃‖ � (const) × |x − x̃|. (4.3)

Indeed,

‖σx − σx̃‖ = ∥∥σ
(
t, φt (x),p · Jx

) − σ
(
t, φt (x̃),p · Jx̃

)∥∥
�

∥∥σ
(
t, φt (x),p · Jx

) − σ
(
t, φt (x̃),p · Jx

)∥∥ + ∥∥σ
(
t, φt (x̃),p · Jx

) − σ
(
t, φt (x̃),p · Jx̃

)∥∥
� c2(σ,φ)|x − x̃| + c1

α|x − x̃||Jx − Jx̃ |
1 + α|x − x̃|(|Jx | + |Jx̃ |) ;

and, noting that φt ◦ φ−1
t = Id and sup(t,x)∈[0,T ]×Rn ‖Dφt |x‖ � c3 implies ‖Jx‖ = ‖Dφ−1

t |φt (x)‖ � 1/c3, we have

c1
α|x − x̃||Jx − Jx̃ |

1 + α|x − x̃|(|Jx | + |Jx̃ |) � |x − x̃| · c1α|Jx − Jx̃ |
α|x − x̃|(|Jx | + |Jx̃ |)

� |x − x̃| c4(σ,φ)|x − x̃|
|x − x̃|(|Jx | + |Jx̃ |)

� c5(σ,φ)|x − x̃|.
Putting things together we have∣∣(i)∣∣ � c6(σ,φ)α|x − x̃|2.
As for (ii), we have that,

|bx − bx̃ | �
∣∣b(

t, φt (x), 〈p,Jx〉
) − b

(
t, φt (x̃), 〈p,Jx〉

)∣∣ + ∣∣b(
t, φt (x̃), 〈p,Jx〉

) − b
(
t, φt (x̃), 〈p,Jx̃〉

)∣∣
� c7(b)

(∣∣φt (x) − φt (x̃)
∣∣ + |p||Jx̃ − Jx |

)
where c7(b) is the (uniform in t ∈ [0, T ]) Lipschitz bound for b(t, ·,·). To get the required estimate we again use the
regularity of the flow. Finally, for (iii),
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(iii) = Tr
[
ax̃〈p,Hx̃〉 − ax̃〈p,Hx〉

] + Tr
[
ax̃〈p,Hx〉 − ax〈p,Hx〉

]
= Tr

[
ax̃〈p,Hx̃ − Hx〉

] + Tr
[
(ax̃ − ax)〈p,Hx〉

]
.

Using Cauchy–Schwartz (with inner product Tr[. · .T ]) and p = α(x − x̃) it is clear that boundedness of H and a (i.e.
supx |Hx | < ∞ uniformly in t ∈ [0, T ] and similarly for a) and Lipschitz continuity (i.e. |Hx −Hx̃ | � (const)×|x − x̃|
uniformly in t ∈ [0, T ] and similar for a) will suffice to obtain the (desired) estimate∣∣(iii)∣∣ � c8 × α|x − x̃|2.
Only Lipschitz continuity of ax = σxσ

T
x requires a discussion. But this follows, thanks to boundedness of supx |σx |,

from showing Lipschitzness of x �→ σx = σ(t,φt (x), 〈p,Jx〉) uniformly in t ∈ [0, T ] which was already seen in (4.3).
This shows that Fφ satisfies (2.1), for any φ ∈ Φ(3). To see that Fφ satisfies Condition 1 it only remains to see that
Fφ(t, x,p,X) is uniformly continuous whenever p,X remain bounded. To see this first observe that the flow map
φt (x), as function of (t, x) ∈ [0, T ] × R

n, is uniformly continuous (but not bounded) while the derivatives of the
(inverse) flow, given by J·,H· above, are bounded uniformly continuous maps as functions of t, x. One now easily
concludes with the fact the observations that (a) the product of BUC function is again BUC and (b) the composition
of a BUC function with a UC function is again BUC.

Example 5 (F of Hamilton–Jacobi–Bellman type). From the above examples and Remark 1, we see that Φ(3)-invariant
comparison holds when F is given by

F(t, x,p,X) = inf
γ∈Γ

{
Tr

[
σ(t, x;γ )σ (t, x;γ )T X

] + b(t, x;γ ) · p}
,

the usual non-linearity in the Hamilton–Jacobi–Bellman equation, and more generally

F(t, x,p,X) = inf
γ∈Γ

{
Tr

[
σ(t, x,p;γ )σ (t, x,p;γ )T · X] + b(t, x,p; τ)

}
whenever the conditions in Examples 3 and 4 are satisfied uniformly with respect to γ ∈ Γ .

Example 6 (F of Isaac type). Similarly, Φ(3)-invariant comparison holds for

F(t, x,p,X) = sup
β

inf
γ

{
Tr

[
σ(t, x;β,γ )σ (t, x;β,γ )T X

] + b(t, x;β,γ ) · p}
(such non-linearities arise in Isaac equation in the theory of differential games), and more generally

F(t, x,p,X) = sup
β

inf
γ

{
Tr

[
σ(t, x,p;β,γ )σ (t, x,p;β,γ )T · X] + b(t, x,p;β,γ )

}
whenever the conditions in Examples 3 and 4 are satisfied uniformly with respect to β ∈ B and γ ∈ Γ , where B and
Γ are arbitrary index sets.

5. Some lemmas

Lemma 1. Let z : [0, T ] → R
d be smooth and assume that we are given C3-bounded vector fields16 V = (V1, . . . , Vd).

Then ODE

dyt = V (yt ) dzt , t ∈ [0, T ]
has a unique solution flow (of C3-diffeomorphisms) φ = φz ∈ Φ(3).

Proof. Standard, e.g. Chapter 4 in [21]. �
16 In particular, if the vector fields are Lipγ , γ > p + 2, p � 1, then they are also C3-bounded.
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Proposition 1. Let z, V and φ be as in Lemma 1. Then u is a viscosity sub- (resp. super-) solution

u̇(t, x) = F
(
t, x,Du,D2u

) − Du(t, x) · V (x)ż(t) (5.1)

if and only if v(t, x) := u(t,φt (x)) is a viscosity sub- (resp. super-) solution of

v̇(t, x) = Fφ
(
t, x,Dv,D2v

)
(5.2)

where Fφ was defined in (3.2).

Proof. Set y = φt (x). When u is a classical sub-solution, it suffices to use the chain-rule and definition of Fφ to see
that

v̇(t, x) = u̇(t, y) + Du(t, y) · φ̇t (x) = u̇(t, y) + Du(t, y) · V (y)żt

� F
(
t, y,Du(t, y),D2u(t, y)

) = Fφ
(
t, x,Dv(t, x),D2v(t, x)

)
.

The case when u is a viscosity sub-solution of (5.1) is not much harder: suppose that (t̄ , x̄) is a maximum of v − ξ ,
where ξ ∈ C2([0, T ] × R

n) and define ψ ∈ C2([0, T ] × R
n) by ψ(t, y) = ξ(t, φ−1

t (y)). Set ȳ = φt̄ (x̄) so that

F
(
t̄ , ȳ,Dψ(t̄, ȳ),D2ψ(t̄, ȳ)

) = Fφ
(
t̄ , x̄,Dξ(t̄, x̄),D2ξ(t̄ , x̄)

)
.

Obviously, (t̄ , ȳ) is a maximum of u − ψ , and since u is a viscosity sub-solution of (5.1) we have

ψ̇(t̄ , ȳ) + Dψ(t̄, ȳ)V (ȳ)ż(t̄ ) � F
(
t̄ , ȳ,Dψ(t̄, ȳ),D2ψ(t̄, ȳ)

)
.

On the other hand, ξ(t, x) = ψ(t,φt (x)) implies ξ̇ (t̄ , x̄) = ψ̇(t̄ , ȳ) + Dψ(t̄, ȳ)V (ȳ)ż(t̄) and putting things together
we see that

ξ̇ (t̄ , x̄) � Fφ
(
t̄ , x̄,Dξ(t̄, x̄),D2ξ(t̄ , x̄)

)
which says precisely that v is a viscosity sub-solution of (5.2). Replacing maximum by minimum and � by � in the
preceding argument, we see that if u is a super-solution of (5.1), then v is a super-solution of (5.2).

Conversely, the same arguments show that if v is a viscosity sub- (resp. super-) solution for (5.2), then u(t, y) =
v(t, φ−1(y)) is a sub- (resp. super-) solution for (5.1). �
6. Proof of the main result

Proof of Theorem 1. Using Lemma 1, we see that φε ≡ φzε
, the solution flow to dy = V (y)dzε , is an element of

Φ ≡ Φ(3). Set Fε := Fφε
. From Proposition 1, we know that uε is a solution to

duε = F
(
t, y,Duε,D2uε

)
dt − Duε(t, y) · V (y)dzε(t), uε(0, ·) = uε

0

if and only if vε is a solution to ∂t −Fε = 0 with vε(0, ·) = uε
0. Let φz denote the solution flow to the rough differential

equation

dy = V (y)dz.

Thanks to Lipγ+2-regularity of the vector fields φz ∈ Φ , and in particular a flow of C3-diffeomorphisms. Set
F z = Fφz

. The “universal” limit theorem [41] holds, in fact, on the level of flows of diffeomorphisms (see [40]
and [21, Chapter 11] for more details) tells us that, since zε tends to z in rough path sense,

φε → φz in Φ

so that, by continuity of F (more precisely: uniform continuity on compacts), we easily deduce that

Fε → F z locally uniformly.

From the method of semi-relaxed limits (Lemma 6.1 and Remarks 6.2, 6.3 and 6.4 in [13], see also [15]) the pointwise
(relaxed) limits
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v̄ := lim sup ∗vε,

v := lim inf ∗ vε,

are USC sub- resp. LSC super-solutions to ∂t − F z = 0. Boundedness of v̄, v is also clear by assumption that (uε)

is uniformly bounded. Moreover, since vε(0, ·) = uε
0 → u0 locally uniformly as ε → 0 it is not hard to see that

v̄(0, ·) = v(0, ·) = u0. (For the reader’s convenience we have included a proof of this in Appendix A.) By assumption
on Φ-invariant comparison, the equation ∂t − F z = 0 satisfies comparison. It follows that v := v̄ = v is the unique
(and continuous, since v̄, v are upper resp. lower semi-continuous) solution to

∂tv = F zv, v(0, ·) = u0(·)
(and hence that v does not depend on the approximating sequence to z). Moreover, using a simple Dini-type argument
(e.g. [13, p. 35] or [1, Lemme 4.1]) one sees that this limit must be uniform on compacts. The proof of (i) is finished
by setting

uz(t, x) := v
(
t,

(
φz

t

)−1
(x)

)
.

(ii) The comparison |uz − ûz|∞;[0,T ]×Rn � |u0 − û0|∞;Rn is a simple consequence of comparison for v, v̂ (solutions
to ∂tv = F zv). At last, to see (iii), we argue in the very same way as in (i), starting with

F zn → F z locally uniformly

to see that vn → v locally uniformly, i.e. uniformly on compacts. �
7. Applications to stochastic partial differential equations

Applications to SPDEs are path-by-path, i.e. by taking z to be a typical realization of Brownian motion and Lévy’s
area, B(ω) ≡ (B,A), also known as enhanced Brownian motion or Brownian rough path. The continuity property (iii)
of our Theorem 1 allows to identify (1.7) with z = B(ω) as Stratonovich solution to the non-linear SPDE

du = F
(
t, x,Du,D2u

)
dt − Du · V (x) ◦ dB, u(0, ·) = u0.

Indeed, under the stated assumptions the Wong–Zakai approximations, in which the Brownian B is replaced by its
piecewise linear approximation, based on some mesh {0, T

n
, 2T

n
, . . . , T }, the approximate solution will converge (lo-

cally uniformly on [0, T ] × R
n and in probability, say) to the solution of

du = F
(
t, x,Du,D2u

)
dt − Du · V (x)dB, u(0, ·) = u0,

as constructed in Theorem 1. If one takes this piecewise linear approximation property as definition of a solution
in Stratonovich sense17 this identification is trivially settled. More interestingly, there is a number of Wong–Zakai
approximation results for SPDEs, ranging from [5,48] to [28,29]. Any solution of ours that is also covered in the afore-
mentioned references is then indeed a Stratonovich SPDE solution in the usual sense.18 Of course, (Stratonovich)
integral interpretations can break down in degenerate situations. As example, consider non-differentiable initial data u0
and the (one-dimensional) random transport equation du = ux ◦ dB with explicit “Stratonovich” solution u0(x + Bt).
(A similar situation occurs for the classical transport equation u̇ = ux , of course.) At last, we point out that our
solution also constitutes a stochastic viscosity solution in the sense of Lions and Souganidis [35,36,38]: adapted to
the present setting, and recalling the notation used in the proof of Theorem 1, this amounts to call u a (stochastic
viscosity) solution if v(t, x) := u(t, (φB

t )−1(x)) satisfies the (random) PDE ∂tv = F Bv in viscosity sense.19 Observe
that uniqueness of stochastic viscosity solutions then follows from the classical theory of viscosity solutions of fully
non-linear second-order partial differential equations. (After all, our assumptions guarantee that ∂t − F B satisfies
comparison.)

17 . . . commonly done in the context of anticipating stochastic analysis, see [43,10] for instance.
18 The same logic has been used by T. Lyons in [39] to identify rough differential equation driven by B as Stratonovich SDE solutions.
19 The actual definition of Lions–Souganidis is a localized version of this and allows for noise of the form H(x,Du) ◦ dB with H non-linear in
Du. When H is linear in Du, the standing assumption in the present paper, the global and local definition are easily seen to be equivalent.
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Remark 2 (Itô versus Stratonovich). Note that similar SPDEs in Itô-form need not be, in general, well-posed. Con-
sider the following (well-known) linear example

du = ux dB + λuxx dt, λ � 0.

A simple computation shows that v(x, t) := u(x − Bt , t) solves the (deterministic) PDE v̇ = (λ − 1/2)vxx . From
elementary facts about the heat-equation we recognize that, for λ < 1/2, this equation, with given initial data v0 = u0,
is not well-posed. In the (Itô-) SPDE literature, starting with [44], this has led to coercivity conditions, also known as
super-parabolicity assumptions, in order to guarantee well-posedness.

Remark 3 (Regularity of V ). Applied to the Brownian context (finite p-variation for any p > 2) the regularity as-
sumption of Theorem 1 reads Lip4+ε , ε > 0. While our arguments do not appear to leave much room for improvement
we insist that working directly with Stratonovich flows (rather than rough flows) will not bring much gain: the reg-
ularity requirements are essentially the same. Itô flows, on the other hand, require one degree less in regularity. In
turn, there is a potential loss of well-posedness and the resulting SPDE is not robust as a function of its driving noise
(similar to classical Itô stochastic differential equations).

Remark 4 (Space–time regularity of SPDE solutions). Since u(t, x) = v(t, φB
t (x)) and φB

t is a flow of C3- diffeomor-
phisms the regularity of u is readily reduced to regularity properties of v, classical viscosity solution to ∂tv = F Bv.
Unless one makes very specific assumptions on F this is a difficult problem in its own right; see the relevant remarks
in [13] for instance.

Let us now give some applications, typical in the sense that they have been studied in great detail in the case of
classical (Stratonovich) stochastic differential equations.

Approximations. Any approximation result to B in rough path topology implies a corresponding (weak or strong) limit
theorem for such SPDEs: it suffices that an approximation to B converges in rough path topology; as is well-known
(e.g. [21, Chapter 13] and the references therein) examples include piecewise linear-, mollifier- and Karhunen–Loeve
approximations, as well as (weak) Donsker type random walk approximations [4]. The point being made, we shall not
spell out more details here.

Twisted approximations. The following result implies en passant that there is no (classical) pathwise theory of
SPDEs in presence of spatial dependence in the Hamilonian terms.

Theorem 2. Let V = (V1, . . . , Vd) be a collection of C∞-bounded vector fields on R
n and B a d-dimensional standard

Brownian motion. Then, for every α = (α1, . . . , αN) ∈ {1, . . . , d}N , N � 2, there exists (piecewise) smooth approxi-
mations (zk) to B , with each zk only dependent on {B(t): t ∈ Dk} where (Dk) is a sequence of dissections of [0, T ]
with mesh tending to zero, such that almost surely

zk → B uniformly on [0, T ],
but uk , solutions to

duk = F
(
t, x,Duk,D2uk

)
dt − Duk(t, x) · V (x)dzk, uk(0, ·) = u0 ∈ BUC

(
R

n
)

(with assumptions on F as formulated in Theorem 1) converge almost surely locally uniformly to the solution of the
“wrong” differential equation

du = [
F

(
t, x,Du,D2u

) − Du(t, x) · Vα(x)
]
dt − Du(t, x) · V (x) ◦ dB

where Vα is the bracket-vector field given by Vα = [Vα1 , [Va2 , . . . [VαN−1 ,VαN
]]].

Proof. The rough path regularity of B(ω) implies that higher iterated (Stratonovich) integrals are deterministically
defined; see [39, First theorem]. Doing this up to level N yields a (rough path) SN(B) and we perturbe it in the highest
level, linearly in the
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[
eα1,

[
ea2, . . . [eαN−1 , eαN

]]]-direction

of SN(B) viewed as element in the step-N free nilpotent Lie algebra. This yields a (level-N ) rough path B̃ and
we can find approximations (zk) that converge almost surely to B̃ in rough path topology (see [17]). One identifies
standard RDEs driven by B̃ as RDEs-with-drift (driven along the original vector fields by dB, and along Vα by dt).
The resulting identification obviously holds on the level of RDE flows and thus

uzk

(t, x) = v
(
t,

(
φzk

t

)−1
(x)

) → uB̃(t, x) = v
(
t,

(
φB̃

t

)−1
(x)

)
.

The flow identification then implies that

du = F
(
t, x,Du,D2u

)
dt − Du(t, x) · V (x)dB̃

is equivalent to the equation with V (x)dB̃ replaced by V (x)dB+Vα(x)dt . �
Remark 5. The attentive reader will have noticed that the preceding result also holds when the Stratonovich differen-
tial ◦dB is replaced by dz for some z ∈ C1([0, T ],R

d); it can then be viewed as result on the effective behaviour of
a (deterministic) non-linear parabolic equations with coefficients that exhibit highly oscillatory behaviour in time.

Support results. In conjunction with known support properties of B (e.g. [33] in p-variation rough path topology or
[16] for a conditional statement in Hölder rough path topology) continuity of the SPDE solution as a function of B
immediately implies Stroock–Varadhan type support descriptions for such SPDEs. Let us note that, to the best of our
knowledge, results of this type are new for such non-linear SPDEs. In the linear case, approximations and support of
SPDEs have been studied in great detail [27,26,24,23,25].

Large deviation results. Another application of our continuity result is the ability to obtain large deviation estimates
when B is replaced by εB with ε → 0; indeed, given the known large deviation behaviour of (εB, ε2A) in rough path
topology (e.g. [33] in p-variation and [19] in Hölder rough path topology) it suffices to recall that large deviation
principles are stable under continuous maps. Again, large deviation estimates for non-linear SPDEs in the small noise
limit appear to be new and may be hard to obtain without rough paths theory.

SPDEs with non-Brownian noise. Yet another benefit of our approach is the ability to deal with SPDEs with non-
Brownian and even non-semimartingale noise. For instance, one can take z as (the rough path lift of) fractional
Brownian motion with Hurst parameter 1/4 < H < 1/2, cf. [11] or [18], a regime which is “rougher” than Brownian
and notoriously difficult to handle; or a diffusion with uniformly elliptic generator in divergence form with measurable
coefficients; see [20]. Much of the above (approximations, support, large deviation) results also extend, as is clear from
the respective results in the above-cited literature.

8. Further remarks

We have discussed a rough paths approach to stochastic partial differential equation of the form

du = F
(
t, x,Du,D2u

)
dt +

d∑
i=1

Hi(x,Du) ◦ dBi

with fully non-linear F and Hamiltonian H = H(x,Du), linear in Du. When F is (semi-) linear, uniformly elliptic,
there are various results (based on backward stochastic differential equations) for solving SPDE with general Hi =
Hi(u,Du,x); see [45] for instance. Under a semi-linearity assumption (F = �u + f (t, x,Du)) and non-linear Hi =
Hi(Du,x), subject to restrictive algebraic properties, a pathwise approach was carried out by Iftimie and Varsan [30].

It is worth pointing out that SPDEs of the form

du = F
(
t, x,Du,D2u

)
dt +

d∑
Gi(u, x) ◦ dBi,
i=1
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have also benefited from global (Doss–Sussmann) type transformations; see [37,6,7]. Although this suggests that the
general rough path methodology of the present paper is also applicable for such SPDEs, by considering rough PDEs
of the form

du = F
(
t, x,Du,D2u

)
dt + G(u,x)dz,

the matter is far from straight-forward: a transformation based on the (stochastic/rough) flow associsted to G, see [37],
leads to a transformed PDE which does not fit in the standard viscosity theory and we shall return to this in future
work.
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Appendix A. Comparison for parabolic equations

Recall that USC (resp. LSC) refers to upper (resp. lower) semi-continuity. Let u ∈ USC([0, T )×R
n) be a bounded

sub-solution to ∂t − F ; that is, ∂tu − F(t, x,Du,D2u) � 0 if u is smooth and with the usual viscosity definition
otherwise. Similarly, let v ∈ LSC([0, T ) × R

n) be a bounded super-solution.

Theorem 3. Assume Condition 1. Then comparison holds. That is,

u0 � v0 on R
n ⇒ u � v on [0, T ) × R

n,

where u0 = u(0, ·) ∈ USC(Rn) and v0 = v(0, ·) ∈ LSC(Rn) denote the (bounded) initial data.

Proof. We follow the argument given in the User’s Guide [13, Section 8]. Without loss of generality, we may assume
that ∂tu − F(t, x,Du,D2u) � −c < 0 and that limt→T u(t, x) = −∞ uniformly in x ∈ R

n. We aim to contradict the
existence of a point (s, z) ∈ (0, T ) × R

n such that

u(s, z) − v(s, z) = δ > 0.

To this end, consider a maximum point (t̂ , x̂, ŷ) ∈ [0, T ) × R
n × R

n of

φ(t, x, y) = u(t, x) − v(t, y) − α

2
|x − y|2 − ε

(|x|2 + |y|2).
We first argue that, for small (resp. large) enough values of ε and α, the optimizing time parameter t̂ ∈ [0, T ) cannot
be zero. Indeed, assuming t̂ = 0 we can estimate

δ − 2ε|z|2 = φ(s, z, z)

� φ(0, x̂, ŷ)

= sup
x,y

[
u0(x) − v0(y) − α

2
|x − y|2 − ε

(|x|2 + |y|2)].

From Lemma 3.1 in the User’s Guide (applied to the USC(Rn) resp. LSC(Rn) map given by u0(x) − ε|x|2 resp.
v0(y) − ε|y|2) it follows that

lim
α→∞φ(0, x̂, ŷ) = sup

x

[
u0(x) − v0(x) − 2ε|x|2]

� |u0 − v0|∞;Rn � 0 by assumption.

In particular, there exists α0 = α0(δ) such that φ(0, x̂, ŷ) < δ/3 for α � α0. If we then choose ε � ε0 = ε0(δ, z),
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determined by 2ε0|z|2 = δ/3 for instance, we are left with the contradiction

δ − δ/3 � δ − 2ε|z|2 � φ(0, x̂, ŷ) < δ/3.

It follows that t̂ ∈ (0, T ) whenever ε � ε0 and α � α0, which we shall assume from here on. (In fact, we shall send
ε → 0, and then α → ∞, in what follows.)

Again, the plan is to arrive at a contradiction (so that we have to reject the existence of a point (s, z) ∈ (0, T ) × R
n

at which u(s, z) − v(s, z) > 0) altogether. To this end, let us rewrite φ(t, x, y) as

φ(t, x, y) = uε(t, x) − vε(t, y) − α

2
|x − y|2

where uε(t, x) = u(t, x) − ε|x|2 and vε(t, y) = v(t, y) + ε|y|2. Since uε (resp. vε) are upper (resp. lower) semi-
continuous we can apply the (parabolic) theorem of sums [13, Theorem 8.3] at (t̂ , x̂, ŷ) to learn that there are numbers
a, b and X,Y ∈ Sn such that(

a,α(x̂ − ŷ),X
) ∈ P̄ 2,+uε(t̂, x̂),

(
b,α(x̂ − ŷ), Y

) ∈ P̄ 2,−vε(t̂ , ŷ) (A.1)

such that a − b = 0 and such that one has the estimate (2.2). It is easy to see (cf. [13, Remark 2.7]) that (A.1) is
equivalent to(

a,α(x̂ − ŷ) + 2εx̂,X + 2εI
) ∈ P̄ 2,+u(t̂, x̂),(

b,α(x̂ − ŷ) − 2εŷ, Y − 2εI
) ∈ P̄ 2,−v(t̂, ŷ);

using that ∂tu−F(t, x,Du,D2u) � −c and ∂tv −F(t, x,Dv,D2v) � 0 (always understood in the sense of viscosity
sub- resp. super-solutions) we then see that

a − F
(
t̂ , x̂, α(x̂ − ŷ) + 2εx̂,X + 2εI

)
� −c,

b − F
(
t̂ , ŷ, α(x̂ − ŷ) − 2εŷ, Y − 2εI

)
� 0.

Using a = b, this implies

0 � c � F
(
t̂ , x̂, α(x̂ − ŷ) + 2εx̂,X + 2εI

) − F
(
t̂ , ŷ, α(x̂ − ŷ) − 2εŷ, Y − 2εI

)
.

The last step consists in showing that the right-hand side converges to zero by first sending ε → 0 and then α → ∞.
(This yields the desired contradiction which ends the proof.) If ε were absent (e.g. set ε = 0 throughout) we would
estimate

F
(
t̂ , x̂, α(x̂ − ŷ),X

) − F
(
t̂ , ŷ, α(x̂ − ŷ), Y

)
� θ

(
α|x̂ − ŷ|2 + |x̂ − ŷ|)

and conclude (Lemma 3.1 in the User’s Guide) that

α|x̂ − ŷ|2, |x̂ − ŷ| → 0 as α → ∞
in conjunction with continuity of θ at 0+. The present case, ε > 0, is essentially reduced to the case ε = 0 by
adding/subtracting

F
(
t̂ , x̂, α(x̂ − ŷ),X

) − F
(
t̂ , ŷ, α(x̂ − ŷ), Y

)
.

It follows that c � (i) + (ii) + (ii) where

(i) = ∣∣F (
t̂ , x̂, α(x̂ − ŷ) + 2εx̂,X + 2εI

) − F
(
t̂ , x̂, α(x̂ − ŷ),X

)∣∣,
(ii) = ∣∣F (

t̂ , ŷ, α(x̂ − ŷ) − 2εŷ, Y − 2εI
) − F

(
t̂ , ŷ, α(x̂ − ŷ), Y

)∣∣,
(iii) = θ

(
α|x̂ − ŷ|2 + |x̂ − ŷ|).

From Lemma 2 below, we see that (a) p = α(x̂ − ŷ) remains, for fixed α, bounded as ε → 0, (b) 2ε|x̂| and 2ε|ŷ| tend
to zero as ε → 0, for fixed α, and (c)

lim sup lim sup
(
α|x̂ − ŷ|2 + |x̂ − ŷ|) = lim

α→∞ lim sup
(
α|x̂ − ŷ|2 + |x̂ − ŷ|) = 0.
α→∞ ε→0 ε→0
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We also note that (2.2) implies that any matrix norm of X,Y is bounded by a constant times α, independent of ε.
Since F is assumed to be uniformly continuous whenever its gradient and Hessian argument remain in abounded set,
combining all this information shows that

lim sup
ε→0

(i), lim sup
ε→0

(ii), lim sup
ε→0

(iii)

all tend to 0 as α → ∞. In summary,

0 < c � lim
α→∞ lim sup

ε→0

[
(i) + (ii) + (ii)

] = 0

which is the desired contradiction. The proof is now finished. �
Lemma 2. Let u ∈ USC([0, T ) × R

n) bounded from above and v ∈ LSC([0, T ) × R
n) bounded from below. Consider

a maximum point (t̂ , x̂, ŷ) ∈ (0, T ) × R
n × R

n of

φ(t, x, y) = u(t, x) − v(t, y) − α

2
|x − y|2 − ε

(|x|2 + |y|2),
where α, ε > 0. Then

lim sup
ε→0

α(x̂ − ŷ) = C(α) < ∞, (A.2)

lim sup
α→∞

lim sup
ε→0

ε
(|x̂|2 + |ŷ|2) = 0, (A.3)

lim sup
α→∞

lim sup
ε→0

(
α

2
|x̂ − ŷ|2 + |x̂ − ŷ|

)
= 0. (A.4)

Remark 6. A similar lemma is found in [31] or (without t dependence) in Barles’ book [1, Lemme 4.3]; the order in
which limits are taken is important and suggests the notation

lim sup
ε� 1

α
→0

(. . .) := lim sup
α→∞

lim sup
ε→0

(. . .), lim inf
ε� 1

α
→0

(. . .) := lim inf
α→∞ lim inf

ε→0
(. . .).

Proof. We start with some notation, where unless otherwise stated t ∈ [0, T ] and x, y ∈ R
n,

Mα,ε := sup
t,x,y

φ(t, x, y) = u(t̂, x̂) − v(t̂, ŷ) − α

2
|x̂ − ŷ|2 − ε

(|x̂|2 + |ŷ|2),
M(h) := sup

t,x,y: |x−y|�h

[
u(t, x) − v(t, y)

]
� sup

t,x

[
u(t, x) − v(t, x)

]
,

M ′ :=↓ lim
h→0

M(h).

(As indicated, M ′ exists as limit of M(h), non-increasing in h and bounded from below.)

Step 1. Take t = x = y = 0 as argument of φ(t, x, y). Since Mα,ε = supφ we have

c = u(0,0) − v(0,0) � Mα,ε = u(t̂, x̂) − v(t̂, ŷ) − α

2
|x̂ − ŷ|2 − ε

(|x̂|2 + |ŷ|2)
and hence, for a suitable constant C (e.g. C2 := supu + sup(−v) + c)

α

2
|x̂ − ŷ|2 + ε

(|x̂|2 + |ŷ|2) � C2

which implies

|x̂ − ŷ| � C
√

2/α (A.5)

and hence α|x̂ − ŷ| � √
2αC which is the first claimed estimate (A.2).
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Step 2. We first argue that it is enough to show the (two) estimates

lim sup
ε� 1

α
→0

[
u(t̂, x̂) − v(t̂, ŷ)

]
� M ′ � lim inf

ε� 1
α
→0

Mα,ε. (A.6)

Indeed, from α
2 |x̂ − ŷ|2 + ε(|x̂|2 + |ŷ|2) = u(t̂, x̂) − v(t̂, ŷ) − Mα,ε it readily follows that

lim sup
ε� 1

α
→0

α

2
|x̂ − ŷ|2 + ε

(|x̂|2 + |ŷ|2) � lim sup
ε� 1

α
→0

[
u(t̂, x̂) − v(t̂, ŷ) − Mα,ε

]
= lim sup

ε� 1
α
→0

[
u(t̂, x̂) − v(t̂, ŷ)

] − lim inf
ε� 1

α
→0

Mα,ε

� 0 (and hence = 0).

This already gives (A.3) and also (A.4), noting that

|x̂ − ŷ| = α−1/2α1/2|x̂ − ŷ| � 1

2α
+ α

2
|x̂ − ŷ|2.

We are left to show (A.6). For the first estimate, it suffices to note that, from (A.5) and the definition of M(h) applied
with h = C

√
2/α,

lim sup
ε� 1

α
→0

[
u(t̂, x̂) − v(t̂, ŷ)

]
� lim sup

ε� 1
α
→0

M

(√
2

α
C

)

= lim
α→∞M

(√
2

α
C

)
= M ′.

We now turn to the second estimate in (A.6). From the very definition of M ′ as limh→0 M(h), there exists a family
(th, xh, yh) so that

|xh − yh| � h and u(th, xh) − v(th, xh) → M ′ as h → 0. (A.7)

For every α, ε we may take (th, xh, yh) as argument of φ; since Mα,ε = supφ we have

u(th, xh) − v(th, yh) − α

2
h2 − ε

(|xh|2 + |yh|2
)
� Mα,ε. (A.8)

Take now ε = ε(h) → 0 with h → 0; fast enough so that ε(|xh|2 + |yh|2) → 0; for instance ε(h) := h/(1 +
(|xh|2 + |yh|2)) would do. It follows that

M ′ = lim
h→0

u(th, xh) − v(th, yh)

= lim inf
h→0

u(th, xh) − v(th, yh) − α

2
h2 − ε

(|xh|2 + |yh|2
)

� lim inf
h→0

Mα,εh
= lim inf

ε→0
Mα,ε by monotonicity of Mα,ε in ε.

Since this is valid for every α, we also have

M ′ � lim inf
α→∞ lim inf

ε→0
Mα,ε.

This is precisely the second estimate in (A.6) and so the proof is finished. �
Appendix B. Initial data under semi-relaxed limits

Let (vε: ε > 0) denote a family of uniformly bounded viscosity solutions vε(t, x) to

∂tv
ε − Fε

(
t, x,Dvε,D2vε

) = 0, vε(0, ·) = gε ∈ BC
([0, T ] × R

n
)

where Fε = Fε(t, x,p,X) is a continuous function of its arguments. Assume gε → g ∈ BC locally uniformly and
Fε → F locally uniformly and recall that the semi-relaxed limits are defined by
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v̄(t, x) := lim sup
(s,y)∈[0,T ]×Rn: s→t, y→x, ε→0

vε(s, y),

v(t, x) := lim inf
(s,y)∈[0,T ]×Rn: s→t, y→x, ε→0

vε(s, y).

Proposition 2. We have v̄(0, x) = v(0, x) = g(x).

Proof. We adapt the argument of Fleming and Soner [15, Section VII.5] to our setting and focus on showing v̄(0, x) =
g(x), the other equality being similar. Trivially v̄(0, x) � g(x). Suppose equality does not hold. Then there exist
x0 ∈ R

n and δ > 0 so that

v̄(0, x0) = g(x0) + δ.

We can assume without loss of generality g(x0) = 0; for otherwise consider ṽε(t, x) := vε(t, x)−g(x0). Since gε → g

uniformly near x0 there are ρ > 0 and ε0 > 0 such that

gε(x) < δ/2 whenever |x − x0|2 < ρ, ε < ε0. (B.1)

(We could take ρ = 1 in fact.) Define the (smooth) test-function

w(t, x) = γ t + K|x − x0|2
where K = (supε>0 |vε|∞;[0,T ]×Rn + 1)/ρ and γ � K will be chosen later. Now, if x is such that gε(x) � δ/2, and if
ε < ε0, then (B.1) implies that we must have |x − x0|2 � ρ; it then follows that

w(t, x) � K|x − x0|2 � Kρ � vε(t, x) − gε(x0) + [
1 + gε(x0)

]
.

By making ε0 smaller if necessary we can assume that |gε(x0)| < 1/2, say, for all ε < ε0 which shows that

w(t, x) > vε(t, x) − gε(x0) whenever gε(x) � δ/2, ε < ε0. (B.2)

For ε > 0, choose

(tε, xε) ∈ argmax
{
vε(t, x) − w(t, x): (t, x) ∈ [0, T ] × R

n
}
.

Also the definition of v̄ implies that there exist εn → 0 and (sn, yn) → (0, x0) such that

δ = v̄(0, x0) = lim
n

vεn(sn, yn).

Set (tn, xn) = (tεn , xεn). Then

lim inf
n→∞ vεn(tn, xn) − w(tn, xn) � vεn(sn, yn) − w(sn, yn) = δ. (B.3)

We claim that tn �= 0 for sufficiently large n. Indeed, if tn = 0 then vεn(tn, xn) = gεn(xn). The above inequality then
yields that there is n0 such that, for all n � n0

gεn(xn) = vεn(tn, xn) � δ

2
+ w(tn, xn) � δ

2
and, from (B.2), w(tn, xn) > vεn(tn, xn) − gεn(x0). It follows that

lim inf
n→∞ vεn(tn, xn) − w(tn, xn) � lim inf

n→∞ gεn(x0) = 0

which contradicts (B.3). Hence, for all n � n0 we have tn �= 0 and the viscosity property of vε gives (with all deriva-
tives evaluated at tn, xn)

0 � ∂tw(tn, xn) − Fεn
(
tn, xn,Dw,D2w

)
= γ − Fεn

(
tn, xn,2K(xn − x0),2KI

)
.

Note that xn = x
γ
n (to indicate the dependence on γ ) remains bounded, uniformly in n ∈ {n0, . . .} and γ ∈ [K,∞).

Since Fεn is locally uniformly continuous it is also locally uniformly bounded. A contradiction is now obtained by
taking γ large enough. �



M. Caruana et al. / Ann. I. H. Poincaré – AN 28 (2011) 27–46 45
References

[1] Guy Barles, Solutions de viscosité des équations de Hamilton–Jacobi, Springer, 2004.
[2] Guy Barles, Samuel Biton, Mariane Bourgoing, Olivier Ley, Uniqueness results for quasilinear parabolic equations through viscosity solu-

tions’ methods, Calc. Var. Partial Differential Equations 18 (2) (2003) 159–179.
[3] Guy Barles, Samuel Biton, Olivier Ley, A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations, Arch.

Ration. Mech. Anal. 162 (4) (2002) 287–325.
[4] Emmanuel Breuillard, Peter Friz, Martin Huesmann, From random walks to rough paths, Proc. Amer. Math. Soc. 137 (2009) 3487–3496.
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