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Abstract

Improved Hardy inequalities, involving remainder terms, are established both in the classical and in the limiting case. The
relevant remainders depend on a suitable distance from the families of the “virtual” extremals.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Nous établissons des inégalités de Hardy améliorées avec reste, à la fois dans le cas classique et dans le cas limite. Ce reste
dépend d’une distance à la famille des extremas « virtuels ».
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

The plain Hardy inequality asserts that, if n � 2 and 1 < p < n, then(
n − p

p

)p ∫
Rn

|u(x)|p
|x|p dx �

∫
Rn

|∇u|p dx (1.1)

for every real-valued weakly differentiable function u in Rn such that |∇u| ∈ Lp(Rn) and decaying to zero at infinity,
in the sense that∣∣{|u| > t

}∣∣ < ∞ for every t > 0. (1.2)

Here, |G| denotes the Lebesgue measure of a set G ⊂ Rn.
The constant (

n−p
p

)p is optimal in (1.1), as demonstrated by sequences obtained on truncating functions having the
form

va(x) = a|x| p−n
p for x ∈ Rn, (1.3)
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with a ∈ R\{0}, at levels 1/k and k, and then letting k → ∞. However, it is well known that equality is never achieved
in (1.1), unless u is identically equal to 0. In fact, the natural candidates va to be extremals in (1.1) have a gradient
which does not (even locally) belong to Lp(Rn).

The lack of extremals has recently inspired improved versions of (1.1) and of related inequalities, reminiscent
of earlier results dealing with the Sobolev inequality [8,10], where Rn is replaced by any open bounded subset Ω

containing 0, and u is assumed to belong to the Sobolev space W
1,p

0 (Ω) of those functions in W 1,p(Ω) vanishing,
in the appropriate sense, on ∂Ω . Typically, these improvements of (1.1) amount to extra terms on the left-hand side
that either involve integrals of |u|p with weights depending on |x| which are less singular than |x|−p at 0, or weighted
integrals of |∇u|q with q < p (see [2–5,9,18,19,22–24,27,31,33]).

In this paper we establish a strengthened version of (1.1) in the whole of Rn, with a remainder term having a
different nature. Such a remainder depends on a distance of u, in a suitable norm, from the family of those functions
which have the form (1.3) and can be regarded as the virtual extremals in (1.1). In particular, our result entails that
any extremizing sequence in inequality (1.1) must approach the family (1.3). Let us add that conclusions in a similar
spirit are known for classical Sobolev inequalities – see e.g. [7,13,14,16,21]. The striking fact in connection with (1.1)
is that a result of this kind can hold even though extremals do not exist.

In order to give a precise statement, we begin by noting that, via a symmetrization argument, inequality (1.1) is
easily seen to be equivalent to the Lorentz-norm inequality

ω
1/n
n

n − p

p
‖u‖Lp∗,p(Rn) � ‖∇u‖Lp(Rn), (1.4)

where ωn = πn/2/�(1+ n
2 ), the measure of the unit ball, and p∗ = np

n−p
, the Sobolev conjugate of p. Recall that, given

ρ and σ ∈ [1,∞], and a measurable set Ω , the Lorentz space Lρ,σ (Ω) is the space of those measurable functions u

in Ω for which the quantity

‖u‖Lρ,σ (Ω) = ∥∥s1/ρ−1/σ u∗(s)
∥∥

Lσ (0,|Ω|)
is finite. Here, u∗ denotes the decreasing rearrangement of u. Observe that, since Lρ,ρ(Ω) = Lρ(Ω), and a constant
C = C(ρ,σ1, σ2) exists such that

‖u‖Lρ,σ2 (Ω) � C‖u‖Lρ,σ1 (Ω) if 1 � σ1 � σ2 � ∞ and 1 < ρ < ∞, (1.5)

inequality (1.4) improves the standard Sobolev inequality where Lp∗,p(Rn) is replaced by Lp∗
(Rn) on the left-hand

side (and ω
1/n
n

n−p
p

is replaced by a different constant).
In view of (1.4), the norm ‖ · ‖Lp∗,p(Rn) could be considered the natural one to measure the distance of any u

from the family (1.3) in terms of the gap between the two sides of (1.1). Unfortunately, this is not possible, since the
functions va , whose gradient is not in Lp(Rn), neither belong to Lp∗,p(Rn). They do not even belong to the lager space
Lp∗

(Rn), appearing in the usual Sobolev inequality. In fact, the smallest rearrangement invariant space containing va

is the Marcinkievicz space Lp∗,∞(Rn), also called the weak-Lp∗
space (see e.g. Proposition 2.3, Section 2). Recall

that a rearrangement invariant (briefly, r.i.) space X(Ω) on a measurable set Ω is a Banach function space – in the
sense of Luxemburg – endowed with a norm ‖u‖X(Ω) such that

‖u‖X(Ω) = ‖v‖X(Ω) whenever u∗ = v∗

(we refer the reader to [6] for more details on r.i. spaces). Thus, the Lp∗,∞(Rn) norm appearing in the (normalized)
distance

dp(u) = inf
a∈R

‖u − va‖Lp∗,∞(Rn)

‖u‖Lp∗,p(Rn)

, 1 < p < n, (1.6)

which will be employed in our first result, is actually the strongest possible in this setting.

Theorem 1.1. Let n � 2 and let 1 < p < n. Then a constant C = C(p,n) exists such that(
n − p

p

)p ∫
Rn

|u(x)|p
|x|p dx

[
1 + Cdp(u)2p∗] �

∫
Rn

|∇u|p dx (1.7)

for every real-valued weakly differentiable function u in Rn decaying to zero at infinity and such that |∇u| ∈ Lp(Rn).
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Of course, Theorem 1.1 continues to hold if Rn is replaced by any open set Ω , provided that functions u ∈ W
1,p

0 (Ω)

are taken into account. Moreover, if |Ω| < ∞ and 1 � q < p∗, the space Lp∗,∞(Ω) is continuously embedded into
Lq(Ω), and hence an inequality analogous to (1.7), with ‖u−va‖Lp∗,∞(Rn) replaced by ‖u−va‖Lq(Ω) in the definition
of dp(u), follows from Theorem 1.1. In fact, if 0 ∈ Ω , minor changes in the proof yield a version of inequality (1.7)
where the functions va , which do not vanish on ∂Ω , are replaced by the functions va :Ω → [0,∞) given by

va(x) = a
(|x| p−n

p − Q
)
+ for x ∈ Ω .

Here, subscript “+” stands for positive part, and Q is any positive number such that the support of va is contained in

Ω ; namely Q > r
p−n

n

Ω , where

rΩ = sup
{
r > 0: Br(0) ⊂ Ω

}
,

and Br(x) denotes the ball centered at x and having radius r . Precisely, if |Ω| < ∞ and 1 � q < p∗, then on setting

dp,q(u) = inf
a∈R

‖u − va‖Lq(Ω)

‖u‖Lp∗,p(Ω)

,

a constant C = C(p,q,n,Q, |Ω|) exists such that(
n − p

p

)p ∫
Ω

|u(x)|p
|x|p dx

[
1 + Cdp,q(u)2p∗] �

∫
Ω

|∇u|p dx

for every u ∈ W
1,p

0 (Ω).
Inequality (1.1) breaks down when p = n. In fact, no estimate like (1.1) (with (

n−p
p

)p replaced by any constant)

can hold in this case, since the weight |x|−n is not (even locally) integrable in Rn. However, an inequality in the same
spirit can be restored, provided that |x|−n is replaced by a suitable less singular weight at 0, and Rn is replaced by any
open bounded subset Ω . On defining

RΩ = sup
x∈Ω

|x|, (1.8)

the relevant inequality tells us that(
n − 1

n

)n ∫
Ω

|u(x)|n
|x|n(1 + log D

|x| )n
dx �

∫
Ω

|∇u|n dx (1.9)

for every D � RΩ and for every function u ∈ W
1,n
0 (Ω). A similar phenomenon as in (1.1) occurs in (1.9), in the

sense that the constant ( n−1
n

)n is the best possible for any bounded Ω containing 0, but it is not attained. Again, the
optimality is witnessed by sequences of truncated (at levels k, with k → ∞) of a suitable family of functions, which
in this case have the form

wa(x) = a

[(
1 + log

D

|x|
)1/n′

− Q

]
+

for x ∈ Ω, (1.10)

for some a ∈ R \ {0}. Here, Q is any positive number fulfilling Q > (1 + log D
rΩ

)1/n′
, so that the support of wa is

contained in Ω .
Our second result is a counterpart of Theorem 1.1 for inequality (1.9), and tells us that a remainder term can be

added to the left-hand side of (1.9), which depends on the deviation of u from the functions given by (1.10). Such a
deviation can now be controlled by an exponential estimate. Precisely, recall that, for D � RΩ , the expressions

‖u‖L∞,n(LogL)−1(Ω),D =
( |Ω|∫

0

u∗(s)n

(n + log ωnDn

s
)n

ds

s

)1/n

define a family of equivalent norms in the Lorentz–Zygmund space L∞,n(logL)−1(Ω), and set, for C > 0,

dC,D,Q(u) = inf
a∈R

∫ (
exp

(
C|u(x) − wa(x)|n′

‖u‖n′
L∞,n(logL)−1(Ω),D

)
− 1

)
dx. (1.11)
Ω
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Then we have the following

Theorem 1.2. Let Ω be an open bounded subset of Rn, n � 2, containing 0. Let D > RΩ and Q > (1 + log D
rΩ

)1/n′
.

Then a positive constant C = C(n,RΩ,D,Q) exists such that(
n − 1

n

)n ∫
Ω

|u(x)|n
|x|n(1 + log D

|x| )n
dx

[
1 + dC,D,Q(u)n

2] �
∫
Ω

|∇u|n dx (1.12)

for every u ∈ W
1,n
0 (Ω).

A few comments on Theorem 1.2 are in order. The presence of the norm ‖ · ‖L∞,n(LogL)−1(Ω) in the definition of
dC,D,Q(·) is related to the fact that, in analogy with (1.1) and (1.4), inequality (1.9) is equivalent to

ω
1/n
n (n − 1)‖u‖L∞,n(LogL)−1(Ω),D � ‖∇u‖Ln(Ω) (1.13)

for u ∈ W
1,n
0 (Ω). Inequality (1.13) goes back (apart from the constant) to [11,25,27], and has recently been

shown to be optimal as far as the norm on the left-hand side is concerned [17,20]. On the other hand, the
norm ‖ · ‖L∞,n(LogL)−1(Ω),D cannot be used to measure the distance of u from the family (1.10), since wa /∈
L∞,n(LogL)−1(Ω). The exponential term in (1.11) serves as a replacement for this norm, in the same spirit as
‖ · ‖Lp∗,∞(Rn) replaces ‖ · ‖Lp∗,p(Rn) in (1.6), and is related to the classical embedding theorem of [29,32,34], which
states that∫

Ω

(
exp

(
C|u(x)|n′

‖∇u‖n′
Ln(Ω)

)
− 1

)
dx � 1 (1.14)

for some positive constant C = C(n, |Ω|) and for every u ∈ W
1,n
0 (Ω). Observe that (1.14) is equivalent to

‖u‖ExpLn′
(Ω)

� C‖∇u‖Ln(Ω) (1.15)

for some positive constant C = C(n, |Ω|) and for every u ∈ W
1,n
0 (Ω), where

‖u‖ExpLn′
(Ω)

= inf

{
λ > 0:

∫
Ω

(
exp

( |u(x)|n′

λn′

)
− 1

)
dx � 1

}
,

the Luxemburg norm in the Orlicz space associated with the Young function given by etn
′ − 1 for t � 0. Recall that a

Young function is a convex function from [0,∞) into [0,∞) vanishing at 0. Inequalities (1.14) and (1.15) are slightly
weaker then (1.13), for

L∞,n(LogL)−1(Ω) � ExpLn′
(Ω) (1.16)

(with continuous embedding). However, the remainder dC,D,Q(u) appearing in (1.12) is again optimal, in that the

function etn
′ − 1 cannot be replaced by any other Young function growing essentially faster near infinity. Indeed,

ExpLn′
(Ω), unlike Lp∗

(Ω), agrees with its corresponding weak space, and is the smallest rearrangement invariant
space containing the family (1.10) (Proposition 3.3, Section 3).

2. The case 1 < p < n

A quite simple proof of inequality (1.1) relies upon symmetrization. Recall that the symmetric rearrangement of a
measurable function u : Rn → R, which decays to zero at infinity, is the function u� : Rn → [0,∞] obeying

u�(x) = u∗(ωn|x|n) for x ∈ Rn, (2.1)

where the decreasing rearrangement u∗ : [0,∞) → [0,∞] is given by

u∗(s) = sup
{
t > 0:

∣∣{x ∈ Rn:
∣∣u(x)

∣∣ > t
}∣∣ > s

}
for s � 0. (2.2)
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When the domain of u is not the whole of Rn, the function u� is defined similarly, after continuing u by 0 outside its
domain.

The Hardy–Littlewood inequality [6, Chapter 2, Theorem 2.2] implies that∫
Rn

|u(x)|p
|x|p dx �

∫
Rn

u�(x)p

|x|p dx (2.3)

for every u as above. On the other hand, the Pólya–Szegö principle asserts that, if u is also weakly differentiable with
|∇u| ∈ Lp(Rn) for some p � 1, then the same properties are inherited by u�, and∫

Rn

|∇u�|pdx �
∫
Rn

|∇u|pdx (2.4)

[12,26,30]. Owing to (2.3) and (2.4), inequality (1.1) is reduced to the well known one-dimensional Hardy inequality

(
1

p∗

)p
∞∫

0

φ(s)ps−p/n ds �
∞∫

0

(−φ′(s)
)p

sp/n′
ds, (2.5)

for every non-increasing locally absolutely continuous function φ : (0,∞) → [0,∞) such that lims→+∞ φ(s) = 0
(see e.g. [6,28]).

Loosely speaking, our approach to Theorem 1.1 consists in proving the stability of the argument outlined above.
To be more specific, we shall establish strengthened versions of inequalities (2.3) and (2.5), containing quantitative
information on the gap between their two sides. The former of these quantitative inequalities will enable us to show
that, if the difference between the right-hand side and the left-hand side of (1.1) is small, then u is close to u�.
The latter will be used to prove that, in the same circumstance, u� is close to some function having the form (1.3).
Inequality (1.7) will then easily follow from these two pieces of information.

The enhanced version of (2.3) is the object of our first lemma.

Lemma 2.1. Let n � 2 and let 1 < p < n. Then a positive constant C = C(p,n) exists such that∫
Rn

u(x)p

|x|p dx + C

(∫
Rn

u�(x)p

|x|p dx

)− n+p
n−p

(∫
Rn

∣∣u(x) − u�(x)
∣∣p∗

dx

)2

�
∫
Rn

u�(x)p

|x|p dx (2.6)

for every nonnegative measurable function u in Rn decaying to zero at infinity and making the right-hand side of (2.6)
finite.

Proof. A key tool in our derivation of (2.6) is a Hardy–Littlewood inequality with a remainder term contained in [15,
Theorem 1.2 and Remark 1.4]. A special case of that result tells us the following. Let B be either a ball BR(0) or Rn.
Let g :B → [0,∞) be any radially strictly decreasing function, decaying to zero at infinity if B = Rn, and such that
the function θ : (0, |B|) → [0,∞] given by

θ(s) = ess sup
r∈(0,s)

1

−g∗′(r)
for s ∈ (

0, |B|), (2.7)

is finite, locally absolutely continuous, and fulfills lims→0+ θ(s) = 0. Let f :B → [0,∞) be any function, decaying
to zero at infinity if B = Rn, and such that the quasi-norm

‖f ‖Λq =
( |B|∫

0

f ∗(s)qθ ′(s) ds

)1/q

(2.8)

is finite for some q ∈ [1,∞). Then∫
f (x)g(x) dx + 1

Cq
‖f ‖−q

Λq ‖f − f �‖q+1

L
q+1

2 (B)

�
∫

f �(x)g(x) dx, (2.9)
B B
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for some absolute positive constant C.
An application of (2.9) with B = Rn, f (x) = u(x)p , g(x) = |x|−p and q = n+p

n−p
yields∫

Rn

u(x)p

|x|p dx + C‖u‖− p(n+p)
n−p

L
p∗,

p(n+p)
n−p (Rn)

∥∥up − (u�)p
∥∥ 2n

n−p

L
n

n−p (Rn)
�

∫
Rn

u�(x)p

|x|p dx (2.10)

for some positive constant C = C(p,n). Since

|s − r|p � |sp − rp| for every r, s � 0 and for every 1 < p < ∞, (2.11)

we have

‖u − u�‖2p∗
Lp∗

(Rn)
�

∥∥up − (u�)p
∥∥ 2n

n−p

L
n

n−p (Rn)
. (2.12)

Moreover, by (1.5),

‖u‖
L

p∗,
p(n+p)

n−p (Rn)
� C‖u‖Lp∗,p(Rn) = Cω

−1/n
n

(∫
Rn

u�(x)p

|x|p dx

)1/p

(2.13)

for some positive constant C = C(p,n). Inequality (2.6) follows from (2.10)–(2.13). �
The next result is concerned with a quantitative version of (2.5). In the statement, we set

δp(φ) = inf
a�0

‖φ(s) − as−1/p∗‖Lp∗,∞(0,∞)

(
∫ ∞

0 φ(s)ps−p/nds)1/p
, 1 < p < n, (2.14)

for any nonnegative function φ ∈ Lp∗,p(0,∞).

Lemma 2.2. Let n � 2 and let 1 < p < n. Set γ = max{p2,2p}. Then there exists a constant C = C(p,n) such that(
1

p∗

)p
( ∞∫

0

φ(s)ps−p/nds

)[
1 + Cδp(φ)γ

]
�

∞∫
0

(−φ′(s)
)p

sp/n′
ds (2.15)

for every non-increasing locally absolutely continuous function φ : (0,∞) → [0,∞), making the right-hand side of
(2.15) finite and such that lims→+∞ φ(s) = 0.

Proof. Since we are assuming that
∞∫

0

(−φ′(s)
)p

sp/n′
ds < ∞, (2.16)

we have
∫ ∞

0 φ(s)ps−p/n ds < ∞, owing to (2.5). Thus, we may suppose, without loss of generality, that

∞∫
0

φ(s)ps−p/n ds = 1. (2.17)

Define

ε(φ) = (p∗)p
∞∫

0

(−φ′(s)
)p

sp/n′
ds − 1. (2.18)

Fix any R > r > 0. An integration by parts yields

R∫
φ(s)ps−p/n ds = n

n − p

(
φ(R)pR1−p/n − φ(r)pr1−p/n

) + p∗
R∫ (−φ′(s)

)
s1−p/nφ(s)p−1 ds. (2.19)
r r
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Since the integral in (2.17) is convergent, the left-hand side of (2.19) has a finite limit as r → 0+ and as R → ∞.
The same property is enjoyed by the integral on the right-hand side of (2.19), as a consequence of Hölder’s inequality
and of the convergence of the integrals in (2.16) and (2.17). Thus, limr→0+ φ(r)r1−p/n and limR→+∞ φ(R)pR1−p/n

exist and are finite. Again the convergence of the integral in (2.17) entails that both limits must be 0, namely that

lim
r→0+ φ(r)pr1−p/n = lim

R→+∞φ(R)R1−p/n = 0. (2.20)

In conclusion, from (2.17) and (2.19) we infer that

1 = p∗
∞∫

0

(−φ′(s)
)
s1−p/nφ(s)p−1 ds. (2.21)

Now, observe that a positive constant C = C(p) exists such that

ap

p
+ bp′

p′ − ab �

⎧⎪⎪⎨
⎪⎪⎩

C|a − b
1

p−1 |p if p � 2,

C
|a − b

1
p−1 |2

max{b 1
p−1 , |a − b

1
p−1 |}2−p

if 1 < p < 2,
(2.22)

for a, b > 0. Indeed, one has

tp

p
+ 1

p′ − t �
{

C|t − 1|p if p � 2,

C min{|t − 1|2, |t − 1|p} if 1 < p < 2,

for some positive constant C = C(p) and for every t � 0, whence, (2.22) follows, on taking t = rs
1

1−p .
Let us distinguish the cases where 2 � p < n and 1 < p < 2. If p � 2, by (2.22) and (2.17) we have

p∗
∞∫

0

−φ′(s)s1−p/nφ(s)p−1 ds

� (p∗)p

p

∞∫
0

(−φ′(s)
)p

sp/n′
ds + 1

p′ − C

∞∫
0

∣∣p∗(−φ′(s)
)
s1/n′ − φ(s)s−1/n

∣∣p ds, (2.23)

for some positive constant C = C(p). From (2.21), (2.23) and (2.18) we get that
∞∫

0

∣∣p∗(−φ′(s)
)
s1/n′ − φ(s)s−1/n

∣∣p ds � Cε(φ) (2.24)

for some positive constant C = C(p). On defining the function ψ : (0,∞) → [0,∞) as

ψ(s) = s1/p∗
φ(s) for s > 0, (2.25)

inequality (2.24) reads
∞∫

0

∣∣ψ ′(s)
∣∣psp−1 ds � Cε(φ) (2.26)

for some positive constant C = C(p,n).
Assume now that 1 < p < 2. An analogous argument as above leads to

∞∫
0

∣∣ψ ′(s)
∣∣2

s
2
p

(p−1) max
{
φ(s)s−1/n,

∣∣p∗(−φ′(s)
)
s1/n′ − φ(s)s−1/n

∣∣}p−2
ds � Cε(φ) (2.27)

for some positive constant C = C(p,n). An application of Hölder’s inequality and estimate (2.27) yield
∞∫ ∣∣ψ ′(s)

∣∣psp−1 ds � Cε(φ)p/2

( ∞∫
max

{
φ(s)s−1/n,

∣∣p∗(−φ′(s)
)
s1/n′ − φ(s)s−1/n

∣∣}p
ds

)(2−p)/2

(2.28)
0 0
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for some positive constant C = C(p,n). Since the maximum in (2.28) does not exceed p∗(−φ′(s))s1/n′ +φ(s)s−1/n,
via (2.17) and (2.18) we deduce that

∞∫
0

∣∣ψ ′(s)
∣∣psp−1 ds � Cε(φ)p/2

(
(p∗)p

∞∫
0

(−φ′(s)
)p

sp/n′
ds + 1

)(2−p)/2

= Cε(φ)p/2(ε(φ) + 2
)(2−p)/2 (2.29)

for some positive constant C = C(p,n).
Assume, for a moment, that

ε(φ) � 1. (2.30)

Then, given any p ∈ [1, n), either inequality (2.26) or (2.29), according to whether 2 � p < n or 1 < p < 2, tells us
that

∞∫
0

∣∣ψ ′(s)
∣∣psp−1 ds � Cε(φ)β, (2.31)

for some positive constant C = C(p,n), where β = min{1,
p
2 }. Notice that, in particular, (2.31) recovers the fact that

ε(φ) > 0, since, otherwise, (2.25) yields φ(s) = Cs−1/p∗
for some constant C, in contrast with (2.16) and (2.17).

Now, recall that γ = max{p2,2p}, and define

A = {
s > 0: ψ(s) > ε(φ)1/γ

}
. (2.32)

Since ψ is a (locally absolutely) continuous function and, by (2.20),

lim
s→0+ ψ(s) = lim

s→+∞ψ(s) = 0,

the set A is open and bounded. Given any s ∈ A, denote by (as, bs) the connected component of A containing s. One
has 0 < as < bs < ∞, and ψ(as) = ψ(bs) = ε(φ)1/γ . Thus, if s ∈ A, the following chain holds

∣∣ψ(s) − ε(φ)1/γ
∣∣ =

∣∣∣∣∣
s∫

as

ψ ′(r) dr

∣∣∣∣∣ �
s∫

as

∣∣ψ ′(r)
∣∣dr �

( ∞∫
0

∣∣ψ ′(r)
∣∣prp−1 dr

)1/p(∫
A

dr

r

)1/p′

� Cε(φ)β/p

(∫
A

dr

r

)1/p′

� Cε(φ)
β
p

− p−1
γ

(∫
A

ψ(r)p
dr

r

)1/p′

= Cε(φ)1/γ

(∫
A

φ(r)pr−p/n dr

)1/p′

� Cε(φ)1/γ , (2.33)

where the third inequality holds owing to (2.31), the fourth inequality follows from the very definition of A, and the
last inequality is due to (2.17). On the other hand, if s ∈ (0,∞) \ A, then trivially∣∣ψ(s) − ε(φ)1/γ

∣∣ � 2ε(φ)1/γ . (2.34)

As a consequence of (2.33) and (2.34), a constant C = C(p,n) exists such that

s1/p∗ ∣∣φ(s) − ε(φ)1/γ s−1/p∗ ∣∣ � Cε(φ)1/γ for s > 0, (2.35)

whence∥∥φ(s) − ε(φ)1/γ s−1/p∗∥∥
Lp∗,∞(0,∞)

� Cε(φ)1/γ .

Thus, under assumption (2.30), we have shown that

inf
∥∥φ(s) − as−1/p∗∥∥

Lp∗,∞(0,∞)
� Cε(φ)1/γ (2.36)
a�0
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for some constant C = C(p,n). Inequality (2.36) continues to hold even if (2.30) is dropped. Indeed, if ε(φ) > 1, then
a constant C = C(p,n) exists such that

ε(φ)1/γ > 1 =
( ∞∫

0

φ(s)ps−p/nds

)1/p

� C‖φ‖Lp∗,∞(0,∞) � C inf
a�0

∥∥φ(s) − as−1/p∗∥∥
Lp∗,∞(0,∞)

,

where the second inequality holds thanks to (1.5). Inequality (2.15) follows from (2.36). �
We are now in position to accomplish the proof of Theorem 1.1.

Proof of Theorem 1.1. Assume, for the time being, that

u � 0 (2.37)

and that∫
Rn

u�(x)p

|x|p dx = 1. (2.38)

Define

E(u) =
(

p

n − p

)p ∫
Rn

|∇u|p dx −
∫
Rn

u(x)p

|x|p dx.

The quantity E(u) can be rewritten as

E(u) =
(

p

n − p

)p(∫
Rn

|∇u|p dx −
∫
Rn

|∇u�|p dx

)

+
((

p

n − p

)p ∫
Rn

|∇u�|p dx − 1

)
+

(
1 −

∫
Rn

u(x)p

|x|p dx

)
. (2.39)

Moreover, by (2.4),
∫

Rn |∇u|pdx − ∫
Rn |∇u�|pdx � 0. Thus, by (1.1) applied to u� and (2.38),

0 < ω
p/n
n

(
(p∗)p

∞∫
0

(−u∗′
(s)

)p
sp/n′

ds −
∞∫

0

u∗(s)ps−p/n ds

)

=
(

p

n − p

)p ∫
Rn

|∇u�|p dx − 1 � E(u) (2.40)

and, by (2.3) and (2.38),

0 � 1 −
∫
Rn

u(x)p

|x|p dx � E(u). (2.41)

From (2.40), (2.38) and Lemma 2.2 we deduce that

inf
a�0

∥∥u∗(s) − as−1/p∗∥∥
Lp∗,∞(0,∞)

� CE(u)1/γ (2.42)

for some constant C = C(p,n), where γ = max{p2,2p}. On the other hand, by (2.41), (2.38) and Lemma 2.1, we
have (∫

n

∣∣u(x) − u�(x)
∣∣p∗

dx

)2

� CE(u) (2.43)
R
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for some constant C = C(p,n). Inequalities (2.43) and (1.5) entail that

‖u − u�‖Lp∗,∞(Rn) � CE(u)(1/2p∗) (2.44)

for some constant C = C(p,n). Owing to (2.42) and (2.44) one has

inf
a�0

‖u − va‖Lp∗,∞(Rn) � ‖u − u�‖Lp∗,∞(Rn) + inf
a�0

‖u� − va‖Lp∗,∞(Rn)

= ‖u − u�‖Lp∗,∞(Rn) + inf
a�0

∥∥u∗(s) − as−1/p∗∥∥
Lp∗,∞(0,∞)

� C
(
E(u)1/(2p∗) + E(u)1/γ

)
(2.45)

for some constant C = C(p,n). If E(u) � 1, inequality (2.45) yields

inf
a�0

‖u − va‖Lp∗,∞(Rn) � CE(u)1/(2p∗) (2.46)

for some constant C = C(p,n), since γ � 2p∗. Inequality (2.46) holds also if E(u) > 1, since, in this case,

E(u)
1

2p∗ > 1 =
(∫

Rn

u�(x)p

|x|p dx

)1/p

= ω
1/n
n ‖u‖Lp∗,p(Rn)

� C‖u‖Lp∗,∞(Rn) � C inf
a�0

‖u − va‖Lp∗,∞(Rn) (2.47)

for some positive constant C = C(p,n). Inequality (2.46) tells us that(
n − p

p

)p ∫
Rn

u(x)p

|x|p dx + C inf
a�0

‖u − va‖2p∗
Lp∗,∞(Rn)

�
∫
Rn

|∇u|p dx, (2.48)

for some positive constant C = C(p,n), under assumptions (2.37) and (2.38). Replacing u by u(
∫

Rn
u�(x)p

|x|p dx)−1/p

(a function fulfilling (2.38)) in (2.48) yields

inf
a�0

‖u − va‖2p∗
Lp∗,∞(Rn)

� C

(∫
Rn

u�(x)p

|x|p dx

) 2p∗
p

−1(∫
Rn

|∇u|p dx −
(

n − p

p

)p ∫
Rn

u(x)p

|x|p dx

)
(2.49)

for some positive constant C = C(p,n), and for every u fulfilling the sole additional sign assumption (2.37). Now,
given any u as in the statement, define u+ = |u|+u

2 and u− = |u|−u
2 , the positive and the negative parts of u, respec-

tively, so that u = u+ − u−. Then

inf
a∈R

‖u − va‖Lp∗,∞(Rn) = inf
b,c�0

‖u+ − u− − vb−c‖Lp∗,∞(Rn)

� inf
b�0

‖u+ − vb‖Lp∗,∞(Rn) + inf
c�0

‖u− − vc‖Lp∗,∞(Rn). (2.50)

Owing to (2.49) applied to the nonnegative functions u+ and u−, one has∑
±

inf
a�0

‖u± − va‖Lp∗,∞(Rn)

� C
∑
±

(∫
Rn

u
�
± (x)p

|x|p dx

) 1
p

− 1
2p∗ (∫

Rn

|∇u±|p dx −
(

n − p

p

)p ∫
Rn

u±(x)p

|x|p dx

) 1
2p∗

� C

(∫
Rn

u�(x)p

|x|p dx

) 1
p

− 1
2p∗ ∑

±

(∫
Rn

|∇u±|p dx −
(

n − p

p

)p ∫
Rn

u±(x)p

|x|p dx

) 1
2p∗

� C

(∫
n

u�(x)p

|x|p dx

) 1
p
(∫

n

|u(x)|p
|x|p dx

)− 1
2p∗ ∑

±

(∫
n

|∇u±|p dx −
(

n − p

p

)p ∫
n

u±(x)p

|x|p dx

) 1
2p∗
R R R R



A. Cianchi, A. Ferone / Ann. I. H. Poincaré – AN 25 (2008) 889–906 899
� C′‖u‖Lp∗,p(Rn)

(∫
Rn

|u(x)|p
|x|p dx

)− 1
2p∗ (∫

Rn

|∇u|p dx −
(

n − p

p

)p ∫
Rn

|u(x)|p
|x|p dx

) 1
2p∗

(2.51)

for some positive constants C = C(p,n) and C′ = C′(p,n). Notice that the second inequality holds owing the fact
that 1

p
− 1

2p∗ > 0, and the third one is a consequence of (2.3). Inequality (1.7) follows from (2.50) and (2.51). �
We conclude this section by demonstrating the sharpness of the Lp∗,∞ norm in the definition of dp( · ) in Theo-

rem 1.1.

Proposition 2.3. Let n � 2 and let 1 < p < n. Then Lp∗,∞(Rn) is the smallest rearrangement invariant space con-
taining the functions va given by (1.3).

Proof. The function v1 (and hence va for every a ∈ R) is easily seen to belong to Lp∗,∞(Rn). Now, let X(Rn) be any
r.i. space such that v1 ∈ X(Rn). We have to show that

Lp∗,∞(Rn) ⊂ X(Rn). (2.52)

Assume that u ∈ Lp∗,∞(Rn). Then

u∗(s) � ‖u‖Lp∗,∞(Rn)s
− 1

p∗ = C‖u‖Lp∗,∞(Rn)v
∗
1(s) for s > 0, (2.53)

for some positive constant C = C(p,n). Since we are assuming that v1 ∈ X(Rn), inequality (2.53), via a basic property
of r.i. spaces [6, Cor. 4.7, Chap. 2], entails that u ∈ X(Rn) as well. Inclusion (2.52) follows. �
3. The case p = n

The outline of the proof of Theorem 1.2 is analogous to that of Theorem 1.1, and relies upon Lemmas 3.1 and 3.2
below, which replace Lemmas 2.1 and 2.2, respectively. We shall limit ourselves to establishing these new lemmas,
and to sketching the derivation of Theorem 1.2 from these lemmas. The first lemma provides us with a quantitative
version of the inequality∫

BR(0)

|u(x)|n
|x|n(1 + log D

|x| )n
dx �

∫
BR(0)

u�(x)n

|x|n(1 + log D
|x| )n

dx, (3.1)

which holds for every u ∈ L∞,n(logL)−1(BR(0)), provided that D > 0, and follows from the Hardy–Littlewood
inequality.

Lemma 3.1. Let n � 2 and let 0 < R < D. Then a constant C = C(n,R,D) exists such that∫
BR(0)

u(x)n

|x|n(1 + log D
|x| )n

dx

+
∫

BR(0)

u�(x)n

|x|n(1 + log D
|x| )n

dx

[ ∫
BR(0)

(
exp

(
C|u� − u|n′

(∫
BR(0)

u�(y)n

|y|n(1+log D
|y| )n

dy
)1/(n−1)

)
− 1

)
dx

]2(n−1)

�
∫

BR(0)

u�(x)n

|x|n(1 + log D
|x| )n

dx (3.2)

for every nonnegative measurable function u in BR(0) making the right-hand side of (3.2) finite.

Proof. The idea is to reduce (3.2) to a family of estimates relying upon (2.9), via an extrapolation argument. Indeed,
defined Ψ : [0,∞) → [0,∞) as

Ψ (t) = etn
′ − 1 for t � 0, (3.3)
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we shall derive (3.2) from an application of (2.9), with B = BR(0) and f,g : BR(0) → [0,∞) given by

f (x) = u(x)n for x ∈ BR(0) (3.4)

and

g(x) = 1

|x|n(1 + log D
|x| )n

for x ∈ BR(0), (3.5)

to each term of a power series expansion of the function Ψ .
We may clearly assume, without loss of generality, that∫

BR(0)

u�(x)n

|x|n(1 + log D
|x| )n

dx = 1. (3.6)

Set,

ε(u) = 1 −
∫

BR(0)

u(x)n

|x|n(1 + log D
|x| )n

dx. (3.7)

It is easily verified that the function g given by (3.5) is radially decreasing, and that

g∗(s) = nnωn

s

(
n + log

ωnD
n

s

)−n

for s ∈ (0,ωnR
n).

Moreover,(
− 1

g∗′(s)

)′
= 1

nnωn

s

(
n + log

ωnD
n

s

)n

log−2
(

ωnD
n

s

)

×
[

2 log2
(

ωnD
n

s

)
+ n log

(
ωnD

n

s

)
+ n

]
for s ∈ (0,ωnR

n). (3.8)

Thus, the function − 1
g∗′ is increasing in (0,ωnR

n), and hence agrees with the function θ defined as in (2.7). Conse-
quently, lims→0+ θ(s) = 0, and there exists a constant C = C(n,R,D) such that

θ ′(s) � Cs

(
n + log

ωnD
n

s

)n

for s ∈ (0,ωnR
n). (3.9)

Therefore, if q � 1 and ‖ · ‖Λq is defined as in (2.8), one has by (3.4) and (3.9)

‖f ‖q
Λq = ‖un‖q

Λq � C

ωnRn∫
0

u∗(s)nqs

(
n + log

ωnD
n

s

)n

ds (3.10)

for some constant C = C(n,R,D). On the other hand,

1

nω
1/n
n

=
( ωnRn∫

0

u∗(r)n

(n + log ωnDn

r
)n

dr

r

)1/n

� u∗(s)
( s∫

0

dr

(n + log ωnRn

r
)nr

)1/n

= u∗(s)
(n − 1)1/n

(
n + log

ωnD
n

s

)−1/n′

for s ∈ (0,ωnR
n), (3.11)

where the first equality holds owing to (3.6). Combining (3.10) and (3.11) yields

‖un‖q
Λq � C

ωnRn∫
s

(
n + log

ωnD
n

s

)q(n−1)+n

ds (3.12)
0
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for some constant C = C(n,R,D). Given any integer k � n − 1, choose q = 2k
n−1 − 1. From (3.12), via a change of

variable in the integral on the right-hand side, one can easily infer that

‖un‖
2k

n−1 −1

Λ
2k

n−1 −1
� C

4k

∞∫
0

e−r r2k+1 dr = C

4k
(2k + 1)! (3.13)

for some constant C = C(n,R,D). Hence, via (2.9) and (2.11) with p = n, we get∫
BR(0)

∣∣u�(x) − u(x)
∣∣n′k

dx � C

√
k
√

(2k + 1)!
2k

ε(u)1/2 (3.14)

for some constant C = C(n,R,D) and for k � n − 1. On the other hand, if 1 � k < n − 1, Hölder’s inequality and
inequality (3.14), with k = n − 1, yield∫

BR(0)

∣∣u�(x) − u(x)
∣∣n′k

dx � Cε(u)
k

2(n−1) (3.15)

for some constant C = C(n,R,D). Thus, under the additional assumption that

ε(u) � 1, (3.16)

inequalities (3.14) and (3.15) tell us that∫
BR(0)

∣∣u�(x) − u(x)
∣∣n′k

dx � C

√
k
√

(2k + 1)!
2k

ε(u)
1

2(n−1) for every k � 1, (3.17)

and for some constant C = C(n,R,D). Owing to (3.17), given λ > 0, one has∫
BR(0)

Ψ

( |u�(x) − u(x)|
λ

)
dx =

∞∑
k=1

λ−n′k

k!
∫

BR(0)

∣∣u�(x) − u(x)
∣∣n′k

dx

� Cε(u)
1

2(n−1)

∞∑
k=1

λ−n′k
√

k
√

(2k + 1)!
2kk! � C′ε(u)

1
2(n−1)

∞∑
k=1

λ−n′kk3/4 (3.18)

for some constants C = C(n,R,D) and C′ = C′(n,R,D). Note that we have made use of Stirling’s formula in the
last inequality. Since the series on the rightmost side of (3.18) converges provided that λ > 1, and since

Ψ

(
s

M

)
� 1

M
Ψ (s) for every s > 0 and M � 1, (3.19)

we deduce that, under assumption (3.16),∫
BR(0)

Ψ
(
C

∣∣u�(x) − u(x)
∣∣)dx � ε(u)

1
2(n−1) (3.20)

for some constant C = C(n,R,D). When (3.16) is not in force, namely if ε(u) > 1, one has

ε(u)
1

2(n−1) > 1 �
∫

BR(0)

Ψ

(
u(x)

‖u‖ExpLn′
(Ω)

)
dx �

∫
BR(0)

Ψ
(
Cu(x)

)
dx (3.21)

for some constant C = C(n,R,D), where the second inequality is due to the very definition of the norm
‖ · ‖ExpLn′

(BR(0))
, whereas the last one is a consequence of (1.16) and of (3.6). Inasmuch as (3.21) holds also with u

replaced by u�,∫
Ψ

(
C

2

∣∣u�(x) − u(x)
∣∣)dx � 1

2

∫
Ψ

(
Cu�(x)

)
dx + 1

2

∫
Ψ

(
Cu(x)

)
dx < ε(u)

1
2(n−1) .
BR(0) BR(0) BR(0)
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Thus, inequality (3.20), with a suitable constant C = C(n,R,D), holds for every u as in the statement satisfying (3.6).
Inequality (3.2) is a straightforward consequence of (3.20). �

A limiting case of (2.5) tells us that, given any K � 0 and L > 0,

(
n − 1

n

)n
( L∫

0

φ(s)n
(

K + log
L

s

)−n
ds

s

)
�

L∫
0

(−φ′(s)
)n

sn−1 ds (3.22)

for every non-increasing, locally absolutely continuous function φ : (0,L] → [0,∞) such that φ(L) = 0. (In fact,
(3.22) can be derived from (2.5), via a change of variable.)

Fixed any L � l > 0 and K � 0, set

δn,C(φ) = inf
a�0

L∫
0

(
exp

(
C|φ(s) − a[(K + log L

s
)1/n′ − (K + log L

l
)1/n′ ]+|n′

(
∫ L

0 φ(s)n(K + log L
s
)
−n ds

s
)1/(n−1)

)
− 1

)
ds (3.23)

for C > 0 and for any nonnegative function φ ∈ L∞,n(LogL)−1(0,L). Then we have the following quantitative
version of (3.22).

Lemma 3.2. Let n � 2, let L � l > 0 and let K � 0. Then there exists a constant C = C(n, l,L,K) such that

(
n − 1

n

)n
( L∫

0

φ(s)n
(

K + log
L

s

)−n
ds

s

)[
1 + δn,C(φ)n

2] �
L∫

0

(−φ′(s)
)n

sn−1 ds (3.24)

for every non-increasing, locally absolutely continuous function φ : (0,L] → [0,∞), making the right-hand side of
(3.24) finite and such that φ(L) = 0.

Proof. Assume, without loss of generality, that
L∫

0

φ(s)n
(

K + log
L

s

)−n
ds

s
= 1, (3.25)

and define

η(φ) = (n′)n
L∫

0

(−φ′(s)
)n

sn−1 ds − 1. (3.26)

An integration by parts (whose details can be justified as in the proof of Lemma 2.2) and the use of (2.22) yield

1 =
L∫

0

φ(s)n
(

K + log
L

s

)−n
ds

s
= n′

L∫
0

−φ′(s)φ(s)n−1
(

K + log
L

s

)−n+1

ds

� (n′)n

n

L∫
0

(−φ′(s)
)n

sn−1 ds + 1

n′ − C

L∫
0

∣∣∣∣n′(−φ′(s)
)
s1/n′ − φ(s)s−1/n

(
K + log

L

s

)−1∣∣∣∣
n

ds (3.27)

for some positive constant C = C(n). Hence, upon defining ψ : (0,L] → [0,∞) as

ψ(s) = φ(s)

(
K + log

L

s

)−1/n′

for s ∈ (0,L],
one gets

L∫ ∣∣ψ ′(s)
∣∣n(K + log

L

s

)n−1

sn−1 ds � Cη(φ) (3.28)
0
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and for some constant C = C(n). An argument analogous to that in the proof of (2.35), starting from (3.28) instead of
(2.31), leads to∣∣∣∣φ(s) − η(φ)1/n2

(
K + log

L

s

)1/n′ ∣∣∣∣ � Cη(φ)1/n2
(

K + log
L

s

)1/n′

for s ∈ (0,L], (3.29)

and for some constant C = C(n). Thus,∣∣∣∣φ(s) − η(φ)1/n2
[(

K + log
L

s

)1/n′

−
(

K + log
L

l

)1/n′]
+

∣∣∣∣
�

∣∣∣∣φ(s) − η(φ)1/n2
(

K + log
L

s

)1/n′ ∣∣∣∣
+

∣∣∣∣η(φ)1/n2
(

K + log
L

s

)1/n′

− η(φ)1/n2
[(

K + log
L

s

)1/n′

−
(

K + log
L

l

)1/n′]
χ(0,l)(s)

∣∣∣∣
� Cη(φ)1/n2

(
K + log

L

s

)1/n′

+ η(φ)1/n2
[(

K + log
L

l

)1/n′

+
(

K + log
L

s

)1/n′

χ(l,L)(s)

]

� Cη(φ)1/n2
(

K + log
L

s

)1/n′

+ 2η(φ)1/n2
(

K + log
L

l

)1/n′

for s ∈ (0,L], (3.30)

where C is the constant appearing in (3.29) and χI stands for the characteristic function of the set I . When η(φ) � 1,
inequality (3.30) and the convexity of Ψ entail that

L∫
0

Ψ

( |φ(s) − η(φ)1/n2 [(K + log L
s
)1/n′ − (K + log L

l
)1/n′ ]+|

4C

)
ds

� 1

2

L∫
0

Ψ

(
η(φ)1/n2

2

(
K + log

L

s

)1/n′)
ds + 1

2

L∫
0

Ψ

(
η(φ)1/n2

C

(
K + log

L

l

)1/n′)
ds

� η(φ)1/n2

2

L∫
0

Ψ

(
1

2

(
K + log

L

s

)1/n′)
ds + η(φ)1/n2

2
C′

= η(φ)1/n2

2

L∫
0

(
exp

(
K

2n′

)(
L

s

) 1
2n′

− 1

)
ds + η(φ)1/n2

2
C′ = η(φ)1/n2

C′′ (3.31)

for some constants C′ = C′(n, l,L,K) and C′′ = C′′(n, l,L,K). Notice that in the second inequality we have ex-
ploited (3.19). If η(φ) > 1, then

η(φ)1/n2
> 1 =

L∫
0

Ψ

(
φ(s)

‖φ‖ExpLn′
(0,L)

)
ds �

L∫
0

Ψ
(
Cφ(s)

)
ds

� inf
a�0

L∫
0

Ψ

(
C

∣∣∣∣φ(s) − a

[(
K + log

L

s

)1/n′

−
(

K + log
L

l

)1/n′]
+

∣∣∣∣
)

ds (3.32)

for some constant C = C(n,L,K), where the second inequality holds owing to (1.16) and to (3.25). Estimate (3.24)
follows from (3.31) and (3.32), via (3.19). �
Proof of Theorem 1.2, sketched. Assume, for the time being, that

u � 0 (3.33)
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and ∫
BR(0)

u�(x)n

|x|n(1 + log D
|x| )n

dx = 1. (3.34)

Set

F(u) =
(

n

n − 1

)n ∫
BR(0)

|∇u|n dx −
∫

BR(0)

u(x)n

|x|n(1 + log D
|x| )n

dx,

where u is continued by 0 outside Ω . Similarly to (2.40) and (2.41), we get

0 < nnωn

((
n

n − 1

)n
|Ω|∫
0

(−u∗′
(s)s1/n′)n

ds −
|Ω|∫
0

u∗(s)n

s(n + log ωnD
s

)n
ds

)
� F(u) (3.35)

and

0 � 1 −
∫

BR(0)

u(x)n

|x|n(1 + log D
|x| )n

dx � F(u). (3.36)

From (3.35), via Lemma 3.2, (3.34) and (3.19), one can infer that

inf
a�0

∫
BR(0)

Ψ
(
C

∣∣u�(x) − wa(x)
∣∣)dx � F(u)1/n2

(3.37)

for some positive constant C = C(n,RΩ,D,Q). Moreover, from (3.36), via Lemma 3.1 and (3.34), we get that∫
BR(0)

Ψ
(
C

∣∣u(x) − u�(x)
∣∣)dx � F(u)(1/2(n−1)) (3.38)

for some positive constant C = C(n,RΩ,D). On making use of the convexity of Ψ and distinguishing the cases where
F(u) � 1 and F(u) > 1, one can deduce from (3.37) and (3.38) that a constant C = C(n,RΩ,D,Q) exists such that

inf
a�0

∫
Ω

Ψ
(
C

∣∣u(x) − wa(x)
∣∣)dx � F(u)1/n2

(3.39)

for every u ∈ W
1,n
0 (Ω) fulfilling (3.33) and (3.34). Replacing u by u

(∫
BR(0)

u�(x)n

|x|n(1+log D
|x| )n

dx
)−1/n in (3.39) yields

∫
BR(0)

u�(x)n

|x|n(1 + log D
|x| )n

dx inf
a�0

[ ∫
BR(0)

Ψ

(
C|u(x) − wa(x)|(∫

BR(0)
u�(y)n

|y|n(1+log D
|y| )n

dy
)1/n

)
dx

]n2

�
(

n

n − 1

)n ∫
BR(0)

|∇u|n dx −
∫

BR(0)

u(x)n

|x|n(1 + log D
|x| )n

dx (3.40)

for every u ∈ W
1,n
0 (Ω) fulfilling (3.34). The following chain holds for every u ∈ W

1,n
0 (Ω):

∫
BR(0)

|u(x)|n
|x|n(1 + log D

|x| )n
dx inf

a�0

[ ∫
BR(0)

Ψ

(
C|u(x) − wa(x)|

2
(∫

BR(0)
u�(y)n

|y|n(1+log D
|y| )n

dy
)1/n

)
dx

]n2

�
∫

B (0)

|u(x)|n
|x|n(1 + log D

|x| )n
dx

[
1

2

∑
±

inf
a�0

( ∫
B (0)

Ψ

(
C|u±(x) − wa(x)|(∫

BR(0)
u�(y)n

|y|n(1+log D )n
dy

)1/n

)
dx

)]n2
R R |y|
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� 1

2

∫
BR(0)

u�(x)n

|x|n(1 + log D
|x| )n

dx
∑
±

inf
a�0

( ∫
BR(0)

Ψ

(
C|u±(x) − wa(x)|(∫

BR(0)
u�(y)n

|y|n(1+log D
|y| )n

dy
)1/n

)
dx

)n2

= 1

2

∑
±

inf
a�0

( ∫
BR(0)

u�(x)n

|x|n(1 + log D
|x| )n

dx

)1−n

⎡
⎢⎢⎢⎣

∫
BR(0)

Ψ
( C|u±(x)−wa(x)|(∫

BR(0)
u�(y)n

|y|n(1+log D|y| )n
dy

)1/n

)
dx

(∫
BR(0)

u�(x)n

|x|n(1+log D
|x| )n

dx
)−1/n

⎤
⎥⎥⎥⎦

n2

� 1

2

∑
±

inf
a�0

( ∫
BR(0)

u
�
± (x)n

|x|n(1 + log D
|x| )n

dx

)1−n

⎡
⎢⎢⎢⎢⎣

∫
BR(0)

Ψ
( C|u±(x)−wa(x)|

(∫
BR(0)

u
�
± (y)n

|y|n(1+log D|y| )n
dy

)1/n

)
dx

(∫
BR(0)

u
�
± (x)n

|x|n(1+log D
|x| )n

dx
)−1/n

⎤
⎥⎥⎥⎥⎦

n2

� 1

2

∑
±

((
n

n − 1

)n ∫
BR(0)

|∇u±|n dx −
∫

BR(0)

u±(x)n

|x|n(1 + log D
|x| )n

dx

)

= 1

2

((
n

n − 1

)n ∫
BR(0)

|∇u|n dx −
∫

BR(0)

|u(x)|n
|x|n(1 + log D

|x| )n
dx

)
, (3.41)

where C is the constant appearing in (3.40). Note that the first inequality is a consequence of the convexity of Ψ , the
second one holds owing to (3.1) and to an elementary algebraic inequality, the third one follows from the fact that
1 − n < 0 and that the function t �→ Ψ (t)

t
is increasing (for Ψ is a Young function), and the last one follows from an

application of (3.40) with u replaced by u+ and u−. Obviously, (3.41) implies (1.12). �
We conclude with a counterpart of Proposition 2.3, demonstrating the optimality of the choice of the function

etn
′ − 1 in the definition of dC,D,Q( · ).

Proposition 3.3. Let Ω be an open bounded subset of Rn, n � 2, having finite measure and containing 0. Then the
Orlicz space ExpLn′

(Ω) is the smallest rearrangement invariant space on Ω containing the functions wa given in
(1.10) (with D � RΩ and Q > (1 + log(D/rΩ))1/n′

). Hence, in particular,
∫
Ω

Φ(λwa(x)) dx = ∞ for every λ > 0

and for every Young function Φ(t) growing essentially faster than etn
′ − 1 near infinity.

Recall that a Young function Φ1 is said to increase essentially faster then another Young function Φ2 near infinity
if limt→+∞ Φ2(λt)

Φ1(t)
= 0 for every λ > 0.

Proof of Proposition 3.3. The fact that wa ∈ ExpLn′
(Ω) is easily verified. Now, let X(Ω) be any r.i. space containing

w1. We have to show that

ExpLn′
(Ω) ⊂ X(Ω). (3.42)

Let u be any function from ExpLn′
(Ω). Then

1 �
∫
Ω

Ψ

( |u(x)|
‖u‖ExpLn′

(Ω)

)
dx =

|Ω|∫
0

Ψ

(
u∗(r)

‖u‖ExpLn′
(Ω)

)
dr � sΨ

(
u∗(s)

‖u‖ExpLn′
(Ω)

)

for s ∈ (0, |Ω|). Hence,

u∗(s) � ‖u‖ExpLn′
(Ω)

(
log

(
1 + 1

s

))1/n′

� C‖u‖ExpLn′
(Ω)

w∗
1(s) for s ∈ (0, |Ω|),

and for some positive constant C = C(n,D,Q). Since w1 ∈ X(Ω), by [6, Cor. 4.7, Chap. 2] u ∈ X(Ω) as well, and
(3.42) follows.
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The last assertion in the statement is a consequence of (3.42) and of a basic property of Orlicz spaces [1, Theo-
rem 8.12]. �
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