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Abstract

For a nonnegative, uniformly convex H ∈ C2(R2) with H(0) = 0, if u ∈ C(Ω), Ω ⊂ R2, is a viscosity solution of the Aronsson
equation (1.7), then u ∈ C1(Ω). This generalizes the C1-regularity theorem on infinity harmonic functions in R2 by Savin
[O. Savin, C1-regularity for infinity harmonic functions in dimensions two, Arch. Ration. Mech. Anal. 176 (3) (2005) 351–361] to
the Aronsson equation.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Si H ∈ C2(R2) est une fonction uniformément convexe telle que H(0) = 0, et si u ∈ C(Ω),Ω ⊂ R2, est une solution de viscosité
de l’équation d’Aronsson (1.7), alors u ∈ C1(Ω). Ceci généralise à l’équation d’Aronsson le théorème de C1-régularité de Savin
[O. Savin, C1-regularity for infinity harmonic functions in dimensions two, Arch. Ration. Mech. Anal. 176 (3) (2005) 351–361]
pour les fonctions ∞-harmoniques dans R2.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Calculus of variations in L∞ was initiated by Aronsson [1–4] in 1960s. Thanks to both the development of theory
of viscosity solutions of elliptic equations by Crandall and Lions (cf. [17]) and several applications to applied fields
(cf. Barron [8], Barron and Jensen [9], Aronsson, Crandall and Juutinen [7], and Crandall [13]), there have been great
interests in the last few years to study the minimization problem of the supremal functional:

F(u,Ω) = ess sup
x∈Ω

H
(
x,u(x),∇u(x)

)
, Ω ⊂ Rn, u ∈ W 1,∞(

Ω,Rl
)
. (1.1)

Barron, Jensen and Wang [10] have established both necessary and sufficient conditions for the sequentially lower
semicontinuity property of the supremal functional F in W 1,∞, which are suitable L∞-versions of Morrey’s qua-
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siconvexity (cf. [20]) for integral functionals. In the scalar case (l = 1), Barron, Jensen and Wang [11] (see also
Crandall [12]) have established, under appropriate conditions, the existence of absolute minimizers and proved that
any absolute minimizer is a viscosity solution of the Aronsson equation

−∇x

(
H

(
x,u(x),∇u(x)

)) · Hp

(
x,u(x),∇u(x)

) = 0, x ∈ Ω. (1.2)

Among other results in [22], the second author has showed that the convexity of H(·,p) are sufficient for viscosity
solutions of the Aronsson equation (1.2) to be absolute minimizers of F .

Partially motivated by [22] and Crandall, Evans and Gariepy [16], Gariepy, Wang and Yu [18] have established the
equivalence between absolute minimizers of F and viscosity solutions of Aronsson equation (1.2) for quasiconvex
Hamiltonians H = H(p) ∈ C2(Rn) by introducing the comparison principle of generalized cones (see Theorem 2.1
in Section 2 below).

In this paper, we are mainly interested in the regularity (e.g. differentiability or C1) of viscosity solutions of the
Aronsson equation.

Before stating the main results, we would like to review some of previous results for H(p) = |p|2, p ∈ Rn. It is
well known (cf. [5,6,19]) that Eq. (1.2) is the infinity-Laplace equation, of which a viscosity solution is called an
infinity harmonic function,

−�∞u := −
n∑

i,j=1

uiujuij = 0, in Ω, (1.3)

and the absolute minimality is called absolute minimal Lipschitz extension (or AMLE) property:
for any open subset U � Ω and v ∈ W 1,∞(U) ∩ C(Ū) with v = u on ∂U , we have

‖∇u‖L∞(U) � ‖∇v‖L∞(U). (1.4)

Aronsson [5] proved that any C2-infinity harmonic function satisfies the AMLE property. Jensen [19] has proved
the equivalence between an infinity harmonic function and the AML property, and the unique solvability of the Dirich-
let problem of Eq. (1.3).

Crandall, Evans and Gariepy [16] have recently showed that u ∈ C0(Ω) is an infinity harmonic function iff u

enjoys comparison with cones in Ω :
for any open subset U � Ω , a, b ∈ R, and x0 ∈ Ω ,

u(x) � (�)a + b|x − x0| on ∂
(
U \ {x0}

) ⇒ u(x) � (�)a + b|x − x0| in U. (1.5)

In a very recent important paper [21], Savin has utilized [16] and Crandall and Evans [15] to prove that any
C0-infinity harmonic function in Ω ⊂ R2 is in C1(Ω).

In this paper, we extend the main theorems of [21] to the Aronsson equation for a class of Hamiltonian functions
H ∈ C2(R2).

First we extend [15] and obtain the following theorem on blow-up limits of viscosity solutions of the Aronsson
equation on Rn for n � 2, which may have its own interests.

Theorem A. Assume that H ∈ C2(Rn) is nonnegative and uniformly convex, i.e. there is αH > 0 such that

pT · Hpp(p) · p � αH |p|2, ∀p ∈ Rn, (1.6)

and H(0) = 0. Suppose that u ∈ C0(Ω), Ω ⊂ Rn, is a viscosity solution of the Aronsson equation:

−Hp

(∇u(x)
) ⊗ Hp

(∇u(x)
) : ∇2u(x) = 0, in Ω, (1.7)

then for any x ∈ Ω , there exists a ex,r ∈ Rn, with H(ex,r ) = S+(H,u, x) (see Section 2 for the definition of
S+(H,u, x)), such that

lim
r→0

max
Br(x)

|u(y) − u(x) − ex,r · (y − x)|
r

= 0. (1.8)

Based on Theorem A and the main theorem of [18], we are able to make necessary modifications of the idea of
[21] to prove
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Theorem B. Under the same assumptions of Theorem A. If u ∈ C0(Ω), Ω ⊂ R2, is a viscosity solution of the Aronsson
equation (1.7), then u ∈ C1(Ω).

A compactness argument from the proof of Theorem B yields

Theorem C. Under the same assumptions of Theorem A. There exists a monotonically nondecreasing function
ρ : [0,1] → R+, with limr→0 ρ(r) = 0, such that if u is a viscosity solution of the Aronsson equation (1.7) in B1 ⊂ R2,
with ‖H(∇u)‖L∞(B1) � C, then

oscBr |∇u| � ρ(r), ∀r � 1

2
. (1.9)

A direct consequence of Theorem C is the following Liouville property.

Theorem D. Under the same assumptions of Theorem A. If u ∈ C0(R2) is a viscosity solution of the Aronsson equation
(1.7) in R2 and∣∣u(x)

∣∣ � C
(
1 + |x|),

then u is linear.

Due to the local Lipschitz continuity for viscosity solutions of (1.7), the uniform convexity condition (1.6) can be
slightly relaxed. In fact, we have the following remark.

Remark E. Theorems B, C, and D remain to be true, provided that H ∈ C2(R2) satisfies:

(i) H(0) = 0 and H(p) � 0 for any p ∈ R2.
(ii) H is coercive, i.e. lim|p|→+∞ H(p) = +∞.

(iii) (Hpipj
)(p) is positive definite for any p ∈ R2.

The paper is written as follows. In Section 2, we review the main theorems of [18]. In Section 3, we outline
some basic properties of the Aronsson equation (1.7) and prove of Theorem A. In Section 4, we establish three key
propositions which are needed to prove Theorem B. In Section 5, we prove both Theorems B, C, D, and Remark E.

2. Review of the main theorems by [18]

In this section, we review the main theorems of [18] which are needed for the paper. We assume that the Hamil-
tonian function H(x,u,p) = H(p) ∈ C2(Rn) depends only on the p-variable. First, we recall a few definitions.

Definition 2.1. A function u ∈ W
1,∞
loc (Ω) is an absolute minimizer of the supremal functional F , if for any open subset

U � Ω and any v ∈ W 1,∞(U) ∩ C(Ū) with v = u on ∂U , then

F(u,U) = ∥∥H
(∇u(x)

)∥∥
L∞(U)

� F(v,U) = ∥∥H
(∇v(x)

)∥∥
L∞(U)

. (2.1)

Definition 2.2. For any k � 0, the generalized cone centered at the origin with slope k, CH
k (x), is defined by

CH
k (x) = max

{p∈Rn: H(p)=k}
p · x, x ∈ Rn, (2.2)

where · is the inner product in Rn.

Definition 2.3. A upper semicontinuous function u ∈ USC(Ω) enjoys comparison with generalized cones from above
(abbreviated u ∈ CGCA(Ω)) if we have, for any V � Ω , x0 ∈ Ω , and k � 0,

u(x) � u(x0) + CH
k (x − x0) ∀x ∈ ∂V ⇒ u(x) � u(x0) + CH

k (x − x0), ∀x ∈ V. (2.3)
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A lower semicontinuous function v ∈ LSC(Ω) enjoys comparison with generalized cones from below (abbreviated
v ∈ CGCB(Ω)) if −v enjoys comparison with generalized cones from above, with H replaced by Ĥ (Ĥ (p) ≡ H(−p)

for all p ∈ Rn). A continuous function w ∈ C(Ω) enjoys comparison with generalized cones (or abbreviated
w ∈ CGC(Ω)) if w ∈ CGCA(Ω) ∩ CGCB(Ω).

Definition 2.4. A function u ∈ USC(Ω) is a viscosity subsolution of the Aronsson equation (1.7), if for any (x0, φ) ∈
Ω × C2(Ω)

u(x0) − φ(x0) � u(x) − φ(x), ∀x ∈ Ω

then

−Hp(∇φ) ⊗ Hp(∇φ) : ∇2φ|x=x0 � 0. (2.4)

A function u ∈ LSC(Ω) is a viscosity supersolution of the Aronsson equation (1.7), if −u is a viscosity subsolution
of (1.7) with H replaced by Ĥ , where Ĥ (p) = H(−p) for p ∈ Rn. A function u ∈ C(Ω) is a viscosity solution of the
Aronsson equation (1.7), if u is both a viscosity subsolution and supersolution of (1.7).

Now we state the main theorem proved by [18] on the equivalence among absolute minimizers, viscosity solutions
of the Aronsson equation (1.7), and comparison with generalized cones.

Theorem 2.1. (See [18].) Assume that H satisfies:

H1. H ∈ C2(Rn), H(0) = 0, and H(p) � 0 for any p ∈ Rn.
H2. H is quasi-convex, i.e.

H
(
tp + (1 − t)q

)
� max

{
H(p),H(q)

}
, ∀p,q ∈ Rn, 0 � t � 1. (2.5)

H3. H is coercive:

lim|p|→+∞H(p) = +∞. (2.6)

Then the following three statements are equivalent:

(a) u ∈ W
1,∞
loc (Ω) is an absolute minimizer of F(v, ·) = ‖H(∇v)‖L∞(·).

(b) u ∈ CGC(Ω).
(c) u ∈ C(Ω) is a viscosity solution of the Aronsson equation (1.7).

In particular, Theorem 2.1 implies that any viscosity solution of (1.7) enjoys comparison with CH
k (·). This plays a

crucial role in the paper.
In [18] Proposition 3.1, the following properties of CGC(Ω) have been established.

Proposition 2.2. (See [18].) Under the same assumptions as in Theorem 2.1. If u ∈ CGC(Ω), then u ∈ W
1,∞
loc (Ω),

and, for any x0 ∈ Ω and 0 < r < d(x0, ∂Ω), we have (i)

S+
r (H,u, x0) := inf

{
k � 0 | u(x) � u(x0) + CH

k (x − x0), ∀x ∈ ∂Br(x0)
}

(2.7)

exists and is monotonically nondecreasing with respect to r > 0. In particular,

S+(H,u, x0) = lim
r↓0+ S+

r (H,u, x0) (2.8)

exists for any x0 ∈ Ω and is upper semicontinuous; (ii) S−
r (H,u, x0) := S+

r (Ĥ ,−u,x0) exists and is monoton-
ically nondecreasing with respect to r > 0, where Ĥ (p) = H(−p) for p ∈ Rn. In particular, S−(H,u, x0) =
limr↓0+ S−

r (H,u, x0) exists for any x0 ∈ Ω and is upper semicontinuous; and (iii) for any x0 ∈ Ω , we have
S+(H,u, x0) = S−(H,u, x0). Moreover, if ∇u(x0) exists for x0 ∈ Ω , then we have

H
(∇u(x0)

) = S+(H,u, x0) = S−(H,u, x0). (2.9)
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Proposition 2.3. (See [18].) Assume u ∈ CGC(Ω). For any x0 ∈ Ω , 0 < r < d(x0, ∂Ω), if xr ∈ ∂Br(x0) satisfies

u(xr) − u(x0) = CH

S+
r (H,u,x0)

(xr − x0) (2.10)

then for any 0 < R < d(xr, ∂Ω) we have

S+
R (H,u, xr) � S+

r (H,u, x0). (2.11)

For this paper, we also need the comparison property of viscosity solutions for (1.7) with linear functions.

Proposition 2.4. Under the same assumptions as in Theorem 2.1, let ψ(x) = a · x + b (a ∈ Rn, b ∈ R) be a linear
function such that if a �= 0 then Hp(a) �= 0. For any open subset U � Ω , if u ∈ C0(Ω) is a viscosity solution of the
Aronsson equation (1.7) and u � ψ on ∂U , then u � ψ in U .

Proof. If a = 0, then ψ = b so that ψ(x) = b + CH
0 (x) is a generalized cone with slope k = 0. Hence Proposition 2.4

follows from Theorem 2.1.
If a �= 0, then we have |Hp(a)| = δ > 0 for some δ > 0. Suppose that the conclusion were false, then there exist an

open subset V̂ � Ω and x̂ ∈ V such that u = ψ on ∂V̂ , and

max
V̂

(u − ψ) = (u − ψ)(x̂) > 0.

Let R > 0 be such that V ⊂ BR , and ε > 0 be sufficiently small. Then we have

u(x) � ψ(x) + ε
(
R2 − |x|2) on ∂V̂ ,

but

u(x̂) > ψ(x̂) + ε
(
R2 − |x̂|2).

For simplicity, we may assume{
u − (

ψ + ε
(
R2 − |x|2))}(x̂) = max

V̂

(
u − (

ψ + ε
(
R2 − |x|2))).

Since ψ + ε(R2 − |x|2) ∈ C2(V̂ ) and u is a viscosity solution of (1.7), we have

0 � −
∑
i,j

Hpi
(a − 2εx̂)Hpj

(a − 2εx̂)(−2εδij ) = 2ε
∣∣Hp(a − 2εx̂)

∣∣2
. (2.12)

This is impossible, since∣∣Hp(a − 2εx̂)
∣∣ � 1

2

∣∣Hp(a)
∣∣ = δ

2
> 0

if ε > 0 is sufficiently small. This completes the proof of Proposition 2.4. �
3. Some preliminary results of (1.7) and proof of Theorem A

This section is devoted to the proof of Theorem A. To do it, we need several lemmas. The first lemma asserts that
the assumption of Theorem A implies that of Theorem 2.1.

Lemma 3.1. Suppose that H ∈ C2(Rn) is a nonnegative, uniformly convex function, with H(0) = 0. Then H satisfies
the conditions (H1)–(H3) in Theorem 2.1. Moreover, H(p) > 0 and Hp(p) �= 0 for all 0 �= p ∈ Rn.

Proof. Since a uniformly convex function is quasi-convex, H satisfies H2. Since H is uniformly convex, there exists
a αH > 0 such that

Hpp(p) � αH In, ∀p ∈ Rn. (3.1)

This, combined with the Taylor expansion up to second order, implies

H(p) � H(q) + Hp(q) · (p − q) + αH |p − q|2, ∀p,q ∈ Rn. (3.2)

2
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It follows from 0 = H(0) = minp∈Rn H(p) that Hp(0) = 0. Therefore, by (3.2), we have

H(p) � αH

2
|p|2, ∀p ∈ Rn,

this yields H3.
Suppose that there exists 0 �= p0 ∈ Rn such that H(p0) = 0. Then the convexity and nonnegativity of H imply

H(tp0) = 0 for all 0 � t � 1. This implies

0 = d2

dt2

∣∣∣∣
t=0+

H(tp0) = pT
0 · Hpp(0) · p0 � αH |p0|2,

this is impossible.
Suppose that there exists 0 �= p1 ∈ Rn such that H(p1) > 0, but Hp(p1) = 0. Then (3.2) implies

0 = H(0) � H(p1) − Hp(p1) · p1 = H(p1).

This is also impossible. Hence the proof of Lemma 3.1 is complete. �
Denote by Sn−1 ⊂ Rn the unit sphere of Rn, and let H−1(c) = {p ∈ Rn: H(p) = c} (c > 0) be the level set of H .

Now we have

Lemma 3.2. Under the same assumptions as in Lemma 3.1. Then for any c > 0, the Gauss map ν(p) =
Hp(p)

|Hp(p)| :H−1(c) → Sn−1 is a C1 diffeomorphism.

Proof. It follows from Lemma 3.1 and the implicit function theorem that for any c > 0, H−1(c) ⊂ Rn is a strictly
convex C2-hypersurface. Hence, by (3.1), ν ∈ C1(H−1(c),Sn−1) is one to one, and onto. In particular, ν is a C1-
diffeomorphism. �
Lemma 3.3. Under the same assumptions as in Lemma 3.1. For any k � 0, CH

k (·) is convex and positively homoge-
neous of degree one. Moreover, CH

k (x) ∈ C1(Rn \ {0}).

Proof. It follows from the definition that CH
k (·) is the supremum of a family of linear functions so that it convex and

satisfies

CH
k (tx) = tCH

k (x), ∀t > 0, ∀x ∈ Rn.

To see CH
k ∈ C1(Rn \ {0}), it suffices to prove that for k > 0 CH

k ∈ C1(Sn−1). By the Lagrange Multiple Theorem, for
any x ∈ Sn−1 there exists a p̂ ∈ H−1(k) such that

CH
k (x) = p̂ · x, and

Hp(p̂)

|Hp(p̂)| = x (3.3)

so that ν(p̂) = x or p̂ = ν−1(x) ∈ C1(Sn−1). Therefore CH
k (x) = ν−1(x) · x ∈ C1(Sn−1). �

Lemma 3.4. Under the same assumptions as in Lemma 3.1. If u ∈ C0(Rn) is a viscosity solution of the Aronsson
equation (1.7) satisfying S+(H,u,0) = ‖H(∇u)‖L∞(Rn) < ∞, then there exists p0 ∈ Rn, with H(p0) = S+(H,u,0),
such that

u(x) = u(0) + p0 · x, ∀x ∈ Rn. (3.4)

Proof. First we claim that

S+
r (H,u,0) = S+(H,u,0), ∀r > 0, (3.5)

S+
R (H,u, y) � S+(H,u,0), 0 �= y ∈ Rn, ∀R > 0. (3.6)

To see (3.6), observe that for any y ∈ Rn and x ∈ Rn, with |x − y| = R, we have



C, Wang, Y. Yu / Ann. I. H. Poincaré – AN 25 (2008) 659–678 665
u(x) = u(y) +
1∫

0

∇u
(
tx + (1 − t)y

) · (x − y)dt

� u(y) +
1∫

0

max
H(p)�‖H(∇u)‖L∞

p · (x − y)

= u(y) + CH
‖H(∇u)‖L∞ (x − y).

This implies

S+
R (H,u, y) �

∥∥H(∇u)
∥∥

L∞(Rn)
= S+(H,u,0).

It is easy to see that (3.5) follows from (3.6) and the fact S+
r (H,u,0) � S+(H,u,0).

If S+(H,u,0) = 0, then H(∇u(x)) = 0 for a.e. x ∈ Rn. Hence ∇u(x) = 0 for a.e. x ∈ Rn so that u is constant and
(3.4) holds with p0 = 0.

We may assume that S+(H,u,0) > 0. For R > 1, there exists xR ∈ ∂BR such that

u(xR) = u(0) + CH
S+(H,u,0)

(xR). (3.7)

On the other hand, for any x ∈ Rn, we have, by (3.6),

u(xR) − u(x) � CH

S+
|xR−x|(H,u,x)

(xR − x) � CH
S+(H,u,0)

(xR − x). (3.8)

(3.7) and (3.8) imply

u(x) � u(0) + |xR|
{
CH

S+(H,u,0)

(
xR

|xR|
)

− CH
S+(H,u,0)

(
xR − x

|xR|
)}

. (3.9)

For any x ∈ Rn, let R > 1 be sufficiently large so that xR − x �= 0. By Lemma 3.3, we have that CH
S+(H,u,0)

∈
C1(Rn \ {0}) is convex. Hence we have

CH
S+(H,u,0)

(
xR

|xR|
)

− CH
S+(H,u,0)

(
xR − x

|xR|
)

� ∇CH
S+(H,u,0)

(
xR − x

|xR|
)

· x

|xR| . (3.10)

Combining (3.9) with (3.10), we obtain

u(x) � u(0) + ∇CH
S+(H,u,0)

(
xR − x

|xR|
)

· x, ∀x ∈ Rn. (3.11)

We may assume that there exists a q ∈ Sn−1 such that limR→∞ xR|xR | = q . It is clear that limR→∞ xR−x
|xR | = q . Hence

(3.11) yields

u(x) � u(0) + ∇CH
S+(H,u,0)

(q) · x, ∀x ∈ Rn. (3.12)

Applying the same argument with u and H replaced by −u and Ĥ (p) = H(−p) for p ∈ Rn, we have that there is a
q̂ ∈ Sn−1 such that

u(x) � u(0) + ∇CH
S+(H,u,0)

(q̂) · x, ∀x ∈ Rn. (3.13)

Comparing (3.12) with (3.13), we conclude that

∇CH
S+(H,u,0)

(q) = ∇CH
S+(H,u,0)

(q̂) = p0

and

u(x) = u(0) + p0 · x, ∀x ∈ Rn.

It is easy to see that H(p0) = S+(H,u,0). Hence the proof of Lemma 3.4 is complete. �
Now we are ready to give the proof of Theorem A.
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Proof of Theorem A. For simplicity, we assume that x0 = 0 and u(0) = 0. It follows from Theorem 2.1 and Propo-
sition 2.2 that u ∈ W

1,∞
loc (Ω). For any rk ↓ 0, let vk(x) = u(rkx)

rk
:B

r−1
k

→ R. Then for any R > 0, we have

‖vk‖L∞(BR) � ‖∇u‖L∞(BrkR)R � CR, ‖∇vk‖L∞(BR) � ‖∇u‖L∞(BrkR) � C. (3.14)

Therefore we may assume that there exists v∞ ∈ L∞
loc(R

n), with ∇v∞ ∈ L∞(Rn), such that for any R > 0

‖vk − v∞‖C0(BR) → 0, ∇vk → ∇v∞ weak∗ in L∞(BR). (3.15)

Since vk is a viscosity solution of (1.7) on Brk
−1 , we see that v∞ is a viscosity solution of (1.7) on Rn. Moreover, by

the lower semicontinuity (cf. [10]), we have∥∥H(∇v∞)
∥∥

L∞(BR)
� lim inf

k→∞
∥∥H(∇vk)

∥∥
L∞(BR)

= lim inf
k→∞

∥∥H(∇u)
∥∥

L∞(BrkR)

= lim inf
k→∞

∥∥S+(H,u, x)
∥∥

L∞(BrkR)
= S+(H,u,0). (3.16)

In particular, we have

S+(H,v∞,0) �
∥∥H(∇v∞)

∥∥
L∞(Rn)

� S+(H,u,0). (3.17)

On the other hand, for any r > 0 there exists a xk
r ∈ ∂Br such that

vk(x
k
r ) − vk(0) = CH

S+
r (H,vk,0)

(
xk
r

)
. (3.18)

It is readily seen that

S+
r (H,vk,0) = S+

rkr
(H,u,0) � S+(H,u,0). (3.19)

After passing to subsequences, we may assume that there exists xr ∈ ∂Br such that limk→∞ xk
r = xr . Then (3.18) and

(3.19) imply

v∞(xr ) − v∞(0) � CH
S+(H,u,0)

(xr ). (3.20)

This implies

S+
r (H,v∞,0) � S+(H,u,0), ∀r > 0. (3.21)

Taking r into zero, (3.17) and (3.21) imply

S+(H,v∞,0) = ∥∥H(∇v∞)
∥∥

L∞(Rn)
= S+(H,u,0). (3.22)

Hence Lemma 3.4 implies that v∞ = a · x, for some a ∈ Rn, and we have

lim
rk→0

∥∥∥∥u(rkx) − u(0)

rk
− a · x

∥∥∥∥
L∞(B1)

= 0. (3.23)

This implies (1.8). Suppose not, then there exists rk ↓ 0+, xk ∈ Rn with |xk| = rk , and δ > 0 such that for any
e ∈ H−1(S+(H,u,0)), we have

|u(xk) − e · xk|
rk

� δ, ∀k � 1. (3.24)

But, on the other hand, there exists a ∈ H−1(S+(H,u,0)) such that after passing to subsequences, vk(x) ≡ u(|xk |x)
rk

→
a · x uniformly on B1. This contradicts (3.24). Therefore the proof of Theorem A is complete. �
4. Propositions

This section is to establish the differentiability for any viscosity solution of the Aronsson equation (1.7) by showing
that there is a unique blow-up limit at any point for n = 2: for any x0 ∈ Ω , limr↓0 ex0,r exists and its limit is continuous
with respect to x0.

To do this, we follow the clever idea of [21] and the strategy is as follows. Consider the generic case that
x0 ∈ Ω such that S+(H,u, x0) > 0 and u is nonlinear near x0. Then there exists r0 > 0 and a linear seg-
ment [y0, z0] ⊂ Br0/6(x0) and a linear function l(x) = a0 · x + b0 such that for some x0 ∈ (y0, z0), one may
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have either (i) u(x) � l(x),∀x ∈ [y0, z0];u(x0) = l(x0);u(y0) > l(y0), u(z0) > l(z0), or (ii) u(x) � l(x),∀x ∈
[y0, z0];u(x0) = l(x0);u(y0) < l(y0), u(z0) < l(z0). Assume the first case happens, then the first observation is
that there is an affine plane P containing the graph of l such that y0, z0 belong to two different connected com-
ponents of {u > P } ∩ Br0(x0) (see Lemma 4.2 below). Since Theorem A implies that there exists ex0,r ∈ R2 such

that maxx∈Br(x0)
|u(x)−u(x0)−ex0,r ·(x−x0)|

r
= o(1) for small r > 0, we want to prove |ex0,r − a0| = o(1) for small r > 0

(see Lemmas 4.3 and 4.4 below). The proof of Lemma 4.5 is different from that of [21] Lemma 3, here we use the
discrete gradient flow which has originated from [15] when they studied the regularity of the infinity Laplace equation.
A continuous version of this type of gradient flow by [15] was communicated to us by Crandall [14].

The following proposition is the crucial step to prove Theorem B.

Proposition 4.1. Under the same assumptions as in Theorem A, let u ∈ C0,1(B6), B6 ⊂ R2, be a viscosity solution of
the Aronsson equation (1.7). For any ε > 0, there is δ = δ(ε,H,‖∇u‖L∞(B6)) > 0 such that if

‖u − e6 · x‖L∞(B6) � δ, 1 � H(e6) � 2, (4.1)

and if, for 0 < r � 1
2 ,

‖u − e0,6r · x‖L∞(B6r ) � δr, (4.2)

for some e0,6r ∈ R2 with H(e0,6r ) = S+(H,u,0). Then

|e6 − e0,6r |2 � Cε (4.3)

for some 1 � C = C(H) < ∞.

Proof. We divide the proof into two cases.

Case A. u is nonlinear in Br : There are a line segment [z1, z2] ⊂ Br , a linear function l(x) = a0 · x + b0, x ∈ [z1, z2]
with a0 = u(z2)−u(z1)|z2−z1| , and a z3 ∈ (z1, z2) such that either (1)

u � l on [z1, z2], u(z1) > l(z1), u(z3) = l(z3), u(z2) > l(z2),

or (2)

u � l on [z1, z2], u(z1) < l(z1), u(z3) = l(z3), u(z2) < l(z2).

For simplicity, assume that (1) holds. Then we have

Lemma 4.2. Under the same notations. Then there exists e ∈ R2, with H(e) = S+(H,u, z3), such that z1 and z2
belong to two distinct connected components of the set {y ∈ R2: u(y) > u(z3) + e · (y − z3)} ∩ B6.

Proof of Lemma 4.2. It follows from Theorem A that for sk ↓ 0 there exists e ∈ R2, with H(e) = S+(H,u, z3), such
that

lim
sk↓0

‖u(y) − u(z3) − e · (y − z3)‖L∞(Bsk
(z3))

sk
= 0. (4.4)

We first claim that z1, z2 ∈ {y ∈ R2: u(y) > u(z3)+ e · (y − z3)}. In fact, by the assumption (1) and (4.4), we have,
for any zk ∈ [z1, z2] ∩ ∂Bsk (z3),

(a0 − e) ·
(

zk − z3

sk

)
= l(zk) − l(z3) − e · (zk − z3)

sk

� u(zk) − u(z3) − e · (zk − z3)

sk
→ 0,

as k → ∞. Hence, we have (a0 − e) · (z − z3) = 0 for any z ∈ [z1, z2]. This implies

u(zi) − u(z3) > l(zi) − l(z3) = a0 · (zi − z3) = e · (zi − z3), i = 1,2.
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Now, suppose that z1, z2 belong to the same connected component of {y ∈ R2: u(y) > u(z3) + e · (y − z3)} ∩ B6.
Then there exists a polygonal line Γ ⊂ {y ∈ R2: u(y) > u(z3)+e · (y −z3)}∩B6 joining z1 to z2. Let S = Γ ∪[z1, z2]
be the closed curve and U ⊂ B6 be the open set such that S = ∂U . Without loss of generality, we assume that there
exists a β > 0 such that

B+
β (z3) = Bβ(z3) ∩ {

y ∈ R2: 0 < � (y − z3, z2 − z1) < π
} ⊂ U.

Note that there exists an δ0 > 0 such that u(y) − u(z3) − e · (y − z3) � δ0 for any y ∈ Γ . Therefore there are a small
ε > 0 and a unit vector v ∈ R2, with � (v, z2 − z1) = π

2 and e + εv �= 0, such that

u(y) � u(z3) + (e + εv) · (y − z3), ∀y ∈ S.

Note that ψ(y) = u(z3)+(e+εv) ·(y−z3) is linear and ∇ψ = e+εv �= 0 so that Lemma 3.1 implies that H(∇ψ) > 0
and Hp(∇ψ) �= 0. Therefore, Proposition 2.3 implies

u(y) � u(z3) + (e + εv) · (y − z3), ∀y ∈ U.

In particular, we have

lim
sk↓0

max
y∈Bsk

(z3)∩B+
β (z3)

|u(y) − u(z3) − e · (y − z3)|
sk

� ε > 0,

this contradicts (4.4). Therefore Lemma 4.2 is proven. �
Now we want to prove

|e6 − e|2 � Cε. (4.5)

To prove (4.5), we may assume |e6 − e| � ε
2 . Denote f = e6 − e and form the strip S := {y ∈ R2 | |f · (y − z3)| �

2δ}. It is easy to see the width of S is at most 4δ
ε

. Moreover, (4.1) implies∣∣u(y) − u(z3) − e6 · (y − z3)
∣∣ � 2δ, ∀y ∈ B6. (4.6)

One can check{
y ∈ R2 | f · (y − z3) < −2δ

} ∩ B6 ⊂ {
y ∈ R2: u(y) < u(z3) + e · (y − z3)

}
,{

y ∈ R2 | f · (y − z3) > 2δ
} ∩ B6 ⊂ {

y ∈ R2: u(y) > u(z3) + e · (y − z3)
}
.

Therefore, by Lemma 4.2, there is a connected component of {y ∈ R2: u(y) > u(z3) + e · (y − z3)} ∩ B6, called U ,
that intersects B1 and is contained in the strip S .

We claim that U �⊂ B6. For, otherwise, we have u(y) = u(z3) + e · (y − z3) for all y ∈ ∂U , Proposition 2.3 implies
u ≡ u(z3) + e · (y − z3) in U . This contradicts with the definition of U . Therefore there exists a polygonal line Γ

inside U starting in B1 and exiting B6.
Now we can find a point z4 ∈ B6, with |z4 − z3| = 3 and z4 − z3 ⊥ f , such that

(A1) ‖u(y) − u(z3) − e6 · (y − z3)‖L∞(B2(z4)) � 2δ, 1 � H(e6) � 2.
(A2) {y ∈ R2: u(y) > u(z3) + e · (y − z3)} ∩ B6 has a connected component U ⊂ S that contains a polygonal line Γ

connecting the two arcs S ∩ ∂B2(z4).

The estimate (4.5) follows from the following two lemmas.

Lemma 4.3. Under the same notations. There is δ = δ(ε,H) > 0 such that

H(e) � H(e6) − 2ε. (4.7)

Proof of Lemma 4.3. We may assume that H(e) � H(e6) − ε. The convexity of H implies

Hp(e6) · f � H(e6) − H(e) � ε. (4.8)

Now we have
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Claim 4.3(a). There are δ = δ(H) > 0 and C = C(H) > 0, with Cδ � 2, such that for any x ∈ U ∩ B1(z4), we have

CH
H(e)+Cδ(y − x) � e · (y − x) + 4δ, ∀y ∈ ∂B1(x). (4.9)

Proof of Claim 4.3(a). As H(e) � H(e6) − ε � 2 and Cδ � 2, we have H(p) � 4 for any p ∈ H−1(H(e) + Cδ).
For any y ∈ ∂B1(x), let p0 ∈ H−1(H(e) + Cδ) be such that

CH
H(e)+Cδ(y − x) = p0 · (y − x).

By the Lagrange Multiple Theorem, we have

Hp(p0)

|Hp(p0)| = y − x.

By the convexity, we have

Cδ = H(p0) − H(e) � Hp(p0) · (p0 − e).

Hence we have

CH
H(e)+Cδ(y − x) − e · (y − x) = (p0 − e) · (y − x) = (p0 − e) · Hp(p0)

|Hp(p0)|
� C

|Hp(p0)|δ � C

maxH(p)�4 |Hp(p)|δ � 4δ

provided that C � 4 max{H(p)�4} |Hp(p)|. This implies (4.9). �
Claim 4.3(b). There are δ = δ(H) > 0 and C = C(H) > 0, with Cδ � 2, such that for any x ∈ U ∩ B1(z4), we have

S+(H,u, x) � H(e) + Cδ. (4.10)

Proof of Claim 4.3(b). For any x0 ∈ B1(z4) ∩ U , we have that B1(x0) ⊂ B2(z4) and u(z3) + e · (x0 − z3) < u(x0).
Note that

u(y) = u(z3) + e · (y − z3) < u(x0) + e · (y − x0) � u(x0) + CH
H(e)(y − x0), ∀y ∈ ∂U ∩ B1(x0),

and

u(y) � u(z3) + e · (y − z3) + 4δ < u(x0) + e · (y − x0) + 4δ, ∀y ∈ ∂B1(x0) ∩ U. (4.11)

It follows from (4.9) that we have

u(y) � u(x0) + CH
H(e)+Cδ(y − x0), on ∂(U ∩ B1(x0)).

Hence Theorem 2.1 implies

u(y) � u(x0) + CH
H(e)+Cδ(y − x0), in U ∩ B1(x0).

This, combined with Proposition 2.2, implies (4.10). �
Now we have

Claim 4.3(c). There exists y0 ∈ L = {z4 + t
Hp(e6)

|Hp(e6)| : − 1
3 � t � − 1

4 } such that

S+(H,u, y0) � H(e6) − 50
∣∣Hp(e6)

∣∣δ. (4.12)

Proof of Claim 4.3(c). Since L ⊂ B2(z4), A1 implies

u

(
z4 − 1

3

Hp(e6)

|H (e )

)
− u

(
z4 − 1

4

Hp(e6)

|H (e )|
)

� 1

12
e6 · Hp(e6)

|H (e )| − 4δ. (4.13)

p 6 p 6 p 6



670 C, Wang, Y. Yu / Ann. I. H. Poincaré – AN 25 (2008) 659–678
On the other hand, let c = supx∈L S+(H,u, x), then we have

u

(
z4 − 1

3

Hp(e6)

|Hp(e6)|
)

− u

(
z4 − 1

4

Hp(e6)

|Hp(e6)|
)

� 1

12
CH

c

(
Hp(e6)

|Hp(e6)|
)

. (4.14)

In fact, for any large positive integer n, let v = 1
12

Hp(e6)

|Hp(e6)| and rn = |v|
n

and x0 = z4 − 1
3

Hp(e6)

|Hp(e6)| , x1 = x0 +
v
n
, . . . , xn−1 = x0 + n−1

n
v, xn = z4 − 1

4
Hp(e6)

|Hp(e6)| . Then we have

u(xi) − u(xi−1) � CH

S+
rn (H,u,xi−1)

(xi − xi−1), ∀1 � i � n. (4.15)

The monotonicity of S+
r (H,u, x) and upper semicontinuity of S+(H,u, x) imply

lim
n→∞ sup

x∈L

S+
rn

(H,u, x) � c ≡ sup
x∈L

S+(H,u, x).

Therefore for any ε > 0 there is a sufficiently large n0 > 0 such that

max
0�i�n0−1

S+
rn0

(H,u, xi) � c + ε.

Therefore (4.15) implies

u

(
z4 − 1

4

Hp(e6)

|Hp(e6)|
)

− u

(
z4 − 1

3

Hp(e6)

|Hp(e6)|
)

=
n0∑
i=1

(
u(xi) − u(xi−1)

)

�
n0∑
i=1

CH
c+ε(xi − xi−1)

= 1

12
CH

c+ε

(
Hp(e6)

|Hp(e6)|
)

.

Since ε > 0 is arbitrary, this implies (4.14).
Combining (4.13) with (4.14), we obtain

e6 · Hp(e6) − 48
∣∣Hp(e6)

∣∣δ � CH
c

(
Hp(e6)

)
. (4.16)

Now we have

CH
H(q)

(
Hp(q)

) = q · Hp(q), ∀0 �= q ∈ R2. (4.17)

To see (4.17), observe that for q �= 0, Lemma 3.1 implies H(q) > 0 and Hp(q) �= 0. If v ∈ H−1(H(q)) is such that

v · Hp(q) = CH
H(q)(Hp(q)), then the Lagrange Multiple Theorem implies Hp(v)

|Hp(v)| = Hp(q)

|Hp(q)| . In particular, the Gauss
map ν(v) = ν(q) and Lemma 3.2 implies v = q and (4.17) follows. (4.16), combined with (4.17), implies

CH
H(e6)

(
Hp(e6)

) − 48
∣∣Hp(e6)

∣∣δ � CH
c

(
Hp(e6)

)
. (4.18)

Now we need

CH
H(e6)−48|Hp(e6)|δ

(
Hp(e6)

)
� CH

H(e6)

(
Hp(e6)

) − 48
∣∣Hp(e6)

∣∣δ. (4.19)

To see (4.19), note that for any q ∈ H−1(H(e6) − 48|Hp(e6)|δ), the convexity of H implies that

H(e6) − 48
∣∣Hp(e6)

∣∣δ = H(q) � H(e6) + Hp(e6) · (q − e6)

so that

q · Hp(e6) � e6 · Hp(e6) − 48
∣∣Hp(e6)

∣∣δ.
Taking maximum of q ∈ H−1(H(e6) − 48|Hp(e6)|δ), we obtain (4.19).

From (4.18) and (4.19), we have c � H(e6) − 48|Hp(e6)|δ and hence (4.12) is proven. �
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Now we proceed with the discrete gradient flow as follows. Let t = d(Γ, ∂U ∩ B2(z4)) � 2δ
|f | be the step size and

y0 be given by Claim 4.3(c), let yi ∈ B2(z4) (1 � i � m = m(δ)) be such that

|yi − yi−1| = t, u(yi) = u(yi−1) + CH

S+
t (H,u,yi−1)

(yi − yi−1), 1 � i � m, (4.20)

and

d
(
ym, ∂B2(z4)

)
� t. (4.21)

Then it follows from Proposition 2.3 that

S+(H,u, yi) � S+(H,u, y0) � H(e6) − 50
∣∣Hp(e6)

∣∣δ, 0 � i � m. (4.22)

To see (4.21), observe that

u(ym) − u(y0) =
m∑

i=1

(
u(yi) − u(yi−1)

)
�

m∑
i=1

CH
S+(H,u,yi−1)

(yi − yi−1)

�
m∑

i=1

CH
S+(H,u,y0)

(yi − yi−1)

�
m∑

i=1

CH
H(e6)−50|Hp(e6)|δ(yi − yi−1) � Cmt, (4.23)

where we have used the fact that there exists C > 0 depending only on H such that

CH
H(e6)−50|Hp(e6)|δ(x) � C|x|, ∀|x| = 1. (4.24)

Since |u(ym) − u(y0)| � ‖∇u‖L∞(B6)|ym − y0|, (4.23) implies (4.21) holds for some m = m(δ) � 1.
Now we have

Claim 4.3(d). There exist δ = δ(ε) > 0 and 1 � i � m such that yi ∈ B1(z4) ∩ U .

Proof of Claim 4.3(d). First observe that (4.23) also yields

u(ym) − u(y0) �
m∑

i=1

CH
H(e6)−50|Hp(e6)|δ(yi − yi−1)

� CH
H(e6)−50|Hp(e6)|δ

(
m∑

i=1

(yi − yi−1)

)

= CH
H(e6)−50|Hp(e6)|δ(ym − y0), (4.25)

where we have used the triangle inequality CH
k (x + y) � CH

k (x) + CH
k (y).

On the other hand, A1 implies

u(ym) − u(y0) � e6 · (ym − y0) + 4δ. (4.26)

Therefore we have

CH
H(e6)−50|Hp(e6)|δ(ym − y0) � e6 · (ym − y0) + 4δ. (4.27)

Note that (4.21) implies |ym − z4| � 2 − 2δ
|f | � 4

3 and hence |ym − y0| � 1. Denote em = ym−y0|ym−y0| , then (4.27) implies

CH
H(e6)−50|Hp(e6)|δ(em) � e6 · em + 4δ. (4.28)

Now we claim that there exists η(δ) > 0, with limδ→0 η(δ) = 0, such that

cos � (
em,Hp(e6)

)
� 1 − η(δ). (4.29)
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In fact, we may assume that there exists ê ∈ R2, with |ê| = 1, such that limδ→0 em = ê. Taking δ into zero, (4.28)
implies

CH
H(e6)

(ê) = e6 · ê.
Hence (4.17) implies ê = Hp(e6) and (4.29) follows.

Since Hp(e6) · e6 � H(e6) − H(0) � 1, we have |Hp(e6)| � 1
|e6| . Moreover, since

H(e6) � 2, H(e) � max
|p|�‖∇u‖L∞(B6)

H(p),

we conclude that there is C = C(H) > 0 such that |e6| + |e| + |Hp(e6)| � C, and hence

cos � (
Hp(e6), f

)
� ε

|Hp(e6)||f | � ε

C
. (4.30)

(4.29) and (4.30) imply that if δ = δ(ε,H) > 0 is sufficiently small, then ym ∈ {x ∈ R2 | f · (y − z4) � 2δ}. From the
choice of the step size t , we can conclude that there exists 1 � i � m such that yi ∈ U ∩ B2(z4).

Now we claim that |yi − z4| � 1. For otherwise, we have |yi − y0| � 2
3 and the above argument again yields

cos(� (yi − y0,Hp(e6))) � 1 − η(δ). But this is also impossible if δ = δ(ε) > 0 is chosen to be sufficiently small.
Hence the claim 4.3(d) is proven.

Combining (4.10), (4.12), (4.22), and Claim 4.3(d), we obtain

H(e6) − 50
∣∣Hp(e6)

∣∣δ � S+(H,u, yi) � H(e) + Cδ

or

H(e) � H(e6) − (
C + 50

∣∣Hp(e6)
∣∣)δ.

This implies (4.7), provided that δ = δ(ε,H) > 0 is chosen to be sufficiently small. Therefore the proof of Lemma 4.4
is complete. �

Let α = � (Hp(e), f ) ∈ [0,π] be the angle between Hp(e) and f . Now we have

Lemma 4.4. Under the same notations. For any ε > 0, there is a δ = δ(ε,H) > 0 such that∣∣∣∣α − π

2

∣∣∣∣ � 2ε. (4.31)

Proof. Without loss of generality, we may assume α ∈ [0, π
2 ]. We may assume π

2 − α � ε.

Let xδ = z4 − 2Hp(e)

Hp(e)·f δ be the intersection of L = {z4 + tHp(e): t ∈ R} and {y ∈ R2: (y − z4) · f = −2δ}. Observe
that

|xδ − z4| = 2δ

|f | cos � (Hp(e), f )
� 2δ

ε sin(ε)
� 1

provided that δ = δ(ε) > 0 is chosen to be sufficiently small. This implies B1(xδ) ⊂ B2(z4). By A1, we have

u(y) − u(z3) − e · (y − z3) � u(y) − u(z3) − e1 · (y − z3) + f · (y − z3) � 4δ, ∀y ∈ U ∩ B1(xδ), (4.32)

and

u(y) = u(z3) + e · (y − z3), ∀y ∈ ∂U ∩ B1(xδ). (4.33)

We need

Claim 4.4(a).

u(x) � u(z3) + e · (xδ − z3) + CH
H(e)(x − xδ), ∀x ∈ ∂

(
U ∩ B1(xδ)

)
. (4.34)
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Proof of Claim 4.4(a). First observe that (4.33) implies

u(x) = u(z3) + e · (xδ − z3) + e · (x − xδ) � u(z3) + e · (xδ − z3) + max
H(p)=H(e)

p · (x − xδ)

= u(z3) + e · (xδ − z3) + CH
H(e)(x − xδ), ∀x ∈ ∂U ∩ B1(xδ). (4.35)

On U ∩ ∂B1(xδ), we have

u(x) � u(z3) + e · (xδ − z3) + e · (x − xδ) + 4δ. � (4.36)

Now we need

Claim 4.4(b). For any ε > 0, there exists δ = δ(ε) > 0 such that

cδ := min
S∩∂B1(xδ)

(
CH

H(e)(x − xδ) − e · (x − xδ)
)
> 4δ. (4.37)

Proof of Claim 4.4(b). Suppose (4.37) were false. Then there exist ε0 > 0 and δi → 0 such that cδi
� 4δi . Since

e6, e,α, z3, z4, xδ all depend on δi , we write ei
6 = e6, e

i = e, f i = ei
6 − ei, αi = � (Hp(ei), f i), zi

3 = z3, zi
4 = z4,

Si = S , xi = xδ. Then, by the above assumption and Lemma 4.3, we have

αi � π

2
− ε0,

1

2
� H(ei

6) − 2ε0 � H
(
ei

)
� max

|p|�‖∇u‖L∞(B6)

H(p).

Let yi ∈ Si ∩ ∂B1(xi) such that

cδi
= CH

H(ei)
(yi − xi) − ei · (yi − xi) � 4δi .

By the Lagrange Multiple Theorem, there exists pi such that

H(pi) = H
(
ei

)
,

Hp(pi)

|Hp(pi)| = yi − xi, CH
H(ei)

(yi − xi) = pi · (yi − xi). (4.38)

After passing to subsequences, we may assume that ei
6 → e6, e

i → e, f i → f , zi
3 → 0, zi

4 → z4, Si → {x ∈ R2:
x · f = 0}, xi → z4, pi → p, yi → y. It is easy to see that |f | � ε0, � (Hp(e), f ) � π

2 − ε0, |z4| = 3, z4 ⊥ f ,
|y − z4| = 1, y − z4 ⊥ f ,

Hp(p)

|Hp(p)| = y − z4, H(p) = H(e), CH
H(e)(y − z4) = p · (y − z4) = e · (y − z4).

This implies p = e and y − z4 = Hp(e)

|Hp(e)| . Therefore Hp(e) ⊥ f , this gives the desired contradiction. Hence (4.37) is
true. �

It follows from (4.35)–(4.37) that for sufficiently small δ > 0, we have

u(y) � u(z3) + e · (xδ − z3) + CH
H(e)(y − xδ), ∀y ∈ ∂

(
U ∩ B1(xδ)

)
. (4.39)

Therefore, Theorem 2.1 implies

u(y) � u(z3) + e · (xδ − z3) + CH
H(e)(y − xδ), ∀y ∈ U ∩ B1(xδ). (4.40)

By A2, we have that {xδ + tHp(e) | t � 0} ∩ (U ∩ B1(xδ)) �= ∅. But on the other hand, (4.17) and (4.40) imply that
if y0 = xδ + t0Hp(e) ∈ U ∩ B1(xδ), then

u(y0) � u(z3) + e · (xδ − z3) + CH
H(e)(y0 − xδ)

� u(z3) + e · (xδ − z3) + t0C
H
H(e)

(
Hp(e)

)
= u(z3) + e · (xδ − z3) + t0e · Hp(e)

= u(z3) + e · (y0 − z3).

This is impossible, since y0 ∈ U . Therefore (4.31) holds and the proof of Lemma 4.4 is complete. �
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Now we return to the proof of (4.5) as follows. From (3.2) of Lemma 3.1, Lemmas 4.3 and 4.4, we have

2ε � H(e6) − H(e) � Hp(e) · f + 1

2
αH |f |2

� −∣∣Hp(e)
∣∣|f | cos � (

Hp(e), f
) + 1

2
αH |f |2

� −C sin(2ε) + 1

2
αH |f |2. (4.41)

Hence we have

|f |2 � α−1
H C

(
ε + sin(2ε)

)
provided that δ = δ(ε,H) > 0 is chosen to be sufficiently small. This yields (4.5).

Next we want to prove

|e0,6r − e|2 � Cε. (4.42)

To prove (4.42), define vr(x) = u(rx)
r

:B6 → R. Then we have

‖vr − e0,6r · x‖L∞(B6) � δ.

Moreover, we can check that Lemma 4.2 also implies that {y ∈ R2: u(y) > u(z3) + e · (y − z3)} ∩ B6r has two
connected components that intersect Br . This implies that for zr

3 = z3
r

, {y ∈ R2 :vr(y) > vr(z
r
3) + e · (y − zr

3)} ∩ B6
has two connected components that intersect B1. Therefore the same argument as above yields (4.42), if we can verify

1

2
� H(e0,6r ) � 4. (4.43)

To see (4.43), first observe that Lemma 4.3 implies that for δ > 0 sufficiently small, we have

H(e) � H(e6) − CH δ � 1 − CH δ � 3

4
. (4.44)

For any x ∈ ∂B2r (z3) ⊂ B6r , we have

u(x) � u(z3) + e0,6r · (x − z3) + 2δr

� u(z3) + CH
H(e0,6r )

(x − z3) + 2δr

� u(z3) + CH
H(e0,6r )+Cδ(x − z3). (4.45)

Here we have used the following claim, whose proof is similar to that of Claim 4.4(a),

Claim 4.1(a). There exists a C > 0 such that for any α > 0, we have

CH
H(e0,6r )

(x) + α|x| � CH
H(e0,6r )+Cα(x), ∀x ∈ B6r . (4.46)

It follows from (4.45) that

S+
2r (H,u, z3) � H(e0,6r ) + Cδ.

This implies

H(e) = S+(H,u, z3) � S+
2r (H,u, z3) � H(e0,6r ) + Cδ. (4.47)

(4.47) and (4.44) imply that for δ > 0 sufficiently small, we have

H(e0,6r ) � H(e) − Cδ � 1

2
. (4.48)

On the other hand, (4.1) implies

u(x) � e6 · x + δ � CH
H(e )(x) + δ � CH

H(e )+Cδ(x), ∀x ∈ ∂B3.
6 6
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This and (4.46) imply that for δ > 0 sufficiently small, we have

H(e0,6r ) = S+(H,u,0) � H(e6) + Cδ = 2 + Cδ � 4. (4.49)

It is clear that (4.48) and (4.49) imply (4.43). Therefore (4.42) holds. Note that (4.3) follows from (4.5) and (4.42).
This proves Proposition 4.1 in case A.

Next we consider the second case.

Case B. u(x) ≡ e · x near 0 for some e ∈ R2: Denote U as the interior of {x ∈ R2 | u(x) = e · x}. If d(0, ∂U) > 1
2 ,

then we have e6 is arbitrarily close to e0,6r and hence (4.3) holds trivially. If d(0, ∂U) � 1
2 , then we let x0 ∈ ∂U be

such that |x0| = d(0, ∂U). Note that∥∥u(y) − u(x0) − e6 · (y − x0)
∥∥

L∞(B5(x0))
� 2δ, 1 � H(e6) � 2,

and

lim
r↓0

‖u(y) − u(x0) − ex0,6r (y − x0)‖L∞(B6r (x0))

r
= 0.

Hence, by applying Case A in B5(x0), we get

|ex0,6r − e6|2 � Cε.

On the other hand, it is easy to see that for r > 0 sufficiently small, e = e0,6r = ex0,6r . Hence we have

|e0,6r − e6|2 � Cε

provided that δ = δ(ε,H) > 0 is chosen to be sufficiently small. This implies (4.3). Therefore the proof of Proposi-
tion 4.1 is complete. �

It follows from Proposition 4.1 that we have

Corollary 4.5. Suppose that u ∈ C0,1(B1), B1 ⊂ R2, is a viscosity solution of the Aronsson equation (1.7). Then for
any ε > 0, there exists δ = δ(ε,H) > 0 such that if∥∥u(x) − u(0) − e1 · x∥∥

L∞(B1)
� δ, 1 � H(e1) � 2. (4.50)

Then u is differentiable at 0 and∣∣∇u(0) − e1
∣∣2 � Cε, (4.51)

for some C = C(H) > 0.

Proof. By Theorem A, we have that there exists r0 = r0(δ) > 0 such that for any 0 < r � r0 there exists e0,r ∈ R2

such that∥∥u(x) − u(0) − e0,r · x∥∥
L∞(Br )

� δr. (4.52)

Therefore we can apply Proposition 4.1 to conclude that there exist δ = δ(ε,H) > 0 and C = C(H) > 0 such that

|e1 − e0,r |2 � Cε, ∀0 < r � r0. (4.53)

This implies

|e0,r − e0,s |2 � 2Cε, ∀0 < r, s � r0.

Since ε > 0 is arbitrary, this implies {e0,r}r>0 is a Cauchy sequence. Hence limr↓0 e0,r exists, u differentiable at 0,
∇u(0) = limr↓0 e0,r , and (4.51) holds. The proof of Corollary 4.5 is complete. �
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5. Proof of Theorems B, C, D, and Remark E

In this section, we apply Proposition 4.1 to give proofs of Theorems B, C and D. We will see that the proof for the
second part of Theorem B follows from Proposition 4.1 and Theorem C.

Proof of Theorem B. First Theorem A implies that for any x ∈ Ω , there exists ex,r ∈ R2, with H(ex,r ) =
S+(H,u, x), such that for any small r > 0

max
y∈Br (x)

∣∣u(y) − u(x) − ex,r · (y − x)
∣∣ � σ(r)r, lim

r→0
σ(r) = 0.

If ex,r = 0, then by Theorem 2.1, we have∣∣u(y) − u(x)
∣∣ � σ(r)|y − x|, ∀y ∈ Br(x).

This implies that u is differentiable at x and ∇u(x) = 0. If ex,r �= 0, then we have, by Lemma 3.1, H(ex,r ) > 0. Let
vx,r (y) = u(x+ry)−u(x)

r
and Hx,r (p) = H(p)

|H(ex,r )| , then we can check that Hx,r satisfies the conditions of Proposition 4.1,

vx,r ∈ C0,1(B1) satisfies the Aronsson equation, with H replaced by Hx,r . Moreover, we have

max
y∈B1

|vx,r − ex,r · y| � σ(r), Hx,r (ex,r ) = 1.

Therefore, by Corollary 4.5, there exists r0 > 0 such that vx,r0 is differentiable at 0. This implies that u is differentiable
at any x ∈ Ω .

The continuity of ∇u follows from Theorem C. �
Proof of Theorem C. First note that ‖H(∇u)‖L∞(B1) � 1 implies that there is C = C(H) > 0 such that

‖∇u‖L∞(B1) � C. (5.1)

Suppose that the conclusion of Theorem C were false. Then there exist ε0 > 0, a family {uk} ⊂ C0(B1) of viscosity
solutions of the Aronsson equation (1.7) and xk → 0 such that

‖∇uk‖L∞(B1) � C,
∣∣∇uk(xk) − ∇uk(0)

∣∣ � ε0. (5.2)

We may assume that there is a Lipschitz continuous u∞ on B1 such that uk → u∞ uniformly in B1. Hence u∞ is a
viscosity solution of (1.7), and∥∥H(∇u∞)

∥∥
L∞(B1)

� 1, ‖∇u∞‖L∞(B1) � C. (5.3)

By Theorem A, we have that for any δ > 0, there exists r0 > 0 and e0 ∈ R2 such that we have∥∥u∞(x) − u∞(0) − e0 · x∥∥
L∞(Br0 )

� δ

2
r0. (5.4)

Therefore there exists a sufficiently large k0 > 0 such that∥∥uk(x) − uk(0) − e0 · x∥∥
L∞(Br0 )

� δr0, ∀k � k0. (5.5)

This implies that for k � k0, we have∣∣uk(x) − uk(y) − e0 · (y − x)
∣∣ � 2δr0, ∀x, y ∈ Br0 . (5.6)

In particular, for k � k0, we have∥∥uk(x + xk) − uk(xk) − e0 · x∥∥
L∞(B r0

2
)
� 2δr0. (5.7)

If e0 = 0, then (5.5), (5.7), and (2.9) imply

H
(∇uk(0)

) = S+(H,uk,0) � max|p|=δ
H(p), H

(∇uk(xk)
) = S+(H,uk, xk) � max

|p|=4δ
H(p). (5.8)

Therefore we know that there exists η(δ) > 0, with limδ→0 η(δ) = 0, such that for k sufficiently large

|∇uk|(xk) + |∇uk|(0) � η(δ). (5.9)
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This contradicts with (5.2), if we choose δ > 0 to be sufficiently small.
If e0 �= 0, then (5,5), (5.7), and Corollary 4.5 imply that for any 0 < ε � ε0

4 , we can find a sufficiently small
δ0 = δ0(ε,H(e0)) > 0 so that for k sufficiently large, we have∣∣∇uk(xk) − e0

∣∣ � ε,
∣∣∇uk(0) − e0

∣∣ � ε.

In particular, |∇uk(xk) − ∇u(0)| � 2ε < ε0. This again contradicts with (5.2). Hence the proof of Theorem C is
complete. �
Proof of Theorem D. First we claim that the linear growth condition at infinity implies∥∥H(∇u)

∥∥
L∞(BR)

= sup
x∈BR

S+(H,u, x) � C1. (5.10)

In fact, for any x ∈ BR and y ∈ R2 with |y − x| = R, we have

u(y) − u(x) � 2C(1 + R) � 4CR � CH
C1

(y − x)

for some C1 > 0 depends only on H , where we have used the coercivity condition H3. Hence, S+(H,u, x) �
S+

R (H,u, x) � C1.

For R ↑ ∞, let wR(x) = u(Rx)
R

:B1 → R. Then wR satisfies the condition of Theorem C. Hence we have, for any
fixed x0 ∈ R2∣∣∇u(x0) − ∇u(0)

∣∣ = ∣∣∇wR

(
R−1x0

) − ∇wR(0)
∣∣ � Cρ

(|x0|R−1) → 0, (5.11)

as R → ∞. This implies ∇u(x) ≡ ∇u(0) for all x ∈ R2 and u is linear. The proof is now complete. �
Proof of Remark E. We sketch the argument that Theorems B and C are true under the conditions (i), (ii), and (iii).
First note that H satisfies all the conditions of Theorem 2.1, hence we have that u is locally Lipschitz continuous. For
simplicity, we may assume that u is Lipschitz continuous on Ω so that

m = ‖∇u‖L∞(Ω) < ∞.

Let φ ∈ C2(R2) be a nonnegative convex function such that

φ(p) = 0 for |p| � m, (φpipj
) � I2 for |p| � m + 1. (5.12)

Let η ∈ C2(R2) be a nonnegative function such that

η(p) = 1 for |p| � m + 1, η(p) = 0 for |p| � m + 2. (5.13)

For k � 1, define Hk(p) = H(p)η(p) + kφ(p) for p ∈ R2. Since

Hk(p) = H(p) for |p| � m,

u is also a viscosity solution of (1.7) with H replaced by Hk . Moreover, it follows from the condition (iii) that we
have

δm = inf

{
2∑

i,j=1

Hpipj
(p)ξiξj : |p| � m + 1, |ξ | = 1

}
> 0,

namely H is uniformly convex in {p ∈ R2: |p| � m+1}. We can check that if k is sufficiently large, then Hk ∈ C2(R2)

is uniformly convex. In fact, it is easy to see that

∇2Hk(p) = ∇2H(p) + k∇2φ(p) � ∇2H(p) � δm > 0, ∀|p| � m + 1

∇2Hk(p) = k∇2φ(p) = kI2, ∀|p| � m + 2,

and

∇2Hk(p) �
[
k − max

m+1�|q|�m+2

(
2
∣∣Hp(q)

∣∣∣∣∇η(q)
∣∣ + H(q)

∣∣∇2η(q)
∣∣)]I2

� k

2
I2 > 0, m + 1 � |p| � m + 2,

provided that k > 0 is chosen to be sufficiently large. Therefore Theorems B and C hold. �
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