Regularity results for degenerate elliptic systems *

Michael Pingen

Fachbereich Mathematik, University of Duisburg-Essen, Lotharstr. 65, 47048 Duisburg, Germany
Received 22 December 2006; accepted 12 February 2007
Available online 1 September 2007

Abstract

We prove regularity results for certain degenerate quasilinear elliptic systems with coefficients which depend on two different weights. By using Sobolev- and Poincaré inequalities due to Chanillo and Wheeden [S. Chanillo, R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985) 1191-1226; S. Chanillo, R.L. Wheeden, Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. Partial Differential Equations 11 (1986) 1111-1134] we derive a new weak Harnack inequality and adapt an idea due to L. Caffarelli [L.A. Caffarelli, Regularity theorems for weak solutions of some nonlinear systems, Comm. Pure Appl. Math. 35 (1982) 833-838] to prove a priori estimates for bounded weak solutions. For example we show that every bounded weak solution of the system $-D_{\alpha}\left(a^{\alpha \beta}(x, u, \nabla u) D_{\beta} u^{i}\right)=0$ with $|x|^{2}|\xi|^{2} \leqslant a^{\alpha \beta} \xi_{\alpha} \xi_{\beta} \leqslant|x|^{\tau}|\xi|^{2},|x|<1, \tau \in(1,2)$ is Hölder continuous. Furthermore we derive a Liouville theorem for entire solutions of the above systems. © 2007 Elsevier Masson SAS. All rights reserved.

\section*{Résumé}

Nous prouvons des résultats de régularité pour certains systèmes elliptiques quasi linéaires dégénérés avec des coefficients dépendant de deux poids différents. En employant des inégalités de Sobolev- et Poincaré dues à Chanillo et Wheeden [S. Chanillo, R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985) 1191-1226; S. Chanillo, R.L. Wheeden, Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. Partial Differential Equations 11 (1986) 1111-1134] nous déduisons une nouvelle inégalité de Harnack et adaptons une idée due à L. Caffarelli [L.A. Caffarelli, Regularity theorems for weak solutions of some nonlinear systems, Comm. Pure Appl. Math. 35 (1982) 833-838] pour prouver des évaluations a priori pour des solutions limitées et faibles. Par exemple, chaque solution limitée et faible du système $-D_{\alpha}\left(a^{\alpha \beta}(x, u, \nabla u) D{ }_{\beta} u^{i}\right)=0$ avec $|x|^{2}|\xi|^{2} \leqslant a^{\alpha \beta} \xi_{\alpha} \xi_{\beta} \leqslant|x|^{\tau}|\xi|^{2},|x|<1$, $\tau \in(1,2)$ est continue selon Hölder. De plus, nous déduisons un théorème de Liouville pour les solutions entières des systèmes ci-dessus.

© 2007 Elsevier Masson SAS. All rights reserved.

MSC: 35D10; 35J70; 35J45

Keywords: Regularity of weak solutions; Degenerate elliptic systems; Harnack inequality; Liouville theorems

[^0]
1. Introduction

We consider weak solutions of degenerate elliptic systems of the form

$$
\begin{equation*}
-D_{\alpha}\left(A^{\alpha \beta}(x, u, \nabla u) D_{\beta} u^{i}\right)=f^{i}(x, u, \nabla u) \quad(i=1, \ldots, m) \tag{1}
\end{equation*}
$$

in a domain $\Omega \subset \mathbb{R}^{n}$, where $a^{\alpha \beta}(x):=A^{\alpha \beta}(x, u(x), \nabla u(x))$ are measurable and symmetric coefficients and $f(x, u, \nabla u)$ is a measurable function. Here and in the sequel, we use the summation convention: repeated Greek indices are to be summed from 1 to n, repeated Latin indices from 1 to m. We assume there exist measurable weights $v(x), w(x)>0$ a.e. in Ω with the property

$$
\begin{equation*}
w(x)|\xi|^{2} \leqslant a^{\alpha \beta}(x) \xi_{\alpha} \xi_{\beta} \leqslant v(x)|\xi|^{2} \quad \forall \xi \in \mathbb{R}^{n} . \tag{2}
\end{equation*}
$$

Furthermore we require the following structure conditions:

1. $\sup _{\Omega}|u| \leqslant M<\infty$.
2. $|f(x, u, p)| \leqslant a Q(x, p)$ and $u(x) \cdot f(x, u, p) \leqslant a^{*} Q(x, p)$ for a.e. $x \in \Omega$ and for all $p \in \mathbb{R}^{n \times m}$ with some $a \geqslant 0$, $a^{*} \in \mathbb{R}$, where $Q(x, p):=a^{\alpha \beta}(x) p_{\alpha}^{i} p_{\beta}^{i}$.

The notion of a weak solution of (1) will be defined in Section 4; to prove regularity for weak solutions of (1) the weights v and w have to satisfy three further conditions, which we will state exactly in Section 2. Roughly speaking w and $z:=\frac{v^{2}}{w}$ have to be doubling weights and have to fulfill a weighted Poincaré- and a weighted Sobolev inequality. We will show that the weights $v(x)=|x|$ and $w(x)=|x|^{\tau}$ with $\tau \in[1,2)$ in $B_{1}(0) \subset \mathbb{R}^{n}, n \geqslant 3$ satisfy these conditions.

Optimal regularity results for weak solutions of uniformly elliptic systems of type (1) are well known and due to Hildebrandt and Widman [9], Wiegner [17,18] and Caffarelli [3]. For the case of equal weights, i.e. $v=w$, which belong to the Muckenhoupt class A_{2} (see Section 2 for explicit definitions), Fabes, Kenig and Serapioni [7] have proven Hölder continuity for weak solutions of an elliptic equation. For certain different weights, Chanillo and Wheeden [5] proved regularity for weak solutions of elliptic equations, while for degenerate elliptic systems only very little is known. Baldes [1] and Baoyao [2] proved some results for equal weights, e.g. weak solutions of systems with bounded weights $v=w \in A_{2}$ are Hölder continuous provided the smallness condition $a^{*}+a M<1$ holds. The results in this paper are of much more general nature than in [1] or [2], and, in fact, are the first regularity results for singular systems with different weights.

Our proof uses an idea of L. Caffarelli [3] who proved a priori estimates for weak solutions of certain uniformly elliptic systems. His main tool was a weak Harnack inequality for supersolutions of a uniformly elliptic linear equation; we will prove such a Harnack inequality for solutions of degenerate (in the above sense) elliptic equations in Section 3. The proof of this Harnack inequality is based upon a method of Trudinger [16] in which a Harnack inequality for solutions of some mildly degenerate elliptic equations was shown. Our regularity result reads as follows:

Theorem 1.1. Let u be a bounded, weak solution of (1) in $\Omega \subset \mathbb{R}^{n}$. The coefficients a ${ }^{\alpha \beta}$ are required to fulfill (2) with admissible weights w and v (see Section 2). Under the assumption $a^{*}+a M<2 u$ is Hölder continuous and for every $\Omega^{\prime} \Subset \Omega$ there exist constants $C=C\left(n, a, a^{*}, M, \Omega, \Omega^{\prime}\right)>0$ and $\alpha=\alpha\left(n, a, a^{*}, M\right)>0$, such that

$$
\begin{equation*}
[u]_{\alpha, \Omega^{\prime}} \leqslant C . \tag{3}
\end{equation*}
$$

In the last section we also show a Liouville theorem for entire solutions of elliptic systems, whose coefficients are degenerate in an arbitrary large compact subset of \mathbb{R}^{n} and uniformly elliptic outside this compact set, more precisely:

Theorem 1.2. Let u be a bounded, weak solution of (1) in \mathbb{R}^{n}. The coefficients $a^{\alpha \beta}$ are assumed to be of type (2) in a ball $B_{R}(0) \subset \mathbb{R}^{n}$ with admissible weights w and v and to be uniformly elliptic outside this ball. If $a^{*}+a M<2$, then $u=$ const. a.e. in \mathbb{R}^{n}.

This result extends a Liouville theorem for uniformly elliptic systems due to Hildebrandt and Widman [10] and Meier [11].

2. The Muckenhoupt classes A_{p} and conditions for the weights

The Muckenhoupt classes are defined in the paper [12] by Muckenhoupt in connection with Hardy functions. Let $w \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ be a nonnegative function.

Definition 2.1. Let $1<p<\infty$. The weight w is an element of A_{p}, if

$$
\begin{equation*}
\sup _{B_{R} \subset \mathbb{R}^{n}}\left(\frac{1}{\left|B_{R}\right|} \int_{B_{R}} w(x) d x\right)\left(\frac{1}{\left|B_{R}\right|} \int_{B_{R}} w(x)^{\frac{-1}{p-1}} d x\right)^{p-1}=: C_{p}<\infty, \tag{4}
\end{equation*}
$$

w is to be said of class A_{∞}, if for every $\epsilon>0$ there exists a $\delta>0$ with the property that for every measurable $E \subset B_{R}$ with $|E|<\delta\left|B_{R}\right|$ the inequality $w(E) \leqslant \epsilon w\left(B_{R}\right)$ holds, where $w(E)=\int_{E} w(x) d x$.

From [13] and [6] we infer $A_{\infty}=\bigcup_{p>1} A_{p}$. A result due to Muckenhoupt and Wheeden [14], p. 223 implies the doubling property for any $w \in A_{\infty}$:

$$
\begin{equation*}
w\left(B_{2 R}\right) \leqslant K w\left(B_{R}\right) \quad \text { with some } K>0 . \tag{5}
\end{equation*}
$$

We require the following conditions for the weights w and $z=\frac{v^{2}}{w}$ (cf. [5]):
(1) $w, z \in D_{\infty}$, i.e. the doubling property holds: $w\left(B_{2 R}\right) \leqslant C w\left(B_{R}\right)$ and $z\left(B_{2 R}\right) \leqslant C z\left(B_{R}\right)$ with a constant $C>0$ independent of R.
(2) The following Poincaré inequality holds: There exists a $k>1$ such that for all $B_{R} \subset \Omega$ and all $f \in C^{1}\left(\overline{B_{R}}\right)$ the inequality

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{R}\right)} \int_{B_{R}}\left|f-\frac{1}{z\left(B_{R}\right)} \int_{B_{R}} f z d x\right|^{2 k} z d x\right)^{\frac{1}{2 k}} \leqslant C R\left(\frac{1}{w\left(B_{R}\right)} \int_{B_{R}}|\nabla f|^{2} w d x\right)^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

holds with a constant C independent of f.
(3) The following Sobolev inequality holds: There exists a $k>1$ such that for all $B_{R} \subset \Omega$ and all $f \in C_{0}^{1}\left(B_{R}\right)$ the inequality

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{R}\right)} \int_{B_{R}}|f|^{2 k} z d x\right)^{\frac{1}{2 k}} \leqslant C R\left(\frac{1}{w\left(B_{R}\right)} \int_{B_{R}}|\nabla f|^{2} w d x\right)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

holds with a constant C independent of f.
Fabes, Kenig and Serapioni [7] showed that in the case $v=w \in A_{2}$ conditions (2) and (3) are satisfied. In the case of different weights, Chanillo and Wheeden [4] proved that condition (2) and (3) hold, if $w \in A_{2}, z \in D_{\infty}$ and if there is a $q>2$ such that for all balls B_{R}, whose centers are in $B_{2 R}$, the balance condition

$$
\begin{equation*}
s\left[\frac{z\left(B_{s R}\right)}{z\left(B_{R}\right)}\right]^{\frac{1}{q}} \leqslant C\left[\frac{w\left(B_{s R}\right)}{w\left(B_{R}\right)}\right]^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

holds for all $s \in(0,1)$.

3. A weak Harnack inequality

To give a definition of a weak solution of a degenerate elliptic equation

$$
\begin{equation*}
D_{\alpha}\left(a^{\alpha \beta}(x) D_{\beta} u\right)=0 \tag{9}
\end{equation*}
$$

with coefficients $a^{\alpha \beta}(x)$ which satisfy (2) we first need to define the space $H_{2}^{1}(\Omega, v, w)$, where v and w are weights with the properties (1)-(3) of Section 2.

Definition 3.1. $H_{2}^{1}(\Omega, v, w)$ is defined as completion of $C^{1}(\Omega)$ with respect to the norm

$$
\|u\|_{1,2, \Omega}=\sqrt{\int_{\Omega} a^{\alpha \beta}(x) D_{\alpha} u^{i} D_{\beta} u^{i} d x+\int_{\Omega} u^{2} v d x}
$$

$\stackrel{\circ}{H}_{2}^{1}(v, w, \Omega)$ denotes the completion of $C_{c}^{1}(\Omega)$ with respect to the norm

$$
\|u\|_{1,2,0, \Omega}=\sqrt{\int_{\Omega} a^{\alpha \beta}(x) D_{\alpha} u^{i} D_{\beta} u^{i} d x}
$$

Remark. It is possible to estimate $\|\cdot\|_{1,2, \Omega}$ as follows:

$$
\int_{\Omega}|\nabla u|^{2} w d x+\int_{\Omega} u^{2} v d x \leqslant\|u\|_{1,2, \Omega}^{2} \leqslant \int_{\Omega}|\nabla u|^{2} v d x+\int_{\Omega} u^{2} v d x<\infty
$$

If $u_{k} \in C^{1}(\Omega)$ is a sequence with $u_{k} \rightarrow u$ in $H_{2}^{1}(\Omega, v, w)$, then u_{k} and ∇u_{k} converge in $L_{2}(\Omega, v)$ and $L_{2}(\Omega, w)$ resp. If $\lim _{k \rightarrow \infty} \nabla u_{k}=v$, define $\nabla u:=v ; \nabla u$ is well defined (cf. [5], §2).

Definition 3.2. $u \in H_{2}^{1}(\Omega, v, w)$ is a weak subsolution of (9), if

$$
\begin{equation*}
\int_{\Omega} a^{\alpha \beta}(x) D_{\beta} u D_{\alpha} \phi d x \leqslant 0 \tag{10}
\end{equation*}
$$

holds for every $\phi \in \stackrel{\circ}{H}_{2}^{1}(\Omega, v, w), \phi \geqslant 0 . u$ is called a weak supersolution, if $-u$ is a weak subsolution and u is called a weak solution, if u is a weak subsolution and a weak supersolution.

The main result of this section is
Theorem 3.3. Let u be a nonnegative weak supersolution of (9) in $\Omega \subset \mathbb{R}^{n}$. Then for any ball $B_{R} \subset \Omega$ with $\frac{z\left(B_{R}\right)}{w\left(B_{R}\right)} \leqslant C_{1}$ and any α, β, γ satisfying $0<\alpha<\beta<1,0<\gamma<k$ the estimate

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}}|u|^{\gamma} z d x\right)^{\frac{1}{\gamma}} \leqslant C\left(n, \alpha, \beta, \gamma, C_{1}\right) \inf _{B_{\alpha R}} u \tag{11}
\end{equation*}
$$

holds, where $k>1$ is the constant from the Sobolev- and Poincaré inequalities.
The proof of Theorem 3.3 is divided into three lemmatas, extended proofs of these lemmatas can be found in [15]. All these lemmatas are based on a method developed by Trudinger [16].

Lemma 3.4. Let u be a weak subsolution of (9) in $\Omega \subset \mathbb{R}^{n}$. Then for every $B_{R} \subset \Omega$ with $\frac{z\left(B_{R}\right)}{w\left(B_{R}\right)} \leqslant C_{1}$ we have for any $0<\alpha<\beta<1$ the estimate

$$
\begin{equation*}
\sup _{B_{\alpha R}} u \leqslant C\left(n, \alpha, \beta, C_{1}\right)\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}}\left|u^{+}\right|^{2} z d x\right)^{\frac{1}{2}} . \tag{12}
\end{equation*}
$$

Proof. For $\delta \geqslant 1$ and $0<N<\infty$ we define

$$
F(u)=F_{\delta}^{N}(u)= \begin{cases}\left(u^{+}\right)^{\delta}, & u \leqslant N, \\ \delta N^{\delta-1} u-(\delta-1) N^{\delta}, & u>N\end{cases}
$$

Use $\phi(x)=\eta^{2}(x) F(u), \eta \geqslant 0, \eta \in C_{c}^{1}\left(B_{R}\right)$ as test function in (10). We arrive at

$$
\begin{equation*}
\int_{\Omega} \eta^{2} F^{\prime}(u)|\nabla u|^{2} w d x \leqslant 2 \int_{\Omega} \eta\left|\eta_{x}\right| F|\nabla u| v d x \tag{13}
\end{equation*}
$$

The inequality $F(u) \leqslant u^{+} F^{\prime}(u)$ is easily derived; by using this relation, the Hölder inequality yields

$$
\begin{equation*}
\int_{\Omega} \eta^{2}(x) F^{\prime}(u)|\nabla u|^{2} w d x \leqslant C \int_{\Omega} \eta_{x}^{2}\left(u^{+}\right)^{2} F^{\prime} z d x \tag{14}
\end{equation*}
$$

Define

$$
G(u):=\int_{0}^{u}\left|F^{\prime}(t)\right|^{\frac{1}{2}} d t= \begin{cases}\sqrt{\delta} \frac{2}{\delta+1}\left|u^{+}\right|^{\frac{\delta+1}{2}}, & u \leqslant N, \\ \sqrt{\delta} N^{\frac{\delta-1}{2}}|u|, & u>N .\end{cases}
$$

With (14) we infer

$$
\int_{\Omega} \eta^{2}|\nabla G|^{2} w d x \leqslant C \int_{\Omega} \eta_{x}^{2}\left(u^{+} G^{\prime}\right)^{2} z d x
$$

In connection with the Sobolev inequality and $G \leqslant u^{+} G^{\prime}$ this estimate implies

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{R}\right)} \int_{B_{R}}|\eta G|^{2 k} z d x\right)^{\frac{1}{2 k}} \leqslant C R \underbrace{\sqrt{\frac{z\left(B_{R}\right)}{w\left(B_{R}\right)}}}_{\leqslant \sqrt{C_{1}}}\left(\frac{1}{z\left(B_{R}\right)} \int_{B_{R}} \eta_{x}^{2}\left(u^{+} G^{\prime}\right)^{2} z d x\right)^{\frac{1}{2}} . \tag{15}
\end{equation*}
$$

Set $q:=\frac{\delta+1}{2}$ and take the q th root of (15). Then choose ϱ and σ in a way that $\alpha \leqslant \varrho<\sigma \leqslant \beta$ and η in a way that supp $\eta \subset B_{\sigma R}, \eta \equiv 1$ in $B_{\varrho R},\left|\eta_{x}\right| \leqslant \frac{2}{(\sigma-\varrho) R}$. If $N=\infty$ we see $G(u)=\frac{\sqrt{\delta}}{q}\left(u^{+}\right)^{q}$; by using the doubling property for z we obtain

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{Q R}\right)} \int_{B_{e R}}\left(u^{+}\right)^{2 k q} z d x\right)^{\frac{1}{2 k q}} \leqslant\left(\frac{C q}{\sigma-\varrho}\right)^{\frac{1}{q}}\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\sigma R}}\left(u^{+}\right)^{2 q} z d x\right)^{\frac{1}{2 q}} . \tag{16}
\end{equation*}
$$

Iteration of (16):

Define $q_{0}:=1, q_{i}:=k q_{i-1}=k^{i}$, furthermore set $\varrho_{i}=\alpha+(\beta-\alpha)^{1+i}, \sigma_{i}=\varrho_{i-1}$. With this choice of q_{i} and ϱ_{i} we infer

$$
\begin{equation*}
\sup _{B_{\alpha R}} u \leqslant \prod_{l=0}^{\infty}\left(\frac{C q_{l}}{\varrho_{l}-\varrho_{l+1}}\right)^{\frac{1}{q_{l}}}\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}}\left(u^{+}\right)^{2} z d x\right)^{\frac{1}{2}} . \tag{17}
\end{equation*}
$$

We can estimate the infinite product in (17) by using the geometric sum. Thus, we have

$$
\sup _{B_{\alpha R}} u \leqslant C\left(n, \alpha, \beta, C_{1}\right)\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}}\left|u^{+}\right|^{2} z d x\right)^{\frac{1}{2}} .
$$

This completes the proof of Lemma 3.4.
Lemma 3.5. Under the hypotheses of Theorem 3.3 and $\alpha<\beta$, we have

$$
\begin{equation*}
\frac{1}{\inf _{B_{\alpha R}} u} \leqslant \exp \left(C-\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}} \log u z d x\right) . \tag{18}
\end{equation*}
$$

Proof. W.1.o.g. we assume $u \geqslant \epsilon>0$ (in case $u \geqslant 0$ we use Levi's Theorem to derive the assertion). Testing (10) with the function $\phi(x)=\eta(x) u^{-1}(x), \eta \in C_{c}^{1}(\Omega), \eta \geqslant 0$ yields the estimate

$$
\int_{\Omega} a^{\alpha \beta}(x) D_{\beta} u D_{\alpha} \eta u^{-1} d x-\int_{\Omega} a^{\alpha \beta}(x) D_{\beta} u D_{\alpha} u \eta u^{-2} d x \geqslant 0 .
$$

Set $v:=\log \left(\frac{t}{u}\right)$, where t denotes a positive constant which will be specified later. We see that v is a weak subsolution of (9) and with Lemma 3.4 we infer

$$
\begin{equation*}
\sup _{B_{\alpha R}} v \leqslant C\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}}\left|v^{+}\right|^{2} z d x\right)^{\frac{1}{2}} . \tag{19}
\end{equation*}
$$

To estimate the right-hand side of (19) we test (10) with $\phi(x)=\eta^{2}(x) u^{-1}(x), \eta \in C_{c}^{1}(\Omega)$. With (2) and the Hölder inequality we arrive at

$$
\int_{\Omega} \eta^{2} u^{-2}|\nabla u|^{2} w d x \leqslant C \int_{\Omega} \eta\left|\eta_{x} \| \nabla u\right| u^{-1} v d x \leqslant C\left(\int_{\Omega} \eta_{x}^{2} z d x\right)^{\frac{1}{2}}\left(\int_{\Omega} \eta^{2}|\nabla u|^{2} u^{-2} w d x\right)^{\frac{1}{2}} .
$$

It follows $\int_{\Omega} \eta^{2} u^{-2}|\nabla u|^{2} w d x \leqslant C \int_{\Omega} \eta_{x}^{2} z d x$.
Choose η in a way that $\eta \equiv 1$ in $B_{\beta R}$, supp $\eta \subset B_{R},\left|\eta_{x}\right| \leqslant \frac{2}{(1-\beta) R}$. From the last inequality we conclude together with the doubling property and the fact $|\nabla v|^{2}=u^{-2}|\nabla u|^{2}$ the estimate

$$
\int_{B_{\beta R}}|\nabla v|^{2} w d x \leqslant C\left(\frac{1}{R^{2}} \int_{B_{\beta R}} z d x\right) .
$$

We define t by means of $\log t=\frac{1}{z\left(B_{\beta R)}\right)} \int_{B_{\beta R}} \log u z d x$, then the weighted mean value of v is zero and the Poincaré inequality in connection with the above inequality yields

$$
\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}}|v|^{2 k} z d x\right)^{\frac{1}{2 k}} \leqslant C \sqrt{\frac{z\left(B_{\beta R}\right)}{w\left(B_{\beta R}\right)}}\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}} z d x\right)^{\frac{1}{2}} \leqslant C\left(n, \beta, C_{1}\right) .
$$

Combining this estimate with (19) we infer

$$
\sup _{B_{\alpha R}} v=\log t+\log \left(\frac{1}{\inf _{B_{\alpha R}} u}\right) \leqslant C .
$$

By considering the definition of t we finally arrive at

$$
\left(\inf _{B_{\alpha R}} u\right)^{-1} \leqslant \exp \left(C-\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}} \log u z d x\right)
$$

Lemma 3.6. Under the hypotheses of Theorem 3.3 and $\alpha<\beta$, we have

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{\alpha R}\right)} \int_{B_{\alpha R}}|u|^{\gamma} z d x\right)^{\frac{1}{\gamma}} \leqslant \exp \left(C+\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}} \log u z d x\right) . \tag{20}
\end{equation*}
$$

Proof. We may again assume $u \geqslant \epsilon>0$. Set $f=v^{-}=\log \left(\frac{u}{t}\right)^{+}$(for the definition of t see the proof of Lemma 3.5) and test the weak formulation with $\phi(x)=\eta^{2}(x) u^{-1}(x)\left(f^{\delta}(x)+(2 \delta)^{\delta}\right)$, where $\delta \geqslant 1, \eta \in C_{c}^{1}\left(B_{R}\right), \eta \geqslant 0$. By using the ellipticity condition we conclude

$$
\int_{\Omega} \eta^{2} u^{-2}\left(f^{\delta}+(2 \delta)^{\delta}-\delta f^{\delta-1}\right)|\nabla u|^{2} w d x \leqslant C \int_{\Omega} \eta\left|\eta_{x}\right| u^{-1}\left(f^{\delta}+(2 \delta)^{\delta}\right)|\nabla u| v d x
$$

Now we use the inequality $\delta f^{\delta-1} \leqslant \frac{1}{2}\left(f^{\delta}+(2 \delta)^{\delta}\right)$ in connection with $|\nabla f|^{2}=u^{-2}|\nabla u|^{2}$ and the Hölder inequality to infer

$$
\int_{\Omega} \eta^{2}\left(f^{\delta}+(2 \delta)^{\delta}\right)|\nabla f|^{2} w d x \leqslant C \int_{\Omega} \eta_{x}^{2}\left(f^{\delta}+(2 \delta)^{\delta}\right) z d x
$$

By using once again $\delta f^{\delta-1} \leqslant \frac{1}{2}\left(f^{\delta}+(2 \delta)^{\delta}\right)$ and taking the elementary inequality $f^{\delta}+(2 \delta)^{\delta} \leqslant 2\left(f^{\delta+1}+(2 \delta)^{\delta}\right)$ into account we obtain

$$
\begin{equation*}
\delta \int_{\Omega} \eta^{2} f^{\delta-1}|\nabla f|^{2} w d x \leqslant C \int_{\Omega} \eta_{x}^{2}\left(f^{\delta+1}+(2 \delta)^{\delta}\right) z d x . \tag{21}
\end{equation*}
$$

Let $q:=\frac{\delta+1}{2}>1$, by applying the Sobolev inequality to $\eta f^{q} \in \dot{H}_{2}^{1}\left(B_{R}, v, w\right)$ we find under consideration of (21)

$$
\begin{aligned}
\left(\frac{1}{z\left(B_{R}\right)} \int_{B_{R}}\left|\eta f^{q}\right|^{2 k} z d x\right)^{\frac{1}{2 k}} & \leqslant C R\left(\frac{1}{w\left(B_{R}\right)} \int_{B_{R}}\left(\eta_{x}^{2} f^{\delta+1}+\eta^{2}(\delta+1)^{2} f^{\delta-1}|\nabla f|^{2}\right) w d x\right)^{\frac{1}{2}} \\
& \leqslant C \sqrt{q} R \underbrace{\sqrt{\frac{z\left(B_{R}\right)}{w\left(B_{R}\right)}}}_{\leqslant \sqrt{C_{1}}}\left(\frac{1}{z\left(B_{R}\right)} \int_{B_{R}}\left(\eta_{x} f^{q}\right)^{2} z d x+(2 \delta)^{\delta} \sup _{B_{R}}\left|\eta_{x}\right|^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Choose ϱ and σ in a way that $\alpha \leqslant \varrho<\sigma \leqslant \beta$ and η in a way that supp $\eta \subset B_{\sigma R}, \eta \equiv 1$ in $B_{\varrho R}$ and $\left|\eta_{x}\right| \leqslant \frac{2}{(\sigma-\varrho) R}$. With this choice of ϱ, σ and η, taking the q th root in the last estimate yields

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{\varrho R}\right)} \int_{B_{\varrho} R} f^{2 q k} z d x\right)^{\frac{1}{2 k q}} \leqslant C q^{\frac{1}{q}}(\sigma-\varrho)^{-\frac{1}{q}}\left[C q+\left(\frac{1}{z\left(B_{\sigma R}\right)} \int_{B_{\sigma R}} f^{2 q} z d x\right)^{\frac{1}{2 q}}\right] . \tag{22}
\end{equation*}
$$

Now set $q_{i}=k^{i} \geqslant 1, \varrho_{i}=\alpha+2^{-i}(\beta-\alpha), \sigma_{i}=\varrho_{i}+2^{-i}(\beta-\alpha)$, we obtain

$$
\left(\frac{1}{z\left(B_{Q_{i} R}\right)} \int_{B_{Q_{i}} R} f^{2 k^{i+1}} z d x\right)^{\frac{1}{2 k^{i+1}}} \leqslant\left(C 2^{i} k^{i}\right)^{\frac{1}{k^{i}}}\left[C k^{i}+\left(\frac{1}{z\left(B_{\sigma_{i} R}\right)} \int_{B_{\sigma_{i} R}} f^{2 k^{i}} z d x\right)^{\frac{1}{2 k^{i}}}\right] .
$$

In the next step we iterate this inequality; after $i-1$ iteration steps we arrive at

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{Q_{i} R}\right)} \int_{B_{Q_{i} R}} f^{2 k^{i+1}} z d x\right)^{\frac{1}{2 k^{i+1}}} \leqslant \sum_{j=1}^{i} C k^{j} \prod_{l=j}^{i}\left(C k^{l} 2^{l}\right)^{\frac{1}{k^{l}}}+\prod_{j=1}^{i}\left(C k^{j} 2^{j}\right)^{\frac{1}{k^{j}}}\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}} f^{2 k} z d x\right)^{\frac{1}{2 k}} . \tag{23}
\end{equation*}
$$

We estimate the series and products in (23) and then we find with the doubling property and the Hölder inequality the following estimate for all $p>2 k$:

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{\alpha R}\right)} \int_{B_{\alpha R}} f^{p} z d x\right)^{\frac{1}{p}} \leqslant C\left[p+\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}} f^{2 k} z d x\right)^{\frac{1}{2 k}}\right] . \tag{24}
\end{equation*}
$$

By considering the power series expansion of $\mathrm{e}^{p_{0} f}$ for $p_{0} \in\left(0, \mathrm{e}^{-1}\right)$ we infer by using (24) and the Stirling approximation $n!\approx \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}$ for large n the estimate

$$
\begin{equation*}
\frac{1}{z\left(B_{\alpha R}\right)} \int_{B_{\alpha R}} \mathrm{e}^{p_{0} f} z d x \leqslant C \mathrm{e}^{\left(\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}} f^{2 k} z d x\right)^{\frac{1}{2 k}}} \tag{25}
\end{equation*}
$$

Since $f=v^{-}$the right-hand side of (25) is bounded by the proof of Lemma 3.5. Thus

$$
\begin{equation*}
\left(\frac{1}{z\left(B_{\alpha R}\right)} \int_{B_{\alpha R}} \mathrm{e}^{p_{0} f} z d x\right)^{\frac{1}{p_{0}}} \leqslant C . \tag{26}
\end{equation*}
$$

In the remainder of the proof we have to estimate $\left\|\frac{u}{t}\right\|_{L_{\gamma}\left(z, B_{\alpha R}\right)}$ by $\left\|\frac{u}{t}\right\|_{L_{p_{0}}\left(z, B_{\alpha^{\prime}} R\right)}\left(\alpha<\alpha^{\prime}<\beta\right)$. For this, we remark that $-u$ is a subsolution of (9); by modifying the function $F(u)$ appearing in the proof of Lemma 3.4 in the sense that $\delta \in(-1,0)$ we see that the estimate (16) holds also for $q \in\left(0, \frac{1}{2}\right)$. For the iteration process we set $q_{0}:=\frac{\gamma}{2 k}$,
$q_{i}:=\frac{q_{i-1}}{k} \rightarrow 0, i \rightarrow \infty$. After finitely many iteration steps we achieve $2 q_{i}<p_{0}<\mathrm{e}^{-1}$. From (26) and (16) (for $q \in(0,1 / 2))$ we infer with the definition of t

$$
\left(\frac{1}{z\left(B_{\alpha R}\right)} \int_{B_{\alpha R}} u^{\gamma} z d x\right)^{\frac{1}{\gamma}} \leqslant \exp \left(C+\frac{1}{z\left(B_{\beta R}\right)} \int_{B_{\beta R}} \log u z d x\right) .
$$

Proof of Theorem 3.3. Multiply (18) and (20).

4. Results for weak solutions of degenerate elliptic systems

Now we define what we will understand under a weak solution of a system of type (1):
Definition 4.1. $u \in H_{2}^{1}\left(\Omega, v, w, \mathbb{R}^{m}\right)$ is called a weak solution of (1), if

$$
\begin{equation*}
\int_{\Omega} a^{\alpha \beta}(x) D_{\beta} u D_{\alpha} \phi d x=\int_{\Omega} f(x, u, \nabla u) \phi d x \tag{27}
\end{equation*}
$$

holds for all $\phi \in \grave{H}_{2}^{1}\left(\Omega, v, w, \mathbb{R}^{m}\right)$.
For the proof of Theorem 1.1 we now can use an idea of L. Caffarelli [3]. In fact we only have to replace the weak Harnack inequality for weak supersolutions of uniformly elliptic equations by the weak Harnack inequality proven in Section 3 (Theorem 3.3).

Examples.

1) $v(x)=w(x)=|x|^{\alpha}, x \in B_{R}(0) \subset \mathbb{R}^{n}$ and $\alpha>-n$. If $\alpha \in(-n, n)$ it is easy to show that $v=w \in A_{2}$ and if $\alpha>-n+2$ we can interpret $|x|^{\alpha}$ as a weight which arises from a quasiconformal mapping (cf. [7], pp. 105112). This weight has also the properties which were needed in the proof of Theorem 3.3 (cf. [7]) and so it is an admissible weight for the system (1).
2) $v(x)=w(x)=(\log |x|)^{k}, x \in B_{1 / 2}(0) \subset \mathbb{R}^{n}, k \in 2 \mathbb{N}$.
3) $v(x)=w(x)=|x|^{\alpha}(\log |x|)^{2}, x \in B_{1 / 2}(0) \subset \mathbb{R}^{n}, \alpha \in(-n, n)$.
4) $v(x)=|x|, w(x)=|x|^{\tau}, \tau \in(1,2), x \in B_{1}(0) \subset \mathbb{R}^{n}, n \geqslant 3$. It is obvious that $w \in A_{2}, z=|x|^{2-\tau} \in D_{\infty}$. In view of a result due to Chanillo and Wheeden [4] it is enough to show that the balance condition (8) holds. We remark that for $\alpha>0$ and $a \in B_{R}(0)$ there are positive constants c_{1} and c_{2} with the property

$$
\begin{equation*}
c_{1} R^{n}(R+|a|)^{\alpha} \leqslant \int_{B_{R}(a)}|x|^{\alpha} d x \leqslant c_{2} R^{n}(R+|a|)^{\alpha} . \tag{28}
\end{equation*}
$$

From (28) we infer $\frac{z\left(B_{R}\right)}{w\left(B_{R}\right)} \leqslant C_{1}$; for $q \in\left(2, \frac{2 n}{n+\tau-2}\right]$ we have for any $s \in(0,1)$ the estimates

$$
s\left[\frac{z\left(B_{s R}(a)\right)}{z\left(B_{R}(a)\right)}\right]^{\frac{1}{q}} \leqslant C s s^{\frac{n}{q}} \quad \text { and }\left[\frac{w\left(B_{s R}(a)\right)}{w\left(B_{R}(a)\right)}\right]^{\frac{1}{2}} \geqslant s^{\frac{n}{2}} s^{\frac{\tau}{2}} .
$$

Since $s s^{\frac{n}{q}} \leqslant C s^{\frac{n+\tau}{2}}$ the validity of (8) is shown.
Liouville theorem for entire solutions. Here, we assume the coefficients $a^{\alpha \beta}(x)$ satisfy the estimate

$$
\begin{equation*}
\frac{1}{C} s(x)|\xi|^{2} \leqslant a^{\alpha \beta}(x) \xi_{\alpha} \xi_{\beta} \leqslant C t(x)|\xi|^{2} \tag{29}
\end{equation*}
$$

with $C \geqslant 1$ and

$$
s(x)=\left\{\begin{array}{ll}
w(x), & |x|<L, \\
1, & |x| \geqslant L,
\end{array} \quad t(x)= \begin{cases}v(x), & |x|<L, \\
1, & |x| \geqslant L,\end{cases}\right.
$$

where w and v are weights which satisfy the conditions of Section 2.

The proof of the Liouville Theorem uses an idea of Meier [11], who proved the corresponding Liouville theorem for uniformly elliptic systems. First we have to consider some lemmatas:

Lemma 4.2. Let u be a bounded, weak solution of (1) in a domain $\Omega \subset \mathbb{R}^{n}$. If $a^{*}<1$ and $\xi \in \mathbb{R}^{m}$ is a vector with $|\xi| \leqslant \frac{1-a^{*}}{a}$, then $-D_{\alpha}\left(a^{\alpha \beta}(x) D_{\beta}|u-\xi|^{2}\right) \leqslant 0$ in Ω.

Proof. We use $\phi=\eta(u-\xi), \eta \in C_{c}^{\infty}(\Omega), \eta \geqslant 0$ as a test function in the weak formulation (27) and take the structure conditions of the introduction into account.

With the notation $z_{1}(x):=\frac{t^{2}(x)}{s(x)}$ we can formulate the next lemmatas.
Lemma 4.3. Let $B_{4 L}(0) \subset \Omega$ and u be a bounded, weak, nonnegative supersolution of $D_{\alpha}\left(a^{\alpha \beta}(x) D_{\beta} u\right)=0$ in $\Omega \subset \mathbb{R}^{n}$ with coefficients $a^{\alpha \beta}(x)$ of the form (29), furthermore let $\frac{z_{1}\left(B_{L}\right)}{s\left(B_{L}\right)} \leqslant C_{1}$. Then we have for any $R>0$ with $B_{4 R}(0) \subset \Omega$ the estimate

$$
\frac{1}{z_{1}\left(B_{2 R}\right)} \int_{B_{2 R}(0)} u z_{1} d x \leqslant C\left(n, C_{1}\right) \inf _{B_{R}(0)} u .
$$

Proof. If $B_{4 R}(0) \subset B_{L}(0)$, the lemma is a direct consequence of Theorem 3.3 with $\gamma=1$ and suitable α, β. If $B_{L}(0) \subset B_{4 R}(0)$ we can prove similarly to [8], pp. 195-198 a Harnack inequality for supersolutions of $L u=0$ with uniformly elliptic coefficients on annular regions $B_{4 S}-B_{S}(S \geqslant L)$, i.e.

$$
\begin{equation*}
\frac{1}{z_{1}\left(B_{\beta_{1} S}-B_{\beta_{2} S} S\right.} \int_{B_{\beta_{1} S} S-B_{\beta_{2}} S} u z_{1} d x \leqslant C \inf _{B_{\alpha_{1}} S-B_{\alpha_{2}} S} u \tag{30}
\end{equation*}
$$

with $1<\beta_{2}<\alpha_{2}<\alpha_{1}<\beta_{1}<4$.
The main difference in the proof of (30) compared with [8] is to construct suitable test functions on the corresponding annular regions.

Choose $\alpha, \alpha_{1}, \beta, \beta_{1}$ in a way that $1<\alpha<\alpha_{1}<2, \alpha_{1}<\beta_{1}<\beta<4$ and $B_{\alpha_{1} L} \subset B_{\beta_{1} R}$. We conclude

$$
\begin{aligned}
\frac{1}{z_{1}\left(B_{\beta R}\right)} \int_{B_{\beta R}} u z_{1} d x & =\frac{1}{z_{1}\left(B_{\beta R}-B_{\alpha L}\right)+z_{1}\left(B_{\alpha L}\right)}\left[\int_{B_{\beta R}-B_{\alpha L}} u z_{1} d x+\int_{B_{\alpha L}} u z_{1} d x\right] \\
& \leqslant \frac{1}{z_{1}\left(B_{\beta R}-B_{\alpha L}\right)} \int_{B_{\beta R}-B_{\alpha L}} u z_{1} d x+C \frac{1}{z_{1}\left(B_{2 L}\right)} \int_{B_{2 L}} u z_{1} d x \\
& \leqslant C \inf _{B_{B_{1} R-B_{\alpha_{1} L}} u+C \inf _{B_{\alpha_{1} L} L} u \leqslant C \inf _{B_{R}} u .}
\end{aligned}
$$

Here, we used (30) and Theorem 3.3.
If $B_{L}(0) \subset B_{2 R}(0)$ we choose $\beta=2, \beta_{1}=3 / 2, \alpha_{1}=5 / 4, \alpha=9 / 8$ to arrive at the assertion. If $B_{L}(0) \not \subset B_{2 R}(0)$ we choose some $\beta \in(2,4)$ with $B_{L}(0) \subset B_{\beta R}(0)$; the doubling property of z_{1} yields the desired estimate.

Lemma 4.4. Let u be a weak solution of $-D_{\alpha}\left(a^{\alpha \beta} D_{\beta} u\right) \leqslant 0$ in $B_{4 R}(0) \subset \mathbb{R}^{n}$ with coefficients of the form (29). If $\frac{z_{1}\left(B_{R}\right)}{s\left(B_{R}\right)} \leqslant C_{1}$, then there is a constant $\delta\left(n, C_{1}\right) \in(0,1)$ with the property

$$
\sup _{B_{R}(0)} u \leqslant(1-\delta) \sup _{B_{4 R}(0)} u+\delta \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)} u z_{1} d x .
$$

Proof. From Lemma 4.3 we infer for the nonnegative supersolution $\sup _{B_{4 R}(0)} u-u$ the estimate

$$
\frac{1}{z_{1}\left(B_{2 R}\right)} \int_{B_{2 R}}\left(\sup _{B_{4 R}} u-u\right) z_{1} d x \leqslant C \inf _{B_{R}}\left(\sup _{B_{4 R}} u-u\right) .
$$

With the help of the doubling property we can estimate the left-hand side from below by

$$
\tilde{C} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}}\left(\sup _{B_{4 R}} u-u\right) z_{1} d x
$$

and we infer

$$
\frac{\tilde{C}}{C} \sup _{B_{4 R}} u-\frac{\tilde{C}}{C} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}} u z_{1} d x \leqslant \sup _{B_{4 R}} u-\sup _{B_{R}} u .
$$

Lemma 4.5. Let u be a bounded, weak solution of (1) in \mathbb{R}^{n} with coefficients $a^{\alpha \beta}(x)$ of the form (29). If $\frac{z_{1}\left(B_{R}\right)}{s\left(B_{R}\right)} \leqslant C_{1}$ for some $R \leqslant \frac{L}{2}$ and $a^{*}<1$, then we have
(i) $\lim _{R \rightarrow \infty} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)} u(x) z_{1} d x=: \bar{u}_{\infty}$ exists and $\left|\bar{u}_{\infty}\right|=\sup _{\mathbb{R}^{n}}|u|=M$.
(ii) $\lim _{R \rightarrow \infty} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)}\left|u-\bar{u}_{\infty}\right|^{2} z_{1} d x=0$.
(iii) $\sup _{\mathbb{R}^{n}}|u-\xi|=\left|\bar{u}_{\infty}-\xi\right| \forall \xi \in \mathbb{R}^{m}$ with $|\xi| \leqslant \frac{1-a^{*}}{a}$.

Proof. (i) In view of Lemma 4.2 we have $-D_{\alpha}\left(a^{\alpha \beta}(x) D_{\beta}|u-\xi|^{2}\right) \leqslant 0 \forall \xi \in \mathbb{R}^{m}$ with $|\xi| \leqslant \frac{1-a^{*}}{a}$. From Lemma 4.4 we infer by letting $R \rightarrow \infty$ the estimate $\sup _{\mathbb{R}^{n}}|u-\xi|^{2} \leqslant \lim _{R \rightarrow \infty} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)}|u-\xi|^{2} z_{1} d x$. It's obvious that the reverse inequality is also true. Thus,

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)}|u-\xi|^{2} z_{1} d x=\sup _{\mathbb{R}^{n}}|u-\xi|^{2} . \tag{31}
\end{equation*}
$$

Since

$$
\frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)}|u-\xi|^{2} z_{1} d x=\frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)}|u|^{2} z_{1} d x-2 \xi \cdot \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)} u z_{1} d x+|\xi|^{2}
$$

we see in view of (31) that $\lim _{R \rightarrow \infty} \xi \cdot \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)} u z_{1} d x$ exists and we infer

$$
\begin{equation*}
\sup _{\mathbb{R}^{n}}|u-\xi|^{2}=M^{2}+|\xi|^{2}-2 \xi \cdot \lim _{R \rightarrow \infty} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)} u z_{1} d x \tag{32}
\end{equation*}
$$

Set $\tau:=\frac{1-a^{*}}{a M}$ and choose $\bar{u}_{\infty} \in \mathbb{R}^{m}$ in a way that $\left|\bar{u}_{\infty}\right|=M$ and $\sup _{\mathbb{R}^{n}}\left|u+\tau \bar{u}_{\infty}\right|=(1+\tau) M$. With $\xi:=-\tau \bar{u}_{\infty}$ we observe from (32)

$$
M^{2}=\lim _{R \rightarrow \infty} \bar{u}_{\infty} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)} u z_{1} d x
$$

Since $\left|\bar{u}_{\infty}\right|,\left|\frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)} u z_{1} d x\right| \leqslant M$ we conclude assertion (i).
(ii) We have

$$
\frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)}\left|u-\bar{u}_{\infty}\right|^{2} z_{1} d x=\left|\bar{u}_{\infty}\right|^{2}+\frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)}|u|^{2} z_{1} d x-2 \bar{u}_{\infty} \cdot \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)} u z_{1} d x .
$$

By letting $R \rightarrow \infty$ we infer from the proof of (i)

$$
\lim _{R \rightarrow \infty} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}}\left|u-\bar{u}_{\infty}\right|^{2} z_{1} d x=M^{2}+M^{2}-2 M^{2}=0 .
$$

(iii) (32) and (i) yield for every $\xi \in \mathbb{R}^{m}$ with $|\xi| \leqslant \frac{1-a^{*}}{a}$ the equation

$$
\sup _{\mathbb{R}^{n}}|u-\xi|^{2}=\left|\bar{u}_{\infty}\right|^{2}+|\xi|^{2}-2 \xi \cdot \bar{u}_{\infty}=\left|\bar{u}_{\infty}-\xi\right|^{2}
$$

Now we can start with the proof of Theorem 1.2:
Proof of Theorem 1.2. Define for $t \in[0,1]$ the function $u_{t}:=u-t \bar{u}_{\infty}$ with $\bar{u}_{\infty}=\lim _{R \rightarrow \infty} \frac{1}{z_{1}\left(B_{R}\right)} \int_{B_{R}(0)} u z_{1} d x$. Furthermore, set $M_{t}:=\sup _{\mathbb{R}^{n}}\left|u_{t}\right|$ (note: M_{t} depends continuously on t) and let $I:=\left\{t \in[0,1] ; M_{t} \leqslant(1-t) M_{0}\right\}$. We denote by T the biggest number in I and we assume $T<1$.
$u_{T}=u-T \bar{u}_{\infty}$ is a weak solution of a system of type (1) with $|f| \leqslant a Q(x, \nabla u)$ and $\left(u-T \bar{u}_{\infty}\right) \cdot f \leqslant\left(a^{*}+\right.$ $\left.a T\left|\bar{u}_{\infty}\right|\right) Q(x, \nabla u)$. Since \bar{u}_{∞} has been chosen in the direction of u, we infer with $a_{T}^{*}:=a^{*}+a T\left|\bar{u}_{\infty}\right|$ the estimates

$$
a_{T}^{*}+a \sup _{\mathbb{R}^{n}}\left|u-T \bar{u}_{\infty}\right|<2 \quad \text { and } \quad a_{T}^{*}<1
$$

Define $t:=\min \left(1, T+\frac{1-a_{T}^{*}}{a M}\right)$; with this t we have $T<t \leqslant 1$ and $\left|(t-T) \bar{u}_{\infty}\right| \leqslant \frac{1-a_{T}^{*}}{a}$. With $\xi:=(t-T) \bar{u}_{\infty}$ we conclude from Lemma $4.5($ iii $) \sup _{\mathbb{R}^{n}}\left|u-t \bar{u}_{\infty}\right|=\sup _{\mathbb{R}^{n}}\left|u_{T}-\xi\right|=(1-t)\left|\bar{u}_{\infty}\right|$ and therefore $M_{t} \leqslant(1-t) M_{0}$. This means $t \in I$, but since $T<t$ this is a contradiction to our assumption that T is the biggest number in I. We infer $T=1$ and the proof is complete.

Examples.

1) Let $L>0$ and $\tau \in(-n, \infty)$. Choose

$$
a^{\alpha \beta}(x)= \begin{cases}|x|^{\tau} \delta_{\alpha \beta}, & |x|<L \\ \delta_{\alpha \beta}, & |x| \geqslant L\end{cases}
$$

With the same argument as above we see that these coefficients are admissible.
2) Let $k \in 2 \mathbb{N}$ and

$$
a^{\alpha \beta}(x)= \begin{cases}\log (|x|)^{k} \delta_{\alpha \beta}, & |x|<\frac{1}{2} \\ \delta_{\alpha \beta}, & |x| \geqslant \frac{1}{2}\end{cases}
$$

3) Let $\tau \in(-n, n)$ and

$$
a^{\alpha \beta}(x)= \begin{cases}|x|^{\tau} \log (|x|)^{2} \delta_{\alpha \beta}, & |x|<\frac{1}{2} \\ \delta_{\alpha \beta}, & |x| \geqslant \frac{1}{2}\end{cases}
$$

4) Let $\tau \in(1,2)$ and choose coefficients $a^{\alpha \beta}(x)$ with

$$
s(x)|\xi|^{2} \leqslant a^{\alpha \beta}(x) \xi_{\alpha} \xi_{\beta} \leqslant t(x)|\xi|^{2}
$$

where

$$
s(x)=\left\{\begin{array}{ll}
|x|^{\tau}, & |x|<1 \\
1, & |x| \geqslant 1
\end{array} \quad \text { and } \quad t(x)= \begin{cases}|x|, & |x|<1 \\
1, & |x| \geqslant 1\end{cases}\right.
$$

By using the same methods as above, it is easy to see that these weights satisfy (8) and $\frac{z_{1}\left(B_{R}\right)}{s\left(B_{R}\right)} \leqslant C_{1}$ for all balls $B_{R}(a) \subset B_{1}(0)$.

References

[1] A. Baldes, Degenerate elliptic operators, diagonal systems and variational integrals, Manuscripta Math. 55 (1986) $467-486$.
[2] C. Baoyao, Regularity of weak solutions for a class of degenerate elliptic systems in diagonal form, in: Proc. Asian Math. Conference 1990, World Scientific, Singapore, New Jersey, London, Hongkong, 1992, pp. 51-54.
[3] L.A. Caffarelli, Regularity theorems for weak solutions of some nonlinear systems, Comm. Pure Appl. Math 35 (1982) $833-838$.
[4] S. Chanillo, R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985) 1191-1226.
[5] S. Chanillo, R.L. Wheeden, Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. Partial Differential Equations 11 (1986) 1111-1134.
[6] R.R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974) 241-250.
[7] E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982) 77-116.
[8] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, Springer, Berlin, Heidelberg, New York, 1998.
[9] S. Hildebrandt, K.O. Widman, On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order, Ann. Sc. Norm. Super. Pisa IV (1977) 145-178.
[10] S. Hildebrandt, K.O. Widman, Sätze vom Liouvilleschen Typ für quasilineare elliptische Gleichungen und Systeme, Nachr. Akad. Wiss. Göttingen II. Math.-Phys. Klasse 4 (1979) 41-59.
[11] M. Meier, On quasilinear elliptic systems with quadratic growth, preprint 1984.
[12] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972) 207-226.
[13] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974) 101-106.
[14] B. Muckenhoupt, R.L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54 (1976) 221-237.
[15] M. Pingen, Zur Regularitätstheorie elliptischer Systeme und harmonischer Abbildungen, Thesis, University of Duisburg-Essen, 2006.
[16] N.S. Trudinger, On the regularity of generalized solutions of linear non-uniformly elliptic equations, Arch. Rat. Mech. Anal. 42 (1971) 51-62.
[17] M. Wiegner, Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme, Math. Z. 147 (1976) 21-28.
[18] M. Wiegner, A-priori Schranken für Lösungen gewisser elliptischer Systems, Manuscripta Math. 18 (1976) 279-297.

[^0]: th This research was supported by the Deutsche Forschungsgemeinschaft.
 E-mail address: michael.pingen@uni-duisburg-essen.de.

