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Abstract

We consider the Neumann problem for the Hénon equation. We obtain existence results and we analyze the symmetry properties
of the ground state solutions. We prove that some symmetry and variational properties can be expressed in terms of eigenvalues of
a Steklov problem. Applications are also given to extremals of certain trace inequalities.
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Résumé

On considère le problème de Neumann pour l’équation de Hénon. On obtient des résultats d’existence et on analyse les propriétés
de symétrie des solutions à énergie minimale. Nous démontrons que certaines propriétés variationnelles et de symétrie peuvent être
exprimées à l’aide des valeurs propres d’un problème de Steklov. En outre, nous appliquons ces résultats aux fonctions réalisant la
meilleure constante de certaines inégalités de trace.
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1. Introduction and statement of the main results

The elliptic equation appearing in the Dirichlet problem⎧⎪⎨
⎪⎩

−�u = |x|αup−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1)

where Ω is the unit ball of RN , p > 2 and α > 0, was introduced in the paper [12] by M. Hénon and now bears his
name. In [12], problem (1) was proposed as a model for spherically symmetric stellar clusters and was investigated
numerically for some definite values of p and α.

In the last few years it became evident that in spite of (or thanks to) its simple appearance, the Hénon equation
exhibits very interesting features concerning existence, multiplicity and, above all, symmetry properties of solutions.

Research has been directed up to now only on the Dirichlet problem (1) with the intent of classifying the range of
solvability (in p) and especially of analyzing the symmetry properties of the ground state solutions.

In order to provide a clear motivation for the results contained in the present paper, we briefly recall some of the
main achievements concerning problem (1). We denote, as usual, 2∗ = 2N

N−2 .

The first existence result is due to Ni, who in [14] proved that for every p ∈ (2,2∗ + 2α
N−2 ), problem (1) admits at

least one radial solution and pointed out that it is the presence of the weight |x|α that enlarges the existence range
beyond the usual critical exponent.

The most important question for our results is that of symmetry of solutions. The starting point is the fact that
since the function r �→ rα is increasing, Gidas–Ni–Nirenberg type results [11] do not apply, and therefore nonradial
solutions could be expected. This is the content of the paper [18] by Smets, Su and Willem, who studied the ground
state solutions associated to (1). They proved in particular the following symmetry breaking result.

Theorem 1.1 (Smets, Su, Willem). For every p ∈ (2,2∗) no ground state for problem (1) is radial provided α is large
enough.

Further results on the Dirichlet problem can be found in [19,6,4,5] for residual symmetry properties and asymptotic
behavior of ground states (for p → 2∗ or α → ∞) and in [16,3,15] for existence and multiplicity of nonradial solutions
for critical, supercritical and slightly subcritical growth; see also [17] for symmetry breaking results for Trudinger–
Moser type nonlinearities.

We stress once more that all the above results have been obtained for the homogeneous Dirichlet problem, while it
seems that so far the Neumann problem has never been studied. The purpose of this paper is to fill this gap and to point
out a series of new, interesting and unexpected phenomena that arise in passing from Dirichlet to Neumann boundary
conditions.

To describe our results we let Ω be the unit ball of RN , with N � 3, and we consider the Neumann analogue to (1),
namely⎧⎪⎪⎨

⎪⎪⎩
−�u + u = |x|αup−1 in Ω,

u > 0 in Ω,

∂u

∂ν
= 0 on ∂Ω,

(2)

where again p > 2 and α > 0. We have denoted by ν the outer normal to ∂Ω .
Solutions of (2) arise from critical points of the functional Qα :H 1(Ω) \ {0} → R defined by

Qα(u) =
∫
Ω

|∇u|2 dx + ∫
Ω

u2 dx

(
∫
Ω

|u|p|x|α dx)2/p
= ‖u‖2

(
∫
Ω

|u|p|x|α dx)2/p
.

This functional of course is well defined if p ∈ (2,2∗), but as we shall see, its restriction to the space of H 1
rad(Ω)

of H 1 radial functions is still well defined if p ∈ (2,2∗ + 2α
N−2 ).

We will call ground states the functions that minimize Qα over H 1(Ω), while we reserve the term “radial mini-
mizer” to functions that minimize Qα over H 1 (Ω).
rad
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The purpose of this paper is to investigate the existence of solutions to (2), in the spirit of [14], and especially to
carry out the analysis of the symmetry properties of the ground states of Qα .

As far as existence of solutions is concerned, our first result matches completely the one for the Dirichlet problem
obtained by Ni in [14].

Theorem 1.2. For every α > 0 and every p ∈ (2,2∗ + 2α
N−2 ), there exists u ∈ H 1

rad(Ω) such that

Qα(u) = inf
v∈H 1

rad(Ω)\{0}
Qα(v).

A suitable multiple of u is a classical solution of (2).

The main point of interest in the previous theorem is the fact that the presence of the weight |x|α allows one to
obtain existence of solutions beyond the usual critical threshold.

When p ∈ (2,2∗), the functional Qα can be minimized directly in H 1(Ω), without the symmetry constraint; of
course in this case the infimum is attained because p is subcritical. The natural question that arises is to ascertain
whether this minimizer, the ground state, is still a radial function. This is the question addressed in [18] for the
Dirichlet problem and answered in the negative for all p, provided α is large enough.

In the Neumann problem the situation is much more complex, and we point out from the beginning that we cannot
give a complete solution in the whole interval (2,2∗).

The main breakthrough for the study of the symmetry properties of the ground states is the possibility to describe
the precise asymptotic behavior, as α → ∞, of radial minimizers. This is obtained by the construction of a “limit”
functional in terms of a classical eigenvalue problem, the Steklov problem (see Definition 2.6). A further important
point in all the symmetry questions is played by the number 2∗ = 2N−2

N−2 , the critical exponent for the embedding of
H 1(Ω) into Lp(∂Ω). Indeed, in contrast to the Dirichlet problem, as α → ∞, the denominator in Qα behaves like a
trace norm (in a sense to be made precise) resulting in worse growth properties of the levels of radial minimizers.

The consequence is the following result; Theorem 1.1 should be kept in mind for comparison.

Theorem 1.3. For every p ∈ (2∗,2∗), no ground state of Qα is radial provided α is large enough.

The new limitation p > 2∗ does not come from a weakness of the arguments, but is a structural fact, peculiar of the
Neumann problem. Indeed, we will prove in Section 6 the following symmetry result, in opposition to the Dirichlet
case.

Theorem 1.4. For every p close enough to 2, the ground state of Qα is radial for every α large.

The two above theorems are our main results concerning symmetry of ground states. They are completed by a
further analysis of the variational properties of radial minimizers, which unveils a rather unexpected phenomenon.
Indeed it is quite natural to expect that symmetry of ground states breaks down for α large because the second
derivative Q′′

α(uα) at a radial minimizer uα becomes indefinite on H 1(Ω) when α exceeds a certain threshold. This is
what is described in [18].

In the Neumann problem, the situation is completely different: radial minimizers continue to be local minima for
Qα over H 1(Ω) no matter how large α is. This means, for example for p ∈ (2∗,2∗), that the formation of nonsymmet-
ric ground states does not manifest locally around radial minimizers, but can be justified only by global properties of
the functional. We think that this fact is rather interesting, also in connection with an analogous result for minimizers
of the trace inequality (see below). The precise result is the following.

Theorem 1.5. For all p ∈ (2,2∗) if N � 4 (resp. for all p ∈ (2, p̄), for some p̄ ∈ (2∗,2∗) if N = 3) and all α large
enough, the minimizers of Qα over H 1

rad(Ω) are local minima of Qα over the whole space H 1(Ω). The limitation for
N = 3 is not removable.

As an application of the analysis of the sign of the second derivative of Qα we obtain two uniqueness results, for
radial minimizers in essentially the whole interval (2,2∗), and for ground states when p is close to 2.



284 M. Gazzini, E. Serra / Ann. I. H. Poincaré – AN 25 (2008) 281–302
Theorem 1.6.

(i) In the same range of p’s as in the previous theorem, Qα has a unique positive radial minimizer (of unitary norm)
for all α large enough.

(ii) There exists p̂ ∈ (2,2∗) such that for all p ∈ (2, p̂), Qα has a unique positive ground state (of unitary norm) for
all α large enough.

Throughout the paper we use more or less explicitly a link between the functional Qα and the functional
Sp :H 1(Ω) \ H 1

0 (Ω) → R defined, for p ∈ [2,2∗] by

Sp(u) = ‖u‖2

(
∫
∂Ω

|u|p dσ)2/p
,

whose infimum is the best constant in the Sobolev trace inequality. Existence of extremals for this functional and their
symmetry properties have been studied in [7,10,9] and [13] (see also the references therein). As we have anticipated
earlier, the functional Sp plays the role of a limiting functional for Qα when α → ∞. It is therefore clear that many
properties of minimizers of Qα for α large and of Sp should coincide. In particular, we obtain the following analogue
of Theorem 1.5 for Sp .

Theorem 1.7. For all p ∈ (2,2∗) the minimizers of Sp over H 1
rad(Ω) are local minima of Sp over the whole

space H 1(Ω).

We point out that it is not known whether the ground states for Sp are radial for a generic p ∈ (2,2∗), but only for
p close to 2. The contribution of the previous theorem and of the discussion that surrounds it in Section 5 is the fact
that nonradial ground states for Sp , if they exist, cannot bifurcate from the branch p �→ up of radial minimizers, and
should therefore appear as “separated” objects, whose existence springs out only after a certain p̂ not too close to 2.
In view of these considerations, and also of the arguments presented in Section 5, we propose the following

Conjecture. For all N � 3 and for all p ∈ (2,2∗), the best constant Sp for the trace inequality on the unit ball of RN

is attained by a radial function.

The paper is structured as follows. In Section 2 we establish the main existence result (Theorem 1.2), we carry
out the asymptotic analysis of radial minimizers, and we prove Theorem 1.3. Section 3 is devoted to the variational
properties of radial minimizers, and contains the proof of Theorem 1.5. In Section 4 we prove the first part of the
uniqueness result Theorem 1.7. Section 5 is entirely devoted to the applications of our results to the trace inequality.
Finally, in Section 6, we prove Theorem 1.4 and the second part of the uniqueness result.

Notation. The space H 1(Ω) is endowed with the norm ‖u‖2 = ∫
Ω

|∇u|2 dx + ∫
Ω

u2 dx. Any Lp(Ω) norm is denoted
by ‖ · ‖p . The expression 〈·, ·〉 is the scalar product in H 1(Ω). If u is a radial function, we will write freely u(x) as
u(|x|) or u(ρ), for ρ = |x|. The symbol dσ stands for the standard (N − 1)-dimensional measure on the unit sphere.
When we deal with functionals Q defined on H 1(Ω) \ {0}, we will frequently write infH 1(Ω) Q instead of the heavier
infH 1(Ω)\{0} Q, and likewise for similar expressions. The letter C denotes positive constants that may change from
line to line.

2. Radial minimizers and their asymptotic properties

Throughout the paper Ω is the unit ball of RN , with N � 3; the numbers

2∗ = 2N

N − 2
and 2∗ = 2N − 2

N − 2

are the critical exponents for the embedding of H 1(Ω) into Lp(Ω) and Lq(∂Ω) respectively.
We begin with the study of radial minimizers of the functional Qα :H 1(Ω) \ {0} → R defined by

Qα(u) =
∫
Ω

|∇u|2 dx + ∫
Ω

u2 dx

(
∫ |u|p|x|α dx)2/p

= ‖u‖2

(
∫ |u|p|x|α dx)2/p

.

Ω Ω
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This functional is well defined and of class C2 over H 1(Ω) if p � 2∗. We shall see in a while that its restriction to
H 1

rad(Ω) is still well defined and C2 for a much wider interval of p’s.
To begin with we first establish some properties that have been first proved by Ni in [14] in the context of the

Dirichlet problem; we now give the H 1 versions.

Lemma 2.1. There exists a positive constant C such that for all u ∈ H 1
rad(Ω) there results

∣∣u(x)
∣∣ � C

‖u‖
|x|(N−2)/2

(3)

for all x ∈ Ω \ {0}.

Proof. By the radial lemma of [14], we have that there exists C > 0 such that

∣∣u(x)
∣∣ �

∣∣u(1)
∣∣ + C

‖∇u‖2

|x|(N−2)/2

for all u radial. Since |u(1)| can be controlled by ‖u‖, the inequality follows. �
Denote by Lp(Ω, |x|α dx) the space of Lp functions on Ω with respect to the measure |x|α dx. The previous

lemma allows us to establish the following essential property.

Proposition 2.2. The space H 1
rad(Ω) embeds compactly into Lp(Ω, |x|α dx) for every p ∈ [1,2∗ + 2α

N−2 ).

Proof. By the growth estimate (3) we see that∫
Ω

|u|p|x|α dx � Cp‖u‖p

∫
Ω

|x|α−p(N−2)/2 dx.

The last integral is finite for every p ∈ [1,2∗ + 2α
N−2 ), which shows that for all these p’s the embedding is continuous.

With a standard interpolation argument one obtains the compactness of the embedding in the same range. �
Notice that the continuity of the embedding makes Qα a C2 functional over H 1

rad(Ω), for every p ∈ [1,2∗ + 2α
N−2 ).

We are now ready to give the main existence result. It matches completely the analogous one for the Dirichlet
problem obtained in [14].

Theorem 2.3. For every α > 0 and every p ∈ (2,2∗ + 2α
N−2 ), there exists u ∈ H 1

rad(Ω) such that

Qα(u) = inf
v∈H 1

rad(Ω)

Qα(v).

Proof. The proof is standard. Notice that for every p ∈ (1,2∗ + 2α
N−2 ), by Proposition 2.2, we have infH 1

rad(Ω) Qα > 0.
Let un be a minimizing sequence for Qα , normalized by ‖un‖ = 1. Then some subsequence un has a weak limit u in
H 1

rad(Ω). By Proposition 2.2 the limit u cannot vanish identically, since in that case we would have
∫
Ω

u
p
n |x|α dx → 0.

Then Qα(u) � lim infQα(un) = infH 1
rad(Ω) Qα . �

Corollary 2.4. For every α and p as in Theorem 2.3, (a suitable multiple of ) the minimizer u is a classical solution
of problem⎧⎨

⎩
−�u + u = |x|αup−1 in Ω,

∂u

∂ν
= 0 on ∂Ω.

Moreover u is strictly positive in Ω .
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Proof. This follows from the symmetric criticality principle, standard elliptic regularity and the maximum princi-
ple. �

For every α > 0 and for a given p ∈ (2,2∗ + 2α
N−2 ), let

mα,r = min
H 1

rad(Ω)

Qα. (4)

Then any (positive) minimizer uα of Qα over H 1
rad(Ω), when normalized by ‖uα‖ = 1, satisfies⎧⎨

⎩
−�uα + uα = m

p/2
α,r |x|αu

p−1
α in Ω,

∂uα

∂ν
= 0 on ∂Ω.

We are interested in the behavior of mα,r and uα when α → ∞. It turns out that it is possible to describe it in terms of
a classical eigenvalue problem.

We begin with a fundamental result.

Lemma 2.5. The asymptotic relation

(α + N)

∫
Ω

|u|p|x|α dx =
∫

∂Ω

|u|p dσ + o(1) as α → ∞ (5)

holds

(i) uniformly on bounded subsets of H 1
rad(Ω), if p ∈ (2,2∗),

(ii) uniformly on bounded subsets of H 1(Ω), if p ∈ (2,2∗).

Proof. Notice that (α + N)|x|α = div(|x|αx). For u ∈ H 1
rad(Ω) or u ∈ H 1(Ω), and p accordingly, we can write,

applying the divergence theorem,

(α + N)

∫
Ω

|u|p|x|α dx =
∫
Ω

|u|p div
(|x|αx

)
dx =

∫
∂Ω

|u|p|x|αx · ν dσ − p

∫
Ω

|u|p−2u∇u · x|x|α dx

=
∫

∂Ω

|u|p dσ − p

∫
Ω

|u|p−2u∇u · x|x|α dx

since on ∂Ω we have ν = x and |x| = 1. We just have to show that the last integral is o(1) as α → ∞ with the required
uniformity.

To this aim, we first use the Hölder inequality to write∣∣∣∣
∫
Ω

|u|p−2u∇u · x|x|α dx

∣∣∣∣ �
(∫

Ω

|∇u|2 dx

)1/2(∫
Ω

|u|2p−2|x|α dx

)1/2

� ‖u‖
(∫

Ω

|u|2p−2|x|α dx

)1/2

.

Assume now that p ∈ (2,2∗) and that u is radial. By Lemma 2.1 we have∫
Ω

|u|2p−2|x|α dx � C‖u‖2p−2
∫
Ω

|x|α−(2p−2)(N−2)/2 dx = ‖u‖2p−2o(1)

as α → ∞.
If, on the other hand, u is not radial, but p is strictly less than 2∗, we notice that 2p − 2 < 2∗, so that, by the Hölder

and Sobolev inequalities,
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∫
Ω

|u|2p−2|x|α dx �
(∫

Ω

|u|2∗
dx

) 2p−2
2∗ (∫

Ω

|x|α 2∗
2∗−2p+2

) 2∗−2p+2
2∗

� ‖u‖2p−2o(1)

as α → ∞.
Thus in both cases∣∣∣∣

∫
Ω

|u|p−2u∇u · x|x|α dx

∣∣∣∣ � ‖u‖po(1) as α → ∞,

which gives the required uniformity. �
In order to state the main result of this section we need to introduce an auxiliary problem. This is one of the classical

eigenvalue problems, and we refer to [2] and [13] for more details.

Definition 2.6. The eigenvalue problem{−�u + u = 0 in Ω,

∂u

∂ν
= λu on ∂Ω

(6)

is called the Steklov problem.

The eigenvalues λk of this problem are known to be (recall that Ω is the unit ball in RN )

λk = 1 − N

2
+ I ′

k+N/2−2(1)

Ik+N/2−2(1)
, k = 1,2, . . . , (7)

where Iν is the modified Bessel function of the first kind of order ν. The associated eigenfunctions are also known
(see [13]); the first eigenfunction, corresponding to λ1, is radial and never vanishes in Ω . The first eigenvalue is simple
and it is characterized by

λ1 = min
u∈H 1(Ω)

‖u‖2∫
∂Ω

u2 dσ
. (8)

With the aid of the Steklov problem we can now describe the asymptotic behavior of the radial minimizers of Qα .
The asymptotics for the solutions of the Dirichlet problem for the Hénon equation has been obtained in [4] and [5]; in
that case the situation is completely different and much more complex.

In the statement of the next result, λ1 and ϕ1, positive in Ω and normalized by ‖ϕ1‖ = 1, are the first eigenvalue
and eigenfunction of the Steklov problem (6).

Theorem 2.7. Let p ∈ (2,2∗) and let uα , with ‖uα‖ = 1, be a minimizer of Qα over H 1
rad(Ω), so that mα,r = Qα(uα).

Then, as α → ∞,

mα,r ∼ (α + N)2/p|∂Ω|1−2/pλ1, (9)

uα → ϕ1 in H 1(Ω). (10)

Proof. Let u be any (nonnegative) function in H 1
rad(Ω), with ‖u‖ = 1. By Lemma 2.5, as α → ∞,

Qα(u)

(α + N)2/p
= 1

((α + N)
∫
Ω

up|x|α dx)2/p
= 1

(
∫
∂Ω

up dσ + o(1))2/p
= 1

(
∫
∂Ω

up dσ)2/p
+ o(1),

where o(1) does not depend on u.
Since u is radial,( ∫

up dσ

)2/p

= |∂Ω|2/pu(1)2 = |∂Ω|2/p−1
∫

u2 dσ,
∂Ω ∂Ω
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so that for u = uα ,

mα,r

(α + N)2/p
= Qα(uα)

(α + N)2/p
= |∂Ω|1−2/p 1∫

∂Ω
u2

α dσ
+ o(1)

� |∂Ω|1−2/p min
v∈H 1

rad(Ω)

‖v‖=1

1∫
∂Ω

v2 dσ
+ o(1) = |∂Ω|1−2/pλ1 + o(1)

because λ1 is attained by a radial function.
On the other hand, for every u ∈ H 1

rad(Ω) with ‖u‖ = 1,

mα,r

(α + N)2/p
= Qα(uα)

(α + N)2/p
� Qα(u)

(α + N)2/p
= |∂Ω|1−2/p 1∫

∂Ω
u2 dσ

+ o(1).

Choosing u = ϕ1 we obtain

mα,r

(α + N)2/p
� |∂Ω|1−2/pλ1 + o(1),

and (9) is proved.
To prove (10) notice that since ‖uα‖ = 1, there is a subsequence, still denoted uα , that converges to some u weakly

in H 1(Ω) and strongly in Lq(∂Ω) for q < 2∗. By the above arguments,

|∂Ω|1−2/p 1∫
∂Ω

u2
α dσ

+ o(1) = Qα(uα)

(α + N)2/p
� |∂Ω|1−2/pλ1 + o(1),

from which we see that u cannot be identically zero. Then, by previous computations and the properties of uα ,

λ1 � ‖u‖2∫
∂Ω

u2 dσ
� 1∫

∂Ω
u2 dσ

= lim
α→∞

1∫
∂Ω

u2
α dσ

= |∂Ω|2/p−1 lim
α→∞

(
Qα(uα)

(α + N)2/p
+ o(1)

)
= λ1.

This shows that ‖u‖2 = 1 and that 1/
∫
∂Ω

u2 dσ = λ1; since λ1 is simple, it must be u = ϕ1. Convergence of the norm
implies that uα → ϕ1 strongly in H 1(Ω). �

The precise asymptotic behavior of mα,r will be used later. However the fact that mα,r grows like α2/p is enough
to prove a first symmetry breaking result.

Theorem 2.8. Assume that p ∈ (2∗,2∗). Then for every α large enough (depending on p) we have

min
u∈H 1(Ω)

‖u‖2

(
∫
Ω

|u|p|x|α dx)2/p
< min

u∈H 1
rad(Ω)

‖u‖2

(
∫
Ω

|u|p|x|α dx)2/p
. (11)

Proof. We estimate the growth of the left-hand side of (11) as in [18]. Take a nonnegative function v ∈ C1
0(Ω) and

extend it to zero outside Ω . Let xα = (1 − 1/α,0, . . . ,0) and set vα(x) = v(α(x − xα)). Then supp vα ⊂ B1/α(xα).
Therefore, by standard changes of variable,∫

Ω

vp
α |x|α dx =

∫
B1/α(xα)

vp
α |x|α dx �

(
1 − 2

α

)α ∫
B1/α(xα)

vp
α dx = α−N

(
1 − 2

α

)α ∫
Ω

vp dx

and

Qα(vα) �
α2−N

∫
Ω

|∇v|2 dx + α−N
∫
Ω

v2 dx

α−2N/p(1 − 2/α)2α/p(
∫
Ω

vp dx)2/p
� Cα2−N+2N/p.

Since by Theorem 2.7 the right-hand side of (11) is mα,r ∼ α2/p , we see that (11) holds for all α large because
2 − N + 2N/p < 2/p for all p ∈ (2∗,2∗). �
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Remark 2.9. The level of radial minimizers for the quotient associated to the Dirichlet problem grows like α1+2/p ,
as is shown in [18]; this gives a symmetry breaking result for all p ∈ (2,2∗). We will see in the next sections that it is
the loss one power in the case of the Neumann problem that causes a more subtle behavior from the point of view of
symmetry of the ground states.

Remark 2.10. Theorem 2.8 gives immediately a multiplicity result: for every p ∈ (2∗,2∗) and every α large enough,
problem (2) admits at least two solutions. One is radial and the other is the (nonradial) ground state.

3. Variational properties of radial minimizers

We have seen that for p ∈ (2∗,2∗) the minimizers of Qα over H 1
rad(Ω) are not global minimizers over H 1(Ω), at

least for α large. In the interval (2,2∗] the situation is less clear, and will be analyzed in the next sections.
Now since for α = 0 global minimizers are radial, it is quite natural to think that the symmetry breaking phe-

nomenon described above takes place because when α becomes very large the radial minimizer uα ceases to be a
minimizer over H 1(Ω) due to the appearance of “negative directions”. In other words one expects that when α grows
the second derivative Q′′

α(uα) over H 1(Ω) becomes indefinite; this is exactly the phenomenon described in [18] for
the Dirichlet problem.

In this section we show, rather surprisingly, that this is not the case for the Neumann problem: although for
p ∈ (2∗,2∗) the functions uα are not global minimizers over H 1(Ω) for α large, they are still local minimizers.
This fact in turn will have some interesting consequences, that we will analyze later.

We now study the sign of Q′′
α(uα) for α large. From now on we assume that uα is normalized by ‖uα‖ = 1. We

denote by S the unit sphere in H 1(Ω), and by TuαS the tangent space to S at uα , namely

TuαS = {
v ∈ H 1(Ω): 〈v,uα〉 = 0

}
,

where 〈·, ·〉 denotes the scalar product in H 1(Ω).
Notice that since uα solves⎧⎨

⎩
−�uα + uα = m

p/2
α,r |x|αu

p−1
α in Ω,

∂uα

∂ν
= 0 on ∂Ω,

(12)

the condition v ∈ TuαS is equivalent to
∫
Ω

u
p−1
α v|x|α dx = 0.

Lemma 3.1. Let p ∈ (2,2∗) and let uα be a minimizer of Qα over H 1
rad(Ω), normalized by uα ∈ S . Then for every

v ∈ TuαS ,

Q′′
α(uα) · v2 = 2mα,r

(
‖v‖2 − (p − 1)m

p/2
α,r

∫
Ω

up−2
α v2|x|α dx

)
. (13)

Proof. Set N(u) = ‖u‖2 and D(u) = (
∫
Ω

up|x|α dx)2/p , so that Qα(u) = N(u)/D(u). For every critical point u ∈
H 1(Ω) of Qα and every v ∈ H 1(Ω), we have

Q′′
α(u) · v2 = D(u)N ′′(u) · v2 − N(u)D′′(u) · v2

D(u)2
.

Now N ′′(u) · v2 = 2‖v‖2 and

D′′(u) · v2 = 2(2 − p)

(∫
Ω

up|x|α dx

)2/p−2(∫
Ω

up−1v|x|α dx

)2

+ 2(p − 1)

(∫
up|x|α dx

)2/p−1 ∫
up−2v2|x|α dx,
Ω Ω



290 M. Gazzini, E. Serra / Ann. I. H. Poincaré – AN 25 (2008) 281–302
so that

Q′′
α(u) · v2 =

{
‖v‖2 − ‖u‖2

(
(2 − p)

(∫
Ω

up−1v|x|α dx∫
Ω

up|x|α dx

)2

+ (p − 1)

∫
Ω

up−2v2|x|α dx∫
Ω

up|x|α dx

)}(∫
Ω

up|x|α dx

)−2/p

. (14)

This holds for every critical point u of Qα and every v ∈ H 1(Ω). If u = uα ∈ S we have (
∫
Ω

up|x|α dx)−2/p =
mα,r and if v ∈ TuαS , then

∫
Ω

up−1v|x|α dx = 0. Therefore in this case (14) reduces to

Q′′
α(uα) · v2 = 2mα,r

(
‖v‖2 − (p − 1)m

p/2
α,r

∫
Ω

up−2
α v2|x|α dx

)
. � (15)

In order to study the sign of Q′′
α(uα) we need some more precise estimates on uα .

In what follows uα is a minimizer of Qα over H 1
rad(Ω), normalized by ‖uα‖ = 1.

Lemma 3.2. The functions uα are uniformly bounded in C1(Ω) as α → ∞.

Proof. We first prove a uniform bound in L∞(Ω). Since ‖uα‖ = 1 and uα is radial, there is C > 0 such that

‖uα‖L∞(Ω\B1/2(0)) � C‖uα‖ = C. (16)

By Lemma 2.1, there is a positive constant C such that∣∣uα(x)
∣∣ � C

‖uα‖
|x|(N−2)/2

= C

|x|(N−2)/2

for all x ∈ Ω \ {0} and all α.
Set fα(x) = m

p/2
α,r |x|αuα(x)p−1; then, recalling that mα,r � Cα2/p ,

‖fα‖L∞(B1/2(0)) � Cα|x|α 1

|x|(p−1)(N−2)/2
� Cα

2α−(p−1)(2−N)/2
= o(1) (17)

as α → ∞.
Therefore, by (16) and (17) we see that uα solves{−�uα + uα = fα in B1/2(0),

uα � C on ∂B1/2(0)

with ‖fα‖L∞(B1/2(0)) → 0 as α → ∞. By standard elliptic estimates, we obtain that uα is uniformly bounded in

C1,β(B1/2(0)), for all β ∈ (0,1). In view of (16) we obtain that uα is uniformly bounded in L∞(Ω) as α → ∞.
To complete the proof we only have to show that there is a C1 bound also on Ω \ B1/2(0).
Since uα is radial we see that it solves

−u′′
α − N − 1

ρ
u′

α + uα = m
p/2
α,r ραup−1

α

and u′
α(1) = 0. Integrating this equation over [t,1], with t � 1

2 we obtain

u′
α(t) = (N − 1)

1∫
t

1

ρ
u′

α dρ −
1∫

t

uα + m
p/2
α,r

1∫
t

up−1
α ρα dρ.

Therefore, using the fact that uα is bounded in L∞(Ω) and the growth of mα,r ,

∣∣u′
α(t)

∣∣ � (N − 1)

(
uα(ρ)

ρ

∣∣∣∣
1

t

+
1∫

t

uα(ρ)

ρ2
dρ

)
+ C + Cm

p/2
α,r

ρα+1

α + 1

∣∣∣∣
1

t

� C + C
α

α + 1
� C

for all t ∈ [ 1
2 ,1]. This, together with the estimate in C1,β(B1/2(0)), gives the required bound in C1(Ω). �
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Remark 3.3. Notice that one cannot hope to obtain uniform C2(Ω) estimates, even though each uα does lie in C2(Ω).
This is due to the fact that the right-hand side of the equation behaves like α|x|α . Now, while this term goes to zero
locally uniformly in Ω , on the boundary it blows up like α. Therefore �uα cannot be bounded in C0 up to the
boundary of Ω .

At first sight, a rather confusing consequence of the lack of C2 bounds is that if one tries to pass naïvely to the
limit in (12) as α → ∞, then one can do it in the equation (in the weak form, for instance), but not in the boundary
conditions. Thus it may (and does) happen that limits of solutions of homogeneous Neumann problems do not satisfy a
homogeneous Neumann condition. We have already observed this fact when we have shown that uα → ϕ1, a solution
of the Steklov problem.

Remark 3.4. In view of the preceding lemma, we can assure that the convergence of uα to ϕ1 takes place also
in C0(Ω). Since ϕ1 is strictly positive in Ω , then for some C > 0 and all α large,

min
x∈Ω

uα(x) � C.

We can now continue the study of the second derivative of Qα .

Lemma 3.5. Let p ∈ (2,2∗) and let uα be a minimizer of Qα over H 1
rad(Ω), normalized by uα ∈ S . Then, as α → ∞,

(α + N)

∫
Ω

up−2
α v2|x|α dx =

∫
∂Ω

up−2
α v2 dσ + o(1), (18)

uniformly for v in bounded subsets of H 1(Ω).

Proof. We apply the divergence theorem exactly like in Lemma 2.5. We obtain

(α + N)

∫
Ω

up−2
α v2|x|α dx =

∫
∂Ω

up−2
α v2 dσ − (p − 2)

∫
Ω

v2up−3
α ∇uα · x|x|α dx − 2

∫
Ω

up−2
α v∇v · x|x|α dx

and we just have to show that the two last integral vanish as α → ∞.
Now by Lemma 3.2 and Remark 3.4 we have∣∣∣∣

∫
Ω

v2up−3
α ∇uα · x|x|α dx

∣∣∣∣ � C

∫
Ω

v2|x|α dx � C‖v‖2
2∗

(∫
Ω

|x|α2∗/(2∗−2) dx

)(2∗−2)/2∗

� C‖v‖2o(1)

as α → ∞, while∣∣∣∣
∫
Ω

up−2
α v∇v · x|x|α dx

∣∣∣∣ � C

∫
Ω

|v||∇v||x|α dx � C‖v‖
(∫

Ω

v2|x|α dx

)1/2

� C‖v‖2o(1),

as in the previous computation. Thus (18) is proved. �
We can now prove the main result on the sign of Q′′

α(uα).

Proposition 3.6. Let p ∈ (2,2∗) and let uα be a minimizer of Qα over H 1
rad(Ω), normalized by uα ∈ S . Then the

inequality

min
v∈TuαS‖v‖=1

Q′′
α(uα) · v2 > 0 (19)

holds
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(i) for all p ∈ (2,2∗) if N � 4,
(ii) for all p ∈ (2, p̄), for some p̄ ∈ (2∗,2∗) if N = 3

provided α is large enough (depending on p).

Proof. It is standard to see that the minimum in (19) is attained; we supply some details for completeness. Set

F(v) = 2mα,r

(
‖v‖2 − (p − 1)m

p/2
α,r

∫
Ω

up−2
α v2|x|α dx

)
and μ = inf

v∈TuαS‖v‖=1

F(v).

We have to show that μ is attained. It is obvious that μ is finite and that μ < 2mα,r . Let vn ∈ TuαS , ‖vn‖ = 1, be a
minimizing sequence for F . Up to subsequences, vn → v weakly in H 1(Ω) and strongly in L2(Ω). Notice that v �≡ 0,
since otherwise

μ + o(1) = F(vn) = 2mα,r

(
1 − (p − 1)m

p/2
α,r

∫
Ω

up−2
α v2

n|x|α dx

)
= 2mα,r + o(1),

namely μ = 2mα,r , which is false. Also, v ∈ TuαS . Write now vn = v + wn, with wn → 0 weakly in H 1(Ω) and
strongly in L2(Ω). A simple computation shows that

μ + o(1) = F(vn) = 2mα,r

(
‖v‖2 + ‖wn‖2 − (p − 1)m

p/2
α,r

∫
Ω

up−2
α v2|x|α dx + o(1)

)

= ‖v‖2F

(
v

‖v‖
)

+ 2mα,r‖wn‖2 + o(1) � μ‖v‖2 + 2mα,r‖wn‖2 + o(1)

= μ
(
1 − ‖wn‖2 + o(1)

) + 2mα,r‖wn‖2 + o(1),

so that (2mα,r − μ)‖wn‖2 � o(1). Since μ < 2mα,r , this shows that vn → v strongly in H 1(Ω); thus ‖v‖ = 1 and
F(v) = μ.

We now turn to the main part of the proof. We assume that (19) is false for an unbounded sequence of α’s (which
we denote by A), so that

min
v∈TuαS‖v‖=1

Q′′
α(uα) · v2 � 0 for all α ∈ A. (20)

This means that for all α ∈ A there exists vα ∈ TuαS , with ‖vα‖ = 1 such that Q′′
α(uα) · vα � 0, namely, by (13),

1 − (p − 1)m
p/2
α,r

∫
Ω

up−2
α v2

α|x|α dx � 0. (21)

Recalling from Theorem 2.7 the asymptotic behavior of mα,r , we can write the preceding inequality for α → ∞ in
A as

1 � (p − 1)
(|∂Ω|p/2−1λ

p/2
1 + o(1)

)
(α + N)

∫
Ω

up−2
α v2

α|x|α dx

= (p − 1)
(|∂Ω|p/2−1λ

p/2
1 + o(1)

)( ∫
∂Ω

up−2
α v2

α dσ + o(1)

)
,

where for the last equality we have used Lemma 3.5.
Now uα → ϕ1 in C0(Ω) and vα , being bounded in H 1(Ω), admits a subsequence (still denoted vα) converging to

some v weakly in H 1(Ω) and strongly in L2(∂Ω).
Passing to the limit as α → ∞ in A in the preceding inequality we find

1 � (p − 1)|∂Ω|p/2−1λ
p/2
1

∫
ϕ

p−2
1 v2 dσ. (22)
∂Ω
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If v is identically zero we have reached a contradiction and the proof is complete. Assume therefore that v �≡ 0.
Since ϕ1 is radial and normalized by ‖ϕ1‖ = 1, we have

λ1 = 1∫
∂Ω

ϕ2
1 dσ

= 1

ϕ1(1)2|∂Ω| ,

so that ϕ1(1)p−2 = |∂Ω|1−p/2λ
1−p/2
1 . Inserting this in (22) we see that

1 � (p − 1)|∂Ω|p/2−1λ
p/2
1 |∂Ω|1−p/2λ

1−p/2
1

∫
∂Ω

v2 dσ = (p − 1)λ1

∫
∂Ω

v2 dσ,

that is,

1∫
∂Ω

v2 dσ
� (p − 1)λ1.

Notice now that 〈v,ϕ1〉 = limα〈vα,uα〉 = 0 by strong convergence of uα and weak convergence of vα . Thus v is
orthogonal to ϕ1 in H 1(Ω); this, together with the fact that λ1 is simple yields

λ2 = min
w∈H 1(Ω)
〈w,ϕ1〉=0

‖w‖2∫
∂Ω

w2 dσ
� ‖v‖2∫

∂Ω
v2 dσ

� 1∫
∂Ω

v2 dσ
� (p − 1)λ1.

Therefore assuming that (19) is false for an unbounded sequence of α’s implies the inequality

λ2

λ1
� p − 1 (23)

on the eigenvalues of the Steklov problem (6). We now complete the proof by showing that this inequality cannot
hold. Recall from (7) that

λk = 1 − N

2
+ I ′

k+N/2−2(1)

Ik+N/2−2(1)
, k = 1,2, . . . ,

where Iν is the modified Bessel function of the first kind of order ν.
Since (see [1]) I ′

ν(x) = Iν+1(x) + ν
x
Iν(x) holds for all x and all ν, we see that

λk = k − 1 + Ik+N/2−1(1)

Ik+N/2−2(1)
. (24)

We also recall from [1] that Iν−1(x) − Iν+1(x) = 2ν
x

Iν(x), so that Iν−1(1)/Iν(1) � 2ν. Therefore

λ2

λ1
= 1 + IN/2+1(1)/IN/2(1)

IN/2(1)/IN/2−1(1)
>

1

IN/2(1)/IN/2−1(1)
= IN/2−1(1)

IN/2(1)
� 2

N

2
= N.

Thus, if (23) holds, then by our choice of p,

N <
λ2

λ1
� p − 1 <

N + 2

N − 2
,

which is false for every N � 4. If N = 3, the inequality is false not in the whole interval (2,2∗) = (2,6), but only in a
subinterval (2, p̄), with p̄ ∈ (2∗,2∗) = (4,6) (an approximate value of λ2/λ1 is 3.8, which would locate p̄ around 4.8).
In both cases this is the required contradiction, and the proof is complete. �
Remark 3.7. In the previous proposition, one cannot hope to get, when N = 3, the whole interval (2,2∗) as for N = 4.
Indeed testing Q′′

α(uα) with ϕ2, the second eigenfunction of the Steklov problem, one sees easily that Q′′
α(uα) ·ϕ2

2 < 0
for p close to 2∗ and α large. The fact that for α large Q′′

α(uα) becomes indefinite for some p ∈ (2∗,2∗) is thus a
peculiarity of dimension three.

Proposition 3.6, together with the fact that Qα is homogeneous of degree zero constitutes the proof of the following
result.
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Theorem 3.8. For all p ∈ (2,2∗) if N � 4 (resp. p ∈ (2, p̄) if N = 3) and all α large enough, the minimizers uα of Qα

over H 1
rad(Ω) are local minima of Qα over the whole space H 1(Ω).

4. Uniqueness of radial minimizers

As an application of the discussion carried out in the previous section, we now give a uniqueness result for radial
minimizers of Qα .

Theorem 4.1. For every p ∈ (2,2∗) if N � 4, or every p ∈ (2, p̄) if N = 3, there exists α(p) such that for all α � α(p),
the problem

min
u∈H 1

rad(Ω)

‖u‖2

(
∫
Ω

|u|p|x|α dx)2/p

has a unique positive solution (normalized by ‖u‖ = 1).

Proof. Fix p in the appropriate range, according to the value of N , and assume on the contrary that for an unbounded
sequence of α’s, denoted by A, there exist two minimizers uα and vα of Qα over H 1

rad(Ω), normalized by ‖uα‖ =
‖vα‖ = 1.

By Theorem 2.7 and Lemma 3.2 we have that, as α → ∞ in A,

uα → ϕ1 and vα → ϕ1 in H 1(Ω) and in C0(Ω )
.

Moreover, both uα and vα solve⎧⎨
⎩

−�u + u = m
p/2
α,r |x|αup−1 in Ω,

∂u

∂ν
= 0 on ∂Ω

(25)

with mα,r ∼ (α + N)2/p|∂Ω|1−2/pλ1.
Subtracting (25) for vα from (25) for uα and setting wα = uα − vα , we see that wα solves⎧⎨

⎩
−�wα + wα = (p − 1)m

p/2
α,r |x|αcαwα in Ω,

∂u

∂ν
= 0 on ∂Ω,

(26)

where

cα =
1∫

0

(
vα + t (uα − vα)

)p−2 dt.

By assumption uα �≡ vα for all α ∈ A, so that we can divide the equations in (26) by ‖wα‖ and set ψα = wα/‖wα‖.
Then we obtain that ψα satisfies⎧⎪⎪⎨

⎪⎪⎩
−�ψα + ψα = (p − 1)m

p/2
α,r |x|αcαψα in Ω,

∂ψα

∂ν
= 0 on ∂Ω,

‖ψα‖ = 1

(27)

for all α ∈ A.
Since ‖ψα‖ = 1, we can assume that (up to a subsequence), ψα → ψ weakly in H 1(Ω) and strongly in Lq(∂Ω)

for all q < 2∗.
We now show that it cannot be ψ ≡ 0. Indeed, noticing that by Lemma 3.2 we have ‖cα‖∞ � C uniformly in α,

and multiplying (27) by ψα , we obtain (using (α + N)|x|α = div |x|αx)
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1 = ‖ψα‖2 = (p − 1)m
p/2
α,r

∫
Ω

cαψ2
α|x|α dx � Cm

p/2
α,r

∫
Ω

ψ2
α |x|α dx � C(α + N)

∫
Ω

ψ2
α |x|α dx

= C

( ∫
∂Ω

ψ2
α dσ − 2

∫
Ω

ψα∇ψα · x|x|α dx

)
� C

( ∫
∂Ω

ψ2
α dσ + 2‖ψα‖

(∫
Ω

ψ2
α dx

)1/2)
.

If ψ were identically zero, we would have ψα → 0 strongly in L2(Ω) and in L2(∂Ω), so that the preceding inequality
would yield 1 = ‖ψα‖2 � o(1), as α → ∞ in A, a contradiction. Therefore ψ �≡ 0.

To proceed we notice that, still by Lemma 3.2, we have

cα → ϕ
p−2
1 in C0(Ω )

. (28)

Multiplying (27) by φ ∈ H 1(Ω) and integrating we obtain

〈ψα,φ〉 = (p − 1)m
p/2
α,r

∫
Ω

cαψαφ|x|α dx= (p − 1)
(|∂Ω|p/2−1λ

p/2
1 + o(1)

)
(α + N)

∫
Ω

cαψαφ|x|α dx. (29)

Now ∣∣∣∣(α + N)

∫
Ω

cαψαφ|x|α dx − (α + N)

∫
Ω

ϕ
p−2
1 ψαφ|x|α dx

∣∣∣∣ � (α + N)

∫
Ω

∣∣cα − ϕ
p−2
1

∣∣|ψαφ||x|α dx

�
∥∥cα − ϕ

p−2
1

∥∥∞(α + N)

∫
Ω

|ψα||φ||x|α dx

and

(α + N)

∫
Ω

|ψα||φ||x|α dx �
(

(α + N)

∫
Ω

ψ2
α |x|α dx

)1/2(
(α + N)

∫
Ω

φ2|x|α dx

)1/2

�
( ∫

∂Ω

ψ2
α dσ − 2

∫
Ω

ψα∇ψα · x|x|α dx

)1/2( ∫
∂Ω

φ2 dσ − 2
∫
Ω

φ∇φ · x|x|α dx

)1/2

� C

as α → ∞, since all the integrals are uniformly bounded.
This and the preceding inequality show that

(α + N)

∫
Ω

cαψαφ|x|α dx = (α + N)

∫
Ω

ϕ
p−2
1 ψαφ|x|α dx + o(1)

as α → ∞ in A. Finally we notice that

(α + N)

∫
Ω

ϕ
p−2
1 ψαφ|x|α dx =

∫
∂Ω

ϕ
p−2
1 ψαφ dσ −

∫
Ω

∇(
ϕ

p−2
1 ψαφ

) · x|x|α dx

=
∫

∂Ω

ϕ
p−2
1 ψαφ dσ + o(1),

due to by now familiar computations. Inserting this in the left-hand side of (29) yields, as α → ∞,

〈ψα,φ〉 = (p − 1)
(|∂Ω|p/2−1λ

p/2
1 + o(1)

)( ∫
∂Ω

ϕ
p−2
1 ψαφ dσ + o(1)

)
.

Letting α → ∞ in A (and recalling that ϕ
p−2
1 ≡ |∂Ω|1−p/2λ

1−p/2
1 on ∂Ω), we obtain

〈ψ,φ〉 = (p − 1)λ1

∫
ψφ dσ,
∂Ω
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for all φ ∈ H 1(Ω). In other words, ψ is a (nontrivial) solution of the problem⎧⎨
⎩

−�ψ + ψ = 0 in Ω,

∂ψ

∂ν
= (p − 1)λ1ψ on ∂Ω.

(30)

Thus the number (p − 1)λ1 must be one of the eigenvalues λk of the Steklov problem. However (p − 1)λ1 > λ1
because p > 2, and (p − 1)λ1 < λ2 for all p ∈ (2,2∗) if N � 4 and all p ∈ (2, p̄) if N = 3, as have already proved in
Proposition 3.6. This is a contradiction, and the proof is complete. �
5. A detour on the trace inequalities

In this section we analyze a little more closely the relations between the minimization of Qα and some Sobolev
trace inequalities. Although we have already used some more or less evident link between the two, we have not yet
formalized the question.

In our context the trace inequalities state that the embedding of H 1(Ω) into Lp(∂Ω) is continuous for p ∈ [1,2∗];
that is, for all p ∈ [1,2∗] there exists C > 0 such that( ∫

∂Ω

|u|p dσ

)2/p

� C‖u‖2

for every u ∈ H 1(Ω). We set

Sp = inf
u∈H 1(Ω)

‖u‖2

(
∫
∂Ω

|u|p dσ)2/p
(31)

and we recall that Sp is attained for p ∈ [1,2∗) because the corresponding embedding is compact. If p = 2∗ the
embedding is no longer compact and the situation is more complex, see [10] and references therein, and only partial
results are known. However, combining the condition of Theorem 1 of [10] with the results of [8], one can say that
for the unit ball Ω the constant S2∗ is attained.

The question of the symmetry of minimizer of Sp has been treated in [13,9], and [7] (see also the references in
these papers).

Roughly speaking it turns out that radial symmetry of minimizers depends on the size of the domain. Confining
ourselves to the context where Ω is the unit ball, the main results about symmetry (deduced from [7,9] and [13]) take
the following form: denoting by μΩ the ball of radius μ centered at zero, then the functions that attain Sp in (31) are
radial for all μ small enough, and nonradial for all μ large enough.

The same kind of phenomenon takes place for a fixed domain, say Ω , but when p varies: it has been proved in [13]
(for more general problems) that minimizers of (31) are radial for all p close enough to 2, and nonradial for p large.

For further reference we quote a part of Theorem 2 of [13], specialized to our context. In its statement λ1 denotes,
as usual, the first eigenvalue of the Steklov problem (6).

Theorem 5.1 (Lami Dozo, Torné). If

p − 1 >
1

λ2
1

(
1 − (N − 1)λ1

)
, (32)

then no minimizer of (31) is radial.

Below we will give an interpretation of the number appearing in the right-hand side of (32).
Notice that minimizers of Sp , normalized by ‖u‖ = 1, are solutions of{−�u + u = 0 in Ω,

∂u = S
p/2
p up−1 on ∂Ω.

(33)

∂ν
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Let us now return to the Hénon problem. In the rest of this section we always assume that p ∈ (2,2∗). The link with
the trace inequalities is given by (ii) of Lemma 2.5; indeed, denoting by Sp : H 1(Ω) \ H 1

0 (Ω) → R the functional

Sp(u) = ‖u‖2

(
∫
∂Ω

|u|p dσ)2/p
,

Lemma 2.5 shows that as α → ∞,

Qα(u)

(α + N)2/p
= Sp(u) + o(1)

uniformly on bounded subsets of H 1(Ω). This fact, that we have already used, has further consequences that we now
examine, especially in connection with the results on Q′′

α(uα) of Section 3.

Theorem 5.2. For all p ∈ (2,2∗) the minimizers of Sp over H 1
rad(Ω) are local minima of Sp over the whole space

H 1(Ω).

Proof. It is a simplified version of the proof of Proposition 3.6. Indeed we will show that if u is a minimizer of Sp

over H 1
rad(Ω), then

min
v∈TuS‖v‖=1

S′′
p(u) · v2 > 0, (34)

where TuS = {v ∈ H 1(Ω): 〈u,v〉 = 0}.
Notice that, by (33), 〈u,v〉 = 0 is equivalent to

∫
∂Ω

up−1v dσ = 0.
Since u minimizes Sp among radial functions, we have that u = ϕ1 and Sp(u) = Sp(ϕ1) = |∂Ω|1−2/pλ1; therefore,

with the same arguments as in Lemma 3.1 we see that

S′′
p(u) · v2 = S′′

p(ϕ1) · v2 = 2|∂Ω|1−2/pλ1

(
‖v‖2 − (p − 1)|∂Ω|p/2−1λ

p/2
1

∫
∂Ω

ϕ
p−2
1 v2 dσ

)
(35)

for all v ∈ TuS .
Recalling that ϕ1(1)p−2 = |∂Ω|1−p/2λ

1−p/2
1 , and taking ‖v‖ = 1, we arrive at

S′′
p(u) · v2 = 2|∂Ω|1−2/pλ1

(
1 − (p − 1)λ1

∫
∂Ω

v2 dσ

)
.

Since v ∈ TuS , we have
∫
∂Ω

v2 dσ � 1/λ2, so that

S′′
p(u) · v2 � 2|∂Ω|1−2/pλ10

(
1 − (p − 1)

λ1

λ2

)
for all v ∈ TuS , with ‖v‖ = 1. By the results at the end of the proof of Proposition 3.6 the number in the right-hand
side of the preceding inequality is uniformly positive, for all p ∈ (2,2∗), which shows that S′′

p(u) is positive definite

on TuS . Hence u = ϕ1 is a local minimum for Sp over H 1(Ω). �
Some comments are in order. It is not known whether the best constant Sp is attained by a radial function for all

p ∈ (2,2∗). If the ground states are not radial for some p, it is quite natural to expect that they bifurcate from the
branch of radial minimizers. Theorem 5.2 shows however that this is definitely not the case: nondegeneracy of radial
minimizers over the whole space H 1(Ω) rules out any bifurcation phenomenon. Nonradial ground states, if any exist,
are rather “separated objects”, located far away from the radial minimizers and whose existence begins only after a
certain value of p.

It is also interesting to compare our results with Theorem 5.1, by Lami Dozo and Torné (the actual result from [13]
is much more general and applies to a wider class of problems). Theorem 5.1 states that if

p − 1 >
1

λ2

(
1 − (N − 1)λ1

)
, (36)
1
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then no minimizer of (31) is radial; the argument consists in showing that a suitable (small nonradial) variation of
a radial minimizer makes the functional Sp(u) decrease. Therefore we are in the presence of a local phenomenon,
around radial minimizers.

On the other hand, Theorem 5.2 shows that radial minimizers are local minima over the whole space H 1(Ω), for
all p ∈ (2,2∗); the key argument is the fact already proved that for all these p,

p − 1 <
λ2

λ1
. (37)

A natural question is to compare the conditions (36) and (37); our intent is to give a natural interpretation of (36).
The next result shows that the two conditions are in some sense dual.

Proposition 5.3. There results

1

λ2
1

(
1 − (N − 1)λ1

) = λ2

λ1
. (38)

Proof. We recall from (24) that

λk = k − 1 + Ik+N/2−1(1)

Ik+N/2−2(1)

for all k = 1,2, . . . . In particular,

λ1 = IN/2(1)

IN/2−1(1)
and λ2 = IN/2+1(1)

IN/2(1)
+ 1.

To prove (38) we have to show that 1
λ1

− N + 1 = λ2.

The already used recursive relation Iν−1(x) = Iν+1(x) + 2ν
x

Iν(x), for ν = N/2 and x = 1 reads

IN/2−1(1) = IN/2+1(1) + NIN/2(1).

Therefore
1

λ1
− N + 1 = IN/2−1(1)

IN/2(1)
− N + 1 = IN/2+1(1) + NIN/2(1)

IN/2(1)
− N + 1 = IN/2+1(1)

IN/2(1)
+ 1 = λ2. �

Although (36) or (37) are only sufficient conditions for the existence of nonradial minimizers, the fact that λ2/λ1 >

N/(N − 2) = 2∗ − 1 for all N � 3 (proved in Section 3) and the variational properties of the radial minimizers
described in this section seem to provide some evidence towards the validity of the following

Conjecture. For all N � 3 and for all p ∈ (2,2∗), the best constant Sp for the trace inequality on the unit ball of RN

is attained by a radial function.

6. Symmetry for slow growth

In this final section we return to the Neumann problem for the Hénon equation. We have seen that for every
p ∈ (2∗,2∗) the minimizers of Qα are not radial provided α is sufficiently large. In the interval (2,2∗) the situation
is less clear, since it depends on the symmetry properties of the minimizers of the trace inequality, which are not
precisely known for the unit ball. We point out that even if one knows that the minimizers of Sp are radial, it is not
clear a priori that also the minimizers of Qα should be radial.

In this section we investigate the symmetry of minimizers when p is close to 2. It is interesting to keep in mind the
behavior of minimizers for the Dirichlet problem described in [18]: in that case the authors showed that for p close to
2 minimizers are nonradial only if α is very large (the threshold α∗ between radial and nonradial minimizers tends to
infinity as p → 2). However the symmetry breaking phenomenon persists, as for a fixed p close to 2 one has nonradial
solutions for very large α.

We show in Theorem 6.1 below that this is not the case for minimization in H 1(Ω): for p close to 2 minimizers
are radial for all α large enough.
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Of course we take advantage of some result for the “limit” problem given by the minimization of Sp . The precise
result we need is contained in Theorem 4 of [13]. There it is proved that there exists p̂ ∈ (2,2∗] such that for every
p ∈ (2, p̂ ] the problem minu∈H 1(Ω) Sp(u) has a unique solution, which is radial. Of course this solution (with norm
equal to one) is ϕ1, and Sp(ϕ1) = |∂Ω|1−2/pλ1.

Theorem 6.1. Let p ∈ (2, p̂ ). For every α large enough the problem

min
u∈H 1(Ω)

‖u‖2

(
∫
Ω

|u|p|x|α dx)2/p
(39)

has a unique positive solution ( normalized by ‖u‖ = 1), and it is a radial function.

Proof. The proof of this theorem follows very closely that of Theorem 4.1; the main difference comes from the fact
that in the present case we are not dealing with radial functions, which tends to complicate things. On the other hand
we will profit of the fact that we are now working with p < 2∗.

By Lemma 2.5 we have that as α → ∞,

Qα(u)

(α + N)2/p
= Sp(u) + o(1)

uniformly on bounded subsets of H 1(Ω); thus, setting mα = minH 1(Ω)∩S Qα we see that

mα ∼ (α + N)2/p|∂Ω|1−2/pλ1.

Let uα ∈ H 1(Ω)∩S be (positive and) such that Qα(uα) = mα . Then, up to subsequences, uα → u weakly in H 1(Ω),
and strongly in Lp(Ω) and in Lp(∂Ω), since p < 2∗. Notice that u �≡ 0, because otherwise

|∂Ω|1−2/pλ1 + o(1) = mα

(α + N)2/p
= 1

(
∫
∂Ω

u
p
α dσ)2/p

+ o(1) → ∞,

which is absurd.
Furthermore, since p < p̂,

|∂Ω|1−2/pλ1 = min
v∈H 1(Ω)

‖v‖2

(
∫
∂Ω

vp dσ)2/p
� ‖u‖2

(
∫
∂Ω

up dσ)2/p
� 1

(
∫
∂Ω

up dσ)2/p

= lim
α

1

(
∫
∂Ω

u
p
α dσ)2/p

= lim
α

(
Qα(uα)

(α + N)2/p
+ o(1)

)
= |∂Ω|1−2/pλ1.

Therefore we have that ‖u‖ = 1 and that u is a minimizer for Sp . By the above quoted results and the assumption
p < p̂ , it must be u = ϕ1. We conclude that every sequence of minimizers for Qα converges to ϕ1 strongly in H 1(Ω).

We now show that Qα has a unique minimizer for α large. Suppose this is not true; then for every α in an unbounded
set A, there exist two distinct minimizers uα and vα . As in the proof of Theorem 4.1, if we set

ψα = uα − vα

‖uα − vα‖ ,

we see that it solves⎧⎨
⎩

−�ψα + ψα = (p − 1)m
p/2
α |x|αcαψα in Ω,

∂ψα

∂ν
= 0 on ∂Ω,

(40)

with

cα =
1∫

0

(
vα + t (uα − vα)

)p−2 dt.

Notice that |cα| � (uα + vα)p−2.
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Since ψα ∈ S , up to subsequences we can assume that ψα → ψ weakly in H 1(Ω) and strongly in Lp(Ω) and
in Lp(∂Ω). We claim that ψ �≡ 0. To see this we multiply the equation in (40) by ψα and we use Lemma 2.5 to obtain

1 = ‖ψα‖2 = (p − 1)m2/p
α

∫
Ω

cαψ2
α|x|α dx = (p − 1)

(|∂Ω|2/p−1λ
p/2
1 + o(1)

)
(α + N)

∫
Ω

cαψ2
α |x|α dx

� C

(
(α + N)

∫
Ω

cp/(p−2)
α |x|α dx

)1−2/p(
(α + N)

∫
Ω

ψp
α |x|α dx

)2/p

� C

(
(α + N)

∫
Ω

(uα + vα)p|x|α dx

)1−2/p( ∫
∂Ω

ψp
α dσ + o(1)

)2/p

� C

( ∫
∂Ω

(uα + vα)p dσ + o(1)

)1−2/p( ∫
∂Ω

ψp
α dσ + o(1)

)2/p

� C

( ∫
∂Ω

ψp
α dσ + o(1)

)2/p

.

If ψ is zero, then the strong convergence of ψα in Lp(∂Ω) gives a contradiction.
We now pass to the limit in the weak form of (40), which is

〈ψα,φ〉 = (p − 1)m2/p
α

∫
Ω

cαψαφ|x|α dx

for all φ ∈ H 1(Ω).
We write

(α + N)

∫
Ω

cαψαφ|x|α dx = (α + N)

[∫
Ω

ϕ
p−2
1 ψαφ|x|α dx +

∫
Ω

(
cα − ϕ

p−2
1

)
ψαφ|x|α dx

]

= (α + N)

[∫
Ω

ϕ
p−2
1 ψφ|x|α dx +

∫
Ω

ϕ
p−2
1 (ψα − ψ)φ|x|α dx

+
∫
Ω

(
cα − ϕ

p−2
1

)
ψαφ|x|α dx

]

and we evaluate the three terms in the right-hand side separately. For the first one we have

(α + N)

∫
Ω

ϕ
p−2
1 ψφ|x|α dx =

∫
∂Ω

ϕ
p−2
1 ψφ dσ −

∫
Ω

∇(
ϕ

p−2
1 ψφ

) · |x|αx dx,

and, by Hölder inequality,∣∣∣∣
∫
Ω

∇(
ϕ

p−2
1 ψφ

) · |x|αx dx

∣∣∣∣
� C

∫
Ω

|ψ ||φ||x|α dx + C

∫
Ω

(|φ||∇ψ | + |ψ ||∇φ|)|x|α dx

� C‖ψ‖2‖φ‖2∗
(∫

Ω

|x|αN dx

)1/N

+ C
(‖∇ψ‖2‖φ‖2∗ + ‖∇φ‖2‖ψ‖2∗

)(∫
Ω

|x|αN dx

)1/N

= o(1)

as α → ∞. Therefore

(α + N)

∫
Ω

ϕ
p−2
1 ψφ|x|α dx =

∫
∂Ω

ϕ
p−2
1 ψφ dσ + o(1).

For the second term we apply Hölder inequality to obtain, by Lemma 2.5,
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(α + N)

∫
Ω

ϕ
p−2
1 (ψα − ψ)φ|x|α dx

�
(

(α + N)

∫
Ω

ϕ
p

1 |x|α dx

)1−2/p(
(α + N)

∫
Ω

|ψα − ψ |p|x|α dx

)1/p(
(α + N)

∫
Ω

|φ|p|x|α dx

)1/p

=
( ∫

∂Ω

ϕ
p

1 dσ + o(1)

)1−2/p(∫
Ω

|ψα − ψ |p dσ + o(1)

)1/p(∫
Ω

|φ|p dσ + o(1)

)1/p

= o(1)

because ψα → ψ strongly in Lp(∂Ω).
Finally, for the third term we write

(α + N)

∫
Ω

(
cα − ϕ

p−2
1

)
ψαφ|x|α dx �

(
(α + N)

∫
Ω

∣∣cα − ϕ
p−2
1

∣∣p/(p−2)|x|α dx

)(p−2)/p

×
(

(α + N)

∫
Ω

|ψα|p|x|α dx

)1/p(
(α + N)

∫
Ω

|φ|p|x|α dx

)1/p

and we readily recognize, as above, that the last two integrals are uniformly bounded as α → ∞. Recalling the
definition of cα it is easy to see that the first integral goes to zero as α → ∞.

Putting together the above estimates we can say that

〈ψα,φ〉 = (p − 1)
(|∂Ω|p/2−1λ

p/2
1 + o(1)

)( ∫
∂Ω

ϕp−2ψφ dσ + o(1)

)
,

so that, when α → ∞,

〈ψ,φ〉 = (p − 1)λ1

∫
∂Ω

ψφ dσ, (41)

for all φ ∈ H 1(Ω) (we have used the fact that ϕ
p−2
1 ≡ |∂Ω|1−p/2λ

1−p/2
1 on ∂Ω). Eq. (41) says that ψ is a (nontrivial)

weak solution of⎧⎨
⎩

−�ψ + ψ = 0 in Ω,

∂ψ

∂ν
= (p − 1)λ1ψ on ∂Ω.

Since we know that (p−1)λ1 is not an eigenvalue of the Steklov problem (6), we conclude that ψ ≡ 0, a contradiction.
Therefore uα ≡ vα for all α large. In other words, problem (39) has a unique solution for p ∈ (2, p̂ ) and α large.

Since (39) is invariant under rotations, this solution must be radial. �
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