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Abstract

Since Poincaré’s fundamental work on the qualitative study of differential equations in 1881, the viewpoint of pursu
description of the long range behavior of trajectories for “most” systems has been somewhat present in dynamics. Ab
decades later, Smale was aiming exactly at that purpose when he introduced in the early sixties the concept of h
systems, which turns out to correspond to a large class of robust systems that gave rise to a basic theory of modern
Yet, hyperbolic systems are not typical since not every system can be approximated by a hyperbolic one, as can b
the famous example of the butterfly attractor provided by Lorenz, which is not hyperbolic and still robust or totally pe
under small perturbations of the initial flow. A string of other counter-examples were constructed in the late sixties a
seventies, and is to be noticed that all of them are related to cycles in dynamics, introduced by Poincaré, which will be
here.

In the present paper, we wish to provide some perspective about this major question, proposing in qualitative te
could be the main characteristics of a typical system. Indeed, we shall discuss partial successes and a possible s
proving a global conjecture on the finitude of large basin attractors and their stochastic stability for non-conservative d
i.e. Cr flows, diffeomorphisms, and transformations of compact, boundaryless manifolds or the interval,r � 1. We shall also
impose the union of the attracting basins to have total probability in the ambient space (phase space). Thus, the a
conjecture is a description in a rather simple conceptual way of the long range behavior of a typical (positive) trajec
typical dynamical system: each trajectory has only finitely many choices (of attractors) where to accumulate upon in th
We discuss some recent related results, including homoclinic bifurcations, dynamical robustness and persistence,
systems with a dominated or partially hyperbolic decomposition.

My perspective is that we should expect, no so long in the future, substantial progress about the main and some of
conjectures in this paper in theC1 topology context and for one-dimensional dynamics, as conveyed in the introduction.
difficulty in higher dimensions and theCr topology,r > 1, arises from the question whether densely, in the space of
conservative dynamics, the systems display a dense subset of periodic orbits in their limit or nonwandering set. The
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0294-1449/$ – see front matter 2005 Elsevier SAS. All rights reserved.
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has been positively settled only in theC1 topology, a result due to Pugh in the sixties, and it remains open otherwise e
for dimension one or flows on orientable surfaces. Still, in my view, theC1 case is already iluminating of the darker rea
of dynamics. Above all, the idea of having most systems with only finitely many attractors toward which almost all or
attracted to, seems to me a tempting one to be considered even in special and yet relevant settings.
 2005 Elsevier SAS. All rights reserved.

Résumé

Depuis le travail fondamental de Poincaré sur l’étude qualitative des équations différentielles en 1881, l’idée de ch
description du comportement à long terme des trajectoires pour « la plupart » des systèmes a été présente d’une cer
en dynamique. Environ huit décennies plus tard, Smale s’attelait exactement à cette tâche quand il introduisit, au
années soixante, le concept de systèmes hyperboliques, qui correspondent finalement à une grande classe de systè
qui donnèrent naissance à une théorie de base de la dynamique moderne. Cependant, les systèmes hyperboliques
typiques puisque n’importe quel système ne peut pas être approché par un système hyperbolique, comme le montre
attracteur « papillon » découvert par Lorenz, qui n’est pas hyperbolique mais toujours robuste ou totalement persista
petites perturbations du flot initial. Une série d’autres contre-exemples furent construits à la fin des années soixante e
des années soixante-dix, et l’on doit remarquer que tous sont liés à des cycles en dynamique, introduits par Poinca
nous allons considérer ici.

Dans cet article, nous souhaitons donner une vision de cette question majeure, proposer en des termes qualitatifs c
raient être les principales caractéristiques d’un système typique. En effet, nous discuterons des succès partiels et d’u
stratégie pour prouver une conjecture globale sur la finitude des attracteurs des grands bassins et leur stabilité stocha
les dynamiques non-conservatives, à savoir, les flots, les difféomorphismes et les transformations des variétés comp
bords ou de l’intervalle de classeCr pourr � 1. Nous imposerons aussi que l’union des bassins attracteurs soit de prob
un dans l’espace ambiant (l’espace des phases). Ainsi, le but de notre conjecture est une description, d’une manière re
simple conceptuellement, du comportement à long terme d’une trajectoire (positive) typique d’un système dynamique
chaque trajectoire n’a qu’un nombre fini de choix (d’attracteurs) où s’accumuler dans le futur.

Nous discuterons de quelques résultats connexes récents, notamment des bifurcations homocliniques, de la robus
mique et de la persistance, de même que des systèmes avec une décomposition dominée ou partiellement hyperboli

Mon point de vue est que nous devrions connaître à moyen terme des progrès substanciels à propos de la conjectur
et d’autres conjectures de cet article dans le contexte de la topologieC1 et pour la dynamique de dimension un, comme ce
été expliqué dans l’introduction. Une difficulté majeure en dimension supérieure et en topologieCr pourr > 1 provient de la
question de savoir si, de façon dense dans l’espace des dynamiques non-conservatives, les systèmes possèdent un so
dense d’orbites périodiques dans leur ensemble limite ou leur ensemble « non-récurrent ». La question a été résolue
dans le casC1 : c’est un résultat de Pugh dans les années soixante ; elle reste ouverte dans les autres cas, sauf en dim
ou pour le flot sur des surfaces orientables. De mon point de vue, même le casC1 est déjà éclairant dans le domaine incon
de la dynamique. Avant tout, l’idée d’avoir souvent des systèmes avec un nombre fini d’attracteurs vers lesquels pres
les orbites sont également attirées me semble être une idée attrayante à considérer même dans des contextes part
pourtant pertinents.
 2005 Elsevier SAS. All rights reserved.

1. Introduction

We shall present in this paper a global scenario for dissipative or, more precisely, non-conservative dy
i.e. Cr flows, diffeomorphisms and transformations,r � 1, on compact boundaryless manifolds or intervals
the real line. The main focus concerns a conjecture on the denseness, in theCr topology, of systems having onl
finitely many attractors, the attractors being sensitive to initial conditions (chaotic) or just periodic sinks a
union of their basins of attraction having total Lebesgue probability. The attractors should also be stoch
stable in their basins of attraction with respect to random perturbations in a finite dimensional space of par
The conjecture is formally presented and discussed in Section 2. In Sections 2 and 3, other related conje
presented as well as a number of recent partial results. From them we have inferred a possible strategy
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that our global scenario may indeed be valid. Basic definitions and some known or motivating results are p
in Section 2.

Our conjecture corresponds to a probabilistic and subtle version of another main one proposed by Sma
sixties, but by the end of that decade many counter-examples to it had been provided, including by Smale
This fact certainly led for quite a while to a vacuum with respect to the possibility of formulating a global sc
for dynamics, through which we could provide key properties of a typical dynamical system. Smale’s pr
stated that systems with a hyperbolic structure, form an open and dense subset of all systems in theCr topology,
r � 1 (see Section 2).

Most remarkably, towards the end of the sixties Kolmogorov when visiting IMPA, Rio de Janeiro, sta
colleagues there that the global study of dynamical systems could not go very far without the use of new ad
mathematical tools, like probabilistic ones. Of course, the work of Sinai, Arnold and Anosov, among othe
already such a flavor at that point. But, I interpreted Kolmogorov’s view, as expressed to me by Elon Lima so
afterwards, as referring to Smale’s proposal of a global scenario for dynamics, since counter-example
denseness of hyperbolic systems were already known. For years to come, I kept such a remarkable insi
mind.

So, I take the occasion to pay Kolmogorov and Smale my tribute.
The collapse of Smale’s conjecture excluded the case of flows on disks and surfaces, as well as

dimensional dynamics. Indeed, new excellent results have just been announced proving it in the re
dimensional case, as shall be discussed in Section 2.5.

On the other hand, for one-dimensional real or complex dynamics, the conjecture presented here g
further than indicated in the Abstract:

• For almost all parameter values, the corresponding dynamical systems display finitely many attractor
are periodic sinks or carry an absolutely continuous invariant probability measure.

Concerning the main conjecture, there is the following string of outstanding recent results in the re
dimensional case, that culminates with its full solution for unimodal maps, i.e., maps with only one critical

A first breakthrough is due to Lyubich [71], using results by Martens and Nowicki [74] and previously
van [115] and McMullen [76], among others. To state his result, we consider the quadratic family

fx(x) = ax(1− x), fa : [0,1] → [0,1], 0< a � 4,

that plays a key role in the theory of dynamics of interval maps. We then have
Lyubich [71]: For almost everya in (0,4], fa either has a hyperbolic attractor (sink) attracting almost all or

or else it is chaotic, i.e., it has an absolute continuous invariant probability measure, which is unique and
(and so a SRB measure).

Following that, there was an intense activity with other authors joining in the efforts to successfully ach
definite picture of the typical dynamics for unimodal maps.

Avila, de Melo and Lyubich [17]: Same conclusion as above in the analytic case, assuming negative S
derivative and making use of a key structure (laminations corresponding to the topological conjugacy cla
the space of infinitely renormalizable maps.

Avila and Moreira: The main conjecture is true for non-degenerate analytic families, in particular the
quadratic one [20], and even just genericCk families,k � 2, of unimodal maps [18,21]. Moreover, surprising
there exists an explicit formula that gives the eigenvalues of periodic orbits as a function of corresponding k
sequences and of the kneading sequence of the critical orbit, valid for almost all parameters in any generic
family of unimodal maps [19]. They also announced that the main conjecture holds in the complement of
positive codimension.

In my perspective these last results shall soon be fully extended to the multimodal case.
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As mentioned above, we shall discuss in Section 3 other relevant conjectures and questions, particul
cerning homoclinic bifurcations and robustness of transitive sets. Motivated by such questions and som
recent results presented here, we have set up a possible strategy to prove the validity of the global sce
non-conservative dynamics as proposed in 1995 in a meeting in honor of A. Douady [90].

I wish to thank W. de Melo, C.G. Moreira and specially to M. Viana for their precious comments and inform
while I was preparing this text. I also want to mention that Viana’s book with Bonatti and Diaz [28] has a
account of present day dynamics, being more comprehensive in the non-conservative case.

2. Basic definitions and results: the global conjecture on the finitude of attractors

In this section we shall discuss the basic ingredients leading to our main conjecture. We also discuss
global conjecture in the sixties proposing the class of hyperbolic (or structurally stable) systems as para
typical dynamics.

2.1. Sinai–Ruelle–Bowen probability measure

This remarkable notion was introduced by Sinai [112] and proven by him to exist for Anosov or glo
hyperbolic diffeomorphisms, as defined in Section 2.4 below. Subsequently, it was shown to exist by Ruel
and Ruelle and Bowen [32] for hyperbolic diffeomorphisms and flows.

The definition is expressed in rather simple terms, but its content is quite meaningful in describing the dy
of attractors when it’s possible to show that they carry SRB-measures, which is usually a hard task.

Let A be an attractor forf , i.e. there is a set of points in the phase space with positive Lebesgue prob
whose future orbits tend toA, as the number of iterates tends to infinite. The set of orbits attracted toA in the
future is called its basin. The definition for flows is entirely similar. Letµ be anf -invariant probability measur
onA. Thenµ is called a SRB (Sinai–Ruelle–Bowen) measure for(f,A) if we have for any continuous mapg, that

lim
n→∞

1

n

∑
g
(
f i(x)

) =
∫

g dµ

x ∈ E ⊂ B(A) basin of attraction forA, with m(E) > 0, wherem denotes Lebesgue measure. It’s common
haveE with total probability inB(A) and so, in such a case, the above convergence holds for a typical traj
attracted toA in the future.

2.2. Stochastic stability

For attractors carrying SRB-measures, we can investigate the question of their stability or persisten
we slightly perturb the dynamics, more particularly from a probabilistic viewpoint. Thus, we shall follow
mogorov’s perspective. Indeed, the more classical concept of structural stability, introduced by Andron
Pontryagin in the 30’s, remarkably turned out to be too close or even equivalent to hyperbolicity (see Sect
However, there are open sets of structurally unstable systems, and so we consider instead the concept of
stability.

Let A be an attractor forf , µ be a SRB invariant probability for(f,A) andf be an element of a finite d
mensional parameter-space ofCr maps,r � 1. Random Lebesgue choice of parameters gives rise to mapfj ,
j = 0,1, . . . , that areε-nearf in parameter space, someε > 0. Letzj = fj ◦ · · · ◦ f1(z0), z0 ∈ B(A).

We call(f,A,µ) stochastically stable if given a neighborhoodV of µ in the weak topology, the weak limit o
1
n

∑n−1
j=0 δzj

is in V for a.a.(z0, f1, f2, . . .) if ε is small, whereδzj
stands for the Dirac measure atzj .

Variants of this definition, including the case of flows, are briefly presented in [90] and references provid
also [28] for a comprehensive discussion.
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Fig. 1.

2.3. Attractors

As defined in Subsection 2.1 on SRB-measures above, attractors should be the positive limit set for th
starting at a subset of the phase space (space of events) with positive Lebesgue probability. Often, they a
orbits of a full measure set in a neighborhood of them. We add to the definition of attractor that it must be tra
i.e., it must display a dense orbit, so it cannot be decomposed into strictly smaller attractors. The simplest
for a diffeomorphismf is that of an attracting periodic orbit: the eigenvalues of df n(p) have norm less than on
wherep is the periodic orbit andn its period. Another well known case is that of the whole torusT 2 for the map
induced by the linear oneL on R

2 defined byL(1,0) = (2,1), L(0,1) = (1,1).
Attractors are of paramount importance in dynamics since they mold the future behavior of many orbits,

ones in their basin of attraction. What we want mainly to discuss in the present paper is our conjecture tha
number of attractors should in fact attract Lebesgue almost all future orbits, at least for a dense subset of d
systems in theCr topology,r � 1. We can go even further when considering finite dimensional parameter fa
of dynamics, by requiring that such a property holds for dynamical systems corresponding to Lebesgue a
parameter values. The precise statement of the conjecture is at the end of the present section.

We want to emphasize that we shall play, in probabilistic terms, withalmost all orbits in the phase space(space
of events) of dynamical systems corresponding toalmost all parameter values, as suggested by Fig. 1.

So, figuratively what we wish to propose is that “small accidents” both in terms of Lebesgue measure
parameter space of systems as well as in the phase space are not “very relevant” in order to provide suc
scenario for dynamics.

We now give the definition of a hyperbolic system and, in particular, of a hyperbolic attractor, and then
present important examples of both hyperbolic and non-hyperbolic attractors. They all shall have at lea
degree of persistence. Formally, they shall exist for a positive probability set of parameter values. Or, so
even more sharply, for an open set in the space of parameters, in which case the attractors are called ro
hyperbolic attractors are robust and, historically, the only ones known to be robust until the appearance of
like attractors, as discussed in Section 2.6.

2.4. Hyperbolicity

A diffeomorphismf :M → M is called hyperbolic if on its limit setL, that is the closure of the sets whe
the orbits accumulate in the future or in the past, we have a decomposition of the tangent bundle ofM at L,
T M = Es ⊕ Eu, such that df |Es , df −1|Eu are uniform contractions.
L
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In the case of a flowXt , t ∈ R, generated by a vector fieldX, we require that

TLM = Es ⊕ E0 ⊕ Eu.

Here,E0 is one-dimensional and tangent toX, outside its singularities (a finite number) and

‖dXt | Es‖,‖dX−t | Eu‖ � Ceλt , t ∈ R,

C > 0, 0< λ < 1.

In the cases where such bundle decompositions occur in the whole ambient manifold, we refer to such
hyperbolic diffeomorphisms or flows as Anosov ones. Recall that associated to the orbits of a hyperbolic s
are stable and unstable manifolds, corresponding to the contracting and expanding sub-bundles by the ac
derivative of the dynamical system. Often we refer to a hyperbolic system as satisfying AxiomA or more precisely
when its non-wandering set, which may be larger than the limit set, is hyperbolic. For our discussion here
difference is not very relevant. Sometimes, byabus de langage, we refer to hyperbolic systems as having hyperb
limit sets and all stable and unstable manifolds transversal. They form a robust set of dynamics, i.e., an op
everyCr topology,r � 1. Also, sometimes we refer to an Axiom A system as being hyperbolic and without c
among the different closed, invariant and transitive subsets, in which the (hyperbolic) limit set can be deco
They, again, form a robust set of dynamics [95,114].

A very notable result in dynamics states in a simplified form (see additional condition below concerning
ant manifolds) that

hyperbolicity
C1∼ structural stability

We recall that a diffeomorphismf is Cr structurally stable, or just dynamically stable or just stable, if for
Cr small perturbationg of f , there is a homeomorphismh of the phase space such thathf (x) = gh(x), for all
pointsx in the phase space. For flows, we require the existence of a homeomorphismh sending trajectories of th
initial flow to the trajectories of any smallCr perturbation.

A beautiful page of dynamics is the solution, in theC1 topology, of the so calledStability Conjecture, stating
that a system isCr structurally stable if and only if it is hyperbolic and all the stable and unstable manif
associated to the orbits in the limit set are in general position, i.e.,transversal. In the equivalence indicated abov
we didn’t mention explicitly the transversality condition on stable and unstable manifolds because it corre
to the easiest part of the conjecture.

That stability holds for hyperbolic systems has been proved, in various settings, by Anosov [10], Pal
Palis and Smale [91], Robbin [103], de Melo [39], Robinson [104] in the sixties and early seventies. The c
was completed in the eighties by Mañé [73] for diffeomorphisms and in the nineties by Hayashi [51] for
after earlier contributions by Liao [66,67], Sannami [109] and Mañé [72].

Predecessors to such works are the pioneering ones by Andronov and Pontryagin for flows on disks an
Peixoto for flows on orientable surfaces, as cited in the next subsection.

2.5. Conjecture (Smale)

Smale’s conjecture concerning a typical dynamical system formulated in the sixties, can simply be s
follows: Every system can be approximated by a hyperbolic one. If the conjecture was true, the hyperbolic
by denseness and robustness would betypicalof dynamics.

A few years afterwards counter examples abounded, due to Smale [114], Abraham and Smale [1], Sim
and others. More strikingly, Newhouse [86] provided counter-examples forC2 surface diffeomorphisms usin
arithmetic difference of “thick” Cantor sets (thickness is a kind of fractal dimension). He did so by unfo
homoclinic tangencies, as in Section 3.2, to generate open sets of nonhyperbolic diffeomorphisms co
dense subsets of maps exhibiting homoclinic tangencies. Newhourse’s idea does not hold in theC1 category,
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by Ures [119]. There were also the beautiful Lorenz butterfly attractor that came to our attention only in th
seventies and the Hénon attractor, both of which we shall much comment in the sequel.

In fact, Smale’s conjecture was known for flows on disks [9] and orientable surfaces [99], and conseque
diffeomorphisms of the circle. Smale was initially inspired by these results that correspond to pioneering w
Andronov and Pontryagin in the thirties and Peixoto in late fifties.

More recently, it has been independently proved by Swiatek and Graczyk [49] and Lyubich [71] that t
perbolic maps are dense among real quadratic ones. Subsequently, Kozlovski [59,60] extended this resC3

unimodal mappings. A remarkable recent theorem has been announced in two parts by Kozlovski, Shen
Strien [61,62], namely the density of the hyperbolic transformations amongCr maps of the interval, forr � 2, the
case ofr = 1 being also included by a much previous theorem of Jakobson [54]. The result of Kozlovski
and Van Strien not only answers Smale’s conjecture in one real dimension, but opens the way for proving
conjecture in the present paper in full generality for maps of the interval or the circle.

It is important to observe that for the one-dimensional complex case, i.e., rational maps of the Riemman
the question remains wide open.

2.6. Beyond hyperbolic attractors

For dynamics, the most interesting examples of attractors are the ones that are robust under small pert
of the dynamics, as in the hyperbolic and Lorenz-like cases, or which are at least probability persistent
attractor exists for a positive probability in parameter space), as in the Hénon-like case.

As mentioned before, the simplest attractors are the ones consisting of a simple fixed or periodic hy
orbit. In the hyperbolic case, the other extreme corresponds to attractors consisting of the whole ambient m
like the one induced by hyperbolic toral automorphisms. This example turns out to be a particular case of
diffeomorphisms for which we assume (uniform) hyperbolicity at all points of the manifold [10]. In this ve
is still an open question whether it is true for all Anosov diffeomorphisms that the whole manifold consis
(transitive) attractor. This is generally not true for Anosov flows already in dimension three [46].

The remarkable Lorenz “butterfly” attractor, whose original equations are in Fig. 2, was the first know
of a fully persistent or robust(it exists for all sufficiently small variations of the initial parameter values) and
(transitive) attractor which is not hyperbolic[70]. Notice that its singularity(0,0,0) is accumulated by hyperboli

Fig. 2.
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periodic orbits. Actually, Lorenz focused on the property that the long range behaviour of the orbits in the b
attraction is sensitive to initial conditions: with total probability, orbits with different initial conditions spread
in the future as much as the diameter of the attractor. And he did so not with a rigorous mathematical pr
with rather convincing computational arguments. Attractors with such characteristics are called Lorenz-lik
recently, Tucker [118] provided a computer aided proof that the original Lorenz’s equations indeed corresp
a sensitive (or chaotic) robustly transitive non-hyperbolic attractor containing the singularity(0,0,0). A charming
account of the Lorenz attractor’s beautiful history is in Viana [123].

Only about ten years after Lorenz’s work, a number of concrete Lorenz-like attractors were exhib
Afraimovich, Bykov and Shil’nikov [2] and Guckenheimer and Williams [50], for which the authors prov
mathematical proofs that they are sensitive to initial conditions and, moreover, robustly transitive and yet
perbolic. In the eighties Robinson [105] and Rychlik [108] showed that such attractors may be obtained
in three dimensions, through bifurcations taking place in certain families of cubic differential equations
quadratic, like above.

A new kind of attractor in three dimensions, the contracting Lorenz attractor or Lorenz–Rovella attractor
is probability persistent but not robust, was obtained by Rovella [106] upon a previous work by Arneodo,
and Tresser [11]: It contains a hyperbolic singularity with real eigenvalues (but now the sum of any two eige
is negative), it is probability persistent in terms of Lebesgue probability or justprobability persistent, but not robust
(Fig. 3).

Another remarkable example is the one named after Hénon [52]. Like Lorenz, he provided ingenious co
tional arguments suggesting the existence of an attractor for a two-parameter family of quadratic diffeomo
of the plane. It would display a long range sensitivity of orbits near it with respect to their initial conditions. H
pointed to the existence of folds and expansion along lines in the attractor and a fractal structure in a tra
direction. The challenge was then to provide a formal proof of the existence of such a chaotic attractor wi
degree of persistence.

Fig. 3.
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The equations and figure (Fig. 4) provided by Hénon were as follows:

fa,b(x, y) = (1− ax2 + y, bx), for a ∼= 1.4 andb ∼= 0.3.

I also wish to mention Kolmogorov’s pioneering and classic work on hydrodynamical attractors as prese
Arnold [14], as well as the charming paper of May on nonlinear dynamics and some applications [75].

By the last part of the seventies and going into the eighties, there appeared a string of very creative
giving rise to new insights on how dynamics could develop in the future. First, there was the work by
mentioned above, proposing a new kind of attractor now named after him. Following that, there was the w
Feigenbaum [45] and in parallel Coullet and Tresser [37], concerning period doubling bifurcations for qu
families of interval maps and the notable fact that the limiting ratio of approach of bifurcating parameter
converging to a limit point is a universal constant (independently of the specific quadratic family).

These works contributed to sparkle a much more robust development than before particularly of one rea
sional dynamics.

Then, there was the result of Jakobson [55], exhibiting new attractors of parametrized families of un
maps of the interval, including the quadratic family. They areprobability persistent(but not robust) under sma
perturbations of the parameter. It was a key predecessor to the remarkable work by Benedicks and Carl
showing the existence of a probability persistent Hénon-like attractor, which was obtained for the above coe
(parameters)a near 2 andb small. Subsequently, Mora and Viana [79] showed that Hénon-like attractors oc
the unfolding of quadratic homoclinic tangencies associated to dissipative fixed or periodic hyperbolic
As a consequence, the attractor appears near the values originally suggested by Hénon whose figure is
above, i.e.a ≈ 1.4 andb ≈ 0.3. This result was extended to higher dimensions, when the unstable manifold
associated fixed or periodic point has dimension one [121], in the sectionally dissipative case as in Sec
Also, Viana [122] exhibited new non-hyperbolic examples in higher dimensions which are, in fact, robust.

2.7. Global conjecture on the finitude of attractors and their metric stability

With the basic definitions, facts and examples presented above, we are now ready to formally state o
global conjecture, introduced in 1995 in a meeting in Paris in honor of A. Douady [90]. As mentioned
abstract, we are considering the set of allCr (r � 1) dynamics, i.e. flows diffeomorphisms or transformations o
compact, smooth, boundaryless manifold or closed interval on the real line.

Global Conjecture.

• There is a dense setD of dynamics such that any element ofD has finitely many attractors whose union
basins of attraction has total probability;
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• The attractors of the elements inD support a physical (SRB) measure;
• For any element inD and any of its attractors, for almost all small perturbations in generick-parameter families

of dynamics,k ∈ N, there are finitely many attractors whose union of basins is nearly (Lebesgue) equa
basin of the initial attractor; each such perturbed attractor supports a physical measure;

• Stochastic stability of attractors – the attractors of elements inD are stochastically stable in their basins
attraction;

• For generic families of one-dimensional dynamics, with total probability in parameter space, the attrac
either periodic sinks or carry an absolutely continuous invariant measure.

One can also ask whether the first two items above are valid with total probability in parameter space.

2.8. More on the existence of SRB probabilities – stochastic stability

All the attractors that have been presented so far carry physical or SRB probability measures. Before we
some new results concerning other classes of dynamical systems whose attractors enjoy the same pro
introduce the notion of dominated decomposition.

Dominated Decomposition – Definition
Let f be aCr map onM andΛ an invariant set forf . We say thatΛ has a dominated decomposition, see Fig

if there existC > 0 and 0< λ < 1 such thatTΛM = E1 ⊕ E2, E1 andE2 being df -invariant and

‖df n(x)ν1‖
‖df n(x)ν2‖ � Cλn ‖ν1‖

‖ν2‖ , ∀ν = (ν1, ν2), ν2 �= 0, ∀n � 1.

In the figure, domination means that the angle between df n(x)ν andE2 decreases exponentially fast wh
n → ∞. We say thatE2 dominatesE1 and thatf |Λ hasi-dominated decomposition, where 1� i < dimM , if
i = dimE2.

In particular, we callf partially hyperbolic when we have a decompositionTΛM = Es ⊕ Ec ⊕ Eu, where
Es is uniformly contracting,Eu is uniformly expanding,Eu dominatesEcs = Es ⊕ Ec and Ecu = Ec ⊕ Eu

dominatesEs . The definition can be adapted whenEu = 0, Es �= 0 orEs = 0, Eu �= 0.
Concerning SRB measures, recall that they were introduced by Sinai, Ruelle, and Bowen for hyperbo

tems, see Section 2.1. Such measures were shown to exist for probability persistent non-hyperbolic attrac
for interval maps by Jakobson in his pioneering work [55] and much more recently for Hénon-like attrac
Benedicks and Young [26]. In the latter case, subsequently, Benedicks and Viana [25] showed the remark
that the SRB measure has full Lebesgue probability in a neighborhood of the attractor and it is unique.

Fig. 5.
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On the other hand, SRB measures were constructed for Lorenz-like attractors by Bunimovich and Si
and Kifer [58], for Lorenz–Rovella attractors by Metzger [77], who also announced the same result for
dimensional Lorenz attractors such as the ones constructed by Bonatti, Pumariño and Viana [31].

More recently, there were important developments on SRB measures for partially hyperbolic attractors,
the following theorem due to Alves, Bonatti and Viana [5]:

Theorem. Let K ⊂ M be a compact forward invariant set for aC2 diffeomorphism onM . Suppose the sub
bundleEcs is uniformly contracting onK , andEcu is non-uniformly expanding on a positive Lebesgue mea
setH ⊂ K . ThenH is coveredmod 0, i.e., with total Lebesgue probability, by the basins of finitely many
measures.

The authors also introduced the notion ofcu-Gibbs states for an attractorΛ with dominated decompositio
TΛM = Ecs ⊕ Ecu, after the pioneering work of Pesin and Sinai [100] on the existence ofu-Gibbs states for an
attractorΛ with dominated decompositionTΛM = Ecs ⊕Eu. Notice that SRB measures areu-Gibbs states and, a
a partial converse, ergodicu-Gibbs states withk = dimEcs negative Lyapunov exponents are in fact SRB measu
Vasquez [120] extended considerably the theory ofcu-Gibbs states and obtained results on their continuity w
respect to the diffeomorphism, which he called statistical stability, as well as on the existence and finitude
measures for diffeomorphisms with dominated decomposition. Before that, for certain parametrized fam
diffeomorphisms, Dolgopyat [44] has even proved the differentiability of SRB measures, from which he in
not only uniqueness but also good statistical properties for them.

It is also much worthwhile mentioning a recent important result by Tsujii [117]:partially hyperbolic surface
endomorphisms of classCr with one-dimensional uniformly expanding subbundle andr large enough, sayr � 19,
generically(residually) carry finitely many ergodic SRB measures whose union of basins of attraction ha
Lebesgue probability. So, in this setting the first part of the main conjecture in the present paper is confirme

Actually, we believe that Tsujii’s results can be generalized to higher dimensions for partially hyperbo
feomorphisms (maps) with one-dimensional central direction.

Problem. Show that generic partially hyperbolic maps as in Tsujii’s work are stochastically stable in their
of attraction.

Finally, there is the following relevant conjecture on SRB measures formulated by Viana in 1997:

Conjecture 1.Generically, non uniformly hyperbolic diffeomorphisms with a uniformly expanding subbundle
finitely many SRB measures whose union of basins of attraction has total Lebesgue probability.

Concerning stability, let us emphasize, although not so surprisingly in view of Section 2.4, thatnoneof the
previous attractors are structurally stable, except for the hyperbolic ones. However, all of them are stoch
stable. For the hyperbolic case we refer to Kifer [57] and also Young [126]. For Hénon-like attractors the r
due to Benedicks and Viana [24]. For Lorenz and Lorenz–Rovella attractors it is due to Kifer [58] and Metzg
respectively.

3. A strategy for proving the global conjecture on the finitude of attractors: to focus on homoclinic
tangencies

I believe that it might be possible to prove the main conjecture in this paper when there are no hom
tangencies in a robust way. At this point, a famous sentence by Poincaré in his classic treatise “Méthods Nouvelle
de la Mécanique Céleste” comes to mind: “Rien n’est plus propre à nous donner une idée de la complicati
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problème des trois corps et en général de tous les problèmes de Dynamique. . .”, referring to homoclinic orbits
and the geometry of the corresponding stable and unstable manifolds. More concretely, we shall mentio
sequel that a robust absence of homoclinic tangencies implies, at least in theC1 topology, a certain amount o
hyperbolicity, namely a dominated decomposition. Since hyperbolic systems satisfy the main conjecture,
also be the case here. And, if so, we could concentrate our efforts in the fundamental and very difficult p
of understanding the dynamics arising from unfolding homoclinic or heteroclinic cycles, as much as the at
and their basins are concerned.

This will be discussed in the sequel. Let us first see what is known in terms of a weak form of hyperboli
the present case dominated decomposition, when robustly we have no homoclinic tangencies.

Theorem. Let f be a diffeomorphism and letΛ be a compact, maximal invariant set with a dense subse
hyperbolic periodic orbits of unstable indexi > 0. Suppose that there are no homoclinic tangencies associat
periodic hyperbolic orbits with unstable indexi in anyC1 small continuation ofΛ. Then, there is ani-dominated
decomposition off |Λ.

Let us recall the meaning of continuation of a maximal invariant set in the statement of the theorem. LΛ =⋂
n ∈ Zf n(U), whereU is a neighborhood ofΛ and letU be aC1 neighborhood off . For g ∈ U , we call

Λg = ⋂
n∈Z

gn(U) theg-continuation ofΛ.
This theorem is due to Pujals and Sambarino [102] in dimension two and to Wen [124] in higher dimens

is certainly relevant to pursue a proof of the main conjecture in such a setting:

Conjecture 2. There is a residual(or at least dense) subsetR of Cr diffeomorphisms,r � 1, such that: If f ∈ R

andΛ is a maximal invariant set as in the theorem above, with no homoclinic tangencies associated to p
points in a robust way, then f exhibits only finitely many attractors insideΛ. Such attractors are stochastical
stable.

A particularly interesting case in this direction is whenf , Λ are as before, but now it is assumed that
periodic points with biggest unstable index inΛ are dense in it. These conjectures can in particular also be p
for partially hyperbolic pairsf , Λ; see Conjecture 1 in Section 2.8.

3.1. Bifurcation theory

We now turn to bifurcation theory, a classical and central area in dynamics, as set forth by Poincaré. Th
contributions is very notable and we shall highlight some of them:

• Birkhoff [27] in the 30’s has shown that transversal homoclinic orbits for surface diffeomorphisms a
cumulated by periodic orbits (so, infinitely many of them). About three decades later, Smale [113,114
much further by showing that they are part of what he called ahorseshoein any dimension. Before, in the 20’
there was the remarkable work by Van der Pol on relaxation oscillations [40] to model radio transmissio
electric circuits, among other applications. Following up this pioneer work, there were a series of pa
Cartwright and Littlewood [34,35], Littlewood [68,69] and Levinson [65], in the 40’s and 50’s in which
der Pol’s equations with parameters were considered and new kind of solutions were found, going
dynamic bifurcations when varying parameters. In his autobiography, Littlewood called his work in this
“the monster”, since he seemed to continuously work hard but without a clue ofat which port he would arrive
if any . . . Then, in the late 70’s and early 80’s, Levi revisited the problem disposing of new developmen
were not at the time available to Littlewood, such as the horseshoe, sometimes with small and sometim
Hausdorff dimensions, Newhouse’s infinitely many simultaneous sinks and other intricate phenomena
created when unfolding (bifurcating) quadratic homoclinic tangencies; see Section 2.5. He showed [64
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such phenomena were present in cross-sections to 3-dimensional flows generated by Van der Pol’s e
Such equations which were motivated by applications, clearly led to the development of deep mathem

• Closely following Poincaré’s fundamental work, Andronov and school [6–8] set the ground for bifurc
theory in dynamics, influencing generations to come, noteworthily his work with Pontrjagin on stru
stability that has been already mentioned.

• In the 60’s and 70’s, Arnold and school were a source of fine questions and results, in particular much ex
the previous work on bifurcations, as can be seen in [12] and [13]. I wish to add here the work of Il’Yas
and co-authors, as in [53].

• Much relevant has also been the work of Shil’nikov and school, mostly devoted to bifurcation theory an
particularly to the unfolding of homoclinic tangencies and creation of horseshoes [3,4] and [110].

• An extensive study of bifurcations and (structural) stability of parametrized families of dynamics wer
formed in the seventies and going through the next two decades by Newhouse, Palis, Takens [87,8
and Dias Carneiro [38] and Viana, Yoccoz, Moreira [83,84,96,97], whom are also referred to in the se
topics discussing homoclinic bifurcations.

See also [15,28,53,95] for more results and further references.
We have generally been baffled by the creation of cycles in dynamics, in particular 1-cycles, which corr

to homoclinic tangencies; a 3-cycle is in Fig. 6. Actually, the creation of cycles is often unavoidable wh
consider parametrized families of systems and vary the parameters. In most cases, the unfolding of cyc
rise to a very complicated, chaotic evolution of the dynamics in terms of parameters. In particular, they are
of counter-examples to the denseness of hyperbolicity in the space of all dynamical systems endowed witCr

topology,r � 1 (the only unknown case being that ofC1 diffeomorphisms on surfaces, see Ures [119]).
Still, we expect for a dense set of parameters to have only finitely many attractors for the corresponding

ical systems. In fact, the same may be true with total Lebesgue probability in the space of parameters.

3.2. Unfolding homoclinic tangencies

In the sentence at the beginning of Section 3, Poincaré was referring to transversal homoclinic orbits
face diffeomorphisms. One can imagine that he would possibly be as enthusiastic with respect to Birkh
Smale’s results, mentioned in Section 3.1. They highlight even more so the richness of the dynamics implie
dimensions, by the presence of a transversal homoclinic orbit. Indeed, Smale’s horseshoe corresponded
prototype dynamical model: its maximal invariant set is like the product of Cantor sets in which the periodic
are dense.
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Similarly striking is the following list of complex phenomena discovered in the last three and half deca
concerns the unfolding of a homoclinic tangencyq0 associated to a fixed (periodic) orbitp0 with positive speed a
µ = 0, for aC2 family fµ, µ small, ofsurface diffeomorphisms:

• There are infinitely many simultaneous sinks residually in some open subsets of parameter values, a
by Newhouse [85,86]. This renowned result was extended to higher dimensions by Palis and Viana [96
Wu(p0) = 1 andp0 is sectionally dissipative, i.e., the product of any two different eigenvalues of df0 has norm
smaller than one.

• There are Hénon-like attractors for some parameter values, due to Mora and Viana [79], extending Be
and Carleson [23], and to Viana [121] in general in the codimension-one and sectionally dissipative ca

• There are infinitely many simultaneous Hénon-like attractors for dense subsets of open sets of pa
values, as shown by Colli [36].

• A fast growth of the number of periodic points occurs residually in an open Newhouse set as above
Kaloshin and Hunt [56], based on Shil’nikov, Gonchenko and Turaev [47].

In view of these dynamical phenomena, one is lead to consider the question of whether the coexis
infinitely many sinks or Hénon-like attractors or just attractors are probability persistent, i.e., they can occ
positive Lebesgue probability in parameter space:

Conjecture 3.In the unfolding of a homoclinic tangency, the coexistence of infinitely many sinks or, more gen
attractors is not a probability persistent phenomenon. In other words, with total probability in the paramete
the corresponding maps exhibit only finitely many attractors, in particular sinks, in a neighborhood of the o
q0 andp0 (see Fig.7).

A very nice recent result concerning this conjecture for surface diffeomorphisms is due to Gorodet
Kaloshin [48], much extending Tedeschini and Lalli and Yorke [116]. It says that,for any positive integerN ,
infinitely many coexisting localized sinks with cyclicity bounded byN or with period relatively large with respec
to N is not probability persistent. To understand this result, we need to introduce the definition of a localized
and its cyclicity.

Consider Fig. 8, whereq0 is a homoclinic tangency, say quadratic, associated to the fixed (periodic) hype
pointp0 and letV andU be fixed small disjoint neighborhoods of the segments[f0(q0),p0], [p0, f

−1
0 (q0)] in the

stable and unstable manifolds and ofp0, respectively.
Let Λµ = ⋂

n∈Z
f n

µ(V ∪ U).
We can now define a periodic sink forfµ as being localized if it belongs toΛµ. In such a case, it’s calle

(Λ , s)-localized if it visitsU exactlys times during its minimal period. Then, we calls its cyclicity.
µ
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We close for the moment the discussion on the unfolding of homoclinic tangencies. We shall return
Section 3.4, but from a somewhat different point of view. We shall consider homoclinic tangencies assoc
fixed or periodic orbits, that may or not be part of a larger hyperbolic set, sayK , at the initial parameter value for th
unfolding. We shall see that the Hausdorff dimension ofK is a crucial ingredient in establishing some prevale
of hyperbolicity or non-uniform hyperbolicity for the dynamics, in terms of the parameter near its initial valu

3.3. More on the dichotomy hyperbolicity – homoclinic bifurcations

Along the lines discussed at the introduction to the present section, we have set up the following con
which we consider by itself relevant:

Conjecture 4. In any dimension, every diffeomorphism can beCr approximated,r � 1, by a hyperbolic one o
one exhibiting either a homoclinic tangency or a(finite) cycle of hyperbolic periodic orbits with different stab
dimensions – called a heterodimensional cycle[28,87].

As mentioned, hyperbolic diffeomorphisms are not dense (except for the circle and unknown forr = 1 on two-
dimensional surfaces). What the conjecture states is that it is enough to complement them with diffeomo
exhibiting just two different dynamical structures, which are relatively simple to formulate. Yet, such diffe

Fig. 9.
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They may be in fact at a door of the difficult realm of dynamics needed to be better understood. Let me p
that there is a number of impressive results concerning heterodimensional cycles due to Bonatti, Diaz, P
Rocha, like the ones in [30,41,43], also presented in [28].

We have a version of Conjecture 4 for flows. To state it, we have to consider the notion of a singula
introduced in [63] and [22]. Here, a singular cycle for a flow just means a cycle involving singularities, at lea
of them, and periodic orbits. Similar to the diffeomorphism case, a heterodimensional cycle for a flow is
involving finitely many hyperbolic periodic orbits with different stable dimensions (indices).

Conjecture 5. In any dimension, every flow(vector field) can beCr approximated by a hyperbolic one or by o
displaying a homoclinic tangency or a singular cycle or a heterodimensional cycle.

The latter can only occur in dimensions greater than three. In dimension three, we can demand even m

Conjecture 6.Every three-dimensional flow can beCr approximated by a hyperbolic one or by one displayin
singular cycle or a Lorenz-like attractor or repellor.

In this spirit, Conjecture 5 may be formulated in a somewhat stronger form, substituting singular cy
singular hyperbolic set in the sense of [80,81] and [82].

These conjectures have been the subject of much interest and some remarkable results have been o
the C1 context. First of all, a breakthrough was due to Pujals and Sambarino [102] when proving Conje
for C1 surface diffeomorphisms. Just now, Pujals is presenting in a long pre-publication [101] a similar f
three-dimensional diffeomorphisms restricted to contracting regions. Partial advancements were provided
[124,125] and an announcement has been made by Hayashi.

Concerning the conjectures for flows, Arroyo and Rodriguez and Hertz [16] provided a proof of Conje
in dimension three. In particular, they made an ingenious use of the work of Pujals–Sambarino mentione
Conjecture 6 relative to flows in dimension three remains open.

We conclude this part by very briefly mentioning some outstanding results relative to an important top
tainly most relevant to our discussion at the beginning of this section. We shall do that first in the con
diffeomorphisms and then flows.

Let Λ be a maximal (in some neighborhood of it) invariant, transitive set for a diffeomorphismf on a closed
(as usual here) manifoldM . We say thatΛ is robustly transitive ifΛg is transitive, whereΛg is the continuation
of Λ andg is any mapC1 close tof . Similarly for flows.

AssumeΛ is robustly transitive. Then:

• For C1 diffeomorphisms, first, Mañé [72] has shown that if dimM = 2, thenΛ is a hyperbolic set. Then, i
the three-dimensional case,Λ has to be partially hyperbolic, a result due to Diaz, Pujals and Ures [42]
in higher dimensions,Λ has at least to display a dominated decomposition, as proved by Bonatti, Dia
Pujals [29].

• ForC1 flows, Morales, Pacifico and Pujals [82] proved the striking fact that on 3-manifolds a robustly tra
set is a Lorenz-like attractor or reppeler.

3.4. Homoclinic bifurcations and Hausdorff dimension

We have now a somewhat better understanding of the (complicated) dynamics that arises when w
homoclinic tangencies, say associated to a hyperbolic setΛ. Still, we have to go much further to be able, f
instance, to respond to the challenge represented by Conjecture 3 in Section 3.2. Already a major qu
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whether densely in the parameter line the corresponding maps have only finitely many localized attractor
a neighborhood ofp0 and of the orbit ofq0, as in figure in Section 3.2.

So, let us again consider the unfolding with positive speed atµ = 0 of a quadratic homoclinic tangencyq0 for
aC2 family fµ of diffeomorphisms, associated to a fixed (periodic) pointp0 of a hyperbolic setΛ = Λ0. We take
µ small and letΛµ be the continuation ofΛ. Also, letKs , Ku be Cantor sets obtained by intersecting (for the fi
time from points inΛ) the leaves of the stable and unstable foliations ofΛ with L, whereL is a line transversa
to the stable manifold ofp0. One may considerL as the unfolding parameter line. See Fig. 10. Finally, letds and
du be the Hausdorff dimensions ofKs andKu, respectively. Notice thatHD(Λ) = ds + du, whereHD(Λ) is the
Hausdorff dimension ofΛ.

We have:

• If HD(Λ) < 1, then hyperbolicity is fully prevalent atµ = 0. That is, the set of parameter values correspon
to whichfµ is hyperbolic has Lebesgue density one atµ = 0, Newhouse and Palis [87] and Palis and Tak
[93,94].

• If HD(Λ) > 1, then hyperbolicity is not fully prevalent atµ = 0, Palis and Yoccoz [97].
• If HD(Λ) > 1, then the arithmetic differenceKs − Ku robustly contains non-trivial intervals. From that, o

infers that homoclinic tangencies forfµ have positive density atµ = 0, implying the previous result in a stron
form, Moreira and Yoccoz [84].

Notice that whenHD(Λ) < 1, thenKs − Ku has Lebesgue measure equals to zero.
From this string of facts, one can state the following dichotomy principle concerning the unfolding on su

of a homoclinic tangency associated to a hyperbolic setΛ:

The hyperbolic maps in the parametric family are prevalent if and only ifHD(Λ) < 1.

Such a dichotomy was suggested by the author about two decades ago.
The most recent result in this direction is the following one, going quite deeply into the dynamical struc

fµ after the unfolding of the homoclinic tangency:

• If (ds + du)
2 + (max(ds, du))

2 < ds + du + max(ds, du), then non-uniform hyperbolicity is fully prevalent
µ = 0. In particular, the set of parameter values corresponding to which the mapsf have localized attractor
µ
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is of density zero atµ = 0, Palis and Yoccoz [98]. Localized here has the same meaning as in Gorodets
Kaloshin’s result in Section 3.2, but nowV is a neighborhood the whole hyperbolic setΛ andU is as before.

In our present proof of the last result, outlined in [98] and the full proof soon to appear, we treat the un
of a quadratic tangency between stable and unstable manifolds of two different periodic orbits in the hyp
setΛ. But, certainly the same should be true in the homoclinic case. We observe, from such a proof, that f
parameter values (total density atµ = 0), the continuation of the forward maximal invariant set in a neighborh
U ∪V as above has Hausdorff dimension smaller than two. Similarly, for the continuation of the backward m
invariant set. Notice that, for such parameter values, there may be tangencies between stable and unstable
for the corresponding maps, but no attractors (nor repellors).

Let us add a few words about the proof. It goes by showing that, for most parameters, the limit set is hyp
in a delicate, non-uniform sense. Essentially, although the limit set may contain tangencies, they correspon
special points: at “most” points there are transversal directions which are (asymptotically) contracted by
and backward iterates, respectively. The proof of this fact requires a very careful analysis of how trajectorie
close to the tangencies and, even, the very definition of what a “tangency” is. To ensure hyperbolic behav
returns should not be too frequent nor too close. This is achieved by parameter exclusions, which turn
be less and less significant near the original tangency parameter (Lebesgue density zero). The rate of for
tangencies is a crucial ingredient, and it is closely related to the Hausdorff dimension of the original horsesh
assumption, that this dimension is not far from one, ensures that the number of tangencies that must be c
at each stage grows fairly slowly. This implies that a fairly small amount (in measure) of parameter exclu
needed. Returns close to the tangencies yield quadratic type folds. The condition on the frequency and
returns is used to ensure that folds always are “ironed-out” before a new return occurs. In this way, one n
to deal with contacts of order bigger than two.

One can certainly expect to have a similar general result without imposing any restriction on the Ha
dimension of the original horseshoe, at the price of having to deal with higher order contacts.

On the horizon lies the case of area preserving maps. An example is the famous family of standard ma
torus, for which the limit set is the whole ambient space and, thus, has Hausdorff dimension two:

fµ(x, y) = (−y + 2x + µsin(2πx), x
)
.

In this case, one has to study contacts of all order simultaneously. The main open question concerning th
is whether there exists a positive Lebesgue measure set of parameter valuesµ, for which the corresponding map
are ergodic and non-uniformly hyperbolic.

3.5. Unfolding homoclinic tangencies in higher dimensions

To have a grasp of typical dynamics in all dimensions, we certainly must pursue a deep study of the un
of homoclinic tangencies in such a generality.

In doing so, we shall face some new and serious difficulties in comparison with the two-dimensional ca
of them is that in general the stable and unstable foliations of hyperbolic sets, when having codimension big
one, are not differentiable or even Lipshitz, independenty of the smoothness of the dynamics. As a cons
the invariance along leaves of such foliations of some key instruments of nowadays dynamics, like Ha
dimension, are simply no longer available in higher dimensions. This is because at least one of the foliatio
have codimension bigger than one.

Still, it’s a promising fact that the obstacles, such as the one just mentioned, have been in some cases su
surpassed. It was so in several of the results in this paper, particularly in the extension of Newhouse’s i
many sinks phenomenon to higher dimensions in Section 3.2. Here, we comment on a recent result that g
in the direction we are conveying.
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As before, we consider one-parameter families of diffeomorphismsfµ of classC2, µ ∈ (−1,1), that generically
(positive speed inµ at µ = 0) unfold a quadratic homoclinic tangencyq0 associated to a hyperbolic horsesh
Λ = Λ0.

A reasonable hypothesis, as done on surfaces, see Section 3.4, is to assume thatfµ is hyperbolic (Axiom A) for
µ < 0. So, we are creating a cycle, a homoclinic tangency, atµ = 0. This hypothesis implies that the weak sta
and unstable eigenvalues of df0 at p0 are well defined and that they are real numbers. Moreira, Viana and m
then showed (see a résumé in [83]) that the dichotomy

hyperbolicity is prevalent ⇔ Hausdorff dimension< 1

is true in all dimensions.
Prevalence of hyperbolicity means: the set ofµ’s for which hyperbolicity holds for the maximal invariant s

of fµ in a neighborhood ofΛ andq0 as in Section 3.4, has total density atµ = 0. And by Hausdorff dimension
smaller than one, we meanHDs(Λ) + HDu(Λ) < 1 where

HDs(Λ) = HD
(
Λ ∩ Ws(p0)

)
, HDu(Λ) = HD

(
Λ ∩ Wu(p0)

)
.

Formally, we state the result as follows:
There are open setsR1 andR2 of one-parameter families ofCk diffeomorphisms,k � 2, unfolding a homoclinic

tangency as set above, such that

(a) R1 ∪ R2 is dense;
(b) for families inR1, we have

HDs(Λ) + HDu(Λ) < 1 and lim
δ→0

m(H ∩ [0, δ])
δ

= 1

whereH = {µ | fµ is hyperbolic} andm stands for Lebesgue measure;
(c) for families inR2, we have forδ > 0

HDs(Λ) + HDu(Λ) > 1 and lim inf
δ→0

m(Ts ∩ [0, δ])
δ

> 0

whereTs = {µ | fµ presents a persistent homoclinic tangency associated toΛµ} andΛµ is the continuation
of Λ, µ small.

Fig. 11.
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We briefly comment the proof of this result:
Part (b) is reminiscent of the Palis–Takens’ result on surfaces [94]. The proof here goes by ensuring

to small perturbation, the horseshoe avoids the strong stable and unstable directions. This is possible b
Hausdorff dimension is small. It implies thatΛ ∩ Ws(p) is contained in a cuspidal region around the weak st
direction ofp0. Similarly for Λ ∩ Wu(p) with respect to the weak unstable direction ofp0. See Fig. 11. It has th
geometric consequence that the horseshoe is roughly two-dimensional. This permits to mimic the two-dim
arguments to obtain uniform transversality of stable and unstable foliations of the continuation of the o
horseshoe for most parameters.

Part (c) is considerably more delicate. The main ingredient is the construction, after perturbation of , of
strong-stable and strong-unstable foliations of codimension-one for hyperbolic subsets ofΛ with almost the same
Hausdorff dimensions.

These foliations are used to reduce the study of the geometries of the stable and unstable foliations
initial homoclinic tangency to the two-dimensional case. Another key step is to obtain stable tangencies,
of parameters, of stable and unstable manifolds of periodic orbits as in Moreira and Yoccoz [84].
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