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Abstract

We study the existence and non-existence of solutions of the problem

{−�u + eu − 1= µ in Ω,

u = 0 on∂Ω,
(0.1)

whereΩ is a bounded domain inRN , N � 3, andµ is a Radon measure. We prove that ifµ � 4πHN−2, then (0.1) has a
unique solution. We also show that the constant 4π in this condition cannot be improved.
 2005 Elsevier SAS. All rights reserved.

Résumé

Nous étudions l’existence et la non existence des solutions de l’équation

{−�u + eu − 1= µ dansΩ,

u = 0 sur∂Ω,
(0.2)
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ently
nlinearity

]. More

t

the
oùΩ est un domaine borné dansR
N , N � 3, etµ est une mesure de Radon. Nous démontrons que siµ vérifieµ � 4πHN−2,

alors le problème (0.2) admet une unique solution. Nous montrons que la constante 4π dans cette condition ne peut pas ê
améliorée.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Let Ω ⊂ R
N , N � 2, be a bounded domain with smooth boundary. We consider the problem{−�u + eu − 1= µ in Ω,

u = 0 on∂Ω,
(1.1)

whereµ ∈ M(Ω), the space of bounded Radon measures inΩ . We say that a functionu is a solution of (1.1) if
u ∈ L1(Ω), eu ∈ L1(Ω) and the following holds:

−
∫
Ω

u�ζ +
∫
Ω

(eu − 1)ζ =
∫
Ω

ζ dµ ∀ζ ∈ C2
0( �Ω). (1.2)

HereC2
0( �Ω) denotes the set of functionsζ ∈ C2( �Ω) such thatζ = 0 on∂Ω . A measureµ is agood measurefor

problem (1.1) if (1.1) has a solution. We shall denote byG the set of good measures. Problem (1.1) has been rec
studied by Brezis, Marcus and Ponce in [1], where the general case of a continuous nondecreasing no
g(u), with g(0) = 0, is dealt with. Applying Theorem 1 of [1] tog(u) = eu −1, it follows that for everyµ ∈M(Ω)

there exists a largest good measure� µ for (1.1), which we shall denote byµ∗.
In the caseN = 2, the set of good measures for problem (1.1) has been characterized by Vázquez in [9

precisely, a measureµ is a good measure if and only ifµ({x}) � 4π for everyx in Ω . Note that anyµ ∈ M(Ω)

can be decomposed as

µ = µ0 +
∞∑
i=1

αiδxi
,

with µ0({x}) = 0 for everyx in Ω , andδxi
is the Dirac mass concentrated atxi . Using Vázquez’s result, it is no

difficult to check that (see [1, Example 5])

µ∗ = µ0 +
∞∑
i=1

min{4π,αi} δxi
.

This paper is devoted to the study of problem (1.1) in the caseN � 3. First of all, let us recall that ifµ is a good
measure, then (1.1) has a unique solutionu (see [1, Corollary B.1]). This solution can be either obtained as
limit of the sequence(un) of solutions of{−�un + min{eun − 1, n} = µ in Ω,

un = 0 on∂Ω,

or as the limit of a sequence(vn) of solutions of{−�vn + evn − 1= µn in Ω,

v = 0 on∂Ω,
n
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with µn = ρn ∗µ, where(ρn) is a sequence of mollifiers. Ifµ is not a good measure, then both sequences(un) and
(vn) converge to the solutionu∗ of problem (1.1) with datumµ∗ (see [1]). It has also been proved in [1] that t
setG of good measures is convex and closed with respect to the strong topology inM(Ω). Moreover, it is easy to
see that ifν � µ andµ ∈ G, thenν ∈ G.

Before stating our results, let us briefly recall the definitions of Hausdorff measure and Hausdorff dimen
a set. Lets � 0, and letA ⊂ R

N be a Borel set. Givenδ > 0, let

Hs
δ(A) = inf

{∑
i

ωsr
s
i : K ⊂

⋃
i

Bri with ri < δ, ∀i

}
,

where the infimum is taken over all coverings ofA with open ballsBri of radiusri < δ, andωs = πs/2/�(s/2+ 1).
We define the (spherical)s-dimensional Hausdorff measure inR

N as

Hs(A) = lim
δ↓0

Hs
δ(A),

and the Hausdorff dimension ofA as

dimH (A) = inf
{
s � 0: Hs(A) = 0

}
.

Given a measureµ in M(Ω), we say that it is concentrated on a Borel setE ⊂ Ω if µ(A) = µ(E ∩ A) for
every Borel setA ⊂ Ω . Given a measureµ in M(Ω), and a Borel setE ⊂ Ω , the measureµ E is defined by
µ E(A) = µ(E ∩ A) for every Borel setA ⊂ Ω .

One of our main results is the following

Theorem 1.Letµ ∈M(Ω). If µ � 4πHN−2, that is, ifµ(A) � 4πHN−2(A) for every Borel setA ⊂ Ω such that
HN−2(A) < ∞, then there exists a unique solutionu of (1.1).

As a corollary of Theorem 1, we have

Corollary 1. Letµ ∈ M(Ω). If µ � 4πHN−2, thenµ∗ = µ.

The proof of Theorem 1 relies on a decomposition lemma for Radon measures (see Section 3 below) a
following sharp estimate concerning the exponential summability for solutions of the Laplace equation. We
by MN/2(Ω) the Morrey space with exponentN

2 equipped with the norm‖ · ‖N/2 (see Definition 1 below).

Theorem 2.Letf be a function inMN/2(Ω), and letu be the solution of{−�u = f in Ω,

u = 0 on∂Ω.
(1.3)

Then, for every0< α < 2NωN , it holds∫
Ω

e((2NωN−α)/‖f ‖N/2)|u| � (NωN)2

α
diam(Ω)N . (1.4)

This theorem is the counterpart in the caseN � 3 of a result proved, forN = 2 andf ∈ L1(Ω), by Brezis and
Merle in [2]. Note that, forN = 2, the space MN/2(Ω) coincides withL1(Ω).

As a consequence of Theorem 1, we have that the set of good measuresG contains all measuresµ which satisfy
µ � 4π HN−2. If N = 2, then the result of Vázquez states that the converse is also true. In our case, that isN � 3,
this is false. After this work was completed, A.C. Ponce found explicit examples of good measures which a
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� 4πHN−2 (see [7, Theorems 2 and 3]). The existence of such measures was conjectured by L. Véron in a
communication.

We now present some necessary conditions a measureµ ∈ G has to satisfy. We start with the following

Theorem 3.Let µ ∈ M(Ω). If µ(A) > 0 for some Borel setA ⊂ Ω such thatdimH (A) < N − 2, then(1.1) has
no solution.

Observe that in the case of dimensionN = 2, no measureµ satisfies the assumptions of Theorem 3.
As a consequence of Theorem 3 we have

Corollary 2. Letµ ∈ M(Ω). If µ+ is concentrated on a Borel setA ⊂ Ω with dimH (A) < N −2, thenµ∗ = −µ−.

The next theorem, which is one of the main results of this paper, states that there exists no solution of (µ

is strictly larger than 4π HN−2 on an(N − 2)-rectifiable set.

Theorem 4.Let µ ∈ M(Ω). Assume there existε > 0 and an(N − 2)-rectifiable setE ⊂ Ω , withHN−2(E) > 0,
such thatµ E � (4π + ε)HN−2 E. Then,(1.1)has no solution.

Corollary 3. Assumeµ = α(x)HN−2 E, whereE ⊂ Ω is (N − 2)-rectifiable andα is HN−2 E-integrable.
Then,µ∗ = min{4π,α(x)}HN−2 E.

In Theorem 4 (and also in Corollary 3), the assumption thatE is (N − 2)-rectifiable is important. In fact, on
can find(N − 2)-unrectifiable setsF ⊂ Ω , with 0< HN−2(F ) < ∞, such thatν = αHN−2 F is a good measur
for everyα > 0 (see [7]).

As a consequence of the previous results, we can derive some information onµ∗. To this extent, letµ ∈ M(Ω).
Since eu − 1 is bounded foru < 0, µ− will play no role in the existence-nonexistence theory for (1.1). There
we only have to deal withµ+, which we recall can be uniquely decomposed as

µ+ = µ1 + µ2 + µ3, (1.5)

where

µ1(A) = 0 for every Borel setA ⊂ Ω such thatHN−2(A) < ∞, (1.6)

µ2 = α(x)HN−2 E for some Borel setE ⊂ Ω, and someHN−2-measurableα, (1.7)

µ3(Ω\F) = 0 for some Borel setF ⊂ Ω with HN−2(F ) = 0. (1.8)

By a result of Federer (see [4] and also [6, Theorem 15.6]), the setE can be uniquely decomposed as a disjo
unionE = E1 ∪ E2, whereE1 is (N − 2)-rectifiable andE2 is purely(N − 2)-unrectifiable. In particular,

µ2 = α(x)HN−2 E1 + α(x)HN−2 E2. (1.9)

Combining Corollaries 1–3, we establish the following

Theorem 5.Givenµ ∈M(Ω), decomposeµ+ as in(1.5)–(1.9). Then,

µ∗ = (µ1)
∗ + (µ2)

∗ + (µ3)
∗ − µ−. (1.10)

In addition,
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4 will be
(µ1)
∗ = µ1, (1.11)

(µ2)
∗ = (

α(x)HN−2 E1
)∗ + (

α(x)HN−2 E2
)∗

, (1.12)(
α(x)HN−2 E1

)∗ = min
{
4π,α(x)

}
HN−2 E1, (1.13)(

α(x)HN−2 E2
)∗ � min

{
4π,α(x)

}
HN−2 E2, (1.14)

(µ3)
∗(A) = 0 for every Borel setA ⊂ Ω with dimH (A) < N − 2. (1.15)

In view of the examples presented in [7], one can find measuresµ � 0 for which equality in (1.14) fails an
such that(µ3)

∗(F ) > 0 for some Borel setF ⊂ Ω , with HN−2(F ) = 0.
The plan of the paper is as follows. In the next section we will prove Theorem 2. In Section 3 we will pre

decomposition result for Radon measures. Theorem 1 will then be proved in Section 4. Theorems 3 and
established in Section 5. The last section will be devoted to the proof of Theorem 5 and Corollaries 1–3.

2. Proof of Theorem 2

We first recall the definition of the Morrey space Mp(Ω); see [5].

Definition 1. Let p � 1 be a real number. We say that a functionf ∈ L1(Ω) belongs to the Morrey space Mp(Ω)

if

‖f ‖
p

= sup
Br

1

rN(1−1/p)

∫
Ω∩Br

∣∣f (y)
∣∣dy < +∞,

where the supremum is taken over all open ballsBr ⊂ R
N .

The following theorem is well-known (for the proof, see for example [5, Section 7.9]).

Theorem 6.Letf ∈ Mp(Ω) for somep � N
2 , and letu be the solution of{−�u = f in Ω,

u = 0 on∂Ω.

If p > N
2 , thenu belongs toL∞(Ω). If p = N

2 , theneβ|u| is uniformly bounded inL1(Ω) norm, for everyβ <

β0 = 2NωN/(e‖f ‖
N/2

).

Theorem 2 in the Introduction improves the upper boundβ0 given in [5]. It turns out that the constant2NωN‖f ‖
N/2

is sharp. Indeed we have the following

Example 1.Let E = {x = (x1, x2, . . . , xN) ∈ R
N : x1 = x2 = 0}, and letµ = 4πHN−2 E. Defineµn = ρn ∗ µ,

where(ρn) is a sequence of mollifiers, and letun be the solution of{−�un = µn in B2(0),

un = 0 on∂B2(0).

By standard elliptic estimates,un → u in W
1,q

0 (B2(0)), for everyq < N
N−1 and a.e., whereu is the solution of{−�u = 4πHN−2 E in B2(0),
u = 0 on∂B2(0).
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Using the Green representation formula, and settingρ(x) = dist(x,E), one can prove thatu(x) behaves as
−2 lnρ(x), for anyx in a suitable neighborhood ofE ∩ B1(0). Moreover, it is easy to verify that

‖µn‖
N/2

→ 2NωN asn → ∞.

Then, by Fatou’s lemma

lim inf
n→+∞

∫
B2(0)

e(2NωN/‖µn‖N/2)un �
∫

B2(0)

eu = +∞.

We now turn to the proof of Theorem 2. We start with the following well-known

Lemma 1.Letf : [0, d] → R
+ be aC1-function, and

g(r) = sup
t∈[0,r]

f (t).

Then,g is absolutely continuous on[0, d], and its derivative satisfies the following inequality:

0� g′(r) �
[
f ′(r)

]+
a.e., (2.1)

wheres+ = max{s,0} is the positive part ofs ∈ R.

Proof. First of all, observe that sincef is continuous, then so isg. We now prove that, for everyx < y in [0, d],
there exist̃x � ỹ in [x, y] such that

0� g(y) − g(x) �
[
f (ỹ) − f (x̃)

]+
. (2.2)

Indeed, ifg(y) = g(x), then it is enough to choosẽx = x andỹ = y. If g(y) > g(x), then let us define

x̃ = max
{
z � x: g(z) = g(x)

}
and ỹ = min

{
z � y: g(z) = g(y)

}
.

Clearly, sinceg is nondecreasing, we havẽx � ỹ. In order to prove (2.2), simply observe thatf (x̃) = g(x) and
f (ỹ) = g(y). Indeed, if for examplef (x̃) = g(x), then it must bef (x̃) < g(x), and this implies thatg(z) = g(x)

for somez > x, thus contradicting the definition ofx̃.
Sincef is absolutely continuous, (2.2) implies thatg is absolutely continuous, as required, so thatg′(r) exists

for almost everyr . We now establish (2.1). Starting from (2.2), and applying the mean value problem tof , we
have that there exists̃ξ ∈ [x̃, ỹ] such that

0� g(y) − g(x) �
[
f (ỹ) − f (x̃)

]+ = [
f ′(ξ̃ )

]+
(ỹ − x̃) �

[
f ′(ξ̃ )

]+
(y − x).

Dividing by y − x, and lettingy → x, the result follows. �
Proof of Theorem 2. We split the proof into two steps:

Step 1. Givenf ∈ C∞
c (Ω), f � 0, let

v(x) = 1

N(N − 2)ωN

∫
Ω

(
1

|x − y|N−2
− 1

dN−2

)
f (y)dy ∀x ∈ Ω, (2.3)

whered is the diameter ofΩ . Then, for every 0< α < 2NωN , it holds∫
e((2NωN−α)/‖f ‖N/2)v(x) dx � (NωN)2

α
dN . (2.4)
Ω
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Let us set

ν(x, r) =
∫

Br(x)

f (y)dy ∀x ∈ Ω.

In particular,

ν(x, r) � ωNrN‖f ‖L∞ and ν′(x, r) =
∫

∂Br (x)

f (y)dσ(y) � NωNrN−1‖f ‖L∞ , (2.5)

where′ denotes the derivative with respect tor anddσ is the(N − 1)-dimensional measure on∂Br(x). Then,

v(x) = 1

N(N − 2)ωN

d∫
0

(
1

rN−2
− 1

dN−2

)( ∫
∂Br (x)

f (y)dσ(y)

)
dr

= 1

N(N − 2)ωN

d∫
0

(
1

rN−2
− 1

dN−2

)
ν′(x, r)dr.

Integrating by parts, we have

v(x) = 1

N(N − 2)ωN

(
1

rN−2
− 1

dN−2

)
ν(x, r)

∣∣∣∣
d

0
+ 1

NωN

d∫
0

ν(x, r)

rN−1
dr.

By (2.5),

lim
r→0

ν(x, r)

rN−2
= 0,

and so

v(x) = 1

NωN

d∫
0

ν(x, r)

rN−1
dr.

Define now

ψ(x, r) = sup
t∈[0,r]

ν(x, t)

tN−2
.

It follows from Lemma 1 thatψ(x, ·) is absolutely continuous. Then, integrating by parts,

v(x) � 1

NωN

d∫
0

ψ(x, r)

r
dr = − 1

NωN

d∫
0

(
ln

(
d

r

))′
ψ(x, r)dr

= − 1

NωN

ψ(x, r) ln

(
d

r

)∣∣∣∣
d

0
+ 1

NωN

d∫
0

ln

(
d

r

)
ψ ′(x, r)dr.

By (2.5),

lim ψ(x, r) ln

(
d

)
= 0,
r→0 r
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and then, observing thatψ(x, d) � ν(x, d)/dN−2 = ‖f ‖
L1/d

N−2 > 0,

v(x) � 1

NωN

d∫
0

ln

(
d

r

)
ψ ′(x, r)dr =

d∫
0

ψ(x, d)

NωN

ln

(
d

r

)
ψ ′(x, r)

ψ(x, d)
dr.

Therefore, for any 0< α < 2NωN,

e((2NωN−α)/‖f ‖N/2)v(x) � exp

( d∫
0

2NωN − α

‖f ‖N/2

ψ(x, d)

NωN

ln

(
d

r

)
ψ ′(x, r)

ψ(x, d)
dr

)
.

Sinceψ ′(x,r)
ψ(x,d)

dr is a probability measure on(0, d), Jensen’s inequality implies

e((2NωN−α)/‖f ‖N/2)v(x) �
d∫

0

(
d

r

)((2NωN−α)/‖f ‖N/2)(ψ(x,d)/NωN)
ψ ′(x, r)

ψ(x, d)
dr.

Clearly,

ψ(x, d) � sup
y∈Ω

ψ(y, d) = ‖f ‖
N/2

and ψ(x, d) �
‖f ‖

L1

dN−2
.

Thus,

e((2NωN−α)/‖f ‖N/2)v(x) � dN−α/NωN

‖f ‖
L1

d∫
0

ψ ′(x, r)

r2−α/NωN
dr. (2.6)

Now, by (2.1) we have

ψ ′(x, r) �
[(

ν(x, r)

rN−2

)′ ]+
� ν′(x, r)

rN−2
,

so that∫
Ω

ψ ′(x, r)dx � 1

rN−2

∫
Ω

( ∫
∂Br (x)

f (y)dσ(y)

)
dx = 1

rN−2

∫
Ω

( ∫
∂Br (0)

f (y + x)dσ(y)

)
dx

= 1

rN−2

∫
∂Br (0)

(∫
Ω

f (y + x)dx

)
dσ(y) � NωNr‖f ‖

L1.

Hence, from (2.6),

∫
Ω

e((2NωN−α)/‖f ‖N/2)v(x) dx � NωNdN−α/NωN

d∫
0

dr

r1−α/NωN
= (NωN)2

α
dN

which is (2.4). This concludes the proof of Step 1.

Step 2.Proof of Theorem 2 completed.
Let f ∈ MN/2(Ω). Clearly, it suffices to prove the theorem forf � 0. By extendingf to be identically zero

outsideΩ , we have∫
f (y)dy � ‖f ‖

N/2
rN−2 for every ballBr ⊂ R

N. (2.7)
Br



D. Bartolucci et al. / Ann. I. H. Poincaré – AN 22 (2005) 799–815 807

m

Let (ρn) ⊂ C∞
c (B1), ρn � 0, be a sequence of mollifiers. Take(ζn) ⊂ C∞

c (Ω) to be such that 0� ζn � 1 in Ω , and
ζn(x) = 1 if d(x, ∂Ω) � 1

n
. Setfn = ζn(ρn ∗ f ). We claim that

‖fn‖
N/2

� ‖f ‖
N/2

∀n � 1. (2.8)

In fact, given any ballBr(z) ⊂ R
N , we have∫

Br(z)

fn(x)dx �
∫

Br (z)

(ρn ∗ f )(x)dx =
∫

Br(z)

( ∫
RN

ρn(x − y)f (y)dy

)
dx =

∫
RN

( ∫
Br (z−t)

f (y)dy

)
ρn(t)dt.

Since (2.7) holds, we get∫
Br(z)

fn(x)dx � ‖f ‖
N/2

rN−2
∫

RN

ρn(t)dt = ‖f ‖
N/2

rN−2,

which is precisely (2.8).
Let un be the unique solution of{−�un = fn in Ω,

un = 0 on∂Ω.

We shall denote byvn the function given by (2.3), withf replaced byfn. Note that, by the standard maximu
principle, 0� un � vn in Ω , ∀n � 1. Given 0< α < 2NωN , it follows from (2.8) and the previous step that∫

Ω

e((2NωN−α)/‖f ‖N/2)un(x) dx �
∫
Ω

e((2NωN−α)/‖fn‖N/2)vn(x) dx � (NωN)2

α
dN ∀n � 1. (2.9)

Sincefn → f in L1(Ω), standard elliptic estimates imply thatun → u in L1(Ω) and a.e. Thus, asn → ∞ in (2.9),
it follows from Fatou’s lemma that e((2NωN−α)/‖f ‖N/2)u ∈ L1(Ω) and∫

Ω

e((2NωN−α)/‖f ‖N/2)u(x) dx � (NωN)2

α
dN .

This concludes the proof of the theorem.�

3. A useful decomposition result

Our goal in this section is to establish the following:

Lemma 2.Letµ ∈M(RN), µ � 0. Givenδ > 0, there exists an open setA ⊂ R
N such that

(a) µ(Br\A) � 2NωNrN−2 for every ballBr ⊂ R
N with 0< r < δ;

(b) for every compact setK ⊂ A,

µ
(
N2δ(K)

)
� 4πHN−2

δ (K),

whereN2δ(K) denotes the neighborhood ofK of radius2δ.

Proof. Given a sequence of open sets(Ak)k�0, for eachk � 1 we let

Rk = sup
{
r ∈ [0, δ): µ(Br\Ak−1) � 2NωNrN−2 for some ballBr ⊂ R

N
}
. (3.1)
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We now construct the sequence(Ak) inductively as follows. LetA0 = φ. We have two possibilities. IfR1 = 0, then
we takeAk = φ for everyk � 1. Otherwise,R1 > 0 and there existsr1 ∈ (R1

2 ,R1] andx1 ∈ R
N such that

µ
(
Br1(x1)

)
� 2NωNrN−2

1 .

Let A1 = Br1(x1). If R2 = 0, then we letAk = φ for every k � 2. AssumeR2 > 0. In this case, we may fin
r2 ∈ (R2

2 ,R2] andx2 ∈ R
N such that

µ
(
Br2(x2)\A1

)
� 2NωNrN−2

2 .

Proceeding by induction, we obtain a sequence of ballsBr1(x1),Br2(x2), . . . and open sets

Ak = Br1(x1) ∪ · · · ∪ Brk (xk) (3.2)

such that
Rk

2
< rk � Rk (3.3)

and

µ
(
Brk (xk)\Ak−1

)
� 2NωNrN−2

k ∀k � 1. (3.4)

Note thatRk → 0 ask → ∞. In fact, by (3.3) and (3.4) we have

NωN

2N−3

∞∑
k=1

RN−2
k � 2NωN

∞∑
k=1

rN−2
k �

∞∑
k=1

µ
(
Brk (xk)\Ak−1

) = µ

(⋃
k

Brk (xk)

)
� ‖µ‖M.

In particular,
∑

k RN−2
k < ∞, which implies the desired result.

Let

A =
∞⋃

j=1

Aj =
∞⋃

k=1

Brk (xk).

We claim thatA satisfies (a) and (b).

Proof of (a). GivenBr ⊂ R
N such that 0< r < δ, let k � 1 be sufficiently large so thatRk < r . By the definition

of Rk , we haveµ(Br\Ak) � 2NωNrN−2. SinceAk ⊂ A, we haveBr\A ⊂ Br\Ak and the result follows.

Proof of (b). Given a compact setK ⊂ A, let

J = {
j � 1: Brj (xj ) ∩ K = φ

}
.

In particular,

K ⊂
⋃
j∈J

Brj (xj ).

Moreover, sincerj < δ, we haveBrj (xj ) ⊂ N2δ(K) for everyj ∈ J . Thus,

µ
(
N2δ(K)

)
� µ

(⋃
j∈J

Brj (xj )

)
� µ

(⋃
j∈J

[
Brj (xj )\Aj−1

])

=
∑
j∈J

µ
(
Brj (xj )\Aj−1

)
� 2NωN

∑
j∈J

rN−2
j � 2NωN

ωN−2
HN−2

δ (K).

Since 2NωN/ωN−2 = 4π , we get

µ
(
N2δ(K)

)
� 4πHN−2

δ (K).

This concludes the proof of Lemma 2.�
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4. Proof of Theorem 1

We first observe that, as a consequence of Theorem 2, we have the following

Proposition 1.Letµ ∈ M(Ω) be such that

µ+(Ω ∩ Br) � 2NωNrN−2 for every ballBr ⊂ R
N.

Then,µ is a good measure for(1.1).

Proof. Sinceµ � µ+, it is enough to show thatµ+ is a good measure. Thus, without loss of generality, we
assume thatµ � 0. Moreover, extendingµ to be identically zero outsideΩ , we may also assume thatµ ∈M(RN)

and

µ(Br) � 2NωNrN−2 for every ballBr ⊂ R
N.

We shall split the proof of Proposition 1 into two steps:

Step 1.Assume there existsε > 0 such that

µ(Br) � 2NωN(1− ε)rN−2 for every ballBr ⊂ R
N.

Then,µ is a good measure.
Let (ρn) ⊂ C∞

c (B1), ρn � 0, be a sequence of mollifiers. Setµn = ρn ∗ µ. Proceeding as in the proof o
Theorem 2, Step 2, we have

‖µn‖N/2 � 2NωN(1− ε) ∀n � 1.

Let vn be the unique solution of{−�vn = µn in Ω,

vn = 0 on∂Ω.

Applying Theorem 2 toα = 2NωN − ‖µn‖N/2 � 2NωNε > 0, we conclude that∫
Ω

evn � C ∀n � 1, (4.1)

for some constantC > 0 independent ofn. By standard elliptic estimatesvn → v a.e., wherev is a solution for{−�v = µ in Ω,

v = 0 on∂Ω.

Hence, by Fatou’s lemma and (4.1), it follows that ev ∈ L1(Ω). Since

−�v + ev − 1= µ + ev − 1 in Ω,

µ + ev − 1 is a good measure. In particular,µ � µ + ev − 1 andv � 0, imply thatµ is a good measure as well.

Step 2.Proof of the proposition completed.
Let αn ↑ 1. For everyn � 1, the measureαnµ satisfies the assumptions of Step 1. Thus,αnµ ∈ G, ∀n � 1. Since

αnµ → µ strongly inM(Ω) andG is closed inM(Ω), we haveµ ∈ G. �
We recall the following result:

Lemma 3. If µ1, . . . ,µk ∈M(Ω) are good measures for(1.1), then so issupi µi .
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Proof. If k = 2, this is precisely [1, Corollary 4]. The general case easily follows by induction onk. �
We then have a slightly improved version of Proposition 1:

Proposition 2.Letµ ∈ M(Ω). Assume there existsδ > 0 such that

µ+(Ω ∩ Br) � 2NωNrN−2 for every ballBr ⊂ R
N with r ∈ (0, δ).

Then,µ is a good measure for(1.1).

Proof. Let Bδ(x1), . . . ,Bδ(xk) be a finite covering ofΩ . For eachi = 1, . . . , k, let µi = µ Bδ(xi) ∈ M(Ω). It
is easy to see thatµi satisfies the assumptions of Proposition 1, so that eachµi is a good measure for (1.1). Thu
by the previous lemma, supi µi ∈ G. Sinceµ � supi µi , we conclude thatµ is also a good measure for (1.1).�

We can now present the

Proof of Theorem 1. As above, sinceµ � µ+, it suffices to show thatµ+ is a good measure. In particular, we m
assume thatµ � 0. Moreover, it suffices to establish the theorem for a measureµ such thatµ � (4π − ε)HN−2

for someε > 0. The general case follows as in Step 2 of Proposition 1.
We first extendµ to be identically zero outsideΩ . By Lemma 2, there exists an open setÂ1 ⊂ R

N such that(a)

and(b) hold withδ = 1 andA = Â1. By induction, given an open set̂Ak−1 ⊂ R
N , we apply Lemma 2 toµ Âk−1

andδk = 1
k

to obtain an open set̂Ak ⊂ Âk−1 such that

(ak) µ Âk−1(Br\Âk) � 2NωNrN−2 for every ballBr ⊂ R
N with 0< r < 1

k
;

(bk) for every compact setK ⊂ Âk ,

µ
(
N2/k(K)

)
� µ Âk−1

(
N2/k(K)

)
� 4πHN−2

1/k (K).

By Proposition 2, each measureµ Ω\Â1, µ Â1\Â2, . . . ,µ Âk−1\Âk is good. We now invoke Lemma 3 t
conclude that

µ Ω\Âk = sup{µ Ω\Â1,µ Â1\Â2, . . . ,µ Âk−1\Âk}
is a good measure for everyk � 1. LetÂ = ⋂

k Âk . Sinceµ Ω\Âk → µ Ω\Â strongly inM(Ω) and the setG
of good measures is closed with respect to the strong topology, we conclude thatµ Ω\Â is also a good measur
for (1.1).

We now claim thatµ(Â) = 0. In fact, letK ⊂ Â be a compact set. In particular,K ⊂ Âk . By (bk), we have

µ
(
N2/k(K)

)
� 4πHN−2

1/k (K) ∀k � 1.

As k → ∞, we conclude that

µ(K) � 4πHN−2(K). (4.2)

In particular,HN−2(K) < ∞. Recall that, by assumption,

µ(K) � 4π(1− ε)HN−2(K). (4.3)

Combining (4.2) and (4.3), we getµ(K) = 0. SinceK ⊂ Â is arbitrary, we conclude thatµ(Â) = 0. Therefore,
µ = µ Ω\Â and soµ is a good measure. This concludes the proof of Theorem 1.�
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5. Proofs of Theorems 3 and 4

In this section we derive some necessary conditions for a measure to be good for problem (1.1). Let us s
a regularity property for solutions of elliptic equations with measure data.

Lemma 4.Let ν ∈M(Ω) and letu be the solution of the Dirichlet problem{−�u = ν in Ω,

u = 0 on∂Ω.
(5.1)

If eu ∈ L1(Ω), thenu+ belongs toW1,p

0 (Ω) for everyp < 2, and

‖u+‖
W

1,p
0

� C
(
p,measΩ,‖ν‖M,‖eu‖L1

) ∀p < 2. (5.2)

Proof. Let νn = ρn ∗ ν, where(ρn) is a sequence of mollifiers, and letun be the solution of{−�un = νn in Ω,

un = 0 on∂Ω.
(5.3)

Then it is well-known that the sequence(un) converges tou in W
1,q

0 (Ω), for everyq < N
N−1 (see [8]).

UsingTk(u
+
n ) = min{k,max{un,0}} as a test function in (5.3), we have∫

Ω

∣∣∇Tk(u
+
n )

∣∣2 dx =
∫
Ω

Tk(u
+
n ) νn dx � k‖νn‖L1 � k‖ν‖M.

Lettingn → ∞, by weak lower semicontinuity we obtain∫
Ω

∣∣∇Tk(u
+)

∣∣2 dx � k‖ν‖M. (5.4)

On the other hand, assumption eu ∈ L1(Ω) implies, for everyk > 0,

ek meas{u > k} �
∫

{u>k}
eu dx � ‖eu‖L1,

and so

meas{u > k} � e−k‖eu‖L1. (5.5)

For everyη > 1 we have

{|∇u+| > η
} =

{ |∇u| > η

u > k

}
∪

{ |∇u| > η

0� u � k

}
,

so that, by (5.4) and (5.5),

meas
{|∇u+| > η

}
� meas{u > k} + meas

{ |∇u| > η

0� u � k

}

� e−k‖eu‖L1 + 1

η2

∫
Ω

∣∣∇Tk(u
+)

∣∣2 dx � C

(
e−k + k

η2

)
,

whereC = max{‖eu‖L1,‖ν‖M}. Minimizing onk, we find

meas
{|∇u+| > η

}
� C

1+ 2 lnη

2
.

η
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Therefore,|∇u+| belongs to the Marcinkiewicz space of exponentp, for everyp < 2. SinceΩ is bounded, it
follows that|∇u+| ∈ Lp(Ω), for everyp < 2, and that (5.2) holds.�

Theorem 3 can now be obtained as a consequence of the above results.

Proof of Theorem 3. By inner regularity, it is enough to prove that ifµ ∈ M(Ω) is a good measure for prob
lem (1.1), thenµ(K) � 0 for every compact setK ⊂ Ω with dimH(K) < N − 2.

By Lemma 3, ifµ is a good measure, then so isµ+ = sup{µ,0}. Let v � 0 be the solution of problem (1.1) wit
datumµ+. In particular,v satisfies∫

Ω

∇v ∇ζ +
∫
Ω

(ev − 1)ζ =
∫
Ω

ζ dµ+ ∀ζ ∈ C∞
c (Ω). (5.6)

Take now a compact setK ⊂ Ω with dimH (K) < N − 2, and letq be such that 2< q < N − dimH(K). Then the
q-capacity ofK is zero (see e.g. [3]), and there exists a sequence of smooth functionsζn ∈ C∞

c (Ω) such that

0� ζn � 1 in Ω, ζn = 1 in K, ζn → 0 in W
1,q

0 (Ω) and a.e. (5.7)

Usingζn as test function in (5.6) yields

0� µ+(K) �
∫
Ω

ζn dµ+ =
∫
Ω

∇v ∇ζn +
∫
Ω

(ev − 1) ζn.

Since, by Lemma 4,v ∈ W
1,q ′
0 (Ω), the right-hand side tends to 0 asn → ∞. Hence,µ+(K) = 0, which implies

µ(K) � 0, as desired. �
Before presenting the proof of Theorem 4, we need some preliminary lemmas. The first one is well-kno

e.g. [3]).

Lemma 5. If f ∈ L1(RN), then, for every0� s < N ,

lim
r→0

1

rs

∫
Br(x)

∣∣f (y)
∣∣dy = 0 Hs-a.e. inR

N.

In the following, we will denote the angular mean of a functionw ∈ L1(RN) on the sphere centered atx ∈ R
N

with radiusr > 0 by

�w(x, r) = –
∫

∂Br (x)

w dσ = 1

NωNrN−1

∫
∂Br (x)

w dσ. (5.8)

The next result provides an estimate of the asymptotic behavior, asr → 0, of the angular mean of a function
terms of its Laplacian.

Lemma 6.Letw ∈ L1(RN) be such that�w ∈M(RN). Setµ = −�w. Then,

1

NωN

lim inf
r→0

µ(Br(x))

rN−2
� lim inf

r→0

�w(x, r)

ln(1/r)
� lim sup

r→0

�w(x, r)

ln(1/r)
� 1

NωN

lim sup
r→0

µ(Br(x))

rN−2
.

Proof. We claim that, for every 0< r < s < 1, we have

�w(x, r) − �w(x, s) = 1

NωN

s∫
µ(Bρ(x))

ρN−1
dρ. (5.9)
r
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hat
Indeed, ifµ ∈ L1(RN), then, integrating by parts, we have∫
Bρ(x)

µ(y)dy = −NωNρN−1�w ′(x,ρ), (5.10)

where′ denotes the derivative with respect toρ. Integrating (5.10) fromr to s we have

�w(x, r) − �w(x, s) = 1

NωN

s∫
r

1

ρN−1

( ∫
Bρ(x)

µ(y)dy

)
dρ,

which is precisely (5.9) ifµ ∈ L1(RN). The general case then follows by regularizing via convolution and ta
the limit. Thus, from (5.9) we have

1

NωN

inf
0<ρ<s

(
µ(Bρ(x))

ρN−2

)
ln

(
s

r

)
� �w(x, r) − �w(x, s) � 1

NωN

sup
0<ρ<s

(
µ(Bρ(x))

ρN−2

)
ln

(
s

r

)
.

Dividing by ln(1/r) and lettingr → 0 yields

1

NωN

inf
0<ρ<s

(
µ(Bρ(x))

ρN−2

)
� lim inf

r→0

�w(x, r)

ln(1/r)
� lim sup

r→0

�w(x, r)

ln(1/r)
� 1

NωN

sup
0<ρ<s

(
µ(Bρ(x))

ρN−2

)
,

and the conclusion follows by lettings → 0. �
An immediate consequence of Lemmas 5 and 6 is the following

Corollary 4. Letw ∈ L1(RN) be such that�w ∈ L1(RN). Then,

lim
r→0

�w(x, r)

ln(1/r)
= 0 for HN−2-a.e.x ∈ R

N.

We can now prove Theorem 4.

Proof of Theorem 4. By contradiction, assume thatµ is a good measure for problem (1.1), so t
(4π + ε)HN−2 E is also a good measure. Letu be the solution of (1.1) with datum(4π + ε)HN−2 E

and letv the solution of{
−�v = (4π + ε)HN−2 E in Ω,

v = 0 on∂Ω.

SinceE is (N − 2)-rectifiable, then (see [6])

lim
r→0

HN−2(E ∩ Br(x))

rN−2
= ωN−2 for HN−2-a.e.x ∈ E.

Thus, from Lemma 6 we obtain

lim
r→0

�v(x, r)

ln(1/r)
= (4π + ε)ωN−2

NωN

= 4π + ε

2π
for HN−2-a.e.x ∈ E. (5.11)

On the other hand, the functionw = v − u satisfies−�w = eu − 1∈ L1(Ω), so that, by Corollary 4,

lim
�w(x, r) = lim

�v(x, r) −�u(x, r) = 0 forHN−2-a.e.x ∈ Ω. (5.12)

r→0 ln(1/r) r→0 ln(1/r)
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Combining (5.11) and (5.12) we deduce

lim
r→0

�u(x, r)

ln(1/r)
= 4π + ε

2π
> 2 forHN−2-a.e.x ∈ E.

Thus, forHN−2-a.e.x ∈ E, there existsδ = δ(x) > 0 such that

�u(x, r)

ln(1/r)
> 2 ∀r ∈ (0, δ). (5.13)

Since

∫
Bδ(x)

eu(y) dy =
δ∫

0

( ∫
∂Br (x)

eu dσ

)
dr = NωN

δ∫
0

rN−1
(

–
∫

∂Br (x)

eu dσ

)
dr,

by Jensen’s inequality and (5.13), it follows that

∫
Bδ(x)

eu(y) dy � NωN

δ∫
0

rN−1e�u(x,r) dr � NωN

δ∫
0

rN−3 dr = NωN

N − 2
δN−2.

Consequently, asδ → 0, we obtain

lim inf
δ→0

1

δN−2

∫
Bδ(x)

eu(y) dy > 0 forHN−2-a.e.x ∈ E,

which contradicts Lemma 5 beingHN−2(E) > 0. �

6. Proof of Theorem 5

We first establish Corollaries 1–3.

Proof of Corollary 1. Let µ ∈ M(Ω) be such thatµ � 4πHN−2. It follows from Theorem 1 thatµ is a good
measure. Sinceµ∗ is the largest good measure� µ, we must haveµ = µ∗. �
Proof of Corollary 2. By Corollary 10 in [1], for everyµ ∈M(Ω) we have

µ∗ = (µ+)∗ + (−µ−)∗ = (µ+)∗ − µ−. (6.1)

Assume that there exists a Borel setA ⊂ Ω , with dimH (A) < N − 2, such thatµ+ = µ+ A. We claim that
(µ+)∗ = 0.

By contradiction, suppose that(µ+)∗ = 0. Since 0� (µ+)∗ � µ+, the measure(µ+)∗ is also concentrate
on A. In addition,(µ+)∗ = 0 implies(µ+)∗(A) > 0. Applying Theorem 3, we conclude that(µ+)∗ is not a good
measure, which is a contradiction. Thus,(µ+)∗ = 0. It then follows from (6.1) thatµ∗ = −µ−. �
Proof of Corollary 3. Without loss of generality we can assume thatα(x) � 0 for HN−2-a.e. inx ∈ E. Let
ν = min{4π,α(x)}HN−2 E. Sinceν � 4πHN−2, Theorem 1 implies thatν is a good measure. Clearly,ν � µ;
thus,ν � µ∗. Sinceµ∗ � µ = α(x)HN−2 E, there exists anHN−2-measurable functionβ, such thatµ∗ =
β(x)HN−2 E. Assume by contradiction thatβ = min{4π,α}. Since

min{4π,α} � β � α,
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we conclude that there existsε > 0 and a Borel setF ⊂ E, with HN−2(F ) > 0, such that

(4π + ε) � β HN−2-a.e. onF .

SinceE is (N −2)-rectifiable andF ⊂ E, thenF is also(N −2)-rectifiable (see e.g. [6, Lemma 15.5]). Moreov

(4π + ε)HN−2 F � βHN−2 F � µ∗.

Thus,(4π + ε)HN−2 F is a good measure. But this contradicts Theorem 4. Therefore,β = min{4π,α} and so
µ∗ = ν. �

We now present the

Proof of Theorem 5. Clearly, the measuresµ1, µ2, µ3 and−µ− are singular with respect to each other; (1.
then follows from Theorem 8 in [1]. For the same reason, (1.12) holds. Next, Corollaries 1–3 imply (1.11),
and (1.15). Finally, since min{4π,α}HN−2 E2 is a good measure by Theorem 1, we have (1.14).�
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