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1. Introduction

Building upon the work of Coti Zelati–Rabinowitz [3], in [5] we have given estimates on the number of
domains of multi-bump type nodal solutions and in some cases constructed multi-bump type nodal solution
have exactly a prescribed number of nodal domains for nonlinear time-independent Schrödinger equatio
form

−�u + V (x)u = f (x,u) in Ω, u = 0 on∂Ω, (1)

which satisfyu(x) → 0 as |x| → ∞, hereΩ is a smooth cylindrical unbounded domain inRN or the whole
spaceRN , and the potential function is assumed to be periodic in the unbounded directions ofΩ . In particular
when the domain is a cylinder inRN , Ω = ω × R with ω ∈ RN−1 a bounded smooth domain, we have prov
the existence of multi-bump type nodal solutions having exactlym nodal domains for any integerm � 2. The
current paper is to remove one of the conditions imposed on the nonlinearityf , namely,f is odd in u. This
condition plays a crucial role in the construction ofmulti-bump nodal solutionsby Coti Zelati–Rabinowitz [3]. In
order to remove this condition we shall combine the gluing procedure in [3] with some ideas in using in
sets of descending flows which has been developed for unbounded domains recently in [1]. Following clo
framework of [3], this requires to use a more precise description of the basic one bump solutions and to mo
gluing procedure of [3] from the beginning, though most of the intermediate arguments of [3] can still be us
reader’s convenience we shall give a detailed construction for the setting studied in [3], namely,

−�u + V (x)u = f (x,u), in RN. (2)

Let us make the following assumptions.

(V1) V ∈ C(RN,R), V0 := infRN V (x) > 0, is periodic in each ofx1, . . . , xN .
(f1) f ∈ C1(RN × R,R) is periodic in each ofx1, . . . , xN .
(f2) f (x,0) = 0= fu(x,0).
(f3) There isC > 0 such that∣∣fu(x,u)

∣∣ � C
(
1+ |u|p−2)

for all x ∈ RN,u ∈ R where 2< p < 2∗.
(f4) There isµ > 2 such that

0< µF(x,u) := µ

u∫
0

f (x, t)dt � uf (x,u)

for all x ∈ RN,u ∈ R \ {0}.

The periodicity conditions imply that Eq. (2) isZN invariant. The weak solutions of (2) correspond to criti
points of

I (u) := 1

2

∫
RN

(|∇u|2 + V (x)u2)dx −
∫

RN

F (x,u)dx,

in E = W1,2(RN). Define the mountain pass valuec as

c = inf
g∈Γ

sup
t∈[0,1]

I
(
g(t)

)
where

Γ = {
g ∈ C

([0,1],E) | g(0) = 0, I
(
g(1)

)
< 0

}
.
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We shall follow [2,3] to use the notations:I b = {u ∈ E | I (u) � b}, Ia = {u ∈ E | I (u) � a}, I b
a = {u ∈ E | a �

I (u) � b}, K = {u ∈ E | I ′(u) = 0}, K(c) = {u ∈ E | I ′(u) = 0, I (u) = c}, Kb = K ∩ I b, Kb
a = K ∩ I b

a .
In [3], it was proved that Eq. (2) has infinitely manyk-bump solutions, and in particular thatKkc+α

kc−α/ZN is
infinite, provided that (V1) and (f1)–(f4) and the following condition are satisfied

(∗) there isα > 0 such thatKc+α/ZN is finite.

Under the additional condition thatf is odd inu, it was proved thatKkc+α
kc−α/ZN also contains infinitely many noda

solutions. The conditionf being odd inu allows the authors of [3] to use both positive and negative solut
at the same mountain pass levelc as basic one-bump solutions which are glued into multi-bump nodal solu
Without this condition the positive and negative mountain pass solutions may be atdifferent energy levels, which
makes the gluing procedure in [3] difficult to finish. The main purpose of this paper is to remove the co
thatf is odd. We shall develop a modified version of the gluing procedure in [3] to glue the positive and ne
mountain pass solutions of different energy levels. This will be done by building upon the main framework
and by developing some new ideas of invariant sets of descending flows which have been very successfu
in dealing with nodal solutions.

Eq. (2) withV andf satisfying the assumptions (V1) and (f1)–(f4) will be discussed in detail. As in [5], we wi
also discuss two other cases: Eq. (1) withV andf being periodic inxN andΩ a cylindrical domain, and Eq. (2
with V andf being radially symmetric inx1, . . . , xn and periodic inxn+1, . . . , xN for some 1< n < N . Results
for the latter two cases will only be stated in Sections 3 and 5 since the proofs are almost the same as fo
case.

The paper is organized as follows. Section 2 contains the constructions of basic one-bump positive and
solutions which will be used as building blocks for constructing multi-bump nodal solutions. Section 3 is d
to the statements of the main theorems on multi-bump nodal solutions, whose proofs will be given in Secti
Section 5 we will state results concerning number of nodal domains of multi-pump nodal solutions togethe
few remarks.

2. Basic one-bump positive and negative solutions

In the followingE denotes the Sobolev spaceW1,2(RN) with the norm

‖u‖ =
( ∫

RN

(|∇u|2 + V (x)u2)dx

)1/2

.

For two setsA,B ⊂ E, the distance betweenA andB is defined by

‖A−B‖ = inf
u∈A,v∈B

‖u − v‖.
Fora > 0, thea-neighborhood of a setA ⊂ E is defined by

Na(A) = {
u ∈ E|‖u −A‖ < a

}
,

whose closure and boundary are denoted by
Na(A) and∂Na(A), respectively. We will use| · | to represent the
norm inRN . For two setsA,B ⊂ RN , the distance betweenA andB is given by

|A − B| = inf
x∈A,y∈B

|x − y|.

The ball inRN centered atx and with radiusR will be denoted byBR(x). The ball inE centered atu and with
radiusR will be denoted byBR(u). Without loss of generality we assume the periods in all directions are e
to 1.
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Let j = (j1, . . . , jN ) ∈ ZN and define translations on theRN by

τju(x) = u(x1 + j1, . . . , xN + jN).

For a finite subsetE1 of E and an integerl � 1, we denote

Tl (E1) =
{

j∑
i=1

τki
vi

∣∣∣ 1� j � l, vi ∈ E1, ki ∈ ZN

}
.

This set will be used later with a specifically constructedE1. For anyu ∈ E, denote

u+(x) = max
{
u(x),0

}
and u−(x) = min

{
u(x),0

}
.

Consider the positive coneP+ and the negative coneP− in E defined by

P± = {
u ∈ E | ±u � 0

}
.

Any u ∈ K \ (P+ ∪ P−) will be a nodal solution of Eq. (2). In what follows,Ai will always stand for positive
constants.

Lemma 2.1. Let (V) and (f1)–(f4) be satisfied. Then

(i) there isν > 0 such that‖u‖ � ν for all u ∈K \ {0},
(ii) there isc > 0 such thatI (u) � c for all u ∈K \ {0},

(iii) for all u ∈ K \ {0} with I (u) � b,

‖u‖ �
(

2µb

µ − 2

)1/2

,

(iv) for any b > 0, there isν1 > 0 depending onb such that‖u±‖L2(RN) � ν1 for all u ∈ K \ (P+ ∪ P−) with
I (u) � b.

Proof. See [3, Remark 2.14] for (i) and [3, Lemma 2.17] for (ii), (iii). We will prove (iv) for the negative sign;
the same for the positive sign. Letu be any nodal solution of Eq. (2). Multiplying (2) withu− and taking integra
we have

‖u−‖2 =
∫

RN

u−f (x,u−)dx.

By (f2)–(f3), there existsA1 > 0 such that∣∣f (x,u)
∣∣ � V0

2
|u| + A1|u|p−1.

Then

‖u−‖2 � V0

2
‖u−‖2

L2(RN)
+ A1‖u−‖p

Lp(RN)
.

Since

‖u−‖Lp(RN) � ‖u−‖t
L2(RN)

‖u−‖1−t

L2∗
(RN)

wheret satisfies

1 = t + 1− t

∗ ,

p 2 2
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‖u−‖2 � V0

2
‖u−‖2

L2(RN)
+ A2‖u−‖pt

L2(RN)
‖u−‖p(1−t).

By the definition ofV0,

‖u−‖2 � V0‖u−‖2
L2(RN)

.

Thus

‖u−‖2 � 2A2‖u−‖pt

L2(RN)
‖u−‖p(1−t), (3)

which implies

‖u−‖2 � A3‖u−‖p.

Sinceu is a nodal solution of Eq. (2),u− �= 0 and the last inequality yields

‖u−‖ � A
−1/(p−2)

3 . (4)

If I (u) � b then the assertion (iii) and (3), (4) imply

A
−2/(p−2)

3 � 2A2

(
2µb

µ − 2

)p(1−t)/2

‖u−‖pt

L2(RN)
,

which yields the assertion (iv).�
Let A :E → E be given byA(u) := (−� + V )−1[f (·, u(·))] for u ∈ E. Then the gradient ofI has the form

I ′(u) = u−A(u). Note that the set of fixed points ofA is the same as the set of critical points ofI , which isK. By
the proof of [3, Proposition 2.1],I ′ :E → E is locally Lipschitz continuous. Indeed,

I (u) = 1

2
‖u‖2 − J (u),

where

J (u) =
∫

RN

F (x,u)dx,

and according to (2.11) in [3], we have for anyu,v ∈ E,∥∥J ′(u) − J ′(v)
∥∥ �

(
A1 + A2

(‖u‖4/(N−2) + ‖v‖4/(N−2)
))‖u − v‖.

Since nodal solutions are critical points ofI outside ofP+ andP−, our strategy to find nodal solutions
to construct subsets ofE containing all the positive and negative solutions of Eq. (2) such that these subs
strictly positively invariant for the descending flow ofI ; nodal solutions can then be found outside of these sub

The following lemma was proved in [1].

Lemma 2.2. Let (V) and (f1)–(f4) be satisfied. There is ana0 > 0 such that for0< a � a0 there holds

(i) A(∂Na(P−)) ⊂ Na(P−), and every nontrivial solutionu ∈ Na(P−) of (2) is negative;
(ii) A(∂Na(P+)) ⊂ Na(P+), and every nontrivial solutionu ∈ Na(P+) of (2) is positive.

Remark 2.3. Furthermore, according to the proof of [1, Lemma 3.1], we haveA(
Na(P±)) ⊂ Na(P±). Lemma 2.2
implies that (cf. [4]) the setsNa(P±) are strictly positively invariant for the negative gradient flowϕ defined by

d
ϕ(t, u) = −I ′(ϕ(t, u)

)
for t � 0 and ϕ(0, u) = u.
dt
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That is,ϕ(t, u) ∈ Na(P±) for any 0< t < T (u) andu ∈ 
Na(P±), whereT (u) ∈ (0,∞] is the maximal existenc
time for the trajectoryϕ(t, u).

Using Lemma 2.2, we can study the behavior of (PS) sequences in the whole spaceE as well as in
Na(P±).
The first part of the next lemma is [3, Proposition 2.31].

Lemma 2.4. Let (V) and (f1)–(f4) be satisfied. Let(um) ⊂ E be such thatI (um) → b > 0 andI ′(um) → 0. Then
there is anl ∈ N (depending onb), v1, . . . , vl ∈ K \ {0}, a subsequence ofum and corresponding(ki

m) ⊂ ZN such
that ∥∥∥∥∥um −

l∑
i=1

τki
m
vi

∥∥∥∥∥ → 0, (5)

l∑
i=1

I (vi) = b, (6)

and fori �= j ,

|ki
m − k

j
m| → ∞. (7)

Moreover, there exists ana1 ∈ (0, a0] (depending onb) such that if(um) ⊂ 
Na1(P+) (Na1(P−), resp.) then
v1, . . . , vl ∈ (K \ {0}) ∩P+ ((K \ {0}) ∩P−, resp.).

Proof. We only need to prove the second part. This will be done for the positive sign+; the case for the negativ
sign− is the same. Letν1 anda0 be the two numbers from Lemmas 2.1 and 2.2, respectively. Define

a1 = min

(
a0,

V0ν1

2

)
. (8)

Suppose that(um) ⊂ 
Na1(P+) satisfiesI (um) → b > 0 andI ′(um) → 0. Then according to the first part of th
result, there is anl ∈ N (depending onb), v1, . . . , vl ∈K \ {0}, a subsequence ofum and corresponding(ki

m) ⊂ ZN

such that (5)–(7) hold. Choosewm ∈ P+ such that

‖um − wm‖ � a1. (9)

By (5) and (9),

lim sup
m→∞

∥∥∥∥∥
l∑

i=1

τki
m
vi − wm

∥∥∥∥∥ � a1.

Arguing indirectly, we assume thatvi /∈ (K \ {0}) ∩P+ for somei ∈ {1, . . . , l}. Rewrite the last inequality as

lim sup
m→∞

∥∥∥∥vi +
∑
j �=i

τ
k
j
m−ki

m
vj − τ−ki

m
wm

∥∥∥∥ � a1.

Denote

Ω−
i = {

x ∈ RN | vi(x) < 0
}
.

For anyε > 0 andR > 0, sincevj (1� j � l) are solutions of (2) and|kj
m −ki

m| → ∞ for j �= i, if m is sufficiently
large then forx ∈ BR(0),∣∣∣∣∑ τ

k
j
m−ki

m
vj (x)

∣∣∣∣ � ε1 := ε

(meas(BR(0)))1/2
,

j �=i
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where meas(BR(0)) is the measure ofBR(0). For suchm,∥∥∥∥vi +
∑
j �=i

τ
k
j
m−ki

m
vj − τ−ki

m
wm

∥∥∥∥ � V0

∥∥∥∥vi +
∑
j �=i

τ
k
j
m−ki

m
vj − τ−ki

m
wm

∥∥∥∥
L2(RN)

� V0

∥∥∥∥vi +
∑
j �=i

τ
k
j
m−ki

m
vj − τ−ki

m
wm

∥∥∥∥
L2(BR(0))

� V0

∥∥∥∥vi +
∑
j �=i

τ
k
j
m−ki

m
vj − ε1 − τ−ki

m
wm

∥∥∥∥
L2(BR(0)∩Ω−

i )

− V0ε.

Since onBR(0) ∩ Ω−
i , vi is negative,

−2ε1 �
∑
j �=i

τ
k
j
m−ki

m
vj − ε1 � 0,

andτ−ki
m
wm is positive, we have∥∥∥∥vi +

∑
j �=i

τ
k
j
m−ki

m
vj − ε1 − τ−ki

m
wm

∥∥∥∥
L2(BR(0)∩Ω−

i )

�
∥∥∥∥vi +

∑
j �=i

τ
k
j
m−ki

m
vj − ε1

∥∥∥∥
L2(BR(0)∩Ω−

i )

� ‖vi‖L2(BR(0)∩Ω−
i ) − 2ε.

Thus

lim sup
m→∞

∥∥∥∥ l∑
i=1

τki
m
vi − wm

∥∥∥∥ � V0‖vi‖L2(BR(0)∩Ω−
i ) − 3V0ε,

which implies

a1 � V0‖vi‖L2(BR(0)∩Ω−
i ) − 3V0ε.

Letting ε → 0 andR → ∞ yields

a1 � V0‖v−
i ‖L2(RN).

By Lemma 2.1, we havea1 � V0ν1, contradicting (8). �
Fora ∈ [0, a1], we define

Γ ±
a = {

g ∈ C
([0,1], 
Na(P±)

) | g(0) = 0 andI
(
g(1)

)
< 0

}
and

c±
a = inf

g∈Γ ±
a

max
θ∈[0,1]

I
(
g(θ)

)
.

Fora = 0, 
Na(P±) = P±. In this case, we denoteΓ ± = Γ ±
0 andc± = c±

0 .

Lemma 2.5. Let (V) and (f1)–(f4) be satisfied. Then there existsa2 ∈ (0, a1) such thatc±
a = c± for all a ∈ (0, a2].

Proof. We only provec+
a = c+. It is similar to provec−

a = c−. By (f2)–(f3), for anyε > 0 there existsAε > 0 such
that foru ∈ E∫

N

F (x,u)dx � ε‖u‖2
L2(RN)

+ Aε‖u‖p

Lp(RN)
.

R
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For r ∈ [2,2∗] there existsKr > 0 such that foru ∈ E,

‖u−‖r
Lr (RN)

� inf
v∈P+ ‖u − v‖r

Lr (RN)
� Kr inf

v∈P+ ‖u − v‖r � Kr‖u −P+‖r .

Foru ∈ E, since‖u−‖ � ‖u −P+‖, we have

I (u−) = 1

2
‖u−‖2 −

∫
RN

F (x,u−)dx

� 1

2
‖u −P+‖2 − εK2‖u −P+‖2 − AεKp‖u −P+‖p.

Sinceε > 0 is arbitrary, there existsa2 ∈ (0, a1) such thatI (u−) > 0 if 0 < ‖u −P+‖ � a2. Let 0< a � a2. The
definition ofc+

a impliesc+
a � c+

0 . Now for anyε > 0 there existsg ∈ Γ +
a such that

max
θ∈[0,1]

I
(
g(θ)

)
� c+

a + ε.

Since‖g(θ) −P+‖ � a � a2, I ((g(θ))−) � 0. ButI (g(θ)) = I ((g(θ))−) + I ((g(θ))+). Therefore

max
θ∈[0,1]

I
((

g(θ)
)+)

� c+
a + ε.

Since the mapϕ+ :E → E defined byϕ+(u) = u+ is continuous [3, Proposition 7.2],(g(·))+ is continuous from
[0,1] to P+, which yieldsc+

0 � c+
a + ε. Lettingε → 0, we havec+

0 � c+
a for 0< a � a2, finishing the proof. �

DenoteKi = K ∩ P i for i ∈ {+,−}. We will also use the notations:(Ki )b = Ki ∩ I b, (Ki )ba = Ki ∩ I b
a , and

Ki (ci) = K(ci) ∩P i for i ∈ {+,−}. Instead of(∗), we need the following conditions.

(∗)± There isα > 0 such that(K±)c
±+α/ZN is finite.

Choose a representative inE from each equivalent class in(Ki )c
i+α/ZN and denote the resulting set byF i ,

i ∈ {+,−}. Let c > 0 be the number from Lemma 2.1 which satisfiesI (u) � c for all u ∈ K \ {0}. Denote
l± = [(c± + α)/c]. According to [3, Proposition 2.57] or [2, Proposition 1.55], we have

Lemma 2.6. µ(Tl±(F±)) = inf{‖u − w‖ |u �= w ∈ Tl±(F±)} > 0.

Now we have a deformation lemma in
Na(P±), which is an analogue of [3, Proposition 2.60].

Lemma 2.7. Let i ∈ {+,−} and a ∈ [0, a2]. Assume(V), (f1)–(f4), and (∗)i . If b ∈ (0, ci + α), ε̄ satisfies0 <

b − ε̄ < b + ε̄ < ci + α, and r < 1
3µ(Tli (F i )), then there existε ∈ (0, ε̄), η ∈ C([0,1] × 
Na(P i ), 
Na(P i )), and

σ ∈ C(Ib+ε ∩ 
Na(P i ), [0,1]) such that

1◦ η(0, u) = u for all 
Na(P i ),
2◦ η(s,u) = u if u /∈ I b+ε̄

b−ε̄ ∩ 
Na(P i ),
3◦ I (η(s, u)) is nonincreasing ins,
4◦ η(1, I b+ε ∩ 
Na(P i ) \ Nr((Ki )b+ε̄

b−ε̄ )) ⊂ I b−ε ∩ 
Na(P i ),

5◦ σ(u) = 0 if u ∈ I b−ε ∩ 
Na(P i ) \ Nr((Ki )b+ε̄
b−ε̄ ) and I (η(σ (u),u)) = b − ε for all u ∈ I b+ε

b−ε ∩ 
Na(P i ) \
Nr((Ki )b+ε̄

b−ε̄ ),
6◦ ‖η(σ (u),u) − u‖ � r for all u ∈ 
Na(P i ),
7◦ η(s, τju) = τjη(s, u) for all j ∈ ZN , s ∈ [0,1], u ∈ 
Na(P i ).
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of
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Proof. This is similar to the proof of [2, Proposition 2.3]. However, we should construct a descending flowI

which makes
Na(P i ) invariant so that the deformation is from
Na(P i ) to itself. First of all, there existsδ > 0 such
that ∥∥I ′(u)

∥∥ � δ for u ∈ I b+ε̄
b−ε̄ ∩ 
Na(P i ) \ Nr/50

(
Tli (F i )

)
. (10)

Indeed, if not, there is a sequence(um) ⊂ I b+ε̄
b−ε̄ ∩ 
Na(P i ) \Nr/50(Tli (F i )) such thatI ′(um) → 0 andI (um) → γ ∈

[b − ε̄, b + ε̄]. By Lemma 2.4, along a subsequence,um → Tli (F i ), contrary toum �∈ Nr/50(Tli (F i )). Now, choose
ε andε̂ such that

0< ε < ε̂ < min

(
ε̄,

rδ

100

)
. (11)

Similar to [2], foru ∈ E let

φ(u) = ‖u − Nr/8((Ki )b+ε̄
b−ε̄ )‖

‖u − Nr/8((Ki )b+ε̄
b−ε̄ )‖ + ‖u − 
Na(P i ) \ Nr/4((Ki )b+ε̄

b−ε̄ )‖
and

ψ(u) = ‖u − (I b−ε̂ ∪ Ib+ε̂ ) ∩ 
Na(P i )‖
‖u − (I b−ε̂ ∪ Ib+ε̂ ) ∩ 
Na(P i )‖ + ‖u − I b+ε

b−ε ∩ 
Na(P i )‖ .

DefineV(u) = 3ε̂I ′(u)/‖I ′(u)‖2 for u ∈ E \K. ThenV satisfies

(a) ‖V(u)‖ � 4ε̂
‖I ′(u)‖ ,

(b) I ′(u)V(u) � 2ε̂,
(c) V(τku) = V(u) for all k ∈ ZN , u ∈ E \K.

SetW(u) = φ(u)ψ(u)V(u) and letη(s,u) with maximal existence interval[0, S(u)) be the solution of

dη

ds
= −W(η) for s � 0 and η(0, u) = u.

Then Remark 2.3 shows thatη(s,u) ∈ Na(P i ) for anys ∈ (0, S(u)) andu ∈ 
Na(P i ), sinceη(s,u) is just a repara
meterization ofϕ(t, u) defined there. Indeed,

η(s,u) = ϕ(t, u)

with

t =
s∫

0

3ε̂φ(η(α,u))ψ(η(α,u))

‖I ′(η(α,u))‖2
dα.

In view of this fact, we can get the assertions 1◦–3◦ and 7◦ immediately. By Lemma 2.4, we can prove thatη(s,u)

exists for alls > 0 andu ∈ 
Na(P i ) in the same way as in [2], distinguishing the two casesu ∈ Y := (I b−ε̂ ∪ Ib+ε̂ ∪
Nr/8((Ki )b+ε̄

b−ε̄ )) ∩ 
Na(P i ) andu ∈ 
Na(P i ) \ Y . Next we define the requiredσ ∈ C(Ib+ε ∩ 
Na(P i ), [0,1]). For

u ∈ I b+ε
b−ε ∩ 
Na(P i ) \ N3r/8((Ki )b+ε̄

b−ε̄ ) ands ∈ [0,1], at least one of the three cases must occur:

(i) η(s,u) reaches neither∂Br/8(u) nor ∂Ib−ε ,
(ii) η(s,u) reaches∂Br/8(u) before it reaches∂Ib−ε ,

(iii) η(s,u) reaches∂Ib−ε before it reaches∂Br/8(u).
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Sinceu /∈ N3r/8((Ki )b+ε̄
b−ε̄ ), Br/8(u) ∩ Nr/4((Ki )b+ε̄

b−ε̄ ) = ∅. In case (i), the definitions ofφ andψ yield

φ
(
η(s,u)

) = ψ
(
η(s,u)

) = 1 for all 0� s � 1.

But then we obtain a contradiction

2ε � I (u) − I
(
η(1, u)

)
�

1∫
0

I ′(η(s,u)
)
V

(
η(s,u)

)
ds � 2ε̂,

which rules out (i). In case (ii), we have either

Br/24(u) ∩ Nr/50
(
Tli (F i )

) = ∅ (12)

or (
Br/8(u) \Br/12(u)

) ∩ Nr/50
(
Tli (F i )

) = ∅. (13)

Otherwise, there existv ∈ Br/24(u) ∩ Nr/50(Tli (F i )) and w ∈ (Br/8(u) \ Br/12(u)) ∩ Nr/50(Tli (F i )). Choose
v1,w1 ∈ Tli (F i ) such that‖v1 − v‖ < r/50 and‖w1 − w‖ < r/50. Then a direct computation shows th
0 < ‖v1 − w1‖ < r . This contradicts the assumptionr < 1

3µ(Tli (F i )) and the definition ofµ(Tli (F i )). No matter
(12) or (13), as a consequence of (10) there exist 0� s1 < s2 � 1 such that∥∥η(s1, u) − η(s2, u)

∥∥ � r

24
,∥∥I ′(η(s,u)

)∥∥ � δ for s1 � s � s2,

and

b − ε � I
(
η(s,u)

)
� b + ε for s1 � s � s2.

Then we have

r

24
�

∥∥η(s1, u) − η(s2, u)
∥∥ �

s2∫
s1

φψ‖V‖ds � 4ε̂

δ

s2∫
s1

φψ ds

and

2ε � I
(
η(s1, u)

) − I
(
η(s2, u)

) =
s2∫

s1

φψI ′V ds � 2ε̂

s2∫
s1

φψ ds.

The last two inequalities implyr24 � 4ε
δ

, which contradicts (11). Thus (ii) is also impossible and (iii) occurs. N
defineσ(u) to be the times at whichη(s,u) reaches∂Ib−ε for u ∈ I b+ε

b−ε ∩ 
Na(P i ) \ N3r/8((Ki )b+ε̄
b−ε̄ ); σ(u) = 0 for

u ∈ I b−ε ∩ 
Na(P i ); and

σ(u) = sup
{
s: 0� s � 1, I

(
η(s,u)

)
� b − ε

}
for u ∈ I b+ε

b−ε ∩ 
Na(P i ) ∩ N3r/8((Ki )b+ε̄
b−ε̄ ). Then 4◦ and 5◦ are satisfied. Obviously, 6◦ is satisfied foru ∈ I b+ε

b−ε ∩

Na(P i ) \N3r/8((Ki )b+ε̄

b−ε̄ ) andu ∈ I b−ε ∩ 
Na(P i ). Foru ∈ I b+ε
b−ε̄ ∩ 
Na(P i )∩N3r/8((Ki )b+ε̄

b−ε̄ ), if η(s,u) stays inside

N3r/8((Ki )b+ε̄
b−ε̄ ) for 0 � s � σ(u) then the fact that(Ki )b+ε̄

b−ε̄ ⊂ Tli (F i ) andr < 1
3µ(Tli (F i )) implies that there is

a v ∈ (Ki )b+ε̄
b−ε̄ such thatη(s,u) stays insideB3r/8(v) for 0 � s � σ(u) and 6◦ is satisfied; if not, there isσ1(u) ∈

(0, σ (u)) which is the first time forη(s,u) to reach∂N3r/8((Ki )b+ε̄
b−ε̄ ) and the case (iii) above must occur w

η(σ1(u),u) in place ofu and again we have∥∥η
(
σ(u),u

) − u
∥∥ �

∥∥η
(
σ(u),u

) − η
(
σ1(u),u

)∥∥ + ∥∥η
(
σ1(u),u

) − u
∥∥ � r + 6r

< r. �

8 8
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The following theorem asserts existence of one-bump positive and negative solutions at the mountain p
These one-bump solutions will be used later to construct multi-bump nodal solutions.

Lemma 2.8. Let (V), (f1)–(f4) and(∗)± be satisfied. Thenc± are critical values ofI and there is a critical point
u± ∈ K± such thatI (u±) = c±.

Proof. We follow the same way as in the proof of [3, Theorem 2.61]. Leti ∈ {+,−}. If the result was not true fo

ci then(∗)i would imply (Ki )c
i+ε̄

ci−ε̄
= ∅ for all small ε̄ > 0. Choosing any such̄ε, r < 1

3µ(Tli (F i )), andε as given

by Lemma 2.7, selectg ∈ Γ i such that

max
θ∈[0,1]

I
(
g(θ)

)
� ci + ε.

Then by 4◦ of Lemma 2.7,

max
θ∈[0,1]

I
(
η
(
1, g(θ)

))
� ci − ε.

But 2◦ of Lemma 2.7 impliesη(1, g) ∈ Γ i , a contradiction to the definition ofci . �
By (∗)±, there is anα1 ∈ (0, α) such that

(Ki )
ci+α1
ci−α1

= Ki (ci).

Lemma 2.9. Let (V), (f1)–(f4) and(∗)± be satisfied. Then there exist finite setsA+ ⊂ K+(c+) andA− ⊂ K−(c−)

having the property that for anȳε1 � α1
2 , r1 � 1

12µ(Tl±(F±)), andp ∈ N, there is anε1 ∈ (0, ε̄1) andg±
1 ∈ Γ ±

such that

1◦ max
θ∈[0,1]

I (g±
1 (θ)) � c± + ε1

p
,

2◦ if I (g±
1 (θ)) > c± − ε1 theng±

1 (θ) ∈ Nr1(A
±).

Proof. We just need to modify the proof of [2, Proposition 2.22] with the help of Lemma 2.7. For the pr
case,c, Tl̄ (F), Γ , andK(c) in the proof of [2, Proposition 2.22] should be replaced withc±, Tl±(F±), Γ ±, and
K±(c±) respectively. Then as in the proof of [2, Proposition 2.22], there exists a finite setA± ⊂ K±(c±) such that
for ε̄0 = α1/2, r0 = 1

12µ(Tl±(F±)), andp ∈ N, there existε0 ∈ (0, ε̄0) andg±
0 ∈ Γ ± such that

max
θ∈[0,1]

I
(
g±

0 (θ)
)
� c± + ε0

p

and

I
(
g±

0 (θ)
)
> c± − ε0 implies g±

0 (θ) ∈ Nr0(A
±).

To prove thisA± is valid for anyε̄1 � ε̄0, r1 � r0, andp ∈ N, we can proceed as in the proof of [2, Proposition 2.2
Instead of (2.28) in [2], we choose aρ > 0 such that

max
u∈Nρ(K±(c±))

I (u) < c± + ε1

p
.

The functionφ̂ in [2] should be replaced with

φ̂(u) = ‖u − Nρ/8(K±(c±))‖
‖u − N (K±(c±))‖ + ‖u −P± \ N (K±(c±))‖ ,
ρ/8 ρ/4
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while settingε̂ = max{ε̄1, ε0} < ε̄0, instead off̂ we define

ψ̂(u) = ‖u − (I b−ε̄ ∪ Ib+ε̄ ) ∩P±‖
‖u − (I b−ε̄ ∪ Ib+ε̄ ) ∩P±‖ + ‖u − I b+ε̂

b−ε̂
∩P±‖ .

Note thatK on page [2, p. 710] should also be replaced withK±(c±). Then one can follow the same line of th
proof of [2, Proposition 2.22] to complete the present proof.�

3. Existence of multi-bump type nodal solutions

Depending on whether the domainΩ is the whole spaceRN or a cylindrical unbounded domain and on whet
V andf are periodic in allx1, . . . , xN or only partially, the results will be stated in distinguished three case
the following three subsections. In Section 3.1, we will state a result for Eq. (2) in the case whereV andf satisfy
(V1) and (f1)–(f4). Similar results in two other cases will be stated in Sections 3.2 and 3.3. In Section 3.2, a
for Eq. (1) will be given provided thatV andf are periodic inxN andΩ is a cylindrical domain. A result als
for Eq. (2) will be stated in Section 3.3 where it is assumed thatV andf are radially symmetric inx1, . . . , xn and
periodic inxn+1, . . . , xN for some 1< n < N .

3.1. Eq. (2) withV andf satisfying (V1) and (f1)–(f4)

Let A = A+ ∪ A− with A± given in Lemma 2.9. For any fixed integerk � 2 we fix two positive integersk+
andk− such thatk = k+ + k−. DenoteΛ+ = {1, . . . , k+}, Λ− = {k+ + 1, . . . , k}. Let ji ∈ ZN for i = 1, . . . , k be
fixed such thatji �= jm for i �= m and if vi ∈ A+ for i ∈ Λ+ andvi ∈ A− for i ∈ Λ− then∥∥∥∥∥

k∑
i=1

τji
vi

∥∥∥∥∥ � kν

2

and ∣∣∣∣∣I
(

k∑
i=1

τji
vi

)
− (k+c+ + k−c−)

∣∣∣∣∣ <
α

2
.

Define

M(j1, . . . , jk,A, k+, k−) =
{

k∑
i=1

τji
vi

∣∣∣ vi ∈ A+ for i ∈ Λ+, vi ∈ A− for i ∈ Λ−
}

and

bk = k+c+ + k−c−.

Our main theorem in this paper reads as

Theorem 3.1. Let (V1), (f1)–(f4), and(∗)± be satisfied. Then there is anr0 > 0 such that for anyr ∈ (0, r0),

Nr

(
M(lj1, . . . , ljk,A, k+, k−)

) ∩ (Kbk+α
bk−α/ZN) �= ∅

for all but finitely manyl ∈ N.
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3.2. Eq. (1) withΩ being an unbounded cylindrical domain

In this subsection, we state a result for Eq. (1) in the case whereΩ is a cylinder type domain such that the s
{x′ ∈ RN−1 | (x′, xN) ∈ Ω for somexN ∈ R} is bounded and(x′, xN + j) ∈ Ω for any(x′, xN) ∈ Ω andj ∈ Z. We
assume that

(V1′) V ∈ C(Ω,R), infΩ V (x) > 0, is 1-periodic inxN .
(f1′) f ∈ C1(Ω × R,R) is 1-periodic inxN .

We understand the assumptions (f2)–(f4) are now satisfied forx ∈ Ω . In this case Eq. (1) isZ invariant. We define
E = W

1,2
0 (Ω) with the norm

‖u‖ =
(∫

Ω

(|∇u|2 + V (x)u2)dx

)1/2

.

For j ∈ Z andu ∈ E, we define

τju(x′, xN) = u(x′, xN + j)

for (x′, xN) ∈ Ω . Define the same notations as in Sections 2 and 3.1 accordingly. We need to assume

(∗′)± There isα > 0 such that(K±)c
±+α/Z is finite.

Then all the results in Section 2 have analogues valid in the present case. In particular, we also have two fi
A+ ⊂ K+(c+) andA− ⊂ K−(c−) having the property in Lemma 2.9.

Using the same notations before Theorem 3.1 with an understanding ofji ∈ Z, we can state the followin
theorem for Eq. (1).

Theorem 3.2. Let (V1′), (f1′), (f2)–(f4), and(∗′)± be satisfied. Then there is anr0 > 0 such that for anyr ∈ (0, r0),

Nr

(
M(lj1, . . . , ljk,A, k+, k−)

) ∩ (Kbk+α
bk−α/Z) �= ∅

for all but finitely manyl ∈ N.

3.3. Eq. (2) withV andf being partially radially symmetric and partially periodic

In this subsection, we state a result for Eq. (2). We assume that there is 1< n < N such that

(V1′′) V ∈ C(RN,R), infRN V (x) > 0, is radially symmetric inx1, . . . , xn and 1-periodic inxn+1, . . . , xN .
(f1′′) f ∈ C1(RN × R,R) is radially symmetric inx1, . . . , xn and 1-periodic inxn+1, . . . , xN .

In this case Eq. (2) isZN−n invariant. We define

E =
{
u ∈ W1,2(RN)

∣∣∣ ∫
RN

V (x)u2 dx < ∞, u is radially symmetric inx1, . . . , xn

}
with the norm

‖u‖ =
( ∫

N

(|∇u|2 + V (x)u2)dx

)1/2

.

R
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Let j ∈ ZN−n andu ∈ E and we define

τju(x1, . . . , xn, xn+1, . . . , xN) = u(x1, . . . , xn, xn+1 + jn+1, xN + jN)

for (x1, . . . , xN) ∈ RN . Define the same notations as in Sections 2 and 3.1 accordingly. Since everything
confined inE, critical points inK are radially symmetric inx1, . . . , xn. We need to assume

(∗′′)± There isα > 0 such that(K±)c
±+α/ZN−n is finite.

Then all the results in Section 2 are also valid in the present case. Withji ∈ ZN−n being understood, we can sta
the following theorem for Eq. (2).

Theorem 3.3. Let (V1′′), (f1′′), (f2)–(f4), and (∗′′)± be satisfied. Then there is anr0 > 0 such that for any
r ∈ (0, r0),

Nr

(
M(lj1, . . . , ljk,A, k+, k−)

) ∩ (Kbk+α
bk−α/ZN−n) �= ∅

for all but finitely manyl ∈ N.

4. Proofs of the main theorems

Theorem 3.1 will be proved in detail. Theorems 3.2 and 3.3 can be proved similarly and their
will be omitted. As in [3], for θ = (θ1, . . . , θk) ∈ [0,1]k , let 0i = (θ1, . . . , θi−1,0, θi+1, . . . , θk) and 1i =
(θ1, . . . , θi−1,1, θi+1, . . . , θk), 1� i � k. Let a2 be as in Lemma 2.5 anda ∈ [0, a2] and define

Γk(a) = {
G = g1 + · · · + gk | gi satisfies(g1) − (g3), 1� i � k

}
,

where

(g1) gi ∈ C([0,1]k, 
Na(P±)) for i ∈ Λ±,
(g2) gi(0i ) = 0 andI (gi(1i )) < 0, 1� i � k,
(g3) There are bounded open setsOi , 1 � i � k, such that
Oi ∩ 
Oj = ∅ if i �= j and suppgi(θ) ⊂ Oi for all

θ ∈ [0,1]k .

Lemma 4.1. Let (V1), (f1)–(f4), and(∗)± be satisfied. Define

bk(a) = inf
G∈Γk(a)

max
θ∈[0,1]k

I
(
G(θ)

)
.

Thenbk(a) = bk = k+c+ + k−c− for a ∈ (0, a2].

Proof. For eachG ∈ Γk(a), by the proof of [2, Proposition 3.4], there exists aθ̄ ∈ [0,1]k such thatI (gi(θ̄ )) � c±
a

for i ∈ Λ±. By Lemma 2.5,I (gi(θ̄ )) � c± for i ∈ Λ±. Thus

max
θ∈[0,1]k

I
(
G(θ)

)
� I

(
G(θ̄)

) =
k∑

i=1

I
(
gi(θ̄ )

)
� k+c+ + k−c− = bk,

andbk(a) � bk . Let ε > 0. To prove the reversed inequality, chooseg± ∈ Γ ± such that

max I
(
g±(t)

)
� c± + ε

.

t∈[0,1] 2k
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Let R > 0 andχR ∈ C∞(R+,R+) such thatχR(z) = 1 if z � R, −1 � χ ′
R(z) � 0, andχR(z) = 0 if z � R + 2.

Define

ĝ±(t)(x) = χR

(|x|)g±(t)(x).

As in the proof of [3, Proposition 3.4], ifR is sufficiently large then̂g± ∈ Γ ± and

max
t∈[0,1]

I
(
ĝ±(t)

)
� c± + ε

k
.

Then forj ∈ ZN such thatji �= jm for i �= m andl ∈ N sufficiently large,

G(θ)(x) :=
∑
i∈Γ +

ĝ+(θi)(x + lji) +
∑
i∈Γ −

ĝ−(θi)(x + lji) ∈ Γk(a)

and

max
θ∈[0,1]k

I
(
G(θ)

)
� k+c+ + k−c− + ε.

Letting ε → 0 yieldsbk(a) � k+c+ + k−c− = bk . This completes the proof.�
Define

M∗ = M∗(j1, . . . , jk,A, k+, k−) =
⋃
l∈N

M(lj1, . . . , ljk,A, k+, k−).

As [2, Proposition 3.12] and [3, Proposition 3.22], we have the following lemma.

Lemma 4.2. Let (V1), (f1)–(f4), and (∗)± be satisfied. There is anrk = rk(A,α) such that ifr � rk and w ∈

Nr(M∗(j1, . . . , jk,A, k+, k−)) ∩K, thenw ∈ Kbk+α

bk−α .

As in [2, Remark 3.19], we also assume thatrk < rk−1 < · · · < r1.

Lemma 4.3. Let (V1), (f1)–(f4), and(∗)± be satisfied and

r < min

(
1

12
µ

(
Tl±(F±)

)
,
ν

2
, rk

)
. (14)

Then either

(i) there is aδl = δl(j1, . . . , jk,A, k+, k−, r) such that‖I ′(w)‖ � δl for all w ∈ Nr(M(lj1, . . . , ljk,A, k+, k−)),
or

(ii) there is aw ∈ 
Nr(M(lj1, . . . , ljk,A, k+, k−)) ∩K.

Moreover, if

L= {
l ∈ N | (i) holds forNr

(
M(lj1, . . . , ljk,A, k+, k−)

)}
and

W =
⋃
l∈L

M(lj1, · · · , ljk,A, k+, k−),

then there is aδ = δ(j1, . . . , jk,A, k+, k−, r) independent ofl such that‖I ′(w)‖ � δ for all w ∈ Nr(W)\Nr/8(W).
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This lemma is the same as [3, Proposition 3.23] and can be proved as [2, Proposition 3.20].
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We will follow the five steps in the proof of [3, Theorem 3.27] and indicate only
differences. Arguing indirectly, we assume thatL is an infinite set.

Step 1: The construction ofG. Let r andδ be as in Lemma 4.3 andα1 be defined before Lemma 2.9. We furth
require that

r < min

(
1

8
,
a2

16

)
, (15)

wherea2 is the number from Lemma 2.5. Choose

ε̄1 < min

(
rδ

40
,
α1

2
, c+, c−

)
. (16)

With this choice ofε̄1, r1 = r
16k , andp = 6k, by Lemma 2.9, there is anε = ε1

2 ∈ (0, ε̄1
2 ) andg±

1 ∈ Γ ± such that

max
t∈[0,1]

I
(
g±

1 (t)
)
� c± + ε

3k

and

I
(
g±

1 (t)
)
> c± − 2ε implies g±

1 (t) ∈ Nr/(16k)(A
±).

By an approximation argument as in Lemma 4.1, there isg± ∈ Γ ± andR > 0 such that∥∥g±(t) − g±
1 (t)

∥∥ � r

16k
,∣∣I(

g±(t)
) − I

(
g±

1 (t)
)∣∣ � ε

6k
,

and

suppg±(t) ⊂ BR/2(0) for all t ∈ [0,1]. (17)

Then we have

max
t∈[0,1]

I
(
g±(t)

)
� c± + ε

2k

and

I
(
g±(t)

)
> c± − 3ε

2
implies g±(t) ∈ Nr/(8k)(A

±).

For θ ∈ [0,1]k andl ∈ L, set

G(θ) =
∑
i∈Λ+

τlji
g+(θi) +

∑
i∈Λ−

τlji
g−(θi). (18)

Then

suppG(θ) ⊂
k⋃

i=1

BR/2(lji). (19)

For anyβ > 0, sinceL is an infinite set, there is anl ∈ L such that∣∣BR(lji) − BR(ljm)
∣∣ � 2β + 4 for i �= m. (20)
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Fix such anl = l(β). ThenG ∈ Γk(0) andG satisfies

I
(
G(θ)

) =
∑
i∈Λ+

I
(
g+(θi)

) +
∑
i∈Λ−

I
(
g−(θi)

)
< k+c+ + k−c− + ε = bk + ε. (21)

Now if I (G(θ)) > bk − ε then fori ∈ Λ+,

I
(
g+(θi)

)
> bk − ε − (k+ − 1)

(
c+ + ε

2k

)
− k−

(
c− + ε

2k

)
> c+ − 3ε

2
,

which impliesg+(θi) ∈ Nr/8k(A
+). Similarly, if I (G(θ)) > bk − ε then for i ∈ Λ−, g−(θi) ∈ Nr/8k(A

−). For θ

satisfyingI (G(θ)) > bk − ε, choosingvi ∈ A± for i ∈ Λ± such that∥∥g±(θi) − vi

∥∥ <
r

8k
,

we have∥∥∥∥∥G(θ) −
k∑

i=1

τlji
vi

∥∥∥∥∥ �
∑
i∈Λ+

∥∥g+(θi) − vi

∥∥ +
∑
i∈Λ−

∥∥g−(θi) − vi

∥∥ <
r

8
.

Thus

I
(
G(θ)

)
> bk − ε implies G(θ) ∈ Nr/8(W). (22)

Step 2: The deformation of G.Let r andε be as in Step 1. Setε̄ = α and choosêε ∈ (ε, ε̄). Define foru ∈ E,

φ(u) = ‖u − Nr/8(Kbk+ε̄
bk−ε̄ )‖

‖u − Nr/8(Kbk+ε̄
bk−ε̄ )‖ + ‖u − E \ Nr/4(Kbk+ε̄

bk−ε̄ )‖
and

ψ(u) = ‖u − (I bk−ε̂ ∪ Ibk+ε̂ )‖
‖u − (I bk−ε̂ ∪ Ibk+ε̂ )‖ + ‖u − I

bk+ε
bk−ε ‖ .

As before, setV(u) = 3ε̂I ′(u)/‖I ′(u)‖2 andW(u) = φ(u)ψ(u)V(u) for u ∈ E \K and letη(s,u) be the solution
of

dη

ds
= −W(η) for s � 0 and η(0, u) = u.

Setv = G(θ). Then by (21),I (v) < bk + ε. If I (v) � bk − ε, setσ(v) = 0 so thatη(σ (v), v) ∈ I bk−ε . If I (v) >

bk − ε then (22) shows thatv ∈ Nr/8(W); we will show in this case there is a uniqueσ(v) ∈ (0,1) such that
I (η(σ (v), v)) = bk − ε and‖η(σ (v), v) − v‖ < r . Chooseu ∈ W such thatv ∈ Br/8(u). For s ∈ [0,1], one of the
three cases must occur:

(i) η(s, v) reaches neither∂Br/2(u) nor ∂Ibk−ε ,
(ii) η(s, v) reaches∂Br/2(u) before it reaches∂Ibk−ε ,

(iii) η(s, v) reaches∂Ibk−ε before it reaches∂Br/2(u).

In case (i), sinceu ∈ W impliesBr(u) ∩K = ∅, the definition ofφ andψ yields

φ
(
η(s, v)

) = ψ
(
η(s, v)

) = 1 for all 0� s � 1,
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which implies

2ε � I (v) − I
(
η(1, v)

)
�

1∫
0

I ′(η(s, v)
)
V

(
η(s, v)

)
ds � 2ε̂,

a contradiction. In case (ii), by Lemma 4.3, there exist 0� s1 < s2 � 1 such that∥∥η(s1, v) − η(s2, v)
∥∥ � 3r

8
,∥∥I ′(η(s, v)

)∥∥ � δ for s1 � s � s2,

and

bk − ε � I
(
η(s, v)

)
� bk + ε for s1 � s � s2.

These inequalities imply

3r

8
�

s2∫
s1

∥∥∥∥dη

ds

∥∥∥∥ds �
s2∫

s1

φψ‖V‖ds � 4ε̂

δ

s2∫
s1

φψ ds

and

2ε � I
(
η(s1, u)

) − I
(
η(s2, u)

) =
s2∫

s1

φψI ′V ds � 2ε̂

s2∫
s1

φψ ds.

Then, 3r
8 � 4ε

δ
, which contradicts (16). Thus case (iii) occurs. Then there is a uniqueσ(v) ∈ (0,1) such that

I (η(σ (v), v)) = bk − ε. Sinceη(σ (v), v) ∈ Br/2(u) andv ∈ Br/8(u), ‖η(σ (v), v) − v‖ < r . As in [3], we define

G(θ) = η(σ (G(θ)),G(θ)) so that for allθ ∈ [0,1]k ,

I
(
G(θ)

)
� bk − ε (23)

and ∥∥
G(θ) − G(θ)
∥∥ � r. (24)

In addition, fori ∈ Λ+,

G(0i ) =
∑

m∈Λ+, m �=i

τljmg+(θm) +
∑

m∈Λ−
τljmg−(θm),

which implies

I (G(0i )) � (k+ − 1)

(
c+ + ε

2k

)
+ k−

(
c− + ε

2k

)
< bk − c+ + ε

2
< bk − ε.

Here, we have usedε < 1
2c+ which was deduced fromε ∈ (0, ε̄

2) and (16). In the same way, fori ∈ Λ−,

I
(
G(0i )

)
< bk − ε.

Thus, for 1� i � k,


G(0i ) = G(0i ). (25)

Similarly, for 1� i � k,


G(1i ) = G(1i ). (26)
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sult of
Step 3: Modifying
G. Using a convolution operatorJε∗ with a smooth peaking kernel to mollify
G to get
G∗ = Jε∗(
G) and then cutting downG∗ (see [3] for more details), we get âG ∈ C([0,1]k,E) such that
Ĝ(θ) ∈ C∞(RN,R) for eachθ ∈ [0,1]k and for somêR > 0,

I
(
Ĝ(θ)

)
� bk − ε

4
, (27)∥∥Ĝ(θ) − G(θ)

∥∥ � 2r, (28)

suppĜ(θ) ⊂
k⋃

i=1

BR(lji) for θ = 0i and 1i , 1� i � k, (29)

and

suppĜ(θ) ⊂ B
R̂+2(0) for all θ ∈ [0,1]k. (30)

Here, (27) is obtained from (23); (28) is from (24); (29) comes from (19), (25), and (26); and (30) is a re
cutting down. Also by (25) and (26), we have

G∗(θ) = Jε∗
(
G(θ)

) = Jε∗
(
G(θ)

)
for θ = 0i and 1i , 1� i � k,

which together with (19) imply

Ĝ(θ) = G∗(θ) = Jε∗
(
G(θ)

)
for θ = 0i and 1i , 1� i � k. (31)

Step 4: ModifyinĝG. Let

S =
{
x ∈ RN | |x| < R̂ + 2 andx /∈

k⋃
i=1

BR(lji)

}
.

It can be assumed that for 1� i � k,∣∣∂B
R̂+2(0) − BR(lji)

∣∣ � min
i �=m

∣∣BR(lji) − BR(ljm)
∣∣. (32)

Let

Ê(θ) = {
v ∈ W1,2(S) | v = Ĝ(θ) on ∂S and‖v‖W1,2(S) < 8r

}
and

Ψ (v) =
∫
S

(
1

2

(|∇v|2 + v2) − F(x, v)

)
dx.

Consider the minimization problem

minimize
v∈Ê(θ)

Ψ (v).

We further restrictr such that

A8K
2∗
1 (8r)2∗−2 <

1

8
and 
A8K

2∗
1 (8r)2∗−2 <

7

8
, (33)

whereA8, Ā8, andK1 are positive constants satisfying

F(x, z) � V0

8
|z|2 + A8|z|2∗

for x ∈ RN, z ∈ R,∣∣fu(x, z)
∣∣ � V0 + Ā8|z|2∗−2 for x ∈ RN, z ∈ R,
8
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is a
y

ent
and

‖w‖L2∗
(S) � K1‖w‖W1,2(S) for w ∈ W1,2(S),

respectively. HereK1 depends only onN but notS. Then according to [3, Proposition 5.7] and its proof, there
uniquev = v(θ) ∈ Ê(θ) minimizing Ψ , v(θ) ∈ C2,γ (S) for all γ ∈ (0,1) andθ ∈ [0,1]k , v depends continuousl
on θ ∈ [0,1]k (in ‖ · ‖W1,2(S)), andv(θ) satisfies∥∥v(θ)

∥∥
W1,2(S)

� 4r (34)

and

−�v + V (x)v = f (x, v) in S, v = Ĝ(θ) on ∂S. (35)

For θ ∈ [0,1]k , define

U(θ)(x) =
{

Ĝ(θ)(x) for x /∈ S,

v(θ)(x) for x ∈ S.

By (19) and (28),∥∥Ĝ(θ)
∥∥

W1,2(S)
= ∥∥Ĝ(θ) − G(θ)

∥∥
W1,2(S)

� 2r.

Then (34) implies∥∥U(θ) − Ĝ(θ)
∥∥ � ‖v‖W1,2(S) + ∥∥Ĝ(θ)

∥∥
W1,2(S)

� 4r + 2r = 6r.

Thus, for allθ ∈ [0,1]k ,∥∥U(θ) − G(θ)
∥∥ �

∥∥U(θ) − Ĝ(θ)
∥∥ + ∥∥Ĝ(θ) − G(θ)

∥∥ � 8r. (36)

Also, for all θ ∈ [0,1]k , by (27) and the definition ofv,

I
(
U(θ)

)
� I

(
Ĝ(θ)

)
� bk − ε

4
. (37)

For θ = 0i andθ = 1i , 1� i � k, by (29)

Ĝ(θ)(x) = 0 for x ∈ S,

which implies by the definition ofv

v(θ)(x) = 0 for x ∈ S.

Thus forθ = 0i andθ = 1i , 1� i � k andx ∈ RN ,

U(θ)(x) = Ĝ(θ)(x) (38)

and by (29) again

suppU(θ) ⊂
k⋃

i=1

BR(lji). (39)

For ρ > 0, letDρ = {x ∈ S | |x − ∂S| � ρ}. Sincev satisfies (35), by [3, Proposition 5.24] where the requirem
r < 1

8 from (15) was needed, there is aK2 > 0 depending only onρ, p, andN such that

‖v‖L∞(Dρ) � K2‖v‖W1,2(S). (40)

According to [3], (40) implies that if

r � (8K2)
−1z̄, (41)
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wherez̄ is a number such that|z| � z̄ implies |f (x, z)| � |z|/2, then

v2(x) � 2z̄2 e−β/2cosh1 (42)

for all x ∈ ⋃
1�i�k Ai where

Ai = {
x ∈ RN | R + β − 2< |x − lji | < R + β + 2

}
.

Step 5: The construction ofH . In this last step we will construct anH ∈ Γk(a) with a ∈ (0, a2] such that

max
θ∈[0,1]k

I
(
H(θ)

)
� bk − ε

8
, (43)

which is a contradiction to Lemma 4.1. As in [3], we define for 1� i � k,

hi(θ)(x) =


U(θ)(x), |x − lji | � R + β,∣∣|x − lji | − (R + β + 1)
∣∣U(θ)(x), R + β < |x − lji | < R + β + 1,

0, otherwise

and

H(θ) =
k∑

i=1

hi(θ).

Then as a consequence of (20),hi satisfies(g3). Forθ = 0i andθ = 1i , i = 1, . . . , k, by (39) we have

supphi(θ) ⊂ BR(lji).

By (17), (18), (31), and (38) we see that, forx ∈ BR(lji) with i ∈ Λ±,

hi(0i )(x) = U(0i )(x) = Ĝ(0i )(x) = Jε∗
(
G(0i )

)
(x) = Jε∗

(
g±(0)

)
(x) = 0 (44)

and

hi(1i )(x) = U(1i )(x) = Ĝ(1i )(x) = Jε∗
(
G(1i )

)
(x) = Jε∗

(
g±(1)

)
(x). (45)

By (45), forε∗ small enough

I
(
hi(1i )

)
< 0 for i = 1, . . . , k. (46)

Thathi satisfy(g2) follows from (44) and (46). DefineS = ⋃k
i=1 BR+β(lji) andD = S \ S. Since

F(x, z) � V0

4
|z|2 + A4|z|2∗

for x ∈ RN, z ∈ R,

we see that forv = v(θ),∫
D

F(x, v)dx �
(

1

4
+ A5‖v‖2∗−2

W1,2(S)

)
‖v‖2

W1,2(D)
.

By further requiring

A5(4r)2∗−2 � 1

4
, (47)

it can be deduced (see [3]) from (42) that forβ (or equivalentlyl ∈ L) large enough,∣∣I(
H(θ)

) − I
(
U(θ)

)∣∣ � ε

8
. (48)

Now (43) follows from (37) and (48). To verify thathi satisfies(g1), using (36) and the definition ofhi(θ) we see
that
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ce

ber of
s in [3]

ns have
lutions

,

are

odal

of

earity is
multi-
∥∥hi(θ) − G(θ)
∥∥

W1,2(BR+β+1(lji ))

�
∥∥hi(θ) − U(θ)

∥∥
W1,2(BR+β+1(lji ))

+ ∥∥U(θ) − G(θ)
∥∥

W1,2(BR+β+1(lji ))

�
∥∥hi(θ) − U(θ)

∥∥
W1,2(BR+β+1(lji )\BR+β(lji ))

+ 8r.

By (20) and (32),BR+β+1(lji) \ BR+β(lji) ⊂ S. Then (34) and the definition ofU(θ) andhi(θ) imply∥∥hi(θ) − U(θ)
∥∥

W1,2(BR+β+1(lji )\BR+β(lji ))
� 2

∥∥v(θ)
∥∥

W1,2(S)
� 2 · 4r = 8r.

Therefore∥∥hi(θ) − G(θ)
∥∥

W1,2(BR+β+1(lji ))
� 16r.

By (17), (18), and (20),G(θ)|BR+β+1(lji ) ∈ P± andhi ∈ C([0,1], 
N16r (P±)) for i ∈ Λ±. Thus, as a consequen
of (15),hi satisfies(g1). Let r = r0 be a number satisfying (14), (15), (33), (41), and (47). Thenr0 is a valid number
for the theorem. �

5. Further remarks

Combining the theorems in Section 3 and the argument from [5], we can obtain information on the num
nodal domains of non-symmetric multi-bump nodal solutions for Eq. (1) and Eq. (2), extending the result
and improving the results in [5].

Theorem 5.1. Assume(V1) and (f1)–(f4). Suppose(∗)± holds. For multi-bump nodal solutions of Eq.(2), the
number of nodal domains is bounded by the number of bumps. In particular, the two-bump nodal solutio
exactly two nodal domains. Moreover, there are infinitely many, geometrically different, two-bump, nodal so
which have exactly two nodal domains.

Theorem 5.2. Assume(V1′), (f1′), and(f2)–(f4). Suppose(∗′)± holds. Then for any integersk � m � 2, Eq.(1) has
infinitely many, geometrically different,k-bump, nodal solutions inI kc+α

kc−α which have exactlym nodal domains.
More precisely, given any positive integersk1, k2, . . . , km such that

∑m
i=1 ki = k � 2, there are infinitely many

geometrically different,k-bump, nodal solutions inI kc+α
kc−α which have exactlym nodal domainsDi , i = 1, . . . ,m

such thatu|Di
is a ki -bump positive or negative solution.

Theorem 5.3. Assume(V1′′), (f1′′), and(f2)–(f4). Suppose(∗′′)± holds. For any integerk � 2, Eq.(2) has infinitely
many, geometrically different,k-bump, nodal solutions inI kc+α

kc−α such that the numbers of their nodal domains

bounded between[ k
2] + 1 and k. In particular, there are nodal solutions such that the numbers of their n

domains tend to infinity.

Looking back at the proof, we see that if we takek− = 0, we will end up obtainingk-bump solutions with only
positive bumps. Together with Theorem 1.1 of [5] we getk-bump positive solutions. This is an alternative way
obtaining positive multi-bump solutions (see Theorem 7.22 in [3]).

Recently, the construction of multi-bump solutions [3] has been extended to the case that the nonlin
asymptotically linear instead of superlinear. This was done by van Heerden in [6]. Obviously, our results on
bump nodal solutions can be carried to this case and we refer to [6] for precise conditions.
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