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Abstract

In 1995, Constantin, Foias, Kukavica, and Majda had shown that the 2-D space periodic Navier–Stokes equations h
set of the solutions that exist for all timest ∈ R and grow exponentially in SobolevH1 norm whent → −∞. In the presen
note we show that these solutions grow exponentially (whent → −∞) in any SobolevHm norm (m � 2) provided the driving
force is bounded inHm−1 norm.
 2005 Elsevier SAS. All rights reserved.

Résumé

En 1995 Constantin, Foias, Kukavica et Majda ont demontré que les équations de Navier–Stokes périodiques dansR
2 possè-

dent un ensemble ample des solutions qui existent pour tout tempst ∈ R et qui ont une croissance exponentielle (pourt → −∞)
dans l’espace de SobolevH1. Dans cet article nous montrons que ces solutions ont aussi une croissance exponentie
t → −∞) dans tout espace de SobolevHm (m � 2) à condition que la force soit dans l’espace de SobolevHm−1.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

One of the remarkable properties of the 2-D space periodic Navier–Stokes equations is the richness of
initial data for which the solutions exist for all timest ∈ R and increase exponentially ast → −∞. These solutions
were studied in [3], where, among other results, it was proved thatu(t) is such a solution if and only if its Dirichle
quotient|A1/2u(t)|2/|u(t)|2 → λn ast → −∞ (here| · | is theL2-norm,A is the Stokes operator, andλn is one
of its eigenvalues – see Section 2 for more precise definitions). The invariant setMn of all the trajectories of thes
solutions is proved to project entirely onto the spectral space associated with the firstn eigenvalues of the Stoke
operator (cf. [3]). This fact implied the only known partial answer to the Bardos–Tartar conjecture (cf. [3])
conjecture (cf. [1]) affirms that the set of initial data for which solutions of the 2-D space periodic Navier–S
equations exist for all times is dense in the phase space equipped with the energy norm (a.e. theL2-norm in this
case). However, in [3] the density was proved in the norm|A−1/2 · |.

The paper [3] also raised a number of questions regarding the geometric structure ofMn. For example, it would
be interesting to investigate the relationship between these sets and the other invariant sets of the Navie
equations, namely the global attractor and inertial manifolds.

Another open question is whether
⋃

n Mn is dense in the energy norm of the phase space, which, if answ
affirmatively, would solve the Bardos–Tartar conjecture in the energy norm. The study of higher order qu
on the setsMn is of particular interest in this respect. In fact, a good result about boundedness of quotient
form |Aαu|2/|u|β would imply the desired density result for

⋃
nMn via the method presented in [3].

In this paper we prove that the quotients|Aαu|2/|u|4α are bounded on anyMn. (cf. Theorem 2 and its Coro
lary 1). Our bounds, however, are not sufficient to prove the density of

⋃
n Mn in the energy norm of the phas

space. But as a corollary we show that if a solution of the 2-D space periodic Navier–Stokes equation exis
times and increases exponentially in the energy norm (ast → −∞), than it increases exponentially in any Sobo
norm, provided the driving force is regular (cf. Corollary 2). In particular, theL∞ norm of any derivative of suc
a solution grows at most exponentially ast → −∞.

It is worth mentioning that by a slight modification of the proofs given in this paper one can prove s
results for the 2-D space periodic Navier–Stokesα-model and 2-D space periodic Kelvin-filtered Navier–Sto
equations. Note that the analogs of the setsMn defined for these systems have very similar properties comp
to the Navier–Stokes case. In particular for the 2-D space periodic Navier–Stokesα-model,

⋃
nMn is dense in the

L2 norm, which is still weaker than the energy norm for that system (cf. [10]). On the other hand, for the 2-D
periodic Kelvin-filtered Navier–Stokes equations the density is proved in their energy norm (cf. [11]).

However, not all dissipative systems have the same kind of behavior for negative times. For example
case of the 1-D space periodic Kuramoto–Sivashinsky equation it was established that all the solutions ou
global attractor will blow up backward in finite time (cf. [6,7]). The other peculiar example is Burgers’ ori
model for turbulence. Although Burgers’ model has a rich setM1, the solutions on it display some surprisi
dynamical differences from those in the Navier–Stokes case (cf. [4]). Still, it would be interesting to see w
the results similar to the ones presented in this note can also be proved for the setM1 of Burgers’ original mode
for turbulence.

2. Preliminaries

We consider the 2-D space periodic Navier–Stokes Equations (NSE) inΩ = [0,L]2:

d

dt
u − ν�u + (u · ∇)u + ∇p = f,

∇ · u = 0,
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n
act
g

u,p Ω-periodic,
∫
Ω

u = 0,

whereu(t) :R2 → R
2, p(t) :R2 → R are unknown functions andν > 0, f ∈ L2(Ω) (f is Ω-periodic,

∫
Ω

f = 0)
are given.

Let H be the closure inL2(Ω)2 of{
v ∈ L2(Ω)2: v Ω-periodic trigonometric polynomial, ∇ · v = 0,

∫
Ω

v = 0

}
.

We denote

(v,w) :=
∫
Ω

v · w

and

|v| := (v, v)1/2

the inner product and the norm inH .
LetA = −PL� be the Stokes operator (defined onD(A) = H ∩H 2(Ω)2), wherePL is the orthogonal projectio

from L2(Ω)2 ontoH . Observe thatA :D(A) → H is an unbounded positive self-adjoint operator with a comp
inverse. Its eigenvalues are(2π/L)2(k2

1 + k2
2), where(k1, k2) ∈ N

2\{0,0}. We arrange them in the increasin
sequence:

(2π/L)2 = λ1 < λ2 < · · · .
We will need the following fact about{λn} (cf. [8]).

lim sup
n→∞

(λn+1 − λn) = ∞.

Also, it is obvious that

λn+1 − λn � λ1, n � 1,

and

lim
n→∞λn = ∞.

Next we denoteB(u, v) = PL((v · ∇)w)) andb(u, v,w) = (B(u, v),w), u,w ∈ H , v ∈ D(A). Observe that

b(u, v,w) = −b(u,w,v), u ∈ H, v,w ∈ D(A),

b(u,u,Au) = 0, u ∈ D(A).

We will also use the following inequality forb:∣∣b(u, v,w)
∣∣ � c0|u|1/2|A1/2u|1/2|A1/2v| |w|1/2|A1/2w|1/2, (1)

whereu,v,w ∈ D(A1/2)(= H ∩ H 1(Ω)2).
Finally, denoteg = PLf .
Then the NSE can be written as

d

dt
u + Au + B(u,u) = g. (2)

We denote byS(t)u the solution of the NSE which isu at t = 0.
0 0
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Let

A =
{
u0 ∈

⋂
t�0

S(t)H : sup
t∈R

∣∣S(t)u0
∣∣ < ∞

}
(3)

be the global attractor of Eq. (2). Refer to [2] or [9] for the comprehensive treatment of Eq. (2).
We will study theS(t)-invariant sets

Mn = A∪
{
u0 ∈

⋂
t�0

S(t)H : lim sup
t→−∞

|A1/2S(t)u0|2
|S(t)u0|2 � λn + λn+1

2
:= λn

}
. (4)

We will use the following known facts aboutMn (cf. [3]).

Theorem 1. The set
⋃

nMn is dense inH with the topology of the norm|A−1/2 · |.
Also:

• If u(t) ∈Mn\Mn−1 then

lim
t→−∞

|A1/2u(t)|2
|u(t)|2 = λn; (5)

• u(t) ∈ Mn if and only if∣∣u(t)
∣∣ = O(e−νλnt ), ast → −∞; (6)

• If u(t) ∈Mn\Mn−1 then

lim inf
t→−∞

|u(t)|
e−νλnt

> 0. (7)

Moreover, if

|u0| � γ0 := max

{
2|g|
νλ1

, ν

}
(8)

then

|A1/2S(t)u0|2
|S(t)u0|2 � λn, (9)

for all t � 0.

3. Main result

For everyθ � 0 andg ∈ D(Aθ) define

Gθ = |Aθg|
ν2λθ+1

1

, (10)

the generalized Grashoff number.
Our main goal is to prove the following

Theorem 2. Let θ = k/2, k ∈ N\{0}, andg ∈ D(Aθ). Then for everyu0 ∈ Mn such that|u0| � γ0, there exists a
positive constantMθ(Gθ) depending onlyθ , c0 (wherec0 the constant from(1)), andGθ such that

|Aθu0|2 � Mθ(Gθ)
λn

2θ . (11)
|u0|4θ ν4θ−2
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s of the

or

tially

s

Moreover, ifθ > 1 than there exists a positive constantNθ(Gθ−1/2), that depends only onθ , c0, andGθ−1/2 such
that

t0∫
−∞

|Aθu|2
|u|4θ−2

dτ <
Nθ(Gθ−1/2)

ν4θ−3
λn

2θ−1, (12)

whereu(t) is a solution of the NSE satisfyingu(t0) = u0.
Also, ifθ � 1/2 then

lim
t→−∞

|Aθu(t)|2
|u(t)|4θ

= 0. (13)

Observe that (11) expands the estimate (9) from Theorem 1 to the quotients involving higher power
operatorA. In fact, these estimates hold for any power of the operator.

Corollary 1. Let α > 1/2 andg ∈ D(Aθ), whereθ = ([2α] + 1)/2. Then for everyu0 ∈ Mn with |u0| > γ0, there
is a constantMα (depending only onθ , G([2α]+1)/2,andc0) such that

|Aαu0|2
|u0|4α

� Mα

ν4α−2
λn

2α. (14)

Proof. Let θ = ([2α] + 1)/2. Observe thatθ � α. Then, by interpolation,

|Aαu0|2
|u0|4α

�
( |Aθu0|2

|u0|4θ

)(2α−1)/(2θ−1)( |A1/2u0|2
|u0|2

)(2θ−2α)/(2θ−1)

�
(

Mθ

ν4θ−2
λn

2θ

)(2α−1)/(2θ−1)

λn
(2θ−2α)/(2θ−1) = M

(2α−1)/(2θ−1)
θ

ν4α−2
λn

2α,

and thus, (14) holds withMα = M
(2α−1)/(2θ−1)
θ . �

Another consequence of Theorem 2 is that onMn any Sobolev norm of a solution will grow exponentially f
negative time.

Corollary 2. Supposeu(t) ∈ Mn\A andg ∈ D(Am/2) then∣∣Am/2u(t)
∣∣2 � O(e−2mνλnt ), t → −∞.

Moreover, ifm � 2, then for anyα = (α1, α2) with α1, α2 � 0, α1 + α2 � m − 2, we have

|Dαu|L∞ = O(e−(α1+α2+2)νλnt ), t → −∞,

where

Dαu(x1, x2) = ∂α1+α2u

∂α1x1∂α2x2
.

In particular, wheng ∈ C∞(Ω), any solutionu of the NSE which exists for all times and increases exponen
as t → −∞ in the phase spaceH , will also increase exponentially ast → −∞ in any Sobolev spaceHm

per(Ω)2 =
W

2,m
per (Ω)2 (m � 0). Moreover, theL∞ norm of any(space) derivative ofu will also increase exponentially a

t → −∞.
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Proof. Recall that the Sobolev norm inHm
per(Ω) is equivalent to the norm

| · |m := (|Am/2 · |2)1/2
.

Note that by Theorem 1u(t) ∈Mn\A implies that|u(t)|m grows at least exponentially ast → −∞, and|u(t)|2 =
O(e−νλnt ) ast → −∞.

On the other hand, according to Theorem 2,∣∣Am/2u(t)
∣∣2 � Mm/2

ν2m−2
λk

n|u|2m = O(e−2mνλnt ).

Thus,u(t) increases exponentially inHm
per(Ω)2 ast → −∞.

To prove the second part of the corollary we apply the Sobolev Embedding Theorem to obtain that

|Dαu|∞ � C|Dαu|H2(Ω),

for any multi-indexα = (α1, α2) ∈ N
2. Here we are writing

Dαu(x1, x2) = ∂α1+α2u

∂α1x1∂α2x2
.

Observe that by the first part of the corollary,|Dαu(t)|H2(Ω) = O(e−(α1+α2+2)νλnt ) ast → −∞. Consequently, we
also have that|Dαu|∞ = O(e−(α1+α2+2)νλnt ) ast → −∞. �

4. The proof of the main result

For convenience we will use the following notation:

Notation 1.

λ := |A1/2u|2
|u|2 ,

µ := |Au|2
|u|4 ,

ξ := (A − λ)
u

|u| ,

σ :=
(

A − 3

2
λ

)
A1/2u

|u|2 ,

λn := λn+1 + λn

2
,

µθ,m := |Aθu|2
|u|m .

First, we will prove the following useful lemma.

Lemma 1. Let u be a solution of the NSE that exists for all times and satisfies|u(t0)| > γ0 for somet0. Then for
any t � t0 and anym � 1,

2

3m

1

|u(t)|m � ν

t∫
λ(τ)

|u(τ)|m dτ � 2

m

1

|u(t)|m . (15)
−∞
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Also, ifu(t0) ∈Mn\A, then

ν

t∫
−∞

λ(τ)
∣∣ξ(τ )

∣∣2 dτ � 1

2

(
λ2

n − λ2(t)
) + |g|2

ν2|u(t)|2 (16)

and

ν

t∫
−∞

µ(τ)dτ � O

(
1

|u(t)|2
)

, for t → −∞. (17)

Proof. From (2) we obtain

1

2

d

dt
|u|2 + νλ|u|2 = (g,u), (18)

from which we get

1

|u|m+1

1

2

d

dt
|u| + ν

λ

|u|m =
(

g,
u

|u|m+2

)
.

Thus

ν

t∫
−∞

λ

|u|m dτ −
t∫

−∞

(
g,

u

|u|m+2

)
dτ = 1

m

1

|u(t)|m . (19)

Notice that fort � t0∣∣∣∣∣
t∫

−∞

(
g,

u

|u|m+2

)
dτ

∣∣∣∣∣ �
t∫

−∞

g

|u|m+1
dτ �

t∫
−∞

(
g

νλ1

1

|u|
)

1

|u|m dτ � 1

2
ν

t∫
−∞

λ1

|u|m dτ � 1

2
ν

t∫
−∞

λ

|u|m dτ,

since|u(t)| � γ0(� 2g
νλ1

) andλ(t) � λ1 for all t � t0. Thus, returning to (19) we get

ν

t∫
−∞

λ

|u|m dτ − 1

2
ν

t∫
−∞

λ

|u|m dτ � 1

m

1

|u(t)|m

and

ν

t∫
−∞

λ

|u|m dτ + 1

2
ν

t∫
−∞

λ

|u|m dτ � 1

m

1

|u(t)|m

for all t � t0, from which the relation (15) readily follows.
In order to prove (16), we observe that

1

2

d

dt
|A1/2u|2 + ν|Au|2 = (g,Au), (20)

which, together with (18), implies that

1

2

d

dt
λ + ν|ξ |2 =

(
g

|u| , ξ
)

,

from which we obtain

1 d
λ2 + νλ|ξ |2 � λ|g|2

.

2 dt ν|u|2
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By integrating the relation above, using (15) form = 2 as well as the fact thatλ(t) → λn ast → −∞ (cf. results
from [3] summarized in Theorem 1), we get

1

2

(
λ2(t) − λ2

n

) + ν

t∫
−∞

λ|ξ |2 dτ � |g|2
ν2|u(t)|2 ,

which implies the inequality (16) from the statement of the lemma.
Finally, to prove (17) consider

1

2

d

dt

λ

|u|2 = −ν|Au|2 + (g,Au)

|u|4 − 2
λ

|u|2
−ν|A1/2u|2 + (g,u)

|u|2 ,

from where

1

2

d

dt

λ

|u|2 � −νµ + |g|2
|u|2µ1/2 + 2ν

λ2

|u|2 + 2
λ|g|
|u|3 .

Consequently

d

dt

λ

|u|2 + νµ � |g|2
|u|2 + 4ν

λ2

|u|2 + 4
λ|g|
|u|3 .

Thus, by integrating the previous inequality and using (15) we obtain

ν

t∫
−∞

µ(τ)dτ � O

(
1

|u(t)|2
)

for t → −∞. �

Let u(t) be a solution of the NSE such thatu(t) ∈Mn. Our first result is

Proposition 1. If g ∈ D(A) and∣∣u(0)
∣∣ � γ0,

then for everyt � 0 we have

µ(t) + e−3ν

t∫
−∞

λ(τ)µ(τ)dτ � e4

2ν2

(
λ2

n − λ2(t)
) + K1λ

2
1 + (13/4)e4λ2

n

|u(t)|2 ,

whereK1 = e4(c0G0 + G1) with c0 – the constant from the inequality(1). Moreover,

ν

4
e−3

t∫
−∞

|A3/2u|2
|u|4 dτ � e4

2ν2

(
λ2

n − λ2(t)
) + K1λ

2
1 + (13/4)e4λ2

n

|u(t)|2 ,

for any t � 0.

Proof. Observe that sinceg ∈ D(A), we have

1

2

d

dt
µ = −ν|A3/2u|2 − b(Au,u,Au) + (Ag,Au)

|u|4 − 2µ
−ν|A1/2u|2 + (g,u)

|u|2 ,

so,

1 d
µ = −ν(µ3/2,4 − 2µλ) − b(Au,u,Au) + (Ag,Au) − 2µ

(g,u)
.

2 dt |u|4 |u|4 |u|2
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ts a
Thus,

1

2

d

dt
µ + νλµ = −ν|σ |2 + 9ν

4

λ3

|u|2 − b(Au,u,Au)

|u|4 (21)

+
(

Ag

|u|2 ,
Au

|u|2
)

− 2µ

(
g,

u

|u|2
)

.

Note that

|b(Au,u,Au)|
|u|4 = b(Au − λu,u,Au − λu)

|u|4 � c0|ξ | |A1/2ξ | |A1/2u|
|u|2

= c0λ
1/2|ξ | |A

1/2ξ |
|u| = c0λ

1/2|ξ |
(

|σ |2 + λµ − 5

4

λ3

|u|2
)1/2

,

and thus

|b(Au,u,Au)|
|u|4 �

c2
0

2ν
λ|ξ |2 + ν

2

(
|σ |2 + λµ − 5

4

λ3

|u|2
)

.

Now, going back to (21) we get

1

2

d

dt
µ + νλµ � −ν

2
|σ |2 + ν

2
λµ − 5ν

8

λ3

|u|2 + 9ν

4

λ3

|u|2 + c0λ

2ν
|ξ |2 + |Ag|

|u|2 µ1/2 − 2µ

(
g,

u

|u|2
)

.

Observe that

|Ag|
|u|2 µ1/2 � 1

2ν3λ1

|Ag|2
|u|2 + ν3λ1

2

µ

|u|2 .

Consequently

d

dt
µ + νλµ �

[
ν3λ1

|u|2 − 4

(
g,

u

|u|2
)]

µ − ν|σ |2 + c0λ

ν
|ξ |2 + 1

|u|2
(

13ν

4
λ3 + |Ag|2

ν3λ1

)
.

Note that the conditions of the proposition imply thatλ(t) � λn, for all t � 0. Let us denote

Γn := 13ν

4
λ2

n + |Ag|2
ν3λ2

1

,

β := ν3λ1

|u|2 − 4

(
g,

u

|u|2
)

.

Then, by the Gronwall inequality,

µ(t) � µ(t0)e
∫ t
t0

β +
t∫

t0

(
−ν|σ |2 − νλµ + c0

ν
λ|ξ |2 + Γnλ

|u|2
)

e
∫ t
τ β dτ. (22)

Observe that cf. Theorem 1,

lim inf
t→−∞

|u(t)|2
e−νλ1t

> 0,

and soβ(τ) is bounded and absolutely integrable on the interval(−∞, t]. Moreover, by Lemma 1,(c0/ν)λ|ξ |2 +
Γnλ/|u|2 is also absolutely integrable on(−∞, t]. On the other hand, from (17) we conclude that there exis
sequencet0

n → −∞ such thatµ(t0
n) → 0. Thus, by takingt0 = t0

n and lettingn → ∞, the inequality (22) yields:

µ(t) + c1ν

t∫ (|σ |2 + λµ
)
dτ � c2

t∫ (
c0

ν
λ|ξ |2 + Γnλ

|u|2
)

dτ, (23)
−∞ −∞
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bound-
where

c1(t) = inf
τ�t

e
∫ τ
−∞ β,

and

c2(t) = sup
τ�t

e
∫ τ
−∞ β.

Observe that the relation (15) from Lemma 1 implies that

t∫
−∞

Γnλ

|u|2 dτ � Γn

ν|u(t)|2 .

Using this, together with (16), in the inequality (23), we obtain

µ(t) + c1ν

t∫
−∞

(|σ |2 + λµ
)
dτ � c2c0

ν2

(
1

2

(
λ2

n − λ2(t)
) + |g|2

ν2|u(t)|2
)

+ c2Γn

ν|u(t)|2 . (24)

Observe that from (24) we can infer thatµ(t) is bounded, while|σ |2 andλµ are integrable on(−∞, t], and thus

c1ν

t∫
−∞

|A3/2u|2
|u|4 dτ � c1ν

t∫
−∞

3µλdτ + c2c0

2ν2

(
λ2

n − λ2(t)
) +

(
c0|g|2

ν3
+ Γn

)
c2

ν|u(t)|2 .

Using (24) again to estimatec1ν
∫ t

−∞ 3µλdτ , we obtain

c1ν

t∫
−∞

|A3/2u|2
|u|4 dτ � 2c2c0

ν2

(
λ2

n − λ2(t)
) +

(
c0|g|2

ν3
+ Γn

)
4c2

ν|u(t)|2 < ∞. (25)

Observe that from (15) we obtain that

ν

t∫
−∞

λ

|u| dτ � 3

2|u(t)| .

Hence,

c1 > e− ∫ 0
−∞(4|g|/|u|) � e−6|g|/(νλ1|u(0)|) � e−3

and, since|u| � γ0 � ν,

c2 � e
∫ t
−∞(ν3λ1/|u|2+4|g|/|u|) � eν2/|u(t)|2+6|g|/(νλ1|u(t)|) � e1+3 = e4.

Finally, if we define

K1(G0,G1) := e4(c0G0 + G1),

and use (24) and (25) we will obtain the desired estimates from the proposition.�
The following proposition allows us to deduce the boundedness of higher order quotients based on the

edness on the lower ones.
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btain

t

Proposition 2. Let g ∈ D(Aθ+1/2) with θ = k/2 and k ∈ N. Suppose that for everyu(t) ∈ Mn, |u(t0)| � γ0 we
have

t0∫
−∞

|Aθu(t)|2
|u(t)|m dt <

Cθ,m(Gθ−1/2)

νm−1
λn

k−1,

whereCθ,m(·) is a positive increasing function. Then there exist positive increasing functionsC′
θ,m(·),Kθ,m(·),

such that

|Aθu(t0)|2
|u(t0)|m+2

+ ν

t0∫
−∞

|Aθ+1/2u(t)|2
|u(t)|(m+2)

dt <
C′

θ,m(Gθ)

νm
λn

k

and

|Aθ+1/2u(t)|2
|u(t)|(m+4)

� Kθ,m(Gθ+1/2)

νm+2
λn

k+1.

Moreover,

lim
t→−∞

|Aθ+1/2u(t)|2
|u(t)|(m+4)

= lim
t→−∞

|Aθu(t)|2
|u(t)|(m+2)

= 0.

Proof. Using (2) we get the following equation for the Galerkin approximationsuN (cf. [2] for the facts about the
Galerkin approximations for the NSE)

1

2

d

dt
µN

θ,m+2 = −ν|Aθ+1/2uN |2 + (g,A2θuN) − b(uN,uN,A2θuN)

|uN |(m+2)

+ m + 2

2
µN

θ,m+2
ν|A1/2uN |2 − (g,uN)

|uN |2 .

Applying Theorem 3 from the Appendix as well as the Cauchy–Schwarz inequality, we get

1

2

d

dt
µN

θ,m+2 � −νµN
θ+1/2,m+2 + |Aθg|

|uN |(m+2)/2
µN

θ,m+2
1/2 + c0c2θ

|Aθ+1/2uN | |AθuN | |A1/2uN |
|uN |(m+2)

+ ν
m + 2

2
λµN

θ,m+2 + m + 2

2

|g|
|uN |µ

N
θ,m+2

(herec2θ = 6([θ ]+ (2θ −[θ ])22θ−2) is the constant from Theorem 3). Now, using the Jensen inequality, we o

1

2

d

dt
µN

θ,m+2 � −ν

2
µN

θ+1/2,m+2 + 1

2νλ1

|Aθg|2
|uN |(m+2)

+ νλ1

2
µN

θ,m+2 + c2
0c

2
2θ

2ν
λNµN

θ,m

+ ν
m + 2

2
λNµN

θ,m+2 + m + 2

2

|g|
|uN |µ

N
θ,m+2.

Hence,

d

dt
µN

θ,m+2 + νµN
θ+1/2,m+2

� |Aθg|2
νλ1|uN |(m+2)

+
(

νλ1

|uN |2 + c2
0c

2
2θ

ν
λN + ν(m + 2)λN

|uN |2 + (m + 2)|g|
|uN |3

)
µN

θ,m.

Sinceg ∈ D(Aθ+1/2), we can integrate fromt to t0 (t < t0) and pass to the limitN → ∞. Taking into the accoun
thatλ(t) � λ we get
n
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r
e

µθ,m+2(t0) + ν

t0∫
t

µθ+1/2,m+2 dτ � µθ,m+2(t) + |Aθg|2
νλ1

t0∫
t

dτ

|u|m+2

+
[
c2

0c
2
2θ

ν
λn + 1

|u(t0)|2
(

νλ1 + ν(m + 2)λn + (m + 2)|g|
|u(t0)|

)] t0∫
t

µθ,m dτ.

Since
t0∫

−∞
µθ,m dτ <

Cθ,m(Gθ−1/2)

νm−1
λn

k−1,

there exists a sequencetl → −∞ such that

lim
l→∞µθ,m(tl) = 0

(= lim
l→∞µθ,m+2(tl)

)
.

Thus, by lettingt = tl → −∞, we get

µθ,m+2(t0) + ν

t0∫
−∞

µθ+1/2,m+2 dτ

� |Aθg|2
νλ1

t0∫
−∞

dτ

|u|m+2
+

[
c2

0c
2
2θ

ν
λn + 1

|u(t0)|2
(

νλ1 + ν(m + 2)λn + (m + 2)|g|
|u(t0)|

)] t0∫
−∞

µθ,m dτ.

Hence,

lim
t→−∞µθ,m+2(t) = 0.

Moreover, since according to Lemma 1,

ν

t0∫
−∞

λ

|u|m+2
dτ � 2

m + 2

1

|u(t0)|m+2
,

we obtain

µθ,m+2(t0) +
t0∫

−∞
µθ+1/2,m+2 dτ

� |Aθg|2
ν2λ2

1

2

m + 2

1

γ m+2
0

+
[
c2

0c
2
2θ

ν
λn + 1

γ 2
0

(
νλ1 + ν(m + 2)λn + (m + 2)|g|

γ0

)]
Cθ,m(Gθ−1/2)

νm−1
λn

k−1.

Observe that by the Poincaré inequality,Gθ > Gθ−1/2. ThusCθ,m(Gθ−1/2) � Cθ,m(Gθ ). Using this fact, togethe
with the definition ofγ0, we can define the positive increasing functionsC′

θ,m(Gθ ) from the statement of th
proposition as follows:

2|Aθg|2νm

(m + 2)ν2λ2+k
1 γ m+2

0

+
[
c2

0c
2
2θ + ν2

γ 2
0

(
1+ (m + 2)

(
1+ |g|

νλ1γ0

))]
Cθ,m(Gθ−1/2)

= 2

m + 2
G2

θ +
(

c2
0c

2
2θ + 3

2
m + 4

)
Cθ,m(Gθ−1/2)

� 2
G2

θ +
(

c2
0c

2
2θ + 3

m + 4

)
Cθ,m(Gθ) := C′

θ,m(Gθ ).

m + 2 2
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e, for
On the other hand, again for the Galerkin approximations, we have

1

2

d

dt
µN

θ+1/2,m+4 = −ν|Aθ+1uN |2 + (g,A2θ+1uN) − b(uN,uN,A2θ+1uN)

|uN |(m+4)

+ m + 4

2
µN

θ+1/2,m+4
ν|A1/2uN |2 − (g,uN)

|uN |2 ,

and similarly to what was done above we get

µθ+1/2,m+4(t0) + ν

t0∫
t

µθ+1,m+4 dτ � µθ+1/2,m+4(t) + |Aθ+1/2g|2
νλ1

t0∫
t

dτ

|u|(m+4)

+
[
c2

0c
2
2θ+1

ν
λn + 1

|u(t0)|2
(

νλ1 + (m + 4)

(
νλn + |g|

|u(t0)|
))] t0∫

t

µθ+1/2,m+2 dτ

(here againc2θ+1 is the constant from Theorem 3). By the same argument as in the previous case, whent → −∞
we obtain

µθ+1/2,m+4(t0) + ν

t0∫
−∞

µθ+1,m+4 dτ � |Aθ+1/2g|2
νλ1

t0∫
−∞

dτ

|u|(m+4)

+
[
c2

0c
2
2θ+1

ν
λn + 1

|u(t0)|2
(

νλ1 + (m + 4)

(
νλn + |g|

|u(t0)|
))] t0∫

−∞
µθ+1/2,m+2 dτ.

Thus

lim
t→−∞µθ+1/2,m+4(t) = 0,

and

µθ+1/2,m+4(t) � Kθ,m

νm+2
λk+1

n ,

where

Kθ,m(Gθ+1/2) := 2

m + 4
G2

θ+1/2 +
(

c2
0c

2
2θ+1 + 3

2
m + 7

)
C′

θ,m(Gθ+1/2).

Observe thatKθ,m satisfies conditions from the proposition, since

2|Aθ+1/2g|2νm+4

(m + 4)ν4λk+3
1 γ m+4

0

+
[
c2

0c
2
2θ+1 + ν2

γ 2
0

(
1+ (m + 4)

(
1+ |g|

λ1νγ0

))]
C′

θ,m(Gθ)

= 2

m + 4
G2

θ+1/2 +
(

c2
0c

2
2θ+1 + 3

2
m + 7

)
C′

θ,m(Gθ ) � Kθ,m(Gθ+1/2). �
Proof of the main theorem. We will prove Theorem 2 by induction onk = 2θ .

Whenk = 1 the theorem holds (cf. (9)).
When k = 2 the theorem is valid via Proposition 1. Observe that this proposition allows us to choos

example,

M2(G1) =
(

(c0 + 1)G1 + 15
)

e4.

4
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ion

ns

ents.
Moreover, Proposition 1 gives us that

N3/2 = 4 e3M2.

Thus, applying Proposition 2, we conclude that the theorem holds whenk = 3.
Suppose now that the theorem is true for some integerk � 3. Then there exists a positive increasing funct

Nθ(·), such that

t0∫
−∞

|Aθu|2
|u|4θ−2

dτ <
Nθ(Gθ−1/2)

ν4θ−3
λ2θ−1

n ,

whereθ = k/2. But according to Proposition 2, ifg ∈ D(Aθ+1/2), then there exist positive increasing functio
Mθ+1/2(·) andNθ+1/2(·) such that

t0∫
−∞

|Aθ+1/2u(t)|2
|u(t)|4θ

dt <
Nθ+1/2(Gθ )

ν4θ−1
λ2θ

n ,

|Aθ+1/2u0|2
|u0|4θ+2

� Mθ+1/2(Gθ+1/2)

ν4θ
λ2θ+1

n ,

and

lim
t→−∞

|Aθ+1/2u(t)|2
|u(t)|4θ+2

= 0,

which shows that the theorem is true for the integerk + 1, and by induction, the proof is complete.�
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Appendix. Estimate for the nonlinear term (cf. [5])

Lemma 2. For eachn ∈ N (n � 2) and everyu ∈ D(An):

b(u,u,Anu) = −
n−1∑
h=1

b(Ahu,u,An−hu). (26)

Proof. Observe first that

A
(
B(u, v) + B(v,u)

) = B(u,Av) + B(v,Au) − B(Au,v) − B(Av,u).

Thus, ifn is odd, then

A

n∑
h=0

B(Ahu,An−hu) =
(n+1)/2∑

h=0

A
(
B(Ahu,An−hu) + B(An−hu,Ahu)

)

=
(n+1)/2∑

B(Ahu,An−h+1u) +
(n+1)/2∑

B(An−hu,Ah+1u)
h=0 h=0
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−
(n+1)/2∑

h=0

B(Ah+1u,An−hu) −
(n+1)/2∑

h=0

B(An−h+1u,Ahu)

= B(u,An+1u) − B(An+1u,u).

Consequently, in this case,

n∑
h=0

b(Ahu,u,An−hu) = −
n∑

h=0

b(Ahu,An−hu,u) = −
(

A

n∑
h=0

B(Ahu,An−hu),A−1u

)

= −b(u,An+1,A−1u) + b(An+1u,u,A−1u)

= b(u,A−1u,An+1u) − b(An+1u,A−1u,u) = 0,

since

b(Av, v,w) = b(w,v,Av)

for everyv ∈ D(A) andw ∈ H .
If n is even, we have

A

n∑
h=0

B(Ahu,An−hu) = AB(Anu,u) +
n/2∑
h=0

A
(
B(Ahu,An−hu) + B(An−hu,Ahu)

)
= AB(Anu,u) + B(u,Anu) − B(Anu,u).

Thus,

n∑
h=0

b(Ahu,u,An−hu) = −
n∑

h=0

b(Ahu,An−hu,u) = −
(

A

n∑
h=0

B(Ahu,An−hu),A−1u

)

= −(
AB(Anu,u),A−1u

) − b(u,An+1u,A−1u) + b(An+1u,u,A−1u)

= b(Anu,u,u) + 0= 0.

Consequently the identity from the lemma holds for alln. �
Theorem 3. For eachn ∈ N (n � 2) and everyu ∈ D(An):∣∣b(u,u,Anu)

∣∣ � c0cn|An/2u| |A(n+1)/2u| |A1/2u|, (.27)

wherecn := 6([n/2] + (n − [n/2])2n−2).

Proof. Observe that going to the Fourier coefficients:∣∣b(u, v,w)
∣∣ =

∣∣∣∣ ∑
j+k+l=0∈Z2

(ak · j)(bj · cl)

∣∣∣∣ �
∑

j+k+l=0∈Z2

|ak| |j | |bj | |cl | := b̃(u, v,w),

where u(x) = ∑
k∈Z2 ak e(2πi/L)(k·x), v(x) = ∑

j∈Z2 bj e(2πi/L)(j ·x), and w(x) = ∑
l∈Z2 cl e(2πi/L)(l·x), with

u,w ∈ H , v ∈ V .
Using the previous lemma we get

∣∣b(u,u,Anu)
∣∣ �

n−1∑
h=1

∣∣b(Ahu,u,An−hu)
∣∣ �

n−1∑
h=1

b̃(Ahu,u,An−hu).

Observe that



400 R. Dascaliuc / Ann. I. H. Poincaré – AN 22 (2005) 385–401
n−1∑
h=1

b̃(Ahu,u,An−hu) =
n−1∑
h=1

∑
j+k+l=0∈Z2

|k|2h|ak| |j | |aj | |al | |l|2(n−h)

� A + B + C,

where

A :=
n−1∑
h=1

∑
j+k+l=0∈Z2, |k|�min{|j |,|l|}

|k|2h|ak| |j | |aj | |al | |l|2(n−h),

B :=
n−1∑
h=1

∑
j+k+l=0∈Z2, |j |�min{|k|,|l|}

|k|2h|ak| |j | |aj | |al | |l|2(n−h),

and

C :=
n−1∑
h=1

∑
j+k+l=0∈Z2, |l|�min{|j |,|k|}

|k|2h|ak| |j | |aj | |al | |l|2(n−h).

Because of the symmetry we have thatA = C. Also,

B �
n−1∑
h=1

∑
j+k+l=0∈Z2, |k|�min{|j |,|l|}

|k|2h|ak| |j |2(n−h) |aj | |al | |l| = C(= A),

and thus we get

∣∣b(u,u,Anu)
∣∣ � 3B � 3

n−1∑
h=1

2
∑

j+k+l=0∈Z2, |j |�|l|�|k|
|k|2h|ak| |j | |aj | |al | |l|2(n−h)

= 6
[n/2]∑
h=1

∑
j+k+l=0∈Z2, |j |�|l|�|k|

|k|2h|ak| |j | |aj | |al | |l|2(n−h)

+ 6
n−1∑

h=[n/2]+1

∑
j+k+l=0∈Z2, |j |�|l|�|k|

|k|2h|ak| |j | |aj | |al | |l|2(n−h)

� 6
[n/2]∑
h=1

∑
j+k+l=0∈Z2, |j |�|l|�|k|

|k|n|ak| |j | |aj | |al | |l|n

+ 6
n−1∑

h=[n/2]+1

∑
j+k+l=0∈Z2, |j |�|l|�|k|

|k|2h|ak| |j | |aj | |al | |l|2(n−h).

Observe that in the previous sums,|k| = |j + l| � |j | + |l| � 2|l|. Thus,

6
n−1∑

h=[n/2]+1

∑
j+k+l=0∈Z2, |j |�|l|�|k|

|k|2h|ak| |j | |aj | |al | |l|2(n−h)

� 6
n−1∑ ∑

|k|n(2|l|)2h−n|ak| |j | |aj | |al | |l|2(n−h)
h=[n/2]+1j+k+l=0∈Z2, |j |�|l|�|k|
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50 (1973)

Appl. 76

(1992)

ifferential

. Thesis,
� 6
(
n − [n/2])2n−2

∑
j+k+l=0∈Z2, |j |�|l|�|k|

|k|n|ak| |j | |aj | |al | |l|n.

Also,

6
[n/2]∑
h=1

∑
j+k+l=0∈Z2, |j |�|l|�|k|

|k|n|ak| |j | |aj | |al | |l|n

� 6([n/2])
∑

j+k+l=0∈Z2, |j |�|l|�|k|
|k|n|ak| |j | |aj | |al | |l|n.

Consequently,∣∣b(u,u,Anu)
∣∣ � 6

([n/2] + (
n − [n/2])2n−2) ∑

j+k+l=0∈Z2, |j |�|l|�|k|
|k|n|ak| |j | |aj | |al | |l|n.

Let cn = 6([n/2] + (n − [n/2])2n−2). From the above we conclude that∣∣b(u,u,Anu)
∣∣ � cnb̃(An/2u,u,An/2u) = cn

∫
Ω

φ(x)ψ(x)ζ(x)dx,

where we denoteφ(x) = ∑
k e(2π i/L)k·x |ak| |k|n, ψ(x) = ∑

j e(2π i/L)j ·x |aj | |j |, andζ(x) = ∑
l e(2π i/L)l·x |al | |l|n.

Applying Schwartz inequality we get∣∣b(u,u,Anu)
∣∣ � cn|φ|L4|ψ |L2|ζ |L4.

Now apply Ladyzhenskaya inequality

|w|2
L4 � c0|w|H1|w|L2

to estimate|φ|L4 and|ζ |L4 and obtain∣∣b(u,u,Anu)
∣∣ � c0cn|An/2u| |A(n+1)/2u| |A1/2u|. �
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