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Abstract

Let f ∈ W1,n(Ω,R
n) be a continuous mapping so that the components of the preimage of eachy ∈ R

n are compact. We
show thatf is open and discrete if|Df (x)|n � K(x)Jf (x) a.e. whereK(x) � 1 andKn−1/Φ(log(e + K)) ∈ L1(Ω) for a
function Φ that satisfies

∫ ∞
1 1/Φ(t)dt = ∞ and some technical conditions. This divergence condition onΦ is shown to be

sharp.
 2005 Elsevier SAS. All rights reserved.

Résumé

Soit f ∈ W1,n(Ω,R
n) une application continue telle que les composantes connexes de la préimage de tat pointy ∈ R

n est
compacte. On démontre quef est ouverte et discrète si|Df (x)|n � K(x)Jf (x) p.p. oiK(x) � 1 etKn−1/Φ(log(e + K)) ∈
L1(Ω) pour une fonctionΦ telle que

∫ ∞
1 1/Φ(t)dt = ∞ et vérifiant des conditions techniques. La condition de divergenc

l’intégrale est optimale.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Let Ω be a connected, open subset ofR
n with n � 2. In this paper we consider continuous mappin

f ∈ W
1,p

loc (Ω,R
n), p � 1. We suppose that there is a measurable functionK :Ω → [1,∞) so that the distortion

inequality∣∣Df (x)
∣∣n � K(x)Jf (x)

holds almost everywhere inΩ , whereDf (x) is the differential matrix off at x, |Df (x)| is the operator norm o
this matrix, andJf (x) is the determinant ofDf (x). We say thatf is of finite distortionK if furthermoreJf is
locally integrable.

If aboveK is bounded, then necessarilyf ∈ W
1,n
loc (Ω,R

n), and we recover the class of mappings of boun
distortion, also called quasiregular mappings (cf. [22,23,9,26]). One of the fundamental properties of m
of bounded distortion is the remarkable result by Reshetnyak [21] that such a mapping is either constan
discrete and open. This means that the preimage of each point is a discrete set of points and thatf maps open set
to open sets.

A principal goal in the theory of mappings of finite distortion has been to try and obtain analogs of Reshe
result. In [10] Iwaniec and Šverák proved in dimension two, using the Beltrami equation, that each non-c
mappingf ∈ W1,2(Ω,R

2) of finite distortionK ∈ L1(Ω) is both open and discrete. Subsequently, Heino
and Koskela [6] proved in higher dimensions that a quasi-light mappingf ∈ W

1,n
loc (Ω,R

n) of finite distortion
K ∈ Lp(Ω), p > n − 1, is open and discrete. Here the quasi-lightness means that the components of the p
of eachy ∈ R

n are compact. Manfredi and Villamor [20] then showed that the quasi-lightness assumption
disposed of. The most recent result in this direction is due to Hencl and Malý [7]. They showed that, for a
light mappingf ∈ W

1,n
loc (Ω,R

n) of finite distortion, the integrability assumptionK ∈ Ln−1(Ω) is sufficient for
discreteness and openness. The general case remains open.

It is then natural to inquire if the integrability ofK could be further relaxed. To this end, let us first rec
a construction by Ball [1]. He gives an example of a non-constant, Lipschitz continuous quasi-light map
finite distortionK , defined in a domainΩ , so thatf maps a line segment to a point and withK ∈ Lp(Ω) for all
p < n − 1. Moreover, the preimage of every other point consists of at most a single point. Regarding the dis
functionK , one can in fact check that

Kn−1

Φ(log(e + K))
∈ L1(Ω) (1.1)

whenever
∫ ∞

1
dt

Φ(t)
< ∞. Iwaniec and Martin [9] have conjectured that each non-constant mappingf ∈

W
1,n
loc (Ω,R

n) of finite distortion that satisfies (1.1) for some (sufficiently regularΦ) with
∫ ∞

1
dt

Φ(t)
= ∞ is in

fact both open and discrete; in fact their conjecture is slightly stronger because it involves a different di
function. However, this far there have been no results under assumptions weaker thanK ∈ Ln−1(Ω), even for
quasi-light mappings. We give the first step towards to this conjecture by establishing the following sharp r

Suppose that we are given a functionΦ : [1,∞) → (0,∞) such that

(i) Φ is continuous and non-decreasing,

(ii )

∞∫
1

dt

Φ(t)
= ∞,

(iii ) the functiont → tn−1/Φ(log(e + t)) is increasing,
(iv) for everyc1 > 0 there isc2 > 0 such thatΦ(c1t) � c2Φ(t).

(1.2)

Notice that these conditions are satisfied for example forΦ (t) = 1, Φ (t) = t , Φ (t) = t log(e + t) and so on.
1 2 3
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Theorem 1.1. Let Ω ⊂ R
n be a connected open set. Suppose thatf ∈ W

1,n
loc (Ω,R

n) is a quasi-light mapping o
finite distortionK that satisfies(1.1)with a functionΦ that satisfies(1.2). Thenf is open and discrete.

Before discussing the proof of Theorem 1.1, let us briefly comment on the regularity assumptionsf.

First of all, there exists a quasi-light mappingf of finite distortionK that fails to be discrete and open, sat
fies f ∈ W1,p(Ω,R

n) for all p < n and satisfiesK ∈ Lp(Ω) for all p < ∞. Thus the regularity assumptio
f ∈ W

1,n
loc (Ω,R

n) cannot be substantially relaxed. Such mappings have been constructed in [12,14]. W
a stronger version of Theorem 1.1 in Section 5 that comes with an optimal regularity assumption. Secon
have taken continuity as a standing assumption for mappings of finite distortion. Under the regularity assu
referred to above, continuity follows from the other assumptions, as was shown in [4,8,14].

All the proofs of discreteness and openness forn � 3 that we are aware of rely on the following idea. One fi
proves that the mapping in question is sense-preserving. After that one verifies that the preimage of eachy ∈ R

n is
totally disconnected. The claim then follows by invoking the Titus–Young theorem [24]. We follow this proce
The fact thatf be sense-preserving in the setting of Theorem 1.1 is already due to Reshetnyak and the more
case can be essentially found in [12,14]. Thus we are reduced to showing that the preimage of eachy ∈ R

n is totally
disconnected. This will be guaranteed by our following theorem.

Theorem 1.2. Let Ω ⊂ R
n be a connected open set and suppose thatf ∈ W

1,s
loc (Ω,R

n), n − 1 < s � n, is a
mapping of finite distortionK . Furthermore, assume thatK satisfies(1.1)with a functionΦ that satisfies(1.2)and
that the multiplicity off is essentially bounded in a neighborhood of0. Then eitherf ≡ 0 or H 1(f −1(0)) = 0.

The essential boundedness of the multiplicity means that there is an integerk so that the cardinality off −1(y)

is at mostk for almost ally in the given neighborhood of 0. The fact that we can bound the multiplicity unde
assumptions is based on certain results in [12,13,7].

We prove Theorem 1.2 by first establishing a sharp generalization of an oscillation estimate given in
believe that this oscillation estimate, given in Section 3, is of its own interest. Indeed, the original vers
already found applications [18]. Our estimate is, in a sense, a substitute for the usual bounds on capacity
of Hausdorff measures. The usual bounds are not subtle enough for our purposes. Theorem 1.2 is then ob
combining the oscillation estimate with a delicate integrability result on|f |−1.

Theorem 1.2 is very sharp. The integrability assumption onK cannot be relaxed because of the example
to Ball, mentioned above. Moreover, we cannot takes = n − 1 at least whenn = 2, as is seen by considering th
mapping defined byf (x) = x/ log(e/(|x| − 1)) for x ∈ B(0,2) \ B(0,1) and byf (x) = 0 for x ∈ �B(0,1). Indeed,
f is of finite distortionK with K/Φ(log(e + K)) ∈ L1(B(0,2)) for, say,Φ(t) = t , and the multiplicity off is
essentially bounded by one in any neighborhood of 0.

The paper is organized as follows. In Section 2 we recall some definitions and preliminary results. Sec
devoted to the proofs of oscillation estimates. In Section 4, we prove Theorem 1.2. Finally, in Section 5, we
discreteness and openness and give the proof of Theorem 1.1.

2. Preliminaries

2.1. Quasicontinuous representatives

In anticipation of future applications of our oscillation estimates, we will formulate them without the cont
assumption. This will be done in terms of quasicontinuous representatives. Let us point out that each co
Sobolev mapping is quasicontinuous. In this paper, the precise definition of such a representative of a
mapping is not needed, because we will only employ the following fact [7, Proposition 1]. See [19] for m
quasicontinuity.
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Proposition 2.1. Let 1 � p < p̃ � n. Letu ∈ W1,p̃(Ω) be1, p̃-quasicontinuous. Then forHn−p-a.e. pointz ∈ Ω

we have

lim sup
r→0

r−β −
∫

B(z,r)

∣∣u − u(z)
∣∣dx < ∞,

whereβ = 1− p/p̃.

2.2. Topological properties

A mappingf :Ω → R
n is said to bediscreteif the preimage of each point ofRn is locally finite in Ω , and

light if the preimage of each point ofRn is totally disconnected. We say thatf :Ω → R
n is quasi-light if for

eachy ∈ R
n the components of the setf −1(y) are compact. We call a continuous mappingf :Ω → R

n sense-
preservingif deg(f,Ω ′, y0) > 0 for all domainsΩ ′ � Ω and ally0 ∈ f (Ω ′) \ f (∂Ω ′), where deg(f,Ω ′, y0) is the
topological degree off aty0 with respect toΩ ′. For the definition of the topological degree see e.g. [3].

2.3. Area formula

We denote by|E| the Lebesgue measure of a setE ⊂ R
n. We will use the well-known area formula. L

f ∈ W
1,1
loc (Ω;R

n). The multiplicity functionN(f,Ω,y) of f is defined as the number of preimages ofy underf
in Ω . Let η be a nonnegative Borel measurable function onR

n. Without any additional assumption we have∫
Ω

η
(
f (x)

)∣∣Jf (x)
∣∣dx �

∫
Rn

η(y)N(f,Ω,y)dy. (2.1)

This follows from the area formula for Lipschitz mappings, from the a.e. approximate differentiabilityf
[2, Theorem 3.1.4], and a general property of a.e. approximately differentiable functions [2, Theorem
namely thatΩ can be exhausted up to a set of measure zero by sets the restriction to which off is Lipschitz
continuous.

2.4. Fine properties of Hausdorff measure

In the proof of the oscillation estimate we need the following set functions:

λd
δ :E 	→ inf

{∑
α

aα(diamEα)d : aα � 0, diamEα � δ,χE �
∑
α

aαχEα

}
, δ > 0.

By [2, 2.10.24],

lim
δ→0

λd
δ (E) = Hd(E) (2.2)

for any setE ⊂ R
n, whereHd is the usual Hausdorff measure.

3. Divergence criterion

If we assume, forp < n, that a non-negative functionu ∈ W1,p(Ω) vanishes sufficiently fast on a set of positi
(n − p)-dimensional Hausdorff measure (it suffices to assume a certain power-like decay of integral meau

overB(x, r) asr → 0), then we can find pairwise disjoint setsEi such that|Ei | > 0 and

sup
Ei

up � C

∫
|∇u|p dx (3.1)
Ei
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of those

at need
(see [7, Theorems 3 and 4] for the exact statement, and also [17]). By a small modification of the proofs
results one can obtain infEi

u > C supEi
u, and, therefore∫

Ω

|∇u|p
up

dx = ∞.

We generalize this fact in the next lemma by obtaining a sharp divergence statement (3.4).

Lemma 3.1. Let 1 � p < n, µ > 0, β ∈ (0,1) andγ > 0. LetΩ ⊂ R
n be a connected open set andu ∈ W1,p(Ω).

Suppose thatu > 0 a.e. and let

Z =
{
z ∈ Ω: lim sup

r→0
r−β −

∫
B(z,r)

udx < γ

}
. (3.2)

Suppose thatHn−p(Z) > µ. Suppose further that a functionΦ : [1,∞) → (0,∞) satisfies

(i) for everyc1 > 0 there isc2 > 0 such that for everyl ∈ N Φ
(
c1(l + 1)

)
� c2Φ(c1l),

(ii )

∞∫
1

dt

Φ(t)
= ∞.

(3.3)

Then, for each0< δ < e−e,∫
0<u<δ

|∇u|p
up log1/u Φ(log log1/u)

dx = ∞. (3.4)

Proof. Our argument is an improvement on [7, Theorem 3]. We will omit the parts of the reasoning there th
not be altered. Set

τ := 2β/4. (3.5)

For j,m ∈ Z we denote

Zm =
{
z ∈ Z: B(z,2−m) ⊂ Ω,2m′β −

∫

B(z,2−m′
)

udx � 2γ for all m′ = m,m+1, . . .

}
,

W
j
m =

{
z ∈ Ω:

∣∣{u > τ−j } ∩ B(z,2−m)
∣∣ >

1

2

∣∣B(z,2−m)
∣∣},

Z
j
m = Zm ∩ W

j
m.

As in [7] we can findk ∈ N and a compact setZ∗ ⊂ Zk such that

log(4γ )

logτ
< k and Hn−p(Z∗) > µ. (3.6)

In view of (2.2) we can also suppose that

λ
n−p

2−k+1(Z
∗) > µ and

log(1/δ)

logτ
< k (3.7)

(this can only increase the value ofk and therefore (3.6) remains valid). From now on thisk ∈ N is fixed. SinceZ∗
is compact andZ∗ ⊂ ⋃

j W
j
k , whereW1

k ⊂ W2
k ⊂ · · · are open sets, we infer that there isi � 2k such that

Z∗ ⊂ Wi. (3.8)
k
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dard

It
We denote

P
j
k =

⋃
m�k

Z
j−1
m \ Z

j

m+1.

With eachz ∈ P
j
k we associate a ballBz = B(z,2m) wherem is such thatz ∈ A

j
m, m � k. By the Besicovitch

covering theorem we find a countable systemBj
k ⊂ {Bz: z ∈ Z

j−1
m \ Z

j

m+1, m � k} such that

χ
P

j
k

�
∑

B∈Bj
k

χB � N. (3.9)

Using the definition of the setsZj
m we can deduce with some work that

λ
n−p

2−k+1(Z
∗) � 1

a

∑
a<j�3a

∑
B∈Bj

k

(diamB)n−p

for anya ∈ N, a � i. In fact this was proved in [7] (two lines down from formula (18) there) only fora = i but it
is easy to see that everything works well also fora � i. From (3.7) we obtain

µ � 1

a

∑
a<j�3a

∑
B∈Bj

k

(diamB)n−p. (3.10)

Fix j ∈ {a + 1, . . . ,3a} and set

� := τ−j+1,

Ej :=
⋃

B∈Bj
k

B ∩ {u � �} ∩ {u > τ−1�}.

Note that the setsEj are clearly pairwise disjoint. LetB = B(z, r) ∈ Bj
k andv = max{τ−1�,min{u, �}}. Since

z ∈ P
j
k , there existsm � k such thatz ∈ Z

j−1
m \ Z

j

m+1. Therefore we can use the Poincaré inequality in a stan
way (see [7] for details) to deduce that

�p � Crp−n

∫
B

|∇v|p dx = Crp−n

∫
B∩Ej

|∇u|p dx

whereC = C(n,p,β). Since, for everyx ∈ Ej , we haveu(x) ∼ � ∼ τ−j anda < j � 3a this implies

C

a
� rp−n

∫
B∩Ej

|∇u|p
up log1/u

dx. (3.11)

We multiply both sides of (3.11) byrn−p/µ ∼ (diamB)n−p/µ and sum overB ∈ Bj
k and then sum overj ∈

{a + 1, . . . ,3a}. Then, with the aid of (3.10), we arrive at

C � Cµ−1 1

a

3a∑
j=a+1

∑
B∈Bj

k

(diamB)n−p � C′µ−1
3a∑

j=a+1

∫
Ej

|∇u|p
up log1/u

dx (3.12)

with C′ = C′(n,p,β,µ) (the constantC′ involves also the constantN from the Besicovitch covering theorem).
follows from the estimateu � τ−j+1 onEj , i � k and (3.7) that

{0< u < δ} ⊃
∞⋃

Em.
m=i+1
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Therefore, the estimateτ−j � |u| � τ−j+1 onEj , (3.3)(i), (3.12) and (3.3)(ii) imply

∫
0<u<δ

|∇u|p
up log1/u Φ(log log1/u)

dx �
∞∑

m=i+1

∫
Em

|∇u|p
up log1/u Φ(log log1/u)

dx

�
∞∑
l=0

3l+1i∑
j=3l i+1

∫
Ej

|∇u|p
up log 1/u Φ(log log1/u)

dx

�
∞∑
l=0

C

Φ(log(3l+1i log(τ )))

3l+1i∑
j=3l i+1

∫
Ej

|∇u|p
up log1/u

dx

�
∞∑
l=0

C

Φ(C(l + 1))
= ∞. �

Theorem 3.2. Assume that1 � p < p̃ � n. Let Ω ⊂ R
n be a connected open set and letu ∈ W1,p̃(Ω) be

p̃-quasicontinuous. Suppose thatu > 0 a.e. andHn−p({u = 0}) > 0. Suppose further that a functioñΦ satisfies
(1.2) (i) and (ii) . Then, for each0< δ < e−e,∫

0<u<δ

|∇u|p
upΦ̃(log1/u)

dx = ∞. (3.13)

Proof. By Proposition 2.1 there existsγ ∈ (0,∞) such thatHn−p(Zγ ) > 0, where

Zγ =
{
z ∈ Ω: lim sup

r→0
r−β −

∫
B(z,r)

|f |dx < γ

}
.

Recall thatβ = 1− p/p̃.
Define

Φ(t) = Φ̃(expt)

expt
.

From (1.2)(i) forΦ̃ we obtain (3.3)(i), and clearly
∞∫

1

dt

Φ(t)
=

∞∫
1

expt dt

Φ̃(expt)
=

∞∫
e

ds

Φ̃(s)
= ∞.

Now Lemma 3.1 yields

∞ =
∫

0<u<δ

|∇u|p
up log 1/uΦ(log log1/u)

dx =
∫

0<u<δ

|∇u|p
upΦ̃(log 1/u)

dx. �

The following elementary example shows that our assumption (1.2)(ii) is essential in Theorem 3.2.

Example 3.3. Let n,p ∈ N, Ω = (−1
ep

, 1
ep

)n and suppose that 1� p < n. Setu(x) =
√

x2
1 + · · · + x2

p. Clearly

Hn−p
({u = 0}) = Hn−p

(
{0}p ×

(−1
,

1
)n−p)

> 0.

ep ep
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e
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ality is
Suppose that

∞∫
1

ds

Φ̃(s)
< ∞.

Then

∫
Ω

|∇u|p
upΦ̃(log1/u)

= 2n−p

∫
(−1/ep,1/ep)p

dx

|x|pΦ̃(log 1/|x|) � C

1/e∫
0

dt

tΦ̃(log 1/t)
= C

∞∫
1

ds

Φ̃(s)
< ∞.

4. Hausdorff measure of f −1(0)

We need the following elementary inequalities that can be viewed as variants of Young’s inequality.

Lemma 4.1. LetΨ : [1,∞) → [1,∞) be a differentiable concave function and setψ(t) := Ψ ′(t). Suppose that th
function

t → tn−1ψ
(
log(e + t)

)
is increasing. Then

cn−1ψ(log(e + 1/a))

an−1Ψ (log(e + 1/a))
� cnψ(log(e + 1/a))

banΨ n/(n−1)(log(e + 1/a))
+ bn−1ψ

(
log(e + b/c)

)
. (4.1)

for everya > 0, b > 0 andc > 0.

Proof. If the first term on the right-hand side of (4.1) is greater or equal to the left-hand side then the inequ
obvious. Otherwise

b � c

aΨ 1/(n−1)(log(e + 1/a))
.

Since the functiontn−1ψ(log(e + t)) is increasing,ψ is non-increasing andΨ � 1, this implies

bn−1ψ
(
log(e + b/c)

)
� cn−1

an−1Ψ (log(e + 1/a))
ψ

(
log

(
e + 1

aΨ 1/(n−1)(log(e + 1/a))

))

� cn−1

an−1Ψ (log(e + 1/a))
ψ

(
log(e + 1/a)

)
. �

Lemma 4.2. Suppose thatΦ : [1,∞) → (0,∞) satisfies(1.2) for n = 2. Then

a � a2Φ(log(e + a/c))

b
+ C

b

Φ(log(e + b/c))
(4.2)

for everya � 0, b > 0 andc > 0.

Proof. If the first term on the right-hand side of (4.2) is greater or equal to the left-hand side then the inequ
obvious. Otherwise

b � aΦ
(
log(e + a/c)

)
. (4.3)
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.2 to

) and
From (1.2) (i) and (iv) it is easy to see thatΦ increases at most like a power function. ThereforeΦ(log(e + t)) �
C + Ct for everyt > 0. With the help of (1.2)(iv) this implies

Φ
(
log

(
e + tΦ

(
log(e + t)

)))
� CΦ

(
log(e + t)

)
. (4.4)

From (1.2)(iii), (4.3) and (4.4) we have

b

Φ(log(e + b/c))
� aΦ(log(e + a/c))

Φ(log(e + a/cΦ(log(e + a/c))))
� Ca. �

Proof of Theorem 1.2. Suppose thatf is not identically 0 and thatH 1(f −1(0)) > 0. We know that there is
0< δ < e−e such that the multiplicity off is bounded almost everywhere onB(0, δ) by constantM > 0.

Set

Ψ (t) = 1+
t∫

1

ds

Φ(s)
and ψ(t) = Ψ ′(t) = 1

Φ(t)
for t � 1. (4.5)

From (1.2)(ii) we know that limt→∞ Ψ (t) = ∞ and therefore also

∞ = lim
t→∞ logΨ (t) = lim

t→∞

t∫
1

ψ(s)ds

Ψ (s)
=

∞∫
1

ds

Φ(s)Ψ (s)
.

Hence the functionΦ̃(t) = Φ(t)Ψ (t) satisfies assumptions (1.2) (i) and (ii). We wish to apply Theorem 3
|f | for p = n − 1. In order to do this we still need to check that|f −1(0)| = 0. Whenn = 2 this follows from
Lemma 4.3 below and forn � 3 from formula (2.3) in [15]; notice that this result can be applied because (1.1
(1.2) imply thatK1/(n−1) ∈ L1

loc(Ω). We thus obtain from Theorem 3.2, forp = n − 1 andu = |f |, that
∫

0<|f |<δ

|Df |n−1ψ(log(e + 1/|f |))
|f |n−1Ψ (log(e + 1/|f |)) = ∞. (4.6)

DenoteΩ0 = Ω ∩{|Df (x)| �= 0}∩ {0< |f | < δ}. It is not difficult to verify from (4.5) and (1.2) thatΨ satisfies
all the assumptions of Lemma 4.1. We use inequality (4.1) fora(x) = |f (x)|, b(x) = K(x) andc(x) = |Df (x)| to
obtain the estimate∫

Ω0

|Df |n−1ψ(log(e + 1/|f |))
|f |n−1Ψ (log(e + 1/|f |))

�
∫
Ω0

|Df |nψ(log(e + 1/|f |))
K|f |nΨ n/(n−1)(log(e + 1/|f |)) +

∫
Ω0

Kn−1ψ
(
log

(
e + K/|Df |)). (4.7)

Sinceψ is non-increasing, part (iv) of (1.2) and our integrability assumptions give us∫
Ω0

Kn−1ψ
(
log(e + K/|Df |)) �

∫

K�|Df |s/(n−1)

+
∫

K>|Df |s/(n−1)

� ψ(1)

∫
Ω

|Df |s +
∫
Ω

Kn−1ψ
(
log

(
e + K(s−n+1)/s

))

� C

∫
|Df |s + C

∫
Kn−1ψ

(
log(e + K)

)
� C. (4.8)
Ω Ω
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ay
or
Using the distortion inequality, (2.1) and lims→∞ Ψ (s) = ∞ we conclude that
∫
Ω0

|Df |nψ(log(e + 1/|f |))
K|f |nΨ n/(n−1)(log(e + 1/|f |)) �

∫
Ω0

Jf (x)ψ(log(e + 1/|f |))
|f |nΨ n/(n−1)(log(e + 1/|f |))

� CM

∫
B(0,δ)

ψ(log(e + 1/|y|))
|y|nΨ n/(n−1)(log(e + 1/|y|)) dy = C

δ∫
0

ψ(log(e + 1/t))

tΨ n/(n−1)(log(e + 1/t))
dt

� C
(
Ψ −1/(n−1)

(
log(e + 1/δ)

) − lim
t→0+Ψ −1/(n−1)

(
log(e + 1/t)

))
� C. (4.9)

Combining (4.7), (4.8) and (4.9) we arrive at
∫

0<|f |<δ

|Df |n−1ψ(log(e + 1/|f |))
|f |n−1Ψ (log(e + 1/|f |)) =

∫
Ω0

|Df |n−1ψ(log(e + 1/|f |))
|f |n−1Ψ (log(e + 1/|f |)) � C.

This clearly contradicts (4.6).�
We close this section by verifying the following result that was employed in the proof above.

Lemma 4.3. Suppose thatn = 2 and thatf is as in Theorem1.2. Then|f −1(0)| = 0.

Proof. By Lemma 5.1 in [11] we may find a (radial) functionu ∈ W
1,n
0 (B(0,1)) so that limy→0 u(y) = ∞ and∫

B(0,1)

|∇u|2Φ(
log(e + |∇u|)) < ∞.

Therefore we can find a decreasing sequence of numbersRk ↘ 0 and sequence of functionsuk ∈ W
1,n
0 (B(0,Rk))

so thatuk ≡ 1 onB(0,Rk+1) and

lim
k→∞

∫
B(0,Rk)

|∇uk|2Φ
(
log(e + |∇uk|)

) = 0. (4.10)

Sincef is quasi-light, we may assume thatΩ is bounded,f −1(0) is compact and there existsδ > 0 such that
f −1(B(0, δ)) � Ω (cf. [25, Theorem 3.1]).

For k ∈ N we write

Bk = B(0,Rk), Ak = f −1(Bk \ Bk+1) and Ãk = Ak ∩ {|Df | �= 0
}
.

Fix k ∈ N large and denotev = uk ◦ f . If Rk < δ, then the functionv has zero boundary values and thus we m
use the Sobolev inequality forv. Sinceuk(0) ≡ 1 on Bk+1 we obtain from the Sobolev inequality and (4.2) f
a = |∇v|, b = K andc = |Df | that

∣∣f −1(0)
∣∣ �

∫
Ω

|uk ◦ f | � C

∫
Ω

|∇v| =
∫

Ãk

|∇v|

�
∫ |∇v|2

K
Φ

(
log

(
e + |∇v|/|Df |)) + C

∫
K

Φ(log(e + K/|Df |)) . (4.11)
Ãk Ãk
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Analogously to (4.8) we obtain∫

Ãk

K

Φ(log(e + K/|Df |)) � C

∫

Ãk

|Df |s + C

∫

Ãk

K

Φ(log(e + K))
. (4.12)

The right-hand side of (4.12) tends to zero whenk → ∞ because the setsAk are clearly pairwise disjoint. Fo
k large enough, the multiplicity off is essentially bounded byM on Bk . Therefore we can use the distortio
inequality, (2.1) and (4.10) to obtain

∫

Ãk

|∇v|2
K

Φ
(
log

(
e + |∇v|/|Df |)) �

∫

Ãk

∣∣(∇uk) ◦ f
∣∣2Jf Φ

(
log

(
e + |(∇uk) ◦ f |))

� M

∫
Bk

|∇uk|2Φ
(
log(e + |∇uk|)

) →
k→∞ 0. (4.13)

From (4.11), (4.12) and (4.13) we obtain|f −1(0)| = 0. �

5. Openness and discreteness

In this section we prove discreteness and openness of a mapping under a weaker integrability conditioDf

thanDf ∈ Ln. We use an Orlicz-type condition that was introduced to this setting in [16,8], and [14].

Theorem 5.1. Let Ω ⊂ R
n be a connected open set and suppose thatn − 1 < p � n. Let f ∈ W

1,p

loc (Ω;R
n) be a

continuous, sense-preserving mapping that has essentially bounded multiplicity. Suppose thatf is a mapping of
finite distortionK so thatK satisfies(1.1)with a functionΦ that satisfies(1.2). Thenf is either constant or both
discrete and open.

Proof. Any sense-preserving, light and continuous mapping is both discrete and open, see [24] or [23, Lem
Hence it remains to show thatf is light. However, by Theorem 1.2,H 1(f −1(y)) = 0 for eachy ∈ R

n, which easily
implies lightness. �

Now let us state the main result of our paper. Theorem 1.1 follows from Theorem 5.2 by choosingΨ (t) = tn.

Theorem 5.2. LetΩ ⊂ R
n be a connected open set. LetΨ be a non-negative, strictly increasing and continuou

differentiable function on[0,∞) satisfying the conditions

∞∫
1

Ψ (t)

t1+n
dt = ∞, lim inf

t→∞
tΨ ′(t)
Ψ (t)

> s

with s > n − 1. Suppose thatf is a quasi-light mapping of finite distortionK that satisfies(1.1)with a functionΦ
that satisfies(1.2), and suppose further thatΨ (Df ) ∈ L1

loc(Ω). Thenf is discrete and open.

Proof. Using results from [9] (or [5,16]) and [12] we may obtain analogously to [7, Theorem 5 and 7] tf

is sense-preserving, and that each pointx0 ∈ Ω is contained in a subdomainΩ ′′ ⊂ Ω such thatN(f,Ω ′′, ·) is
essentially bounded. Thus we may use Theorem 5.1 to show thatf is open and discrete onΩ ′′. Since these
properties are local, the proof is complete.�



342 S. Hencl, P. Koskela / Ann. I. H. Poincaré – AN 22 (2005) 331–342

oduction,

(1981)

996).

t. Zh. 17

.
, Oxford,

135–151.

oameri-

97.

er-Verlag,

.

Let us close the paper by commenting on the sharpness of our assumptions. As discussed in the intr
our assumption onK is optimal. Moreover, an example constructed in [14] gives us, givenΨ with

∞∫
1

Ψ (t)

t1+n
dt < ∞,

a non-discrete, non-open, quasi-light mapping of finite distortionK so thatK ∈ Lp(Ω) for all p, in particular for
p = n − 1, and so thatΨ (Df ) is in L1

loc(Ω). Thus the integrability assumption on|Df | is also optimal.
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